Deformations of singularities via differential graded Lie algebras

Marco Manetti

27-03-2001

1 Introduction

Let \mathbb{K} be a fixed algebraically closed field of characteristic $0, X \subset \mathbb{A}^{n}=\mathbb{A}_{\mathbb{K}}^{n}$ a closed subscheme. Denote by Art the category of local artinian \mathbb{K}-algebras with residue field \mathbb{K}.

Definition 1.1. An infinitesimal deformation of X over $A \in$ Art is a commutative diagram of schemes

such that f_{A} is flat and the induced morphism $X \rightarrow X_{A} \times_{\operatorname{Spec}(A)} \operatorname{Spec}(\mathbb{K})$ is an isomorphism.

It is not difficult to see (cf. [1]) that X_{A} is affine and more precisely it is isomorphic to a closed subscheme of $\mathbb{A}^{n} \times \operatorname{Spec}(A)$. Two deformations $X \xrightarrow{i} X_{A} \xrightarrow{f_{A}} \operatorname{Spec}(A), X \xrightarrow{j} \tilde{X}_{A} \xrightarrow{g_{A}} \operatorname{Spec}(A)$ are isomorphic if there exists a commutative diagram of schemes

It is easy to prove that necessarily θ is an isomorphism (cf. [8]). Since flatness commutes with base change, for every deformations $X \xrightarrow{i} X_{A} \xrightarrow{f_{A}} \operatorname{Spec}(A)$ and every morphism $A \rightarrow B$ in the category Art, the diagram

is a deformation of X over $\operatorname{Spec}(B)$; it is then defined a covariant functor $\operatorname{Def}_{X}:$ Art \rightarrow Set,

$$
\operatorname{Def}_{X}(A)=\{\text { isomorphism classes of deformations of } X \text { over } A\} .
$$

The set $\operatorname{Def}_{X}(\mathbb{K})$ contains only one point.
In a similar way we can define the functor $\operatorname{Hilb}_{X}:$ Art \rightarrow Set of embedded deformations of X into $\mathbb{A}^{n}: \operatorname{Hilb}_{X}(A)$ is the set of closed subschemes $X_{A} \subset$ $\mathbb{A}^{n} \times \operatorname{Spec}(A)$ such that the restriction to X_{A} of the projection on the second factor is a flat map $X_{A} \rightarrow \operatorname{Spec}(A)$ and $X_{A} \cap\left(\mathbb{A}^{n} \times \operatorname{Spec}(\mathbb{K})\right)=X \times \operatorname{Spec}(\mathbb{K})$.

In these notes we give a recipe for the construction of two differential graded Lie algebras \mathcal{H}, \mathcal{L} together two isomorphism of functors

$$
\operatorname{Def}_{\mathcal{L}}=\frac{M C_{\mathcal{L}}}{\text { gauge }} \rightarrow \operatorname{Def}_{X}, \quad \operatorname{Def}_{\mathcal{H}}=\frac{M C_{\mathcal{H}}}{\text { gauge }} \rightarrow \operatorname{Hilb}_{X}
$$

The DGLAs \mathcal{L}, \mathcal{H} are unique up to quasiisomorphism and their cohomology can be computed in terms of the cotangent complex of X. For the notion of differential graded Lie algebra, Maurer-Cartan functors and gauge equivalence we refer to [7], [8], [3], [6].

Moreover we can choose \mathcal{H} as a differential graded Lie subalgebra of \mathcal{L} such that $\mathcal{H}^{i}=\mathcal{L}^{i}$ for every $i>0$.

2 Flatness and relations

In this section $A \in$ Art is a fixed local artinian \mathbb{K}-algebra with residue field \mathbb{K}.
Lemma 2.1. Let M be an A-module, if $M \otimes_{A} \mathbb{K}=0$ then $M=0$.
Proof. If M is finitely generated this is Nakayama's lemma. In the general case consider a filtration of ideals $0=I_{0} \subset I_{1} \subset \ldots \subset I_{n}=A$ such that $I_{i+1} / I_{i}=\mathbb{K}$ for every i. Applying the right exact functor $\otimes_{A} M$ to the exact sequences of A-modules

$$
0 \longrightarrow \mathbb{K}=\frac{I_{i+1}}{I_{i}} \longrightarrow \frac{A}{I_{i}} \longrightarrow \frac{A}{I_{i+1}} \longrightarrow 0
$$

we get by induction that $M \otimes_{A}\left(A / I_{i}\right)=0$ for every i.
The following is a special case of the local flatness criterion [9, Thm. 22.3]
Theorem 2.2. For an A-module M the following conditions are equivalent:

1. M is free.
2. M is flat.
3. $\operatorname{Tor}_{1}^{A}(M, \mathbb{K})=0$.

Proof. The only nontrivial assertion is 3$) \Rightarrow 1)$. Assume $\operatorname{Tor}_{1}^{A}(M, \mathbb{K})=0$ and let F be a free module such that $F \otimes_{A} \mathbb{K}=M \otimes_{A} \mathbb{K}$. Since $M \rightarrow$ $M \otimes_{A} \mathbb{K}$ is surjective there exists a morphism $\alpha: F \rightarrow M$ such that its reduction $\bar{\alpha}: F \otimes_{A} \mathbb{K} \rightarrow M \otimes_{A} \mathbb{K}$ is an isomorphism. Denoting by K the kernel of α and by C its cokernel we have $C \otimes_{A} \mathbb{K}=0$ and then $C=0 ; K \otimes_{A} \mathbb{K}=\operatorname{Tor}_{1}^{A}(M, \mathbb{K})=0$ and then $K=0$.

Corollary 2.3. Let $h: P \rightarrow L$ be a morphism of flat A-modules, $A \in$ Art. If $\bar{h}: P \otimes_{A} \mathbb{K} \rightarrow L \otimes_{A} \mathbb{K}$ is injective (resp.: surjective) then also h is injective (resp.: surjective).
Proof. Same proof of Theorem 2.2.
Corollary 2.4. Let $0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$ be an exact sequence of A-modules with N flat. Then:

1. $M \otimes_{A} \mathbb{K} \rightarrow N \otimes_{A} \mathbb{K}$ injective $\Rightarrow P$ flat.
2. P flat $\Rightarrow M$ flat and $M \otimes_{A} \mathbb{K} \rightarrow N \otimes_{A} \mathbb{K}$ injective.

Proof. Take the associated long $\operatorname{Tor}_{*}^{A}(-, \mathbb{K})$ exact sequence and apply 2.2 and 2.3.

Corollary 2.5. Let

$$
\begin{equation*}
P \xrightarrow{f} Q \xrightarrow{g} R \xrightarrow{h} M \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a complex of A-modules such that:

1. P, Q, R are flat.
2. $Q \xrightarrow{g} R \xrightarrow{h} M \longrightarrow 0$ is exact.
3. $P \otimes_{A} \mathbb{K} \xrightarrow{\bar{f}} Q \otimes_{A} \mathbb{K} \xrightarrow{\bar{g}} R \otimes_{A} \mathbb{K} \xrightarrow{\bar{h}} M \otimes_{A} \mathbb{K} \longrightarrow 0$ is exact.

Then M is flat and the sequence (1) is exact.
Proof. Denote by $H=\operatorname{ker} h=\operatorname{Im} g$ and $g=\phi \eta$, where $\phi: H \rightarrow R$ is the inclusion and $\eta: Q \rightarrow H$; by assumption we have an exact diagram

which allows to prove, after an easy diagram chase, that $\bar{\phi}$ is injective. According to Corollary $2.4 H$ and M are flat modules. Denoting $L=\operatorname{ker} g$ we have, since H is flat, that also L is flat and $L \otimes_{A} K \rightarrow Q \otimes_{A} \mathbb{K}$ injective. This implies that $P \otimes_{A} \mathbb{K} \rightarrow L \otimes_{A} \mathbb{K}$ is surjective. By Corollary 2.3 $P \rightarrow L$ is surjective.

Corollary 2.6. Let $n>0$ and

$$
0 \longrightarrow I \longrightarrow P_{0} \xrightarrow{d_{1}} P_{1} \longrightarrow \ldots \xrightarrow{d_{n}} P_{n}
$$

a complex of A-modules with P_{0}, \ldots, P_{n} flat. Assume that

$$
0 \longrightarrow I \otimes_{A} \mathbb{K} \longrightarrow P_{0} \otimes_{A} \mathbb{K} \xrightarrow{\overline{d_{1}}} P_{1} \otimes_{A} \mathbb{K} \longrightarrow \ldots \xrightarrow{\overline{d_{n}}} P_{n} \otimes_{A} \mathbb{K}
$$

is exact; then $I, \operatorname{coker}\left(d_{n}\right)$ are flat modules and the natural morphism $I \rightarrow$ $\operatorname{ker}\left(P_{0} \otimes_{A} \mathbb{K} \rightarrow P_{1} \otimes_{A} \mathbb{K}\right)$ is surjective.

Proof. Induction on n and Corollary 2.5.

3 Differential graded algebras, I

Unless otherwise specified by the symbol \otimes we mean the tensor product $\otimes_{\mathbb{K}}$ over the field \mathbb{K}. We denote by:

- \mathbf{G} the category of \mathbb{Z}-graded \mathbb{K}-vector space; given an object $V=\oplus V_{i}$, $i \in \mathbb{Z}$, of \mathbf{G} and a homogeneous element $v \in V_{i}$ we denote by $\bar{v}=i$ its degree.
- DG the category of \mathbb{Z}-graded differential \mathbb{K}-vector space (also called complexes of vector spaces).

Given (V, d) in DG we denote as usual by $Z(V)=\operatorname{ker} d, B(V)=d(V), H(V)=$ $Z(V) / B(V)$.

Given an integer n, the shift functor $[n]: \mathbf{D G} \rightarrow \mathbf{D G}$ is defined by setting $V[n]=\mathbb{K}[n] \otimes V, V \in \mathbf{D G}, f[n]=I d_{\mathbb{K}}[n] \otimes f, f \in \operatorname{Mor}_{\mathbf{D G}}$, where

$$
\mathbb{K}[n]_{i}= \begin{cases}\mathbb{K} & \text { if } i+n=0 \\ 0 & \text { otherwise }\end{cases}
$$

More informally, the complex $V[n]$ is the complex V with degrees shifted by n, i.e. $V[n]_{i}=V_{i+n}$, and differential multiplied by $(-1)^{n}$.

Given two graded vector spaces V, W, the "graded Hom" is the graded vector space

$$
\operatorname{Hom}_{\mathbb{K}}^{*}(V, W)=\oplus_{n} \operatorname{Hom}_{\mathbb{K}}^{n}(V, W) \in \mathbf{G}
$$

where by definition $\operatorname{Hom}_{\mathbb{K}}^{n}(V, W)$ is the set of \mathbb{K}-linear map $f: V \rightarrow W$ such that $f\left(V_{i}\right) \subset W_{i+n}$ fore every $i \in \mathbb{Z}$. Note that $\operatorname{Hom}_{\mathbb{K}}^{0}(V, W)=\operatorname{Hom}_{\mathbf{G}}(V, W)$ is the space of morphisms in the category \mathbf{G} and there exist natural isomorphisms

$$
\operatorname{Hom}_{\mathbb{K}}^{n}(V, W)=\operatorname{Hom}_{\mathbf{G}}(V[-n], W)=\operatorname{Hom}_{\mathbf{G}}(V, W[n])
$$

A morphism in DG is called a quasiisomorphism if it induces an isomorphism in homology. A commutative diagram in DG

is called cartesian if the morphism $A \rightarrow C \times{ }_{D} B$ is an isomorphism; it is an easy exercise in homological algebra to prove that if f is a surjective (resp.: injective) quasiisomorphism, then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, \mathbb{Z}-commutative) algebra is a graded vector space $A=\oplus A_{i} \in \mathbf{G}$ endowed with a product $A_{i} \times A_{j} \rightarrow A_{i+j}$ satisfying the properties:

1. $a(b c)=(a b) c$.
2. $a(b+c)=a b+a c,(a+b) c=a c+b c$.
3. (Koszul sign convention) $a b=(-1)^{\bar{a}} \bar{b}$ ba for a, b homogeneous.

The algebra A is unitary if there exists $1 \in A_{0}$ such that $1 a=a 1=a$ for every $a \in A$.

Let A be a graded algebra, then A_{0} is a commutative \mathbb{K}-algebra in the usual sense; conversely every commutative \mathbb{K}-algebra can be considered as a graded algebra concentrated in degree 0 . If $I \subset A$ is a homogeneous left (resp.: right) ideal then I is also a right (resp.: left) ideal and the quotient A / I has a natural structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set $\left\{x_{i}\right\}, i \in I$, of homogeneous indeterminates of integral degree $\overline{x_{i}} \in \mathbb{Z}$ we can consider the graded algebra $\mathbb{K}\left[\left\{x_{i}\right\}\right]$. As a \mathbb{K}-vector space $\mathbb{K}\left[\left\{x_{i}\right\}\right]$ is generated by monomials in the indeterminates x_{i}. Equivalently $\mathbb{K}\left[\left\{x_{i}\right\}\right]$ can be defined as the symmetric algebra $\bigoplus_{n>0} \bigodot^{n} V$, where $V=\oplus_{i \in I} \mathbb{K} x_{i} \in \mathbf{G}$. In some cases, in order to avoid confusion about terminology, for a monomial $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{n}}^{\alpha_{n}}$ it is defined:

- The internal degree $\sum_{h} \overline{x_{i_{h}}} \alpha_{h}$.
- The external degree $\sum_{h} \alpha_{h}$.

In a similar way it is defined $A\left[\left\{x_{i}\right\}\right]$ for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded algebra A and $a \mathbb{K}$-linear map $s: A \rightarrow A$, called differential, with the properties:

1. $s\left(A_{n}\right) \subset A_{n+1}, s^{2}=0$.
2. (graded Leibnitz rule) $s(a b)=s(a) b+(-1)^{\bar{a}} a s(b)$.

A morphism of dg-algebras is a morphism of graded algebras commuting with differentials; the category of dg-algebras is denoted by DGA.

In the sequel, for every dg-algebra A we denote by A_{\sharp} the underlying graded algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:

1. $1 \in Z(A)$.
2. $1 \in B(A)$ if and only if $H(A)=0$.
3. $Z(A)$ is a graded subalgebra of A and $B(A)$ is a homogeneous ideal of $Z(A)$.
4. If A is local with maximal ideal M then $s(M) \subset M$ if and only if $H(A) \neq 0$.

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that $s(I) \subset I$; there exists an obvious bijection between differential ideals and kernels of morphisms of dg-algebras.

On a polynomial algebra $\mathbb{K}\left[\left\{x_{i}\right\}\right]$ a differential s is uniquely determined by the values $s\left(x_{i}\right)$.
Example 3.5. Let $t, d t$ be inderminates of degrees $\bar{t}=0, \overline{d t}=1$; on the polynomial algebra $\mathbb{K}[t, d t]=\mathbb{K}[t] \oplus \mathbb{K}[t] d t$ there exists an obvious differential d such that $d(t)=d t, d(d t)=0$. Since \mathbb{K} has characteristic 0 , we have $H(\mathbb{K}[t, d t])=\mathbb{K}$. More generally if (A, s) is a dg-algebra then $A[t, d t]$ is a dg-algebra with differential $s(a \otimes p(t))=s(a) \otimes p(t)+(-1)^{\bar{a}} a \otimes p^{\prime}(t) d t$, $s(a \otimes q(t) d t)=s(a) \otimes q(t) d t$.

Definition 3.6. A morphism of dg-algebras $B \rightarrow A$ is a quasiisomorphism if the induced morphism $H(B) \rightarrow H(A)$ is an isomorphism.

Given a morphism of dg-algebras $B \rightarrow A$ the space $\operatorname{Der}_{B}^{n}(A, A)$ of B derivations of degree n is by definition

$$
\operatorname{Der}_{B}^{n}(A, A)=\left\{\phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(A, A) \mid \phi(a b)=\phi(a) b+(-1)^{n \bar{a}} a \phi(b), \phi(B)=0\right\} .
$$

We also consider the graded vector space

$$
\operatorname{Der}_{B}^{*}(A, A)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Der}_{B}^{n}(A, A) \in \mathbf{G} .
$$

There exists a structure of differential graded Lie algebra on $\operatorname{Der}_{B}^{*}(A, A)$ with differential

$$
d: \operatorname{Der}_{B}^{n}(A, A) \rightarrow \operatorname{Der}_{B}^{n+1}(A, A), \quad d \phi=d_{A} \phi-(-1)^{n} \phi d_{A}
$$

and bracket

$$
[f, g]=f g-(-1)^{\bar{f} \bar{g}} g f .
$$

Exercise 3.7. Verify that $d[f, g]=[d f, g]+(-1)^{\bar{f}}[f, d g]$.

4 The DG-resolvent

Let $X \subset \mathbb{A}^{n}$ be a closed subscheme, $R_{0}=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of regular functions on $\mathbb{A}^{n}, I_{0} \subset R_{0}$ the ideal of X and $\mathcal{O}_{X}=R_{0} / I$ the function ring of X.

Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism $R \rightarrow \mathcal{O}_{X}$ such that $R=R_{0}\left[y_{1}, y_{2}, \ldots\right]$ is a countably generated graded polynomial $R_{0^{-}}$ algebra, every indeterminate y_{i} has negative degree and, if $R=\oplus_{i \leq 0} R_{i}$, then R_{i} is a finitely generated free R_{0} module.

Choosing a set of generators $f_{1}, \ldots, f_{s_{1}}$ of the ideal I_{0} we first consider the graded-commutative polynomial dg-algebra

$$
R(1)=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s_{1}}\right]=R_{0}\left[y_{1}, \ldots, y_{s_{1}}\right], \quad \overline{x_{i}}=0, \quad \overline{y_{i}}=-1
$$

with differential d defined by $d x_{i}=0, d y_{j}=f_{j}$. Note that $(R(1), d)$, considered as a complex of R_{0} modules, is the Koszul complex of the sequence $f_{1}, \ldots, f_{s_{1}}$. By construction the complex of R_{0}-modules

$$
\ldots \longrightarrow R(1)_{-2} \xrightarrow{d} R(1)_{-1} \xrightarrow{d} R_{0} \xrightarrow{\pi} \mathcal{O}_{X} \longrightarrow 0
$$

is exact in R_{0} and \mathcal{O}_{X}. If $(R(-1), d) \rightarrow \mathcal{O}_{X}$ is a quasiisomorphism of dg-algebras (e.g. if X is a complete intersection) the construction is done. Otherwise let $f_{s_{1}+1}, \ldots, f_{s_{2}} \in \operatorname{ker} d \cap R(1)_{-1}$ be a set of generators of the R_{0} module (ker $d \cap$ $\left.R(1)_{-1}\right) / d R(1)_{-2}$ and define

$$
R(2)=R(1)\left[y_{s_{1}+1}, \ldots, y_{s_{2}}\right], \quad \overline{y_{j}}=-2, \quad d y_{j}=f_{j}, \quad j=s_{1}+1, \ldots, s_{2} .
$$

Repeating in a recursive way the above argument (step by step killing cycles) we get a chain of polynomial dg-algebras

$$
R_{0}=R(0) \subset R(1) \subset \ldots \subset R(i) \subset \ldots
$$

such that $(R(i), d) \rightarrow \mathcal{O}_{X}$ is a quasiisomorphism in degree $>-i$. Setting

$$
R=\cup R(i)=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, \ldots\right]=\bigoplus_{i \leq 0} R_{i},
$$

the projection $\pi: R \rightarrow \mathcal{O}_{X}$ is a quasiisomorphism of dg-algebras; in particular

$$
\ldots \xrightarrow{d} R_{-i} \xrightarrow{d} \ldots \xrightarrow{d} R_{-2} \xrightarrow{d} R_{-1} \xrightarrow{d} R_{0} \xrightarrow{\pi} \mathcal{O}_{X} \longrightarrow 0
$$

is a free resolution of the R_{0} module \mathcal{O}_{X}.
We denote by:

1. $Z_{i}=\operatorname{ker} d \cap R_{i}$.
2. $\mathcal{L}=\operatorname{Der}_{\mathbb{K}}^{*}(R, R)$.
3. $\mathcal{H}=\operatorname{Der}_{R_{0}}^{*}(R, R)=\left\{g \in \mathcal{L} \mid g\left(R_{0}\right)=0\right\}$.

It is clear that, since $g R_{i} \subset R_{i+j}$ for every $g \in \mathcal{L}^{j}, \mathcal{L}^{i}=\mathcal{H}^{i}$ for every $i>0$ and then the DGLAs \mathcal{L}, \mathcal{H} have the same Maurer-Cartan functor $M C_{\mathcal{H}}=M C_{\mathcal{L}}$. Moreover R is a free graded algebra and then \mathcal{L}^{j} is in bijection with the maps of "degree j " $\left\{x_{i}, y_{h}\right\} \rightarrow R$.

Consider a fixed $\eta \in M C_{\mathcal{H}}(A)$. Recalling the definition of $M C_{\mathcal{H}}$ we have that $\eta=\sum \eta_{i} \otimes a_{i} \in \operatorname{Der}_{R_{0}}^{1}(R, R) \otimes m_{A}$ and the A-derivation

$$
d+\eta: R \otimes A \rightarrow R \otimes A, \quad(d+\eta)(x \otimes a)=d x \otimes a+\sum \eta_{i}(x) \otimes a_{i} a
$$

is a differential. Denoting by \mathcal{O}_{A} the cokernel of $d+\eta: R_{-1} \otimes A \rightarrow R_{0} \otimes A$ we have by Corollary 2.5 that $(R \otimes A, d+\eta) \rightarrow \mathcal{O}_{A}$ is a quasiisomorphism, \mathcal{O}_{A} is flat and $\mathcal{O}_{A} \otimes \mathbb{K}=\mathcal{O}_{X}$. Therefore we have natural transformations of functors

$$
M C_{\mathcal{H}}=M C_{\mathcal{L}} \rightarrow \operatorname{Hilb}_{X} \rightarrow \operatorname{Def}_{X}
$$

Lemma 4.1. The above morphisms of functors are surjective.
Proof. Let \mathcal{O}_{A} be a flat A-algebra such that $\mathcal{O}_{A} \otimes_{A} \mathbb{K}=\mathcal{O}_{X}$; since R_{0} is a free \mathbb{K}-algebra, the projection $R_{0} \xrightarrow{\pi} \mathcal{O}_{X}$ can be extended to a morphism of flat A algebras $R_{0} \otimes A \xrightarrow{\pi_{A}} \mathcal{O}_{A}$. According to Corollary $2.3 \pi_{A}$ is surjective; this proves that $\operatorname{Hilb}_{X}(A) \rightarrow \operatorname{Def}_{X}(A)$ is surjective (in effect it is possible to prove directly that $\operatorname{Hilb}_{X} \rightarrow \operatorname{Def}_{X}$ is smooth, cf. [1]). An element of $\operatorname{Hilb}_{X}(A)$ gives an exact sequence of flat A-modules

$$
R_{0} \otimes A \xrightarrow{\pi_{A}} \mathcal{O}_{A} \longrightarrow 0
$$

Denoting by $I_{0, A} \subset R_{0} \otimes A$ the kernel of π_{A} we have that $I_{0, A}$ is A-flat and the projection $I_{0, A} \rightarrow I_{0}$ is surjective. We can therefore extend the restriction to $R(1)$ of the differential d to a differential d_{A} on $R(1) \otimes A$ by setting $d_{A}\left(y_{j}\right) \in I_{0, A}$ a lifting of $d\left(y_{j}\right), j=1, \ldots, s_{1}$. Again by local flatness criterion the kernel $Z_{-1, A}$ of $R_{-1} \otimes A=R(1)_{-1} \otimes A \xrightarrow{d_{A}} R_{0} \otimes A$ is flat and surjects onto Z_{-1}. The same argument as above, with $I_{0, A}$ replaced by $Z_{-1, A}$ shows that d can be extended to a differential d_{A} on $R(2)$ and then by induction to a differential d_{A} on $R \otimes A$ such that $\left(R \otimes A, d_{A}\right) \rightarrow \mathcal{O}_{A}$ is a quasiisomorphism. If a_{1}, \ldots, a_{r} is a \mathbb{K}-basis of the maximal ideal of A we can write $d_{A}(x \otimes 1)=d x \otimes 1+\sum \eta_{i}(x) \otimes a_{i}$ and then $\eta=\sum \eta_{i} \otimes a_{i} \in M C_{\mathcal{H}}(A)$.

If $\xi \in \operatorname{Der}_{R_{0}}^{0}(R, R) \otimes m_{A}, A \in \mathbf{A r t}$, then $e^{\xi}: R \otimes A \rightarrow R \otimes A$ is an automorphism inducing the identity on R and $R_{0} \otimes A$. Therefore the morphism $M C_{\mathcal{H}}(A) \rightarrow \operatorname{Hilb}_{X}(A)$ factors through $\operatorname{Def}_{\mathcal{H}}(A) \rightarrow \operatorname{Hilb}_{X}(A)$. Similarly the morphism $M C_{\mathcal{L}}(A) \rightarrow \operatorname{Def}_{X}(A)$ factors through $\operatorname{Def}_{\mathcal{L}}(A) \rightarrow \operatorname{Def}_{X}(A)$.
Theorem 4.2. The natural transformations

$$
\operatorname{Def}_{\mathcal{H}} \rightarrow \operatorname{Hilb}_{X}, \quad \operatorname{Def}_{\mathcal{L}} \rightarrow \operatorname{Def}_{X}
$$

are isomorphisms of functors.

Proof. We have already proved the surjectivity. The injectivity follows from the following lifting argument. Given $d_{A}, d_{A}^{\prime}: R \otimes A \rightarrow R \otimes A$ two liftings of the differential d and $f_{0}: R_{0} \otimes A \rightarrow R_{0} \otimes A$ a lifting of the identity on R_{0} such that $f_{0} d_{A}\left(R_{-1} \otimes A\right) \subset d_{A}^{\prime}\left(R_{-1} \otimes A\right)$ there exists an isomorphism $f:\left(R \otimes A, d_{A}\right) \rightarrow$ ($R \otimes A, d_{A}^{\prime}$) extending f_{0} and the identity on R. This is essentially trivial because $R \otimes A$ is a free $R_{0} \otimes A$ graded algebra and $\left(R \otimes A, d_{A}^{\prime}\right)$ is exact in degree <0. Thinking f as an automorphism of the graded algebra $R \otimes A$ we have, since \mathbb{K} has characteristic 0 , that $f=e^{\xi}$ for some $\xi \in \mathcal{L}^{0}$ and $\xi \in \mathcal{H}^{0}$ if and only if $f_{0}=I d$. By the definition of gauge action $d_{A}^{\prime}-d=\exp (\xi)\left(d_{A}-d\right)$; the injectivity follows.

Proposition 4.3. If $I \subset R_{0}$ is the ideal of $X \subset \mathbb{A}^{n}$ then:

1. $H^{i}(\mathcal{H})=H^{i}(\mathcal{L})=0$ for every $i<0$.
2. $H^{0}(\mathcal{H})=0, H^{0}(\mathcal{L})=\operatorname{Der}_{\mathbb{K}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$.
3. $H^{1}(\mathcal{H})=\operatorname{Hom}_{\mathcal{O}_{X}}\left(I / I^{2}, \mathcal{O}_{X}\right)$ and $H^{1}(\mathcal{L})$ is the cokernel of the natural morphism

$$
\operatorname{Der}_{\mathbb{K}}\left(R_{0}, \mathcal{O}_{X}\right) \xrightarrow{\alpha} \operatorname{Hom}_{\mathcal{O}_{X}}\left(I / I^{2}, \mathcal{O}_{X}\right) .
$$

Proof. There exists a short exact sequence of complexes

$$
0 \longrightarrow \mathcal{H} \longrightarrow \mathcal{L} \longrightarrow \operatorname{Der}_{\mathbb{K}}^{*}\left(R_{0}, R\right) \longrightarrow 0 .
$$

Since R_{0} is free and R is exact in degree <0 we have:

$$
H^{i}\left(\operatorname{Der}_{\mathbb{K}}^{*}\left(R_{0}, R\right)\right)= \begin{cases}0 & i \neq 0 \\ \operatorname{Der}_{\mathbb{K}}\left(R_{0}, \mathcal{O}_{X}\right) & i=0\end{cases}
$$

Moreover $\operatorname{Der}_{\mathbb{K}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$ is the kernel of α and then it is sufficient to compute $H^{i}(\mathcal{H})$ for $i \leq 1$.

Every $g \in Z^{i}(\mathcal{H}), i \leq 0$, is a R_{0}-derivation $g: R \rightarrow R$ such that $g(R) \subset$ $\oplus_{i<0} R_{i}$ and $g d= \pm d g$. As above R is free and exact in degree <0, a standard argument shows that g is a coboundary. If $g \in Z^{1}(\mathcal{H})$ then $g\left(R_{-1}\right) \subset R_{0}$ and, since $g d+d g=0, g$ induces a morphism

$$
\bar{g}: \frac{R_{-1}}{d R_{-2}}=I \longrightarrow \frac{R_{0}}{d R_{-1}}=\mathcal{O}_{X}
$$

The easy verification that $Z^{1}(\mathcal{H}) \rightarrow \operatorname{Hom}_{R_{0}}\left(I, \mathcal{O}_{X}\right)$ induces an isomorphism $H^{1}(\mathcal{H}) \rightarrow \operatorname{Hom}_{R_{0}}\left(I, \mathcal{O}_{X}\right)$ is left to the reader.

5 Differential graded algebras, II

Lemma 5.1. Let A be graded algebra: if every $a \neq 0$ is invertible then $A=A_{0}$ is a field.

Proof. Assume that there exists $a \in A_{i}, a \neq 0, i>0$. Then $1-a \neq 0$ and by assumption we have

$$
1=(1-a) \sum_{j=-n}^{n} a_{j}, \quad a_{j} \in A_{j}
$$

This is equivalent to the system of equations

$$
\left\{\begin{array}{l}
a_{-n}=0 \\
a_{i-j}-a a_{-j}=\delta_{i j}, \quad j<n
\end{array}\right.
$$

The solution is $a_{j}=0$ for $j<0, a_{j}=a^{j}$ for $j>0$; in particular $a^{n+1}=0$ and then a is not invertible.

Lemma 5.2. Let A be a graded algebra and let $I \subset A$ be a left ideal. Then the following conditions are equivalent:

1. I is the unique left maximal ideal.
2. A_{0} is a local ring with maximal ideal M and $I=M \oplus_{i \neq 0} A_{i}$.

Proof. $1 \Rightarrow 2$: For every $t \in \mathbb{K}, t \neq 0$, the morphism $\phi: A \rightarrow A, x \rightarrow x t^{\bar{x}}$, is an isomorphism of graded algebras, in particular $\phi(I)=I$ and the Vandermonde's argument shows that I is homogeneous and then bilateral. By Lemma 5.1 the quotient A / I is a field and $I=M \oplus_{i \neq 0} A_{i}$ with $M \subset A_{0}$ maximal. Let $a \in A_{0}-M$, then $a \notin I$ and a is invertible in A; since $a^{-1} \in A_{0} a$ is also invertible in A_{0} and then A_{0} is a local ring. $2 \Rightarrow 1$: Let $J \subset A$ be a proper left ideal, then $J \cap A_{0} \subset M$ and therefore $J \subset M \oplus_{i \neq 0} A_{i}=I$.

Let A be a graded algebra, if $A \rightarrow B$ is a morphism of graded algebras then B has a natural structure of A-algebra. Given two A-algebras B, C it is defined their tensor product $B \otimes_{A} C$ as the quotient of $B \otimes_{\mathbb{K}} C=\oplus_{n, m} B_{n} \otimes_{\mathbb{K}} C_{m}$ by the ideal generated by $b a \otimes c-b \otimes a c$ for every $a \in A, b \in B, c \in C . B \otimes_{A} C$ has a natural structure of graded algebra with degrees $\overline{b \otimes c}=\bar{b}+\bar{c}$ and multiplication $(b \otimes c)(\beta \otimes \gamma)=(-1)^{\bar{c} \bar{\beta}} b \beta \otimes c \gamma$. Note in particular that $A\left[\left\{x_{i}\right\}\right]=A \otimes_{\mathbb{K}} \mathbb{K}\left[\left\{x_{i}\right\}\right]$.

Given a dg-algebra A and $h \in \mathbb{K}$ it is defined an evaluation morphism $e_{h}: A[t, d t] \rightarrow A, e_{h}(a \otimes p(t))=a p(h), e_{h}(a \otimes q(t) d t)=0$.

Lemma 5.3. For every dg-algebra A the evaluation map $e_{h}: A[t, d t] \rightarrow A$ induces an isomorphism $H(A[t, d t]) \rightarrow H(A)$ independent from $h \in \mathbb{K}$.

Proof. Let $\imath: A \rightarrow A[t, d t]$ be the inclusion, since $e_{h} \imath=I d_{A}$ it is sufficient to prove that $\imath: H(A) \rightarrow H(A[t, d t])$ is bijective. For every $n>0$ denote $B_{n}=$ $A t^{n} \oplus A t^{n-1} d t$; since $d\left(B_{n}\right) \subset B_{n}$ and $A[t, d t]=\imath(A) \bigoplus_{n>0} B_{n}$ it is sufficient
to prove that $H\left(B_{n}\right)=0$ for every n. Let $z \in Z_{i}\left(B_{n}\right), z=a t^{n}+n b t^{n-1} d t$, then $0=d z=d a t^{n}+\left((-1)^{i} a+d b\right) n t^{n-1} d t$ which implies $a=(-1)^{i-1} d b$ and then $z=(-1)^{i-1} d\left(b t^{n}\right)$.

Definition 5.4. Given two morphisms of dg-algebras $f, g: A \rightarrow B$, a homotopy between f and g is a morphism $H: A \rightarrow B[t, d t]$ such that $H_{0}:=e_{0} \circ H=f$, $H_{1}:=e_{1} \circ H=g$. We denote by $[A, B]$ the quotient of $\operatorname{Hom}_{\mathbf{D G A}}(A, B)$ by the equivalence relation \sim generated by homotopy. If $B \rightarrow C$ is a morphism of $d g$-algebras with kernel J, a homotopy $H: A \rightarrow B[t, d t]$ is called constant on C if the image of H is contained in $B \oplus_{j \geq 0}\left(J t^{j+1} \oplus J t^{j} d t\right)$. Two dg-algebras A, B are said to be homotopically equivalent if there exist morphisms $f: A \rightarrow B$, $g: B \rightarrow A$ such that $f g \sim I d_{B}, g f \sim I d_{A}$.

According to Lemma 5.3 homotopic morphisms induce the same morphism in homology.

Lemma 5.5. Given morphisms of dg-algebras,

if $f \sim g$ and $h \sim l$ then $h f \sim l g$.
Proof. It is obvious from the definitions that $h g \sim l g$. For every $a \in \mathbb{K}$ there exists a commutative diagram

If $F: A \rightarrow B[t, d t]$ is a homotopy between f and g, then, considering the composition of F with $h \otimes I d$, we get a homotopy between $h f$ and $h g$.

Example 5.6. Let A be a dg-algebra, $\left\{x_{i}\right\}$ a set of indeterminates of integral degree and consider the dg-algebra $B=A\left[\left\{x_{i}, d x_{i}\right\}\right]$, where $d x_{i}$ is an indeterminate of degree $\overline{d x_{i}}=\overline{x_{i}}+1$ and the differential d_{B} is the unique extension of d_{A} such that $d_{B}\left(x_{i}\right)=d x_{i}, d_{B}\left(d x_{i}\right)=0$ for every i. The inclusion $i: A \rightarrow B$ and the projection $\pi: B \rightarrow A, \pi\left(x_{i}\right)=\pi\left(d x_{i}\right)=0$ give a homotopy equivalence between A and B. In fact $\pi i=I d_{A}$; consider now the homotopy $H: B \rightarrow B[t, d t]$ given by

$$
H\left(x_{i}\right)=x_{i} t, \quad H\left(d x_{i}\right)=d H\left(x_{i}\right)=d x_{i} t+(-1)^{\overline{x_{i}}} x_{i} d t, \quad H(a)=a, \forall a \in A
$$

Taking the evaluation at $t=0,1$ we get $H_{0}=i p, H_{1}=I d_{B}$.
Exercise 5.7. Let $f, g: A \rightarrow C, h: B \rightarrow C$ be morphisms of dg-algebras. If $f \sim g$ then $f \otimes h \sim g \otimes h: A \otimes_{\mathbb{K}} B \rightarrow C$.

Remark 5.8. In view of future geometric applications, it seems reasonable to define the spectrum of a unitary dg-algebra A as the usual spectrum of the commutative ring $Z_{0}(A)$.

If $S \subset Z_{0}(A)$ is a multiplicative part we can consider the localized dg-algebra $S^{-1} A$ with differential $d(a / s)=d a / s$. Since the localization is an exact functor in the category of $Z_{0}(A)$ modules we have $H\left(S^{-1} A\right)=S^{-1} H(A)$. If $\phi: A \rightarrow$ C is a morphism of dg-algebras and $\phi(s)$ is invertible for every $s \in S$ then there is a unique morphism $\psi: S^{-1} A \rightarrow C$ extending ϕ. Moreover if ϕ is a quasiisomorphism then also ψ is a quasiisomorphism (easy exercise).

If $\mathcal{P} \subset Z_{0}(A)$ is a prime ideal, then we denote as usual $A_{\mathcal{P}}=S^{-1} A$, where $S=Z_{0}(A)-\mathcal{P}$. It is therefore natural to define $\operatorname{Spec}(A)$ as the ringed space (X, \tilde{A}), where X is the spectrum of A and \tilde{A} is the (quasi coherent) sheaf of $d g$-algebras with stalks $A_{\mathcal{P}}, \mathcal{P} \in X$.

6 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector space (M, s) together two associative distributive multiplication maps $A \times M \rightarrow M, M \times A \rightarrow M$ with the properties:

1. $A_{i} M_{j} \subset M_{i+j}, \quad M_{i} A_{j} \subset M_{i+j}$.
2. $a m=(-1)^{\bar{a} \bar{m}} m a$, for homogeneous $a \in A, m \in M$.
3. $s(a m)=s(a) m+(-1)^{\bar{a}} a s(m)$.

If $A=A_{0}$ we recover the usual notion of complex of A-modules.
If M is an A-dg-module then $M[n]=\mathbb{K}[n] \otimes_{\mathbb{K}} M$ has a natural structure of A-dg-module with multiplication maps
$(e \otimes m) a=e \otimes m a, \quad a(e \otimes m)=(-1)^{n \bar{a}} e \otimes a m, \quad e \in \mathbb{K}[n], m \in M, a \in A$.
The tensor product $N \otimes_{A} M$ is defined as the quotient of $N \otimes_{\mathbb{K}} M$ by the graded submodules generated by all the elements $n a \otimes m-n \otimes a m$.

Given two A-dg-modules $\left(M, d_{M}\right),\left(N, d_{N}\right)$ we denote by

$$
\begin{aligned}
\operatorname{Hom}_{A}^{n}(M, N)= & \left\{f \in \operatorname{Hom}_{\mathbb{K}}^{n}(M, N) \mid f(m a)=f(m) a, m \in M, a \in A\right\} \\
& \operatorname{Hom}_{A}^{*}(M, N)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{A}^{n}(M, N)
\end{aligned}
$$

The graded vector space $\operatorname{Hom}_{A}^{*}(M, N)$ has a natural structure of A-dgmodule with left multiplication $(a f)(m)=a f(m)$ and differential

$$
d: \operatorname{Hom}_{A}^{n}(M, N) \rightarrow \operatorname{Hom}_{A}^{n+1}(M, N), \quad d f=[d, f]=d_{N} \circ f-(-1)^{n} f \circ d_{M}
$$

Note that $f \in \operatorname{Hom}_{A}^{0}(M, N)$ is a morphism of A-dg-modules if and only if $d f=0$. A homotopy between two morphism of dg-modules $f, g: M \rightarrow N$ is a $h \in \operatorname{Hom}_{A}^{-1}(M, N)$ such that $f-g=d h=d_{N} h+h d_{M}$. Homotopically equivalent morphisms induce the same morphism in homology.

Morphisms of A-dg-modules $f: L \rightarrow M, h: N \rightarrow P$ induce, by composition, morphisms $f^{*}: \operatorname{Hom}_{A}^{*}(M, N) \rightarrow \operatorname{Hom}_{A}^{*}(L, N), h_{*}: \operatorname{Hom}_{A}^{*}(M, N) \rightarrow$ $\operatorname{Hom}_{A}^{*}(M, P)$;

Lemma 6.1. In the above notation if f is homotopic to g and h is homotopic to l then f^{*} is homotopic to g^{*} and l_{*} is homotopic to h_{*}.
Proof. Let $p \in \operatorname{Hom}_{A}^{-1}(L, M)$ be a homotopy between f and g, It is a straightforward verification to see that the composition with p is a homotopy between f^{*} and g^{*}. Similarly we prove that h_{*} is homotopic to l_{*}.

Lemma 6.2. Let $A \rightarrow B$ be a morphism of unitary dg-algebras, M an A - dgmodule, N a B-dg-modules. Then there exists a natural isomorphism of $B-d g$ modules

$$
\operatorname{Hom}_{A}^{*}(M, N) \simeq \operatorname{Hom}_{B}^{*}\left(M \otimes_{A} B, N\right)
$$

Proof. Consider the natural maps:

$$
\begin{gathered}
\operatorname{Hom}_{A}^{*}(M, N) \underset{R}{\stackrel{L}{\rightleftarrows}} \operatorname{Hom}_{B}^{*}\left(M \otimes_{A} B, N\right), \\
L f(m \otimes b)=f(m) b, \quad R g(m)=g(m \otimes 1) .
\end{gathered}
$$

We left as exercise the easy verification that $L, R=L^{-1}$ are isomorphism of B-dg-modules.

Given a morphism of dg-algebras $B \rightarrow A$ and an A-dg-module M we set:

$$
\operatorname{Der}_{B}^{n}(A, M)=\left\{\phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(A, M) \mid \phi(a b)=\phi(a) b+(-1)^{n \bar{a}} a \phi(b), \phi(B)=0\right\}
$$

$$
\operatorname{Der}_{B}^{*}(A, M)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Der}_{B}^{n}(A, M)
$$

As in the case of Hom^{*}, there exists a structure of A-dg-module on $\operatorname{Der}_{B}^{*}(A, M)$ with product $(a \phi)(b)=a \phi(b)$ and differential

$$
d: \operatorname{Der}_{B}^{n}(A, M) \rightarrow \operatorname{Der}_{B}^{n+1}(A, M), \quad d \phi=[d, \phi]=d_{M} \phi-(-1)^{n} \phi d_{A}
$$

Given $\phi \in \operatorname{Der}_{B}^{n}(A, M)$ and $f \in \operatorname{Hom}_{A}^{m}(M, N)$ their composition $f \phi$ belongs to $\operatorname{Der}_{B}^{n+m}(A, N)$.
Proposition 6.3. Let $B \rightarrow A$ be a morphisms of dg-algebras: there exists an A-dg-module $\Omega_{A / B}$ together a closed derivation $\delta: A \rightarrow \Omega_{A / B}$ of degree 0 such that, for every A-dg-module M, the composition with δ gives an isomorphism

$$
\operatorname{Hom}_{A}^{*}\left(\Omega_{A / B}, M\right)=\operatorname{Der}_{B}^{*}(A, M)
$$

Proof. Consider the graded vector space

$$
F_{A}=\bigoplus A \delta x, \quad x \in A \text { homogeneous }, \quad \overline{\delta x}=\bar{x}
$$

F_{A} is an A-dg-module with multiplication $a(b \delta x)=a b \delta x$ and differential

$$
d(a \delta x)=d a \delta x+(-1)^{\bar{a}} a \delta(d x) .
$$

Note in particular that $d(\delta x)=\delta(d x)$. Let $I \subset F_{A}$ be the homogeneous submodule generated by the elements

$$
\delta(x+y)-\delta x-\delta y, \quad \delta(x y)-x(\delta y)-(-1)^{\bar{x} \bar{y}} y(\delta x), \quad \delta(b), b \in B,
$$

Since $d(I) \subset I$ the quotient $\Omega_{A / B}=F_{A} / I$ is still an A-dg-module. By construction the map $\delta: A \rightarrow \Omega_{A / B}$ is a derivation of degree 0 such that $d \delta=$ $d_{\Omega} \delta-\delta d_{A}=0$. Let $\circ \delta: \operatorname{Hom}_{A}^{*}\left(\Omega_{A / B}, M\right) \rightarrow \operatorname{Der}_{B}^{*}(A, M)$ be the composition with δ :
a) L is a morphism of A-dg-modules. In fact $(a f) \circ \delta=a(f \circ \delta)$ for every $a \in A$ and

$$
\begin{aligned}
d(f \circ \delta)(x) & =d_{M}(f(\delta x))-(-1)^{\bar{f}} f \delta(d x)= \\
& =d_{M}(f(\delta x))-(-1)^{\bar{f}} f(d(\delta x))=d f \circ \delta .
\end{aligned}
$$

b) $\circ \delta$ is surjective. Let $\phi \in \operatorname{Der}_{B}^{n}(A, M)$; define a morphism $f \in \operatorname{Hom}_{A}^{n}\left(F_{A}, M\right)$ by the rule $f(a \delta x)=(-1)^{n a} a \phi(x)$; an easy computation shows that $f(I)=$ 0 and then f factors to $f \in \operatorname{Hom}_{A}^{n}\left(\Omega_{A / B}, M\right)$: by construction $f \circ \delta=\phi$.
c) $\circ \delta$ is injective. In fact the image of δ generate $\Omega_{A / B}$.

When $B=\mathbb{K}$ we denote for notational simplicity $\operatorname{Der}^{*}(A, M)=\operatorname{Der}_{\mathbb{K}}^{*}(A, M)$, $\Omega_{A}=\Omega_{A / \mathbb{K}}$. Note that if $C \rightarrow B$ is a morphism of dg-algebras, then the natural map $\Omega_{A / C} \rightarrow \Omega_{A / B}$ is surjective and $\Omega_{A / C}=\Omega_{A / B}$ whenever $C \rightarrow B$ is surjective.

Definition 6.4. The module $\Omega_{A / B}$ is called the module of relative Kähler differentials of A over B and δ the universal derivation.

By the universal property, the module of differential and the universal derivation are unique up to isomorphism.

Example 6.5. If $A_{\sharp}=\mathbb{K}\left[\left\{x_{i}\right\}\right]$ is a polynomial algebra then $\Omega_{A}=\oplus_{i} A \delta x_{i}$ and $\delta: A \rightarrow \Omega_{A}$ is the unique derivation such that $\delta\left(x_{i}\right)=\delta x_{i}$.

Proposition 6.6. Let $B \rightarrow A$ be a morphism of dg-algebras and $S \subset Z_{0}(A)$ a multiplicative part. Then there exists a natural isomorphism $S^{-1} \Omega_{A / B}=$ $\Omega_{S^{-1} A / B}$.

Proof. The closed derivation $\delta: A \rightarrow \Omega_{A / B}$ extends naturally to $\delta: S^{-1} A \rightarrow$ $S^{-1} \Omega_{A / B}, \delta(a / s)=\delta a / s$, and by the universal property there exists a unique morphism of $S^{-1} A$ modules $f: \Omega_{S^{-1} A / B} \rightarrow S^{-1} \Omega_{A / B}$ and a unique morphism of A modules $g: \Omega_{A / B} \rightarrow \Omega_{S^{-1} A / B}$. The morphism g extends to a morphism of $S^{-1} A$ modules $g: S^{-1} \Omega_{A / B} \rightarrow \Omega_{S^{-1} A / B}$. Clearly these morphisms commute with the universal closed derivations and then $g f=I d$. On the other hand, by the universal property, the restriction of $f g$ to $\Omega_{A / B}$ must be the natural inclusion $\Omega_{A / B} \rightarrow S^{-1} \Omega_{A / B}$ and then also $f g=I d$.

$7 \quad$ Projective modules

Definition 7.1. An A-dg-module P is called projective if for every surjective quasiisomorphism $f: M \rightarrow N$ and every $g: P \rightarrow N$ there exists $h: P \rightarrow M$ such that $f h=g$.

Exercise 7.2. Prove that if $A=A_{0}$ and $P=P_{0}$ then P is projective in the sense of 7.1 if and only if P_{0} is projective in the usual sense.

Lemma 7.3. Let P be a projective A-dg-module, $f: P \rightarrow M$ a morphism of A $d g$-modules and $\phi: M \rightarrow N$ a surjective quasiisomorphism. If ϕf is homotopic to 0 then also f is homotopic to 0 .

Proof. We first note that there exist natural isomorphisms $\operatorname{Hom}_{A}^{i}(P, M[j])=$ $\operatorname{Hom}_{A}^{i+j}(P, M)$. Let $h: P \rightarrow N[-1]$ be a homotopy between ϕf and 0 and consider the A-dg-modules $M \oplus N[-1], M \oplus M[-1]$ endowed with the differentials

$$
\begin{aligned}
& d: M_{n} \oplus N_{n-1} \rightarrow M_{n+1} \oplus N_{n}, \quad d\left(m_{1}, n_{2}\right)=\left(d m_{1}, f\left(m_{1}\right)-d n_{2}\right), \\
& d: M_{n} \oplus M_{n-1} \rightarrow M_{n+1} \oplus M_{n}, \quad d\left(m_{1}, m_{2}\right)=\left(d m_{1}, m_{1}-d m_{2}\right) .
\end{aligned}
$$

The map $I d_{M} \oplus f: M \oplus M[-1] \rightarrow M \oplus N[-1]$ is a surjective quasiisomorphism and $(\phi, h): P \rightarrow M \oplus N[-1]$ is morphism of A-dg-modules. If $(\phi, l): P \rightarrow$ $M \oplus M[-1]$ is a lifting of (ϕ, h) then l is a homotopy between ϕ and 0 .

Lemma 7.4. Let $f: M \rightarrow N$ be a morphism of A-dg-modules, then there exist morphisms of A-dg-modules $\pi: L \rightarrow M, g: L \rightarrow N$ such that g is surjective, π is a homotopy equivalence and g is homotopically equivalent to $f \pi$.

Proof. Consider $L=M \oplus N \oplus N[-1]$ with differential
$d: M_{n} \oplus N_{n} \oplus N_{n-1} \rightarrow M_{n+1} \oplus N_{n+1} \oplus N_{n}, \quad d\left(m, n_{1}, n_{2}\right)=\left(d m, d n_{1}, n_{1}-d n_{2}\right)$.
We define $g\left(m, n_{1}, n_{2}\right)=f(m)+n_{1}, \pi\left(m, n_{1}, n_{2}\right)=m$ and $s: M \rightarrow L, s(m)=$ ($m, 0,0$). Since $g s=f$ and $\pi s=I d_{M}$ it is sufficient to prove that $s \pi$ is homotopic to $I d_{L}$. Take $h \in \operatorname{Hom}_{A}^{-1}(L, L), h\left(m, n_{1}, n_{2}\right)=\left(0, n_{2}, 0\right)$; then

$$
d\left(h\left(m, n_{1}, n_{2}\right)\right)+h d\left(m, n_{1}, n_{2}\right)=\left(0, n_{1}, n_{2}\right)=\left(I d_{L}-s \pi\right)\left(m, n_{1}, n_{2}\right)
$$

Theorem 7.5. Let P be a projective A-dg-module: For every quasiisomorphism $f: M \rightarrow N$ the induced map $\operatorname{Hom}_{A}^{*}(P, M) \rightarrow \operatorname{Hom}_{A}^{*}(P, N)$ is a quasiisomorphism.

Proof. By Lemma 7.4 it is not restrictive to assume f surjective. For a fixed integer i we want to prove that $H^{i}\left(\operatorname{Hom}_{A}^{*}(P, M)\right)=H^{i}\left(\operatorname{Hom}_{A}^{*}(P, N)\right)$. Replacing M and N with $M[i]$ and $N[i]$ it is not restrictive to assume $i=0$. Since $Z^{0}\left(\operatorname{Hom}_{A}^{*}(P, N)\right)$ is the set of morphisms of A-dg-modules and P is projective, the map

$$
Z^{0}\left(\operatorname{Hom}_{A}^{*}(P, M)\right) \rightarrow Z^{0}\left(\operatorname{Hom}_{A}^{*}(P, N)\right)
$$

is surjective. If $\phi \in Z^{0}\left(\operatorname{Hom}_{A}^{*}(P, M)\right)$ and $f \phi \in B^{0}\left(\operatorname{Hom}_{A}^{*}(P, N)\right)$ then by Lemma 7.3 also ϕ is a coboundary.

A projective resolution of an A-dg-module M is a surjective quasiisomorphism $P \rightarrow M$ with P projective. We will show in next section that projective resolutions always exist. This allows to define for every pair of of A-dg-modules M, N

$$
\operatorname{Ext}^{i}(M, N)=H^{i}\left(\operatorname{Hom}_{A}^{*}(P, N)\right),
$$

where $P \rightarrow M$ is a projective resolution.
Exercise 7.6. Prove that the definition of Ext's is independent from the choice of the projective resolution.

8 Semifree resolutions

From now on K is a fixed dg-algebra.
Definition 8.1. $A K$ - $d g$-algebra (R, s) is called semifree $i f$:

1. The underlying graded algebra R is a polynomial algebra over $K K\left[\left\{x_{i}\right\}\right]$, $i \in I$.
2. There exists a filtration $\emptyset=I(0) \subset I(1) \subset \ldots, \cup_{n \in \mathbb{N}} I(n)=I$, such that $s\left(x_{i}\right) \in R(n)$ for every $i \in I(n+1)$, where by definition $R(n)=K\left[\left\{x_{i}\right\}\right]$, $i \in I(n)$.

Note that $R(0)=K, R(n)$ is a dg-subalgebra of R and $R=\cup R(n)$.
Let $R=K\left[\left\{x_{i}\right\}\right]=\cup R(n)$ be a semifree K-dg-algebra, S a K-dg-algebra; to give a morphism $f: R \rightarrow S$ is the same to give a sequence of morphisms $f_{n}: R(n) \rightarrow S$ such that f_{n+1} extends f_{n} for every n. Given a morphism $f_{n}: R(n) \rightarrow S$, the set of extensions $f_{n+1}: R(n+1) \rightarrow S$ is in bijection with the set of sequences $\left\{f_{n+1}\left(x_{i}\right)\right\}, i \in I(n+1)-I(n)$, such that $s\left(f_{n+1}\left(x_{i}\right)\right)=$ $f_{n}\left(s\left(x_{i}\right)\right), \overline{f_{n+1}\left(x_{i}\right)}=\overline{x_{i}}$.

Example 8.2. $\mathbb{K}[t, d t]$ is semifree with filtration $\mathbb{K} \oplus \mathbb{K} d t \subset \mathbb{K}[t, d t]$. For every dg-algebra A and every $a \in A_{0}$ there exists a unique morphism $f: \mathbb{K}[t, d t] \rightarrow A$ such that $f(t)=a$.

Exercise 8.3. Let (V, s) be a complex of vector spaces, the differential s extends to a unique differential s on the symmetric algebra $\odot V$ such that $s\left(\odot^{n} V\right) \subset$ $\bigodot^{n} V$ for every n. Prove that $(\odot V, s)$ is semifree.

Exercise 8.4. The tensor product (over K) of two semifree K-dg-algebras is semifree.

Proposition 8.5. Let $\left(R=K\left[\left\{x_{i}\right\}\right], s\right), i \in \cup I(n)$, be a semifree K-dg-algebra: for every surjective quasiisomorphism of K-dg-algebras $f: A \rightarrow B$ and every morphism $g: R \rightarrow B$ there exists a lifting $h: R \rightarrow A$ such that $f h=g$. Moreover any two of such liftings are homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism $h_{n}: R(n) \rightarrow A$ such that $f h_{n}$ equals the restriction of g to $R(n)=\mathbb{K}\left[\left\{x_{i}\right\}\right], i \in I(n)$. Let $i \in$ $I(n+1)-I(n)$, we need to define $h_{n+1}\left(x_{i}\right)$ with the properties $f h_{n+1}\left(x_{i}\right)=g\left(x_{i}\right)$, $d h_{n+1}\left(x_{i}\right)=h_{n}\left(d x_{i}\right)$ and $\overline{h_{n+1}\left(x_{i}\right)}=\overline{x_{i}}$. Since $d h_{n}\left(d x_{i}\right)=0$ and $f h_{n}\left(d x_{i}\right)=$ $g\left(d x_{i}\right)=d g\left(x_{i}\right)$ we have that $h_{n}\left(d x_{i}\right)$ is exact in A, say $h_{n}\left(d x_{i}\right)=d a_{i}$; moreover $d\left(f\left(a_{i}\right)-g\left(x_{i}\right)\right)=f\left(d a_{i}\right)-g\left(d x_{i}\right)=0$ and, since $Z(A) \rightarrow Z(B)$ is surjective there exists $b_{i} \in A$ such that $f\left(a_{i}+b_{i}\right)=g\left(x_{i}\right)$ and then we may define $h_{n+1}\left(x_{i}\right)=a_{i}+b_{i}$. The inverse limit of h_{n} gives the required lifting.
Let $h, l: R \rightarrow A$ be liftings of g and denote by $J \subset A$ the kernel of f; by assumption J is acyclic and consider the dg-subalgebra $C \subset A[t, d t]$,

$$
C=A \oplus_{j \geq 0}\left(J t^{j+1} \oplus J t^{j} d t\right)
$$

We construct by induction on n a coherent sequence of morphisms $H_{n}: R(n) \rightarrow$ C giving a homotopy between h and l. Denote by $N \subset \mathbb{K}[t, d t]$ the differential ideal generated by $t(t-1)$; there exists a direct sum decomposition $\mathbb{K}[t, d t]=$ $\mathbb{K} \oplus \mathbb{K} t \oplus \mathbb{K} d t \oplus N$. We may write:

$$
H_{n}(x)=h(x)+(l(x)-h(x)) t+a_{n}(x) d t+b_{n}(x, t)
$$

with $a_{n}(x) \in J$ and $b_{n}(x, t) \in J \otimes N$. Since $d H_{n}(x)=H_{n}(d x)$ we have for every $x \in R(n)$:

$$
\begin{equation*}
(-1)^{\bar{x}}(l(x)-h(x))+d\left(a_{n}(x)\right)=a_{n}(d x), \quad d\left(b_{n}(x, t)\right)=b_{n}(d x, t) . \tag{2}
\end{equation*}
$$

Let $i \in I(n+1)-I(n)$, we seek for $a_{n+1}\left(x_{i}\right) \in J$ and $b_{n+1}\left(x_{i}, t\right) \in J \otimes N$ such that, setting

$$
H_{n+1}\left(x_{i}\right)=h\left(x_{i}\right)+\left(l\left(x_{i}\right)-h\left(x_{i}\right)\right) t+a_{n+1}\left(x_{i}\right) d t+b_{n+1}\left(x_{i}, t\right),
$$

we want to have

$$
\begin{aligned}
0 & =d H_{n+1}\left(x_{i}\right)-H_{n}\left(d x_{i}\right) \\
& =\left((-1)^{\overline{x_{i}}}\left(l\left(x_{i}\right)-h\left(x_{i}\right)\right)+d a_{n+1}\left(x_{i}\right)-a_{n}\left(d x_{i}\right)\right) d t+d b_{n+1}\left(x_{i}, t\right)-b_{n}\left(d x_{i}, t\right) .
\end{aligned}
$$

Since both J and $J \otimes N$ are acyclic, such a choice of $a_{n+1}\left(x_{i}\right)$ and $b_{n+1}\left(x_{i}, t\right)$ is possible if and only if $(-1)^{\overline{d x_{i}}}\left(l\left(x_{i}\right)-h\left(x_{i}\right)\right)+a_{n}\left(d x_{i}\right)$ and $b_{n}\left(d x_{i}, t\right)$ are closed. According to Equation 2 we have

$$
\begin{aligned}
d\left((-1)^{\overline{d x_{i}}}\left(l\left(x_{i}\right)-h\left(x_{i}\right)+a_{n}\left(d x_{i}\right)\right)\right. & =(-1)^{\overline{d x_{i}}}\left(l\left(d x_{i}\right)-h\left(d x_{i}\right)\right)+d\left(a_{n}\left(d x_{i}\right)\right) \\
& =a_{n}\left(d^{2} x_{i}\right)=0, \\
d b_{n}\left(d x_{i}, t\right) & =b_{n}\left(d^{2} x_{i}, t\right)=0 .
\end{aligned}
$$

Definition 8.6. A K-semifree resolution (also called resolvent) of a $K-d g$ algebra A is a surjective quasiisomorphism $R \rightarrow A$ with R semifree $K-d g$ algebra.

By 8.5 if a semifree resolution exists then it is unique up to homotopy.
Theorem 8.7. Every K-dg-algebra admits a K-semifree resolution.
Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dgalgebras $K=R(0) \subset R(1) \subset \ldots \subset R(n) \subset \ldots$ and morphisms $f_{n}: R(n) \rightarrow A$ such that:

1. $R(n+1)=R(n)\left[\left\{x_{i}\right\}\right], d x_{i} \in R(n)$.
2. f_{n+1} extends f_{n}.
3. $f_{1}: Z(R(1)) \rightarrow Z(A), f_{2}: R(2) \rightarrow A$ are surjective.
4. $f_{n}^{-1}(B(A)) \cap Z(R(n)) \subset B(R(n+1)) \cap R(n)$, for every $n>0$.

It is then clear that $R=\cup R(n)$ and $f=\lim f_{n}$ give a semifree resolution. $Z(A)$ is a graded algebra and therefore there exists a polynomial graded algebra $R(1)=K\left[\left\{x_{i}\right\}\right]$ and a surjective morphism $f_{1}: R(1) \rightarrow Z(A)$; we set the trivial differential $d=0$ on $R(1)$. Let v_{i} be a set of homogeneous generators of the ideal $f_{1}^{-1}(B(A))$, if $f_{1}\left(v_{i}\right)=d a_{i}$ it is not restrictive to assume that the a_{i} 's generate A. We then define $R(2)=R(1)\left[\left\{x_{i}\right\}\right], f_{2}\left(x_{i}\right)=a_{i}$ and $d x_{i}=v_{i}$. Assume now by induction that we have defined $f_{n}: R(n) \rightarrow A$ and let $\left\{v_{j}\right\}$ be a set of generators of $f_{n}^{-1}(B(A)) \cap Z(R(n))$, considered as an ideal of $Z(R(n))$; If $f_{n}\left(v_{j}\right)=d a_{j}$ we define $R(n+1)=R(n)\left[\left\{x_{j}\right\}\right], d x_{j}=v_{j}$ and $f_{n+1}\left(x_{j}\right)=a_{j}$.

Remark 8.8. It follows from the above proof that if $K_{i}=A_{i}=0$ for every $i>0$ then there exists a semifree resolution $R \rightarrow A$ with $R_{i}=0$ for every $i>0$.

Exercise 8.9. If, in the proof of Theorem 8.7 we choose at every step $\left\{v_{i}\right\}=$ $f_{n}^{-1}(B(A)) \cap Z(R(n))$ we get a semifree resolution called canonical. Show that every morphism of dg-algebras has a natural lift to their canonical resolutions.

Given two semifree resolutions $R \rightarrow A, S \rightarrow A$ we can consider a semifree resolution $P \rightarrow R \times{ }_{A} S$ of the fibred product and we get a commutative diagram of semifree resolutions

Definition 8.10. An A-dg-module F is called semifree if $F=\oplus_{i \in I} A m_{i}, \overline{m_{i}} \in$ \mathbb{Z} and there exists a filtration $\emptyset=I(0) \subset I(1) \subset \ldots \subset I(n) \subset \ldots$ such that

$$
i \in I(n+1) \Rightarrow d m_{i} \in F(n)=\oplus_{i \in I(n)} A m_{i}
$$

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism $F \rightarrow M$ with F semifree.

The proof of the following two results is essentially the same of 8.5 and 8.7:
Proposition 8.11. Every semifree module is projective.
Theorem 8.12. Every A-dg-module admits a semifree resolution.
Exercise 8.13. An A-dg-module M is called flat if for every quasiisomorphism $f: N \rightarrow P$ the morphism $f \otimes I d: N \otimes M \rightarrow P \otimes M$ is a quasiisomorphism. Prove that every semifree module is flat.

Example 8.14. If $R=K\left[\left\{x_{i}\right\}\right]$ is a K-semifree algebra then $\Omega_{R / K}=\oplus R \delta x_{i}$ is a semifree R-dg-module.

9 The cotangent complex

Proposition 9.1. Assume it is given a commutative diagram of K - $d g$-algebras

If there exists a homotopy between f and g, constant on A, then the induced morphisms of A-dg-modules

$$
f, g: \Omega_{R / K} \otimes_{R} A \rightarrow \Omega_{S / K} \otimes_{S} A
$$

are homotopic.
Proof. Let $J \subset S$ be the kernel of $S \rightarrow A$ and let $H: R \rightarrow S \oplus_{j \geq 0}\left(J t^{j+1} \oplus J t^{j} d t\right)$ be a homotopy between f and g; the first terms of H are

$$
H(x)=f(x)+t(g(x)-f(x))+d t q(x)+\ldots .
$$

From $d H(x)=H(d x)$ we get $g(x)-f(x)=q(d x)+d q(x)$ and from $H(x y)=$ $H(x) H(y)$ follows $q(x y)=q(x) f(y)+(-1)^{\bar{x}} f(x) q(y)$. Since $f(x)-g(x), q(x) \in J$ for every x, the map

$$
q: \Omega_{R / K} \otimes_{R} A \rightarrow \Omega_{S / K} \otimes_{S} A, \quad q(\delta x \cdot r \otimes a)=\delta(q(x)) f(r) \otimes a
$$

is a well defined element of $\operatorname{Hom}_{A}^{-1}\left(\Omega_{R / K} \otimes_{R} A, \Omega_{S / K} \otimes_{S} A\right)$. By definition $f, g: \Omega_{R / K} \otimes_{R} A \rightarrow \Omega_{S / K} \otimes_{S} A$ are defined by
$f(\delta x \cdot r \otimes a)=\delta(f(x)) f(r) \otimes a, \quad g(\delta x \cdot r \otimes a)=\delta(g(x)) g(r) \otimes a=\delta(g(x)) f(r) \otimes a$.
A straightforward verification shows that $d q=f-g$.
Definition 9.2. Let $R \rightarrow A$ be a K-semifree resolution, the A-dg-module $\mathbb{L}_{A / K}=$ $\Omega_{R / K} \otimes_{R} A$ is called the relative cotangent complex of A over K. By 9.1 the homotopy class of $\mathbb{L}_{A / K}$ is independent from the choice of the resolution. For every A-dg-module M the vector spaces

$$
\begin{gathered}
T^{i}(A / K, M)=H^{i}\left(\operatorname{Hom}_{A}^{*}\left(\mathbb{L}_{A / K}, M\right)\right)=\operatorname{Ext}_{A}^{i}\left(\mathbb{L}_{A / K}, M\right) \\
\left.T_{i}(A / K, M)=H_{i}\left(\mathbb{L}_{A / K} \otimes M\right)\right)=\operatorname{Tor}_{i}^{A}\left(\mathbb{L}_{A / K}, M\right)
\end{gathered}
$$

are called respectively the cotangent and tangent cohomolgy of the morphism $K \rightarrow A$ with coefficient on M.

Lemma 9.3. Let $p: R \rightarrow S$ be a surjective quasiisomorphism of semifree dgalgebras: consider on S the structure of R-dg-module induced by p. Then:

1. $p_{*}: \operatorname{Der}^{*}(R, R) \rightarrow \operatorname{Der}^{*}(R, S), f \rightarrow p f$, is a surjective quasiisomorphism.
2. $p^{*}: \operatorname{Der}^{*}(S, S) \rightarrow \operatorname{Der}^{*}(R, S), f \rightarrow f p$, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the values at its generators, in particular p_{*} is surjective and p^{*} is injective. Since Ω_{R} is semifree, by 7.5 the morphism $p_{*}: \operatorname{Hom}_{R}^{*}\left(\Omega_{R}, R\right) \rightarrow \operatorname{Hom}_{R}^{*}\left(\Omega_{R}, S\right)$ is a quasiisomorphism. By base change $\operatorname{Der}^{*}(R, S)=\operatorname{Hom}_{S}^{*}\left(\Omega_{R} \otimes_{R} S, S\right)$ and, since $p: \Omega_{R} \otimes_{R} S \rightarrow \Omega_{S}$ is a homotopy equivalence, also p^{*} is a quasiisomorphism.

Every morphism $f: A \rightarrow B$ of dg-algebras induces a morphism of B modules $\mathbb{L}_{A} \otimes_{A} B \rightarrow \mathbb{L}_{B}$ unique up to homotopy. In fact if $R \rightarrow A$ and $P \rightarrow B$ are semifree resolution, then there exists a lifting of $f, R \rightarrow P$, unique up to homotopy constant on B. The morphism $\Omega_{R} \rightarrow \Omega_{P}$ induce a morphism $\Omega_{R} \otimes_{R} B=\mathbb{L}_{A} \otimes_{A} B \rightarrow \Omega_{P} \otimes_{P} B=\mathbb{L}_{B}$. If B is a localization of A we have the following

Theorem 9.4. Let A be a dg-algebra, $S \subset Z_{0}(A)$ a multiplicative part: then the morphism

$$
\mathbb{L}_{A} \otimes_{A} S^{-1} A \rightarrow \mathbb{L}_{S^{-1} A}
$$

is a quasiisomorphism of $S^{-1} A$ modules.
Proof. (sketch) Denote by $f: R \rightarrow A, g: P \rightarrow S^{-1} A$ two semifree resolutions and by

$$
H=\left\{x \in Z_{0}(R) \mid f(x) \in S\right\}, \quad K=\left\{x \in Z_{0}(P) \mid g(x) \text { is invertible }\right\} .
$$

The natural morphisms $H^{-1} R \rightarrow S^{-1} A, K^{-1} P \rightarrow S^{-1} A$ are both surjective quasiisomorphisms. By the lifting property of semifree algebras we have a chain of morphisms

$$
R \xrightarrow{\alpha} P \xrightarrow{\beta} H^{-1} R \xrightarrow{\gamma} K^{-1} P
$$

with γ the localization of α. Since $\beta \alpha$ and $\gamma \beta$ are homotopic to the natural inclusions $R \rightarrow H^{-1} R, P \rightarrow K^{-1} P$, the composition of morphisms

$$
\Omega_{R} \otimes_{R} S^{-1} A \xrightarrow{\alpha} \Omega_{P} \otimes_{P} S^{-1} A \xrightarrow{\beta} \Omega_{H^{-1} R} \otimes_{H^{-1} R} S^{-1} A=\Omega_{R} \otimes_{R} S^{-1} A,
$$

$\Omega_{P} \otimes_{P} S^{-1} A \xrightarrow{\beta} \Omega_{H^{-1} R} \otimes_{H^{-1} R} S^{-1} A \xrightarrow{\gamma} \Omega_{K^{-1} P} \otimes_{K^{-1} P} S^{-1} A=\Omega_{P} \otimes_{P} S^{-1} A$
are homotopic to the identity and hence quasiisomorphisms.

Example 9.5. Hypersurface singularities.
Let $X=V(f) \subset \mathbb{A}^{n}, f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, be an affine hypersurface and denote by $A=\mathbb{K}[X]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] /(f)$ its structure ring. A DG-resolvent of A is given by $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y\right]$, where y has degree -1 and the differential is given by
$s(y)=f$. The R-module Ω_{R} is semifreely generated by $d x_{1}, \ldots, d x_{n}, d y$, with the differential

$$
s(d y)=d(s(y))=d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i} .
$$

The cotangent complex \mathbb{L}_{A} is therefore

$$
0 \longrightarrow A d y \xrightarrow{s} \bigoplus_{i=1}^{n} A d x_{i} \longrightarrow 0 .
$$

In particular $T^{i}(A / \mathbb{K}, A)=\operatorname{Ext}^{i}\left(\mathbb{L}_{A}, A\right)=0$ for every $i \neq 0,1$. The cokernel of s is isomorphic to Ω_{A} and then $T^{0}(A / \mathbb{K}, A)=\operatorname{Ext}^{0}\left(\mathbb{L}_{A}, A\right)=\operatorname{Der}_{\mathbb{K}}(A, A)$. If f is reduced then s is injective, \mathbb{L}_{A} is quasiisomorphic to Ω_{A} and then $T^{1}(A / \mathbb{K}, A)=$ $\operatorname{Ext}^{1}\left(\Omega_{A}, A\right)$.

Exercise 9.6. In the set-up of Example 9, prove that the A-module $T^{1}(A / \mathbb{K}, A)$ is finitely generated and supported in the singular locus of X.

10 The controlling differential graded Lie algebra

Let $p: R \rightarrow S$ be a surjective quasiisomorphism of semifree algebras and let $I=\operatorname{ker} p$. By the lifting property of S there exists a morphism of dg-algebras $e: S \rightarrow R$ such that $p e=I d_{S}$. Define

$$
L_{p}=\left\{f \in \operatorname{Der}^{*}(R, R) \mid f(I) \subset I\right\}
$$

It is immediate to verify that L_{p} is a dg-Lie subalgebra of $\operatorname{Der}^{*}(R, R)$. We may define a map

$$
\theta_{p}: L_{p} \rightarrow \operatorname{Der}^{*}(S, S), \quad \theta_{p}(f)=p \circ f \circ e .
$$

Since $p f(I)=0$ for every $f \in L_{p}$, the definition of θ_{p} is independent from the choice of e.

Lemma 10.1. θ_{p} is a morphism of DGLA.
Proof. For every $f, g \in L_{p}, s \in S$, we have:

$$
d\left(\theta_{p} f\right)(s)=d p f e(s)-(-1)^{\bar{f}} p f e(d s)=p d f e(s)-(-1)^{\bar{f}} p f d(e(s))=\theta_{p}(d f)(s)
$$

Since $p f e p=p f$ and $p g e p=p g$

$$
\left[\theta_{p} f, \theta_{p} g\right]=\text { pfepge }-(-1)^{\bar{f} \bar{g}} \text { pgepfe }=p\left(f g-(-1)^{\bar{f} \bar{g}} g f\right) e=\theta_{p}([f, g])
$$

Theorem 10.2. The following is a cartesian diagram of quasiisomorphisms of DGLA

where \imath_{p} is the inclusion.
We recall that cartesian means that it is commutative and that L_{p} is isomorphic to the fibred product of p_{*} and p^{*}.

Proof. Since $p f e p=p f$ for every $f \in L_{p}$ we have $p^{*} \theta_{p}(f)=p f e p=p f=p_{*} f$ and the diagram is commutative. Let

$$
K=\left\{(f, g) \in \operatorname{Der}^{*}(R, R) \times \operatorname{Der}^{*}(S, S) \mid p f=g p\right\}
$$

be the fibred product; the map $L_{p} \rightarrow K, f \rightarrow\left(f, \theta_{p}(f)\right)$, is clearly injective. Conversely take $(f, g) \in K$ and $x \in I$, since $p f(x)=g p(x)=0$ we have $f(I) \subset I$, $f \in L_{p}$. Since p is surjective g is uniquely determined by f and then $g=\theta_{p}(f)$. This proves that the diagram is cartesian. By $9.3 p_{*}$ (resp.: $\left.p^{*}\right)$ is a surjective (resp.: injective) quasiisomorphism, by a standard argument in homological algebra also θ_{p} (resp.: \imath_{p}) is a surjective (resp.: injective) quasiisomorphism.

Corollary 10.3. Let $P \rightarrow A, Q \rightarrow A$ be semifree resolutions of a dg-algebra. Then $\operatorname{Der}^{*}(P, P)$ and $\operatorname{Der}^{*}(Q, Q)$ are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution $R \rightarrow A$ and surjective quasiisomorphisms $p: R \rightarrow P, q: R \rightarrow Q$. Then there exists a sequence of quasiisomorphisms of DGLA

Remark 10.4. If $R \rightarrow A$ is a semifree resolution then

$$
\begin{gathered}
H^{i}\left(\operatorname{Der}^{*}(R, R)\right)=H^{i}\left(\operatorname{Hom}_{R}\left(\Omega_{R}, R\right)\right)=H^{i}\left(\operatorname{Hom}_{R}\left(\Omega_{R}, A\right)\right)= \\
=H^{i}\left(\operatorname{Hom}_{A}\left(\Omega_{R} \otimes_{R} A, A\right)\right)=\operatorname{Ext}^{i}\left(\mathbb{L}_{A}, A\right)
\end{gathered}
$$

Unfortunately, contrarily to what happens to the cotangent complex, the application $R \rightarrow \operatorname{Der}^{*}(R, R)$ is quite far from being a functor: it only earns some functorial properties when composed with a suitable functor $\mathbf{D G L A} \rightarrow \mathbf{D}$.

Let \mathbf{D} be a category and $\mathcal{F}: \mathbf{D G L A} \rightarrow \mathbf{D}$ be a functor which sends quasiisomorphisms into isomorphisms of \mathbf{D}^{1}. By 10.3, if $P \rightarrow A, Q \rightarrow A$ are semifree resolutions then $\mathcal{F}\left(\operatorname{Der}^{*}(P, P)\right) \simeq \mathcal{F}\left(\operatorname{Der}^{*}(Q, Q)\right)$; now we prove that the recipe of the proof of 10.3 gives a NATURAL isomorphism independent from the choice of P, p, q. For notational simplicity denote $\mathcal{F}(P)=\mathcal{F}\left(\operatorname{Der}^{*}(P, P)\right)$ and for every surjective quasiisomorphism $p: R \rightarrow P$ of semifree dg-algebras, $\mathcal{F}(p)=\mathcal{F}\left(\theta_{p}\right) \mathcal{F}\left(\iota_{p}\right)^{-1}: \mathcal{F}(R) \rightarrow \mathcal{F}(P)$.

Lemma 10.5. Let $p: R \rightarrow P, q: P \rightarrow Q$ be surjective quasiisomorphisms of semifree dg-algebras, then $\mathcal{F}(q p)=\mathcal{F}(q) \mathcal{F}(p)$.

Proof. Let $I=\operatorname{ker} p, J=\operatorname{ker} q, H=\operatorname{ker} q p=p^{-1}(J), e: P \rightarrow R, s: Q \rightarrow P$ sections. Note that $e(J) \subset H$. Let $L=L_{q} \times_{\operatorname{Der}^{*}(P, P)} L_{p}$, if $(f, g) \in L$ and $x \in H$ then $p g(x)=p g(e p(x))=f(x) \in J$ and then $g(x) \in H, g \in L_{q p}$; denoting $\alpha: L \rightarrow L_{q p}, \alpha(f, g)=g$, we have a commutative diagram of quasiisomorphisms of DGLA

and then

$$
\begin{gathered}
\mathcal{F}(q p)=\mathcal{F}\left(\theta_{q p}\right) \mathcal{F}\left(\imath_{q p}\right)^{-1}=\mathcal{F}\left(\theta_{q}\right) \mathcal{F}(\gamma) \mathcal{F}(\alpha)^{-1} \mathcal{F}(\alpha) \mathcal{F}(\beta)^{-1} \mathcal{F}\left(\iota_{p}\right)^{-1}= \\
=\mathcal{F}\left(\theta_{q}\right) \mathcal{F}\left(\imath_{q}\right)^{-1} \mathcal{F}\left(\theta_{p}\right) \mathcal{F}\left(\imath_{p}\right)^{-1}=\mathcal{F}(q) \mathcal{F}(p)
\end{gathered}
$$

Let P be a semifree dg-algebra $Q=P\left[\left\{x_{i}, d x_{i}\right\}\right]=P \otimes_{\mathbb{K}} \mathbb{K}\left[\left\{x_{i}, d x_{i}\right\}\right]$, $i: P \rightarrow Q$ the natural inclusion and $\pi: Q \rightarrow P$ the projection $\pi\left(x_{i}\right)=\pi\left(d x_{i}\right)=$ 0 : note that i, π are quasiisomorphisms. Since P, Q are semifree we can define

[^0]a morphism of DGLA
\[

$$
\begin{aligned}
i: \operatorname{Der}^{*}(P, P) & \longrightarrow \operatorname{Der}^{*}(Q, Q), \\
(i f)\left(x_{i}\right) & =(i f)\left(d x_{i}\right)=0, \\
(i f)(p) & =i(f(p)), p \in P .
\end{aligned}
$$
\]

Since $\pi_{*} i=\pi^{*}: \operatorname{Der}^{*}(P, P) \rightarrow \operatorname{Der}^{*}(Q, P)$, according to $9.3 i$ is an injective quasiisomorphism.

Lemma 10.6. Let P, Q as above, let $q: Q \rightarrow R$ a surjective quasiisomorphism of semifree algebras. If $p=q i: P \rightarrow R$ is surjective then $\mathcal{F}(p)=\mathcal{F}(q) \mathcal{F}(i)$.
Proof. Let $L=\operatorname{Der}^{*}(P, P) \times \operatorname{Der}^{*}(Q, Q) L_{q}$ be the fibred product of i and v_{q}; if $(f, g) \in L$ then $g=i f$ and for every $x \in \operatorname{ker} p, i(f(x))=g(i(x)) \in \operatorname{ker} q \cap i(P)=$ $i(\operatorname{ker} p)$. Denoting $\alpha: L \rightarrow L_{p}, \alpha(f, g)=f$, we have a commutative diagram of quasiisomorphisms

and then $\mathcal{F}(q) \mathcal{F}(i)=\mathcal{F}\left(\theta_{q}\right) \mathcal{F}\left(\imath_{q}\right)^{-1} \mathcal{F}(i)=\mathcal{F}\left(\theta_{p}\right) \mathcal{F}\left(\imath_{p}\right)^{-1}$.
Lemma 10.7. Let $p_{0}, p_{1}: P \rightarrow R$ be surjective quasiisomorphisms of semifree algebras. If p_{0} is homotopic to p_{1} then $\mathcal{F}\left(p_{0}\right)=\mathcal{F}\left(p_{1}\right)$.

Proof. We prove first the case $P=R[t, d t]$ and $p_{i}=e_{i}, i=0,1$, the evaluation maps. Denote by

$$
L=\left\{f \in \operatorname{Der}^{*}(P, P) \mid f(R) \subset R, f(t)=f(d t)=0\right\}
$$

Then $L \subset L_{e_{\alpha}}$ for every $\alpha=0,1, \theta_{e_{\alpha}}: L \rightarrow \operatorname{Der}^{*}(P, P)$ is an isomorphism not depending from α and $L \subset L_{e_{\alpha}} \subset \operatorname{Der}^{*}(R, R)$ are quasiisomorphic DGLA. This proves that $\mathcal{F}\left(e_{0}\right)=\mathcal{F}\left(e_{1}\right)$. In the general case we can find commutative diagrams, $\alpha=0,1$,

with q surjective quasiisomorphism. We then have $\mathcal{F}\left(p_{0}\right)=\mathcal{F}\left(q_{0}\right) \mathcal{F}(i)^{-1}=$ $\mathcal{F}\left(e_{0}\right) \mathcal{F}(q) \mathcal{F}(i)^{-1}=\mathcal{F}\left(e_{1}\right) \mathcal{F}(q) \mathcal{F}(i)^{-1}=\mathcal{F}\left(q_{1}\right) \mathcal{F}(i)^{-1}=\mathcal{F}\left(p_{1}\right)$.

We are now able to prove the following
Theorem 10.8. Let

be a commutative diagram of surjective quasiisomorphisms of dg-algebras with P, Q, R semifree. Then $\Psi=\mathcal{F}(p) \mathcal{F}(q)^{-1}: \mathcal{F}(Q) \rightarrow \mathcal{F}(P)$ does not depend from R, p, q.

Proof. Consider two diagrams as above

There exists a commutative diagram of surjective quasiisomorphisms of semifree algebras

By Lemma $10.5 \mathcal{F}\left(q_{0}\right) \mathcal{F}\left(t_{0}\right)=\mathcal{F}\left(q_{1}\right) \mathcal{F}\left(t_{1}\right)$. According to 8.5 the morphisms $p_{0} t_{0}, p_{1} t_{1}: T \rightarrow P$ are homotopic and then $\mathcal{F}\left(p_{0}\right) \mathcal{F}\left(t_{0}\right)=\mathcal{F}\left(p_{1}\right) \mathcal{F}\left(t_{1}\right)$. This implies that $\mathcal{F}\left(p_{0}\right) \mathcal{F}\left(q_{0}\right)^{-1}=\mathcal{F}\left(p_{1}\right) \mathcal{F}\left(q_{1}\right)^{-1}$.

References

[1] M. Artin: Deformations of singularities. Tata Institute of Fundamental Research, Bombay (1976).
[2] L.L. Avramov, H.-B. Foxby: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71 (1991) 129-155.
[3] W.M. Goldman, J.J. Millson: The deformation theory of representations of fundamental groups of compact kähler manifolds Publ. Math. I.H.E.S. 67 (1988) 43-96
[4] P.H. Griffiths, J.W Morgan: Rational Homotopy Theory and Differential Forms. Birkhäuser Progress in Mathematics 16 (1981).
[5] V. Hinich: Homological algebra of homotopy algebras. Preprint qalg/9702015.
[6] M. Kontsevich: Topics in algebra-deformation theory. Notes (1994):
[7] M. Manetti: Deformation theory via differential graded Lie algebras. In Seminari di Geometria Algebrica 1998-1999 Scuola Normale Superiore (1999).
[8] M. Manetti Lectures on deformations of complex manifolds. Dispense corso di Dottorato Roma I (2001).
[9] H. Matsumura: Commutative Ring Theory. Cambridge University Press (1986).
[10] V.P. Palamodov: Deformations of complex spaces. Uspekhi Mat. Nauk. 31:3 (1976) 129-194. Transl. Russian Math. Surveys 31:3 (1976) 129-197.
[11] V.P. Palamodov: Deformations of complex spaces. In: Several complex variables IV. Encyclopaedia of Mathematical Sciences 10, Springer-Verlag (1986) 105-194.
[12] D. Quillen: On the (co)homology of commutative rings. Proc. Sympos. Pure Math. 17 (1970) 65-87.
[13] E. Sernesi: An overview of classical deformation theory. In this volume.
[14] N. Spaltenstein: Resolutions of unbounded complexes. Comp. Math. 65 (1988) 121-154.

[^0]: ${ }^{1}$ The examples that we have in mind are the associated deformation functor and the homotopy class of the corresponding L_{∞}-algebra

