The Kuranishi family of a stable map.

21 February 1997

In this note we give an alternative, almost selfcontained, proof of theorem 2 of "W. Fulton, R. Pandharipande: Notes on stable maps and quantum cohomology. Alg-geom/9608011".

A smooth projective variety Y over \mathbb{C} is called *convex* if for every map $\mu: \mathbb{P}^1 \to Y$, the vector bundle $\mu^* T_Y$ is generically generated by global sections. We want to prove the following

Theorem 1. $\mu: (C, \{p_i\}) \to Y$ be a stable map (i.e. without infinitesimal automorphisms) from an *n*-pointed quasistable curve $(C, \{p_i\})$ of genus 0 with $N \ge 0$ nodes into a convex variety Y and denote $\mu_*[C] = \beta \in H_2(Y, \mathbb{Z})$.

Let B be the base space of the universal deformations of the data $(C, \{p_i\}, \mu)$ which leave Y fixed and denote by $B_j \subset B$ the subvariety corresponding to curves with at least j nodes. Then:

- a) B is smooth of dimension dim $Y + \int_{\beta} c_1(T_Y) + n 3$.
- b) If $N \ge 1$, B_1 is a normal crossing divisor.
- c) If $j \leq N$, B_j has pure codimension j.

1. Deformations of maps with fixed smooth target

Let $\mu: X \to Y$ be a morphism of schemes of finite type over an algebraically closed field k with Y smooth, denote by Art the category of local Artinian k-algebras and let $Def_{\mu/Y}: Art \to Set$ be the functor of deformations of the map μ leaving Y fixed. Denote also by Def_X the functor of deformations of X and by $\nu: Def_{\mu/Y} \to Def_X$ the natural transformation which forgets μ . Let θ_X, θ_Y be respectively the tangent sheaves of X and Y.

Theorem 2. In the notation above, if $H^1(X, \mu^* \theta_Y) = 0$ then ν is smooth with relative tangent space $t_{\nu} = coker(H^0(X, \theta_X) \to H^0(X, \mu^* \theta_Y))$.

Remark For the notion of smooth morphism and relative tangent space, see e.g. "B.Fantechi,M. Manetti: Obstruction calculus for functors of Artin rings, I Journal of Algebra 202 (1998)541-576".

Proof. Let $0 \longrightarrow k \xrightarrow{\epsilon} B \longrightarrow A \longrightarrow 0$ be a small extension of Artinian k-algebras, $X_B \longrightarrow Spec(B)$ a deformation of X and $\mu_A: X_A = X_B \times_{Spec(B)} Spec(A) \longrightarrow Y$ a map, we want to prove that the obstruction to extending μ_A to X_B lies in $H^1(X, \mu^* \theta_Y)$.

Step 1. X affine, $Y = \mathbb{A}^n = Spec(P)$, $P = k[x_1, ..., x_n]$. Let $X = Spec(\mathcal{O})$ and the morphism μ induced by $\mu^* : P \to \mathcal{O}$. It is well known that every deformation of an affine scheme is still affine and then we have $X_B = Spec(\mathcal{O}_B)$, $\mu_A^* : P \to \mathcal{O}$. $\mathcal{O}_A = \mathcal{O}_B \otimes_B A$. As P is a free algebra it is possible to lift μ_A^* to a morphism $\mu_B^*: P \to \mathcal{O}_B$. Note that two liftings differ by a derivation $\delta \in Der_k(P, \epsilon \mathcal{O})$, where the P-module structure of \mathcal{O} is induced by μ^* .

Step 2. $X = Spec(\mathcal{O})$ affine, $Y \subset \mathbb{A}^n$ closed subscheme.

Let $I \subset P$ be the ideal of $Y, Y = Spec(\mathcal{O}_Y), \mathcal{O}_Y = P/I$. By Step 1 there exists a commutative diagram

Since $\psi(I) \subset \epsilon \mathcal{O}$ and $\epsilon^2 = 0$, $\psi(I^2) = 0$ and therefore the restriction of ψ to I gives a $\psi_{|I} \in \operatorname{Hom}_{\mathcal{O}_Y}(I/I^2, \epsilon \mathcal{O})$. By assumption Y is a closed smooth subscheme of \mathbb{A}^n , in particular, for every \mathcal{O}_Y module M, the natural morphism

$$Der_k(P, M) \to \operatorname{Hom}_{\mathcal{O}_Y}(I/I^2, M)$$

is surjective. Let $\delta \in Der_k(P, \epsilon \mathcal{O})$ be a lifting of $\psi_{|I}$, then $\psi - \delta$ factors through a morphism $\mu_B^*: \mathcal{O}_Y \to \mathcal{O}_B$ which lifts μ_A^* .

As above two liftings of μ_A^* differ by an element of $Der_k(\mathcal{O}_Y, \epsilon \mathcal{O}) = \epsilon H^0(X, \mu^* \theta_Y)$.

Step 3. General case.

The morphism of schemes μ is the data of a morphism $\mu: |X| \to |Y|$ between underlying topological spaces and a sheaf homomorphism $\mu^*: \mu^{-1}\mathcal{O}_Y \to \mathcal{O}$. It is useful to consider the deformation X_B as a sheaf \mathcal{O}_B of flat *B*-algebras over |X| and then prove that the obstruction to lift a morphism $\mu_A^*: \mu^{-1}\mathcal{O}_Y \to \mathcal{O}_A = \mathcal{O}_B \otimes_B A$ to \mathcal{O}_B lies in $H^1(X, \mu^*\theta_Y)$.

Fix open affine coverings $X = \bigcup U_i$, $Y = \bigcup V_i$ such that $\mu(U_i) \subset V_i$; by step 2 for every *i* there exists liftings $\mu_{B,i}^*$ of the restriction of μ_A^* to the open subset U_i and therefore for every pair i, j there exists a $\varphi_{ij} \in H^0(U_{ij}, \mu^* \theta_Y)$ such that, over U_{ij} , $\epsilon \varphi_{ij} = \mu_{B,i}^* - \mu_{B,j}^*$.

It is clear from the definition, that $\{\varphi_{ij}\}$ is a cocycle and that its class $[\varphi_{ij}] \in H^1(X, \mu^* \theta_Y)$ is independent from the choice of the liftings $\mu^*_{B,i}$ and the affine coverings. If $[\varphi_{ij}] = 0$ there exist $\varphi_i \in H^0(U_i, \mu^* \theta_Y)$ such that $\varphi_{ij} = \varphi_i - \varphi_j$ and then the morphisms $\mu^*_{B,i} - \epsilon \varphi_i$ define a global $\mu^*_B: \mu^{-1}\mathcal{O}_Y \to \mathcal{O}_B$.

We note that in Step 3 we have only used the existence of the local liftings $\mu_{B,i}$ and not the smoothness of Y.

Remark. The cocycle $\{\varphi_{ij}\}$ does not change if we compose the $\mu_{B,i}^*$'s with *B*-algebra automorphisms of $\mathcal{O}_B(U_i)$ inducing the identity on $\mathcal{O}(U_i)$, therefore the class $[\varphi_{ij}]$ depends only by the isomorphism classes of the deformations X_B , $\mu_A: X_A \to Y$ and the above construction gives a linear complete obstruction theory for the morphism ν .

We now compute the relative tangent space, i.e. the set of isomorphism classes of liftings $\psi: \mu^{-1}\mathcal{O}_Y \to \mathcal{O} \otimes k[\epsilon], \ \epsilon^2 = 0$. Every such a lifting can be written as $\mu^* + \epsilon \eta$ where $\eta \in H^0(X, \mu^*\theta_Y)$, two liftings $\mu^* + \epsilon \eta_1, \ \mu^* + \epsilon \eta_2$ are in the same isomorphism class if and only if

there exists $\delta \in H^0(X, \theta_X)$ such that $\mu^* + \epsilon \eta_1 = (1 + \epsilon \delta)(\mu^* + \epsilon \eta_2)$, i.e. $\eta_1 = \delta \mu^* + \eta_2$. The conclusion follows.

Given $p_1, ..., p_m \in X$ regular points, we define $Def_{\mu/Y, \{p_i\}}$ as the functor of deformations of the *m*-pointed map $\mu: (X, p_1, ..., p_m) \to Y$. This means that for an Artinian *k*-algebra *A*, $Def_{\mu/Y, \{p_i\}}(A)$ is the set of isomorphism classes of the following data:

- i) a deformation of $X, X_A \to Spec(A)$.
- ii) *m* sections $p_{A,i}: Spec(A) \to X_A$ such that $p_{A,i}(Spec(k)) = p_i$.
- iii) a map $\mu_A: X_A \to Y$.

In a similar way we define the functor $Def_{X,\{p_i\}}$.

Exercise. Convince yourself that if the pointed scheme $(X, \{p_i\})$ has no infinitesimal automorphism and $H^1(X, \mu^* \theta_Y) = 0$ then the natural morphism $Def_{\mu/Y, \{p_i\}} \to Def_{X, \{p_i\}}$ is smooth of relative dimension $h^0(X, \mu^* \theta_Y)$.

Lemma 3. Let $q \in X$ be a smooth point, then the natural morphism

$$f: Def_{\mu/Y, \{p_i\}, q} \to Def_{\mu/Y, \{p_i\}}$$

is smooth. If moreover the differential of μ is injective at q, then the relative tangent space of f is isomorphic to the Zariski tangent space of X at q.

Proof. The smoothness of f follows from the fact that every deformation $X_A \to Spec(A)$, being flat, is also formally smooth at q. If $d\mu(q)$ is injective, then every infinitesimal automorphism of μ is the identity in a neighbourhood of q and the relative tangent space is exactly the space of section $q: Spec(k[\epsilon]) \to X \times Spec(k[\epsilon])$ which is canonically isomorphic to the Zariski tangent space at q.

2. Application to stable maps

Lemma 4. Let $C, p_1, ..., p_n$ be a *n*-pointed quasistable curve of genus 0, $(\chi(\mathcal{O}_C) = 1)$ and let $\mu: (C, p_1, ..., p_n) \to Y$ be a map (not necessarily stable) into a convex variety.

Then $h^1(C, \mu^*\theta_Y) = 0$, $h^0(C, \mu^*\theta_Y) = \dim Y + \deg \mu^*\theta_Y = rank(\mu^*\theta_Y)\chi(\mathcal{O}_C) + \deg \mu^*\theta_Y$.

Proof. By Riemann-Roch and Serre duality it is sufficient to prove that if $\phi \in \text{Hom}(\mu^* \theta_Y, \omega_C)$ then $\phi = 0$.

Let $C = A \cup B$ be a decomposition such that $B = \mathbb{P}^1$ and $A \cdot B \leq 1$, we first prove that $\phi_{|B} = 0$. The restriction of ϕ to B give $\mu^* \theta_Y \otimes \mathcal{O}_B \to \omega_C \otimes \mathcal{O}_B = \mathcal{O}_{\mathbb{P}^1}(A \cdot B - 2)$ and by the convexity assumption this morphism is 0. As the restriction of ϕ over B is 0, its restriction over A gives, by adjunction $\mu^* \theta_Y \otimes \mathcal{O}_A \to \omega_C \otimes \mathcal{O}_A(-B) = \omega_A$ and then by induction on the number of irreducible components of A this morphism is trivial. \Box

Proof of Theorem 1.

a) The Kuranishi family is a hull for the functor $Def_{\mu/Y,\{p_i\}}$, it is therefore sufficient to prove the smoothness and compute the dimension of the tangent space of the above functor.

It is possible to find a finite set of points $q_1, ..., q_m \in C$ such that the pointed curve $C, \{p_i\} \cup \{q_j\}$ is stable and the differential of μ is injective at q_j for every j. We have a commutative diagram

Since $(C, \{p_i\}, \{q_j\})$ is stable, $Def_{C, \{p_i\}, \{q_j\}}$ is smooth of dimension n + m - 3, by theorem 2 β is smooth of relative dimension $h^1(C, \mu^* \theta_Y)$ and by lemma 3 α is smooth of relative dimension m. Therefore $Def_{\mu/Y, \{p_i\}}$ is smooth of dimension $n + m - 3 + h^1(\mu^* \theta_Y) - m = \dim Y + deg_C \mu^* \theta_Y + n - 3$.

b) and c). Again by theorem 2, the morphism γ is smooth and the conclusion follows from the analogous properties of the base space of the Kuranishi family of the curve C.

3. Further remarks on theorem 2

In this section we extend the result of theorem 2 in the more general case of Y reduced "along the image of μ ". The precise statement is

Theorem 5. Let $\mu: X \to Y$ be a morphism of schemes of finite type over k such that $\mu^{-1}(Sing(Y))$ is nowhere dense in X.

Let $\nu: Def_{\mu/Y} \to Def_X$ be the morphism defined in §1, then ν admits a linear complete obstruction theory whose space is $\operatorname{Ext}^1_X(\mu^*\Omega_Y, \mathcal{O}_X)$.

Proof. The proof is just a continuation of the proof of theorem 2.

Step 4. $X = Spec(\mathcal{O}), \ Y = Spec(\mathcal{O}_Y), \ \mathcal{O}_Y = P/I, \ P = k[x_1, ..., x_n].$