Deformations of singularities via differential graded Lie algebras

Marco Manetti

27 - 03 - 2001

1 Introduction

Let \mathbb{K} be a fixed algebraically closed field of characteristic 0, $X \subset \mathbb{A}^n = \mathbb{A}^n_{\mathbb{K}}$ a closed subscheme. Denote by **Art** the category of local artinian \mathbb{K} -algebras with residue field \mathbb{K} .

Definition 1.1. An infinitesimal deformation of X over $A \in Art$ is a commutative diagram of schemes

such that f_A is flat and the induced morphism $X \to X_A \times_{\operatorname{Spec}(A)} \operatorname{Spec}(\mathbb{K})$ is an isomorphism.

It is not difficult to see (cf. [1]) that X_A is affine and more precisely it is isomorphic to a closed subscheme of $\mathbb{A}^n \times \operatorname{Spec}(A)$. Two deformations $X \xrightarrow{i} X_A \xrightarrow{f_A} \operatorname{Spec}(A), X \xrightarrow{j} \tilde{X}_A \xrightarrow{g_A} \operatorname{Spec}(A)$ are isomorphic if there exists a commutative diagram of schemes

It is easy to prove that necessarily θ is an isomorphism (cf. [8]). Since flatness commutes with base change, for every deformations $X \xrightarrow{i} X_A \xrightarrow{f_A} \operatorname{Spec}(A)$ and every morphism $A \to B$ in the category **Art**, the diagram

is a deformation of X over Spec(B); it is then defined a covariant functor $\text{Def}_X : \operatorname{Art} \to \operatorname{Set}$,

 $Def_X(A) = \{ \text{ isomorphism classes of deformations of } X \text{ over } A \}.$

The set $Def_X(\mathbb{K})$ contains only one point.

In a similar way we can define the functor $\operatorname{Hilb}_X \colon \operatorname{Art} \to \operatorname{Set}$ of embedded deformations of X into $\mathbb{A}^n \colon \operatorname{Hilb}_X(A)$ is the set of closed subschemes $X_A \subset \mathbb{A}^n \times \operatorname{Spec}(A)$ such that the restriction to X_A of the projection on the second factor is a flat map $X_A \to \operatorname{Spec}(A)$ and $X_A \cap (\mathbb{A}^n \times \operatorname{Spec}(\mathbb{K})) = X \times \operatorname{Spec}(\mathbb{K})$.

In these notes we give a recipe for the construction of two differential graded Lie algebras \mathcal{H}, \mathcal{L} together two isomorphism of functors

$$\operatorname{Def}_{\mathcal{L}} = \frac{MC_{\mathcal{L}}}{\operatorname{gauge}} \to \operatorname{Def}_X, \qquad \operatorname{Def}_{\mathcal{H}} = \frac{MC_{\mathcal{H}}}{\operatorname{gauge}} \to \operatorname{Hilb}_X.$$

The DGLAs \mathcal{L} , \mathcal{H} are unique up to quasiisomorphism and their cohomology can be computed in terms of the cotangent complex of X. For the notion of differential graded Lie algebra, Maurer-Cartan functors and gauge equivalence we refer to [7], [8], [3], [6].

Moreover we can choose \mathcal{H} as a differential graded Lie subalgebra of \mathcal{L} such that $\mathcal{H}^i = \mathcal{L}^i$ for every i > 0.

2 Flatness and relations

In this section $A \in \mathbf{Art}$ is a fixed local artinian \mathbb{K} -algebra with residue field \mathbb{K} .

Lemma 2.1. Let M be an A-module, if $M \otimes_A \mathbb{K} = 0$ then M = 0.

Proof. If M is finitely generated this is Nakayama's lemma. In the general case consider a filtration of ideals $0 = I_0 \subset I_1 \subset \ldots \subset I_n = A$ such that $I_{i+1}/I_i = \mathbb{K}$ for every i. Applying the right exact functor $\otimes_A M$ to the exact sequences of A-modules

$$0 \longrightarrow \mathbb{K} = \frac{I_{i+1}}{I_i} \longrightarrow \frac{A}{I_i} \longrightarrow \frac{A}{I_{i+1}} \longrightarrow 0$$

we get by induction that $M \otimes_A (A/I_i) = 0$ for every *i*.

The following is a special case of the *local flatness criterion* [9, Thm. 22.3]

Theorem 2.2. For an A-module M the following conditions are equivalent:

- 1. M is free.
- 2. M is flat.
- 3. $\operatorname{Tor}_{1}^{A}(M, \mathbb{K}) = 0.$

Proof. The only nontrivial assertion is 3) \Rightarrow 1). Assume $\operatorname{Tor}_1^A(M, \mathbb{K}) = 0$ and let F be a free module such that $F \otimes_A \mathbb{K} = M \otimes_A \mathbb{K}$. Since $M \to M \otimes_A \mathbb{K}$ is surjective there exists a morphism $\alpha \colon F \to M$ such that its reduction $\overline{\alpha} \colon F \otimes_A \mathbb{K} \to M \otimes_A \mathbb{K}$ is an isomorphism. Denoting by K the kernel of α and by C its cokernel we have $C \otimes_A \mathbb{K} = 0$ and then C = 0; $K \otimes_A \mathbb{K} = \operatorname{Tor}_1^A(M, \mathbb{K}) = 0$ and then K = 0.

Corollary 2.3. Let $h: P \to L$ be a morphism of flat A-modules, $A \in \operatorname{Art}$. If $\overline{h}: P \otimes_A \mathbb{K} \to L \otimes_A \mathbb{K}$ is injective (resp.: surjective) then also h is injective (resp.: surjective).

Proof. Same proof of Theorem 2.2.

Corollary 2.4. Let $0 \to M \to N \to P \to 0$ be an exact sequence of A-modules with N flat. Then:

- 1. $M \otimes_A \mathbb{K} \to N \otimes_A \mathbb{K}$ injective $\Rightarrow P$ flat.
- 2. P flat $\Rightarrow M$ flat and $M \otimes_A \mathbb{K} \to N \otimes_A \mathbb{K}$ injective.

Proof. Take the associated long $\operatorname{Tor}_*^A(-,\mathbb{K})$ exact sequence and apply 2.2 and 2.3.

Corollary 2.5. Let

$$P \xrightarrow{f} Q \xrightarrow{g} R \xrightarrow{h} M \longrightarrow 0 \tag{1}$$

be a complex of A-modules such that:

- 1. P, Q, R are flat.
- 2. $Q \xrightarrow{g} R \xrightarrow{h} M \longrightarrow 0$ is exact.
- 3. $P \otimes_A \mathbb{K} \xrightarrow{\overline{f}} Q \otimes_A \mathbb{K} \xrightarrow{\overline{g}} R \otimes_A \mathbb{K} \xrightarrow{\overline{h}} M \otimes_A \mathbb{K} \longrightarrow 0$ is exact.

Then M is flat and the sequence (1) is exact.

Proof. Denote by $H = \ker h = \operatorname{Im} g$ and $g = \phi \eta$, where $\phi: H \to R$ is the inclusion and $\eta: Q \to H$; by assumption we have an exact diagram

which allows to prove, after an easy diagram chase, that $\overline{\phi}$ is injective. According to Corollary 2.4 H and M are flat modules. Denoting $L = \ker g$ we have, since H is flat, that also L is flat and $L \otimes_A K \to Q \otimes_A \mathbb{K}$ injective. This implies that $P \otimes_A \mathbb{K} \to L \otimes_A \mathbb{K}$ is surjective. By Corollary 2.3 $P \to L$ is surjective.

Corollary 2.6. Let n > 0 and

$$0 \longrightarrow I \longrightarrow P_0 \xrightarrow{d_1} P_1 \longrightarrow \dots \xrightarrow{d_n} P_n$$

a complex of A-modules with P_0, \ldots, P_n flat. Assume that

$$0 \longrightarrow I \otimes_A \mathbb{K} \longrightarrow P_0 \otimes_A \mathbb{K} \xrightarrow{\overline{d_1}} P_1 \otimes_A \mathbb{K} \longrightarrow \dots \xrightarrow{\overline{d_n}} P_n \otimes_A \mathbb{K}$$

is exact; then $I, \operatorname{coker}(d_n)$ are flat modules and the natural morphism $I \to \operatorname{ker}(P_0 \otimes_A \mathbb{K} \to P_1 \otimes_A \mathbb{K})$ is surjective.

Proof. Induction on n and Corollary 2.5.

3 Differential graded algebras, I

Unless otherwise specified by the symbol \otimes we mean the tensor product $\otimes_{\mathbb{K}}$ over the field \mathbb{K} . We denote by:

- **G** the category of \mathbb{Z} -graded \mathbb{K} -vector space; given an object $V = \oplus V_i$, $i \in \mathbb{Z}$, of **G** and a homogeneous element $v \in V_i$ we denote by $\overline{v} = i$ its degree.
- **DG** the category of Z-graded differential K-vector space (also called complexes of vector spaces).

Given (V, d) in **DG** we denote as usual by $Z(V) = \ker d$, B(V) = d(V), H(V) = Z(V)/B(V).

Given an integer n, the shift functor $[n]: \mathbf{DG} \to \mathbf{DG}$ is defined by setting $V[n] = \mathbb{K}[n] \otimes V, V \in \mathbf{DG}, f[n] = Id_{\mathbb{K}[n]} \otimes f, f \in Mor_{\mathbf{DG}}$, where

$$\mathbb{K}[n]_i = \begin{cases} \mathbb{K} & \text{if } i+n=0\\ 0 & \text{otherwise} \end{cases}$$

More informally, the complex V[n] is the complex V with degrees shifted by n, i.e. $V[n]_i = V_{i+n}$, and differential multiplied by $(-1)^n$.

Given two graded vector spaces V, W, the "graded Hom" is the graded vector space

$$\operatorname{Hom}_{\mathbb{K}}^{*}(V,W) = \bigoplus_{n} \operatorname{Hom}_{\mathbb{K}}^{n}(V,W) \in \mathbf{G},$$

where by definition $\operatorname{Hom}_{\mathbb{K}}^{n}(V, W)$ is the set of \mathbb{K} -linear map $f: V \to W$ such that $f(V_{i}) \subset W_{i+n}$ for every $i \in \mathbb{Z}$. Note that $\operatorname{Hom}_{\mathbb{K}}^{0}(V, W) = \operatorname{Hom}_{\mathbf{G}}(V, W)$ is the space of morphisms in the category \mathbf{G} and there exist natural isomorphisms

$$\operatorname{Hom}_{\mathbb{K}}^{n}(V, W) = \operatorname{Hom}_{\mathbf{G}}(V[-n], W) = \operatorname{Hom}_{\mathbf{G}}(V, W[n]).$$

A morphism in **DG** is called a quasiisomorphism if it induces an isomorphism in homology. A commutative diagram in **DG**

is called cartesian if the morphism $A \to C \times_D B$ is an isomorphism; it is an easy exercise in homological algebra to prove that if f is a surjective (resp.: injective) quasiisomorphism, then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, \mathbb{Z} -commutative) algebra is a graded vector space $A = \bigoplus A_i \in \mathbf{G}$ endowed with a product $A_i \times A_j \to A_{i+j}$ satisfying the properties:

- 1. a(bc) = (ab)c.
- 2. a(b+c) = ab + ac, (a+b)c = ac + bc.
- 3. (Koszul sign convention) $ab = (-1)^{\overline{a} \, \overline{b}} ba$ for a, b homogeneous.

The algebra A is unitary if there exists $1 \in A_0$ such that 1a = a1 = a for every $a \in A$.

Let A be a graded algebra, then A_0 is a commutative \mathbb{K} -algebra in the usual sense; conversely every commutative \mathbb{K} -algebra can be considered as a graded algebra concentrated in degree 0. If $I \subset A$ is a homogeneous left (resp.: right) ideal then I is also a right (resp.: left) ideal and the quotient A/I has a natural structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set $\{x_i\}, i \in I$, of homogeneous indeterminates of integral degree $\overline{x_i} \in \mathbb{Z}$ we can consider the graded algebra $\mathbb{K}[\{x_i\}]$. As a \mathbb{K} -vector space $\mathbb{K}[\{x_i\}]$ is generated by monomials in the indeterminates x_i . Equivalently $\mathbb{K}[\{x_i\}]$ can be defined as the symmetric algebra $\bigoplus_{n\geq 0} \bigcirc^n V$, where $V = \bigoplus_{i\in I} \mathbb{K} x_i \in \mathbf{G}$. In some cases, in order to avoid confusion about terminology, for a monomial $x_{i_1}^{\alpha_1} \dots x_{i_n}^{\alpha_n}$ it is defined:

- The internal degree $\sum_{h} \overline{x_{i_h}} \alpha_h$.
- The external degree $\sum_{h} \alpha_h$.

In a similar way it is defined $A[\{x_i\}]$ for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded algebra A and a \mathbb{K} -linear map $s: A \to A$, called differential, with the properties:

- 1. $s(A_n) \subset A_{n+1}, s^2 = 0.$
- 2. (graded Leibnitz rule) $s(ab) = s(a)b + (-1)^{\overline{a}}as(b)$.

A morphism of dg-algebras is a morphism of graded algebras commuting with differentials; the category of dg-algebras is denoted by **DGA**.

In the sequel, for every dg-algebra A we denote by A_{\sharp} the underlying graded algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:

- 1. $1 \in Z(A)$.
- 2. $1 \in B(A)$ if and only if H(A) = 0.
- 3. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).
- 4. If A is local with maximal ideal M then $s(M) \subset M$ if and only if $H(A) \neq 0$.

 \triangle

 \triangle

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that $s(I) \subset I$; there exists an obvious bijection between differential ideals and kernels of morphisms of dg-algebras.

On a polynomial algebra $\mathbb{K}[\{x_i\}]$ a differential s is uniquely determined by the values $s(x_i)$.

Example 3.5. Let t, dt be inderminates of degrees $\overline{t} = 0$, $\overline{dt} = 1$; on the polynomial algebra $\mathbb{K}[t, dt] = \mathbb{K}[t] \oplus \mathbb{K}[t]dt$ there exists an obvious differential d such that d(t) = dt, d(dt) = 0. Since \mathbb{K} has characteristic 0, we have $H(\mathbb{K}[t, dt]) = \mathbb{K}$. More generally if (A, s) is a dg-algebra then A[t, dt] is a dg-algebra with differential $s(a \otimes p(t)) = s(a) \otimes p(t) + (-1)^{\overline{a}}a \otimes p'(t)dt$, $s(a \otimes q(t)dt) = s(a) \otimes q(t)dt$.

Definition 3.6. A morphism of dg-algebras $B \to A$ is a quasiisomorphism if the induced morphism $H(B) \to H(A)$ is an isomorphism.

Given a morphism of dg-algebras $B \to A$ the space $\operatorname{Der}^n_B(A, A)$ of *B*-derivations of degree *n* is by definition

 $\operatorname{Der}_{B}^{n}(A,A) = \{ \phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(A,A) \mid \phi(ab) = \phi(a)b + (-1)^{n\overline{a}}a\phi(b), \ \phi(B) = 0 \}.$

We also consider the graded vector space

$$\operatorname{Der}_B^*(A,A) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Der}_B^n(A,A) \in \mathbf{G}.$$

There exists a structure of differential graded Lie algebra on $\mathrm{Der}^*_B(A,A)$ with differential

$$d\colon \operatorname{Der}^n_B(A,A) \to \operatorname{Der}^{n+1}_B(A,A), \qquad d\phi = d_A\phi - (-1)^n \phi d_A$$

and bracket

Exercise 3.7.

$$[f,g] = fg - (-1)^{f\overline{g}}gf.$$

Verify that $d[f,g] = [df,g] + (-1)^{\overline{f}}[f,dg].$

4 The DG-resolvent

Let $X \subset \mathbb{A}^n$ be a closed subscheme, $R_0 = \mathbb{K}[x_1, \ldots, x_n]$ the ring of regular functions on \mathbb{A}^n , $I_0 \subset R_0$ the ideal of X and $\mathcal{O}_X = R_0/I$ the function ring of X.

Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism $R \to \mathcal{O}_X$ such that $R = R_0[y_1, y_2, ...]$ is a countably generated graded polynomial R_0 algebra, every indeterminate y_i has negative degree and, if $R = \bigoplus_{i \leq 0} R_i$, then R_i is a finitely generated free R_0 module.

Choosing a set of generators f_1, \ldots, f_{s_1} of the ideal I_0 we first consider the graded-commutative polynomial dg-algebra

$$R(1) = \mathbb{K}[x_1, \dots, x_n, y_1, \dots, y_{s_1}] = R_0[y_1, \dots, y_{s_1}], \qquad \overline{x_i} = 0, \quad \overline{y_i} = -1$$

with differential d defined by $dx_i = 0$, $dy_j = f_j$. Note that (R(1), d), considered as a complex of R_0 modules, is the Koszul complex of the sequence f_1, \ldots, f_{s_1} . By construction the complex of R_0 -modules

$$\dots \longrightarrow R(1)_{-2} \xrightarrow{d} R(1)_{-1} \xrightarrow{d} R_0 \xrightarrow{\pi} \mathcal{O}_X \longrightarrow 0$$

is exact in R_0 and \mathcal{O}_X . If $(R(-1), d) \to \mathcal{O}_X$ is a quasiisomorphism of dg-algebras (e.g. if X is a complete intersection) the construction is done. Otherwise let $f_{s_1+1}, \ldots, f_{s_2} \in \ker d \cap R(1)_{-1}$ be a set of generators of the R_0 module (ker $d \cap R(1)_{-1}$)/ $dR(1)_{-2}$ and define

$$R(2) = R(1)[y_{s_1+1}, \dots, y_{s_2}], \qquad \overline{y_j} = -2, \quad dy_j = f_j, \quad j = s_1 + 1, \dots, s_2.$$

Repeating in a recursive way the above argument (step by step killing cycles) we get a chain of polynomial dg-algebras

$$R_0 = R(0) \subset R(1) \subset \ldots \subset R(i) \subset \ldots$$

such that $(R(i), d) \to \mathcal{O}_X$ is a quasiisomorphism in degree > -i. Setting

$$R = \bigcup R(i) = \mathbb{K} [x_1, \dots, x_n, y_1, \dots, y_m, \dots] = \bigoplus_{i < 0} R_i$$

the projection $\pi \colon R \to \mathcal{O}_X$ is a quasiisomorphism of dg-algebras; in particular

$$\dots \xrightarrow{d} R_{-i} \xrightarrow{d} \dots \xrightarrow{d} R_{-2} \xrightarrow{d} R_{-1} \xrightarrow{d} R_{0} \xrightarrow{\pi} \mathcal{O}_{X} \longrightarrow 0$$

is a free resolution of the R_0 module \mathcal{O}_X .

We denote by:

- 1. $Z_i = \ker d \cap R_i$.
- 2. $\mathcal{L} = \operatorname{Der}^*_{\mathbb{K}}(R, R).$
- 3. $\mathcal{H} = \operatorname{Der}_{R_0}^*(R, R) = \{g \in \mathcal{L} \mid g(R_0) = 0\}.$

It is clear that, since $gR_i \subset R_{i+j}$ for every $g \in \mathcal{L}^j$, $\mathcal{L}^i = \mathcal{H}^i$ for every i > 0and then the DGLAs \mathcal{L} , \mathcal{H} have the same Maurer-Cartan functor $MC_{\mathcal{H}} = MC_{\mathcal{L}}$. Moreover R is a free graded algebra and then \mathcal{L}^j is in bijection with the maps of "degree j" $\{x_i, y_h\} \to R$.

Consider a fixed $\eta \in MC_{\mathcal{H}}(A)$. Recalling the definition of $MC_{\mathcal{H}}$ we have that $\eta = \sum \eta_i \otimes a_i \in \text{Der}^1_{R_0}(R, R) \otimes m_A$ and the A-derivation

$$d + \eta \colon R \otimes A \to R \otimes A, \qquad (d + \eta)(x \otimes a) = dx \otimes a + \sum \eta_i(x) \otimes a_i a$$

is a differential. Denoting by \mathcal{O}_A the cokernel of $d + \eta \colon R_{-1} \otimes A \to R_0 \otimes A$ we have by Corollary 2.5 that $(R \otimes A, d + \eta) \to \mathcal{O}_A$ is a quasiisomorphism, \mathcal{O}_A is flat and $\mathcal{O}_A \otimes \mathbb{K} = \mathcal{O}_X$. Therefore we have natural transformations of functors

$$MC_{\mathcal{H}} = MC_{\mathcal{L}} \to \operatorname{Hilb}_X \to \operatorname{Def}_X$$

Lemma 4.1. The above morphisms of functors are surjective.

Proof. Let \mathcal{O}_A be a flat A-algebra such that $\mathcal{O}_A \otimes_A \mathbb{K} = \mathcal{O}_X$; since R_0 is a free \mathbb{K} -algebra, the projection $R_0 \xrightarrow{\pi} \mathcal{O}_X$ can be extended to a morphism of flat A-algebras $R_0 \otimes A \xrightarrow{\pi_A} \mathcal{O}_A$. According to Corollary 2.3 π_A is surjective; this proves that $\operatorname{Hilb}_X(A) \to \operatorname{Def}_X(A)$ is surjective (in effect it is possible to prove directly that $\operatorname{Hilb}_X \to \operatorname{Def}_X$ is smooth, cf. [1]). An element of $\operatorname{Hilb}_X(A)$ gives an exact sequence of flat A-modules

$$R_0 \otimes A \xrightarrow{\pi_A} \mathcal{O}_A \longrightarrow 0.$$

Denoting by $I_{0,A} \subset R_0 \otimes A$ the kernel of π_A we have that $I_{0,A}$ is A-flat and the projection $I_{0,A} \to I_0$ is surjective. We can therefore extend the restriction to R(1) of the differential d to a differential d_A on $R(1) \otimes A$ by setting $d_A(y_j) \in I_{0,A}$ a lifting of $d(y_j), j = 1, \ldots, s_1$. Again by local flatness criterion the kernel $Z_{-1,A}$ of $R_{-1} \otimes A = R(1)_{-1} \otimes A \xrightarrow{d_A} R_0 \otimes A$ is flat and surjects onto Z_{-1} . The same argument as above, with $I_{0,A}$ replaced by $Z_{-1,A}$ shows that d can be extended to a differential d_A on R(2) and then by induction to a differential d_A on $R \otimes A$ such that $(R \otimes A, d_A) \to \mathcal{O}_A$ is a quasiisomorphism. If a_1, \ldots, a_r is a \mathbb{K} -basis of the maximal ideal of A we can write $d_A(x \otimes 1) = dx \otimes 1 + \sum \eta_i(x) \otimes a_i$ and then $\eta = \sum \eta_i \otimes a_i \in MC_{\mathcal{H}}(A)$.

If $\xi \in \operatorname{Der}_{R_0}^0(R, R) \otimes m_A$, $A \in \operatorname{Art}$, then $e^{\xi} \colon R \otimes A \to R \otimes A$ is an automorphism inducing the identity on R and $R_0 \otimes A$. Therefore the morphism $MC_{\mathcal{H}}(A) \to \operatorname{Hilb}_X(A)$ factors through $\operatorname{Def}_{\mathcal{H}}(A) \to \operatorname{Hilb}_X(A)$. Similarly the morphism $MC_{\mathcal{L}}(A) \to \operatorname{Def}_X(A)$ factors through $\operatorname{Def}_{\mathcal{L}}(A) \to \operatorname{Def}_X(A)$.

Theorem 4.2. The natural transformations

$$\operatorname{Def}_{\mathcal{H}} \to \operatorname{Hilb}_X, \qquad \operatorname{Def}_{\mathcal{L}} \to \operatorname{Def}_X$$

are isomorphisms of functors.

Proof. We have already proved the surjectivity. The injectivity follows from the following lifting argument. Given $d_A, d'_A \colon R \otimes A \to R \otimes A$ two liftings of the differential d and $f_0 \colon R_0 \otimes A \to R_0 \otimes A$ a lifting of the identity on R_0 such that $f_0 d_A(R_{-1} \otimes A) \subset d'_A(R_{-1} \otimes A)$ there exists an isomorphism $f \colon (R \otimes A, d_A) \to (R \otimes A, d'_A)$ extending f_0 and the identity on R. This is essentially trivial because $R \otimes A$ is a free $R_0 \otimes A$ graded algebra and $(R \otimes A, d'_A)$ is exact in degree < 0. Thinking f as an automorphism of the graded algebra $R \otimes A$ we have, since \mathbb{K} has characteristic 0, that $f = e^{\xi}$ for some $\xi \in \mathcal{L}^0$ and $\xi \in \mathcal{H}^0$ if and only if $f_0 = Id$. By the definition of gauge action $d'_A - d = exp(\xi)(d_A - d)$; the injectivity follows.

Proposition 4.3. If $I \subset R_0$ is the ideal of $X \subset \mathbb{A}^n$ then:

- 1. $H^i(\mathcal{H}) = H^i(\mathcal{L}) = 0$ for every i < 0.
- 2. $H^0(\mathcal{H}) = 0, \ H^0(\mathcal{L}) = \operatorname{Der}_{\mathbb{K}}(\mathcal{O}_X, \mathcal{O}_X).$
- 3. $H^1(\mathcal{H}) = \operatorname{Hom}_{\mathcal{O}_X}(I/I^2, \mathcal{O}_X)$ and $H^1(\mathcal{L})$ is the cohernel of the natural morphism

$$\operatorname{Der}_{\mathbb{K}}(R_0, \mathcal{O}_X) \xrightarrow{\alpha} \operatorname{Hom}_{\mathcal{O}_X}(I/I^2, \mathcal{O}_X).$$

Proof. There exists a short exact sequence of complexes

$$0 \longrightarrow \mathcal{H} \longrightarrow \mathcal{L} \longrightarrow \mathrm{Der}^*_{\mathbb{K}}(R_0, R) \longrightarrow 0.$$

Since R_0 is free and R is exact in degree < 0 we have:

$$H^{i}(\operatorname{Der}_{\mathbb{K}}^{*}(R_{0},R)) = \begin{cases} 0 & i \neq 0, \\ \operatorname{Der}_{\mathbb{K}}(R_{0},\mathcal{O}_{X}) & i = 0. \end{cases}$$

Moreover $\operatorname{Der}_{\mathbb{K}}(\mathcal{O}_X, \mathcal{O}_X)$ is the kernel of α and then it is sufficient to compute $H^i(\mathcal{H})$ for $i \leq 1$.

Every $g \in Z^i(\mathcal{H})$, $i \leq 0$, is a R_0 -derivation $g: R \to R$ such that $g(R) \subset \bigoplus_{i < 0} R_i$ and $gd = \pm dg$. As above R is free and exact in degree < 0, a standard argument shows that g is a coboundary. If $g \in Z^1(\mathcal{H})$ then $g(R_{-1}) \subset R_0$ and, since gd + dg = 0, g induces a morphism

$$\overline{g} \colon \frac{R_{-1}}{dR_{-2}} = I \longrightarrow \frac{R_0}{dR_{-1}} = \mathcal{O}_X.$$

The easy verification that $Z^1(\mathcal{H}) \to \operatorname{Hom}_{R_0}(I, \mathcal{O}_X)$ induces an isomorphism $H^1(\mathcal{H}) \to \operatorname{Hom}_{R_0}(I, \mathcal{O}_X)$ is left to the reader.

5 Differential graded algebras, II

Lemma 5.1. Let A be graded algebra: if every $a \neq 0$ is invertible then $A = A_0$ is a field.

Proof. Assume that there exists $a \in A_i$, $a \neq 0$, i > 0. Then $1 - a \neq 0$ and by assumption we have

$$1 = (1-a) \sum_{j=-n}^{n} a_j, \qquad a_j \in A_j.$$

This is equivalent to the system of equations

$$\begin{cases} a_{-n} = 0\\ a_{i-j} - aa_{-j} = \delta_{ij}, \qquad j < n \end{cases}$$

The solution is $a_j = 0$ for j < 0, $a_j = a^j$ for j > 0; in particular $a^{n+1} = 0$ and then a is not invertible.

Lemma 5.2. Let A be a graded algebra and let $I \subset A$ be a left ideal. Then the following conditions are equivalent:

- 1. I is the unique left maximal ideal.
- 2. A_0 is a local ring with maximal ideal M and $I = M \oplus_{i \neq 0} A_i$.

Proof. $1\Rightarrow2$: For every $t\in\mathbb{K}$, $t\neq 0$, the morphism $\phi\colon A\to A$, $x\to xt^{\overline{x}}$, is an isomorphism of graded algebras, in particular $\phi(I)=I$ and the Vandermonde's argument shows that I is homogeneous and then bilateral. By Lemma 5.1 the quotient A/I is a field and $I=M\oplus_{i\neq 0}A_i$ with $M\subset A_0$ maximal. Let $a\in A_0-M$, then $a\notin I$ and a is invertible in A; since $a^{-1}\in A_0$ a is also invertible in A_0 and then A_0 is a local ring. $2\Rightarrow1$: Let $J\subset A$ be a proper left ideal, then $J\cap A_0\subset M$ and therefore $J\subset M\oplus_{i\neq 0}A_i=I$.

Let A be a graded algebra, if $A \to B$ is a morphism of graded algebras then B has a natural structure of A-algebra. Given two A-algebras B, C it is defined their tensor product $B \otimes_A C$ as the quotient of $B \otimes_{\mathbb{K}} C = \bigoplus_{n,m} B_n \otimes_{\mathbb{K}} C_m$ by the ideal generated by $ba \otimes c - b \otimes ac$ for every $a \in A, b \in B, c \in C$. $B \otimes_A C$ has a natural structure of graded algebra with degrees $\overline{b \otimes c} = \overline{b} + \overline{c}$ and multiplication $(b \otimes c)(\beta \otimes \gamma) = (-1)^{\overline{c} \overline{\beta}} b\beta \otimes c\gamma$. Note in particular that $A[\{x_i\}] = A \otimes_{\mathbb{K}} \mathbb{K}[\{x_i\}]$.

Given a dg-algebra A and $h \in \mathbb{K}$ it is defined an evaluation morphism $e_h: A[t, dt] \to A, e_h(a \otimes p(t)) = ap(h), e_h(a \otimes q(t)dt) = 0.$

Lemma 5.3. For every dg-algebra A the evaluation map $e_h: A[t, dt] \to A$ induces an isomorphism $H(A[t, dt]) \to H(A)$ independent from $h \in \mathbb{K}$.

Proof. Let $i: A \to A[t, dt]$ be the inclusion, since $e_h i = Id_A$ it is sufficient to prove that $i: H(A) \to H(A[t, dt])$ is bijective. For every n > 0 denote $B_n = At^n \oplus At^{n-1}dt$; since $d(B_n) \subset B_n$ and $A[t, dt] = i(A) \bigoplus_{n>0} B_n$ it is sufficient to prove that $H(B_n) = 0$ for every n. Let $z \in Z_i(B_n)$, $z = at^n + nbt^{n-1}dt$, then $0 = dz = dat^n + ((-1)^i a + db)nt^{n-1}dt$ which implies $a = (-1)^{i-1}db$ and then $z = (-1)^{i-1}d(bt^n)$.

Definition 5.4. Given two morphisms of dg-algebras $f, g: A \to B$, a homotopy between f and g is a morphism $H: A \to B[t, dt]$ such that $H_0 := e_0 \circ H = f$, $H_1 := e_1 \circ H = g$. We denote by [A, B] the quotient of $\operatorname{Hom}_{\mathbf{DGA}}(A, B)$ by the equivalence relation \sim generated by homotopy. If $B \to C$ is a morphism of dg-algebras with kernel J, a homotopy $H: A \to B[t, dt]$ is called constant on Cif the image of H is contained in $B \oplus_{j \geq 0} (Jt^{j+1} \oplus Jt^j dt)$. Two dg-algebras A, Bare said to be homotopically equivalent if there exist morphisms $f: A \to B$, $g: B \to A$ such that $fg \sim Id_B$, $gf \sim Id_A$.

According to Lemma 5.3 homotopic morphisms induce the same morphism in homology.

Lemma 5.5. Given morphisms of dg-algebras,

$$A\underbrace{\overbrace{g}}^{f}B\underbrace{\overbrace{h}}_{l}C,$$

if $f \sim g$ and $h \sim l$ then $hf \sim lg$.

Proof. It is obvious from the definitions that $hg \sim lg$. For every $a \in \mathbb{K}$ there exists a commutative diagram

If $F: A \to B[t, dt]$ is a homotopy between f and g, then, considering the composition of F with $h \otimes Id$, we get a homotopy between hf and hg.

Example 5.6. Let A be a dg-algebra, $\{x_i\}$ a set of indeterminates of integral degree and consider the dg-algebra $B = A[\{x_i, dx_i\}]$, where dx_i is an indeterminate of degree $\overline{dx_i} = \overline{x_i} + 1$ and the differential d_B is the unique extension of d_A such that $d_B(x_i) = dx_i$, $d_B(dx_i) = 0$ for every *i*. The inclusion *i*: $A \to B$ and the projection $\pi: B \to A$, $\pi(x_i) = \pi(dx_i) = 0$ give a homotopy equivalence between A and B. In fact $\pi i = Id_A$; consider now the homotopy $H: B \to B[t, dt]$ given by

$$H(x_i) = x_i t, \quad H(dx_i) = dH(x_i) = dx_i t + (-1)^{\overline{x_i}} x_i dt, \quad H(a) = a, \forall a \in A.$$

Taking the evaluation at t = 0, 1 we get $H_0 = ip, H_1 = Id_B$.

Exercise 5.7. Let $f, g: A \to C$, $h: B \to C$ be morphisms of dg-algebras. If $f \sim g$ then $f \otimes h \sim g \otimes h: A \otimes_{\mathbb{K}} B \to C$.

Remark 5.8. In view of future geometric applications, it seems reasonable to define the spectrum of a unitary dg-algebra A as the usual spectrum of the commutative ring $Z_0(A)$.

If $S \subset Z_0(A)$ is a multiplicative part we can consider the localized dg-algebra $S^{-1}A$ with differential d(a/s) = da/s. Since the localization is an exact functor in the category of $Z_0(A)$ modules we have $H(S^{-1}A) = S^{-1}H(A)$. If $\phi: A \to C$ is a morphism of dg-algebras and $\phi(s)$ is invertible for every $s \in S$ then there is a unique morphism $\psi: S^{-1}A \to C$ extending ϕ . Moreover if ϕ is a quasiisomorphism then also ψ is a quasiisomorphism (easy exercise).

If $\mathcal{P} \subset Z_0(A)$ is a prime ideal, then we denote as usual $A_{\mathcal{P}} = S^{-1}A$, where $S = Z_0(A) - \mathcal{P}$. It is therefore natural to define Spec(A) as the ringed space (X, \tilde{A}) , where X is the spectrum of A and \tilde{A} is the (quasi coherent) sheaf of dg-algebras with stalks $A_{\mathcal{P}}, \mathcal{P} \in X$.

6 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector space (M, s) together two associative distributive multiplication maps $A \times M \to M$, $M \times A \to M$ with the properties:

- 1. $A_i M_j \subset M_{i+j}, \quad M_i A_j \subset M_{i+j}.$
- 2. $am = (-1)^{\overline{a} \overline{m}} ma$, for homogeneous $a \in A, m \in M$.
- 3. $s(am) = s(a)m + (-1)^{\overline{a}}as(m)$.

If $A = A_0$ we recover the usual notion of complex of A-modules.

If M is an A-dg-module then $M[n] = \mathbb{K}[n] \otimes_{\mathbb{K}} M$ has a natural structure of A-dg-module with multiplication maps

$$(e \otimes m)a = e \otimes ma$$
, $a(e \otimes m) = (-1)^{n\overline{a}}e \otimes am$, $e \in \mathbb{K}[n], m \in M, a \in A$.

The tensor product $N \otimes_A M$ is defined as the quotient of $N \otimes_{\mathbb{K}} M$ by the graded submodules generated by all the elements $na \otimes m - n \otimes am$.

Given two A-dg-modules $(M, d_M), (N, d_N)$ we denote by

$$\operatorname{Hom}_{A}^{n}(M,N) = \{ f \in \operatorname{Hom}_{\mathbb{K}}^{n}(M,N) \mid f(ma) = f(m)a, m \in M, a \in A \}$$

$$\operatorname{Hom}_{A}^{*}(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{A}^{n}(M,N).$$

The graded vector space $\operatorname{Hom}_{A}^{*}(M, N)$ has a natural structure of A-dgmodule with left multiplication (af)(m) = af(m) and differential

$$d: \operatorname{Hom}_{A}^{n}(M, N) \to \operatorname{Hom}_{A}^{n+1}(M, N), \qquad df = [d, f] = d_{N} \circ f - (-1)^{n} f \circ d_{M}.$$

Note that $f \in \operatorname{Hom}_{A}^{0}(M, N)$ is a morphism of A-dg-modules if and only if df = 0. A homotopy between two morphism of dg-modules $f, g: M \to N$ is a $h \in \operatorname{Hom}_{A}^{-1}(M, N)$ such that $f - g = dh = d_{N}h + hd_{M}$. Homotopically equivalent morphisms induce the same morphism in homology.

Morphisms of A-dg-modules $f: L \to M, h: N \to P$ induce, by composition, morphisms $f^*: \operatorname{Hom}_A^*(M, N) \to \operatorname{Hom}_A^*(L, N), h_*: \operatorname{Hom}_A^*(M, N) \to \operatorname{Hom}_A^*(M, P);$

Lemma 6.1. In the above notation if f is homotopic to g and h is homotopic to l then f^* is homotopic to g^* and l_* is homotopic to h_* .

Proof. Let $p \in \text{Hom}_A^{-1}(L, M)$ be a homotopy between f and g, It is a straightforward verification to see that the composition with p is a homotopy between f^* and g^* . Similarly we prove that h_* is homotopic to l_* .

Lemma 6.2. Let $A \to B$ be a morphism of unitary dg-algebras, M an A-dg-module, N a B-dg-modules. Then there exists a natural isomorphism of B-dg-modules

$$\operatorname{Hom}_{A}^{*}(M, N) \simeq \operatorname{Hom}_{B}^{*}(M \otimes_{A} B, N).$$

Proof. Consider the natural maps:

$$\operatorname{Hom}_{A}^{*}(M,N) \xrightarrow{L}_{R} \operatorname{Hom}_{B}^{*}(M \otimes_{A} B,N) ,$$

$$Lf(m \otimes b) = f(m)b,$$
 $Rg(m) = g(m \otimes 1).$

We left as exercise the easy verification that $L, R = L^{-1}$ are isomorphism of *B*-dg-modules.

Given a morphism of dg-algebras $B \to A$ and an A-dg-module M we set:

 $\operatorname{Der}_{B}^{n}(A,M) = \{\phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(A,M) | \phi(ab) = \phi(a)b + (-1)^{n\overline{a}}a\phi(b), \ \phi(B) = 0\}$

$$\operatorname{Der}_{B}^{*}(A, M) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Der}_{B}^{n}(A, M).$$

As in the case of Hom^{*}, there exists a structure of A-dg-module on $\text{Der}_B^*(A, M)$ with product $(a\phi)(b) = a\phi(b)$ and differential

$$d: \operatorname{Der}_B^n(A, M) \to \operatorname{Der}_B^{n+1}(A, M), \qquad d\phi = [d, \phi] = d_M \phi - (-1)^n \phi d_A$$

Given $\phi \in \text{Der}_B^n(A, M)$ and $f \in \text{Hom}_A^m(M, N)$ their composition $f\phi$ belongs to $\text{Der}_B^{n+m}(A, N)$.

Proposition 6.3. Let $B \to A$ be a morphisms of dg-algebras: there exists an A-dg-module $\Omega_{A/B}$ together a closed derivation $\delta \colon A \to \Omega_{A/B}$ of degree 0 such that, for every A-dg-module M, the composition with δ gives an isomorphism

$$\operatorname{Hom}_{A}^{*}(\Omega_{A/B}, M) = \operatorname{Der}_{B}^{*}(A, M).$$

Proof. Consider the graded vector space

$$F_A = \bigoplus A \delta x, \quad x \in A \text{ homogeneous}, \qquad \overline{\delta x} = \overline{x}.$$

 F_A is an A-dg-module with multiplication $a(b\delta x) = ab\delta x$ and differential

$$d(a\delta x) = da\delta x + (-1)^{\overline{a}}a\delta(dx)$$

Note in particular that $d(\delta x) = \delta(dx)$. Let $I \subset F_A$ be the homogeneous submodule generated by the elements

$$\delta(x+y) - \delta x - \delta y, \quad \delta(xy) - x(\delta y) - (-1)^{\overline{x}\,\overline{y}} y(\delta x), \quad \delta(b), b \in B,$$

Since $d(I) \subset I$ the quotient $\Omega_{A/B} = F_A/I$ is still an A-dg-module. By construction the map $\delta \colon A \to \Omega_{A/B}$ is a derivation of degree 0 such that $d\delta = d_\Omega \delta - \delta d_A = 0$. Let $\circ \delta \colon \operatorname{Hom}^*_A(\Omega_{A/B}, M) \to \operatorname{Der}^*_B(A, M)$ be the composition with δ :

a) L is a morphism of A-dg-modules. In fact $(af) \circ \delta = a(f \circ \delta)$ for every $a \in A$ and

$$d(f \circ \delta)(x) = d_M(f(\delta x)) - (-1)^f f\delta(dx) =$$

= $d_M(f(\delta x)) - (-1)^{\overline{f}} f(d(\delta x)) = df \circ \delta.$

- b) $\circ \delta$ is surjective. Let $\phi \in \operatorname{Der}^n_B(A, M)$; define a morphism $f \in \operatorname{Hom}^n_A(F_A, M)$ by the rule $f(a\delta x) = (-1)^{n\overline{a}}a\phi(x)$; an easy computation shows that f(I) = 0 and then f factors to $f \in \operatorname{Hom}^n_A(\Omega_{A/B}, M)$: by construction $f \circ \delta = \phi$.
- c) $\circ \delta$ is injective. In fact the image of δ generate $\Omega_{A/B}$.

When $B = \mathbb{K}$ we denote for notational simplicity $\operatorname{Der}^*(A, M) = \operatorname{Der}^*_{\mathbb{K}}(A, M)$, $\Omega_A = \Omega_{A/\mathbb{K}}$. Note that if $C \to B$ is a morphism of dg-algebras, then the natural map $\Omega_{A/C} \to \Omega_{A/B}$ is surjective and $\Omega_{A/C} = \Omega_{A/B}$ whenever $C \to B$ is surjective.

Definition 6.4. The module $\Omega_{A/B}$ is called the module of relative Kähler differentials of A over B and δ the universal derivation.

By the universal property, the module of differential and the universal derivation are unique up to isomorphism.

Example 6.5. If $A_{\sharp} = \mathbb{K}[\{x_i\}]$ is a polynomial algebra then $\Omega_A = \bigoplus_i A \delta x_i$ and $\delta \colon A \to \Omega_A$ is the unique derivation such that $\delta(x_i) = \delta x_i$.

Proposition 6.6. Let $B \to A$ be a morphism of dg-algebras and $S \subset Z_0(A)$ a multiplicative part. Then there exists a natural isomorphism $S^{-1}\Omega_{A/B} = \Omega_{S^{-1}A/B}$. Proof. The closed derivation $\delta: A \to \Omega_{A/B}$ extends naturally to $\delta: S^{-1}A \to S^{-1}\Omega_{A/B}$, $\delta(a/s) = \delta a/s$, and by the universal property there exists a unique morphism of $S^{-1}A$ modules $f: \Omega_{S^{-1}A/B} \to S^{-1}\Omega_{A/B}$ and a unique morphism of A modules $g: \Omega_{A/B} \to \Omega_{S^{-1}A/B}$. The morphism g extends to a morphism of $S^{-1}A$ modules $g: S^{-1}\Omega_{A/B} \to \Omega_{S^{-1}A/B}$. Clearly these morphisms commute with the universal closed derivations and then gf = Id. On the other hand, by the universal property, the restriction of fg to $\Omega_{A/B}$ must be the natural inclusion $\Omega_{A/B} \to S^{-1}\Omega_{A/B}$ and then also fg = Id.

7 Projective modules

Definition 7.1. An A-dg-module P is called projective if for every surjective quasiisomorphism $f: M \to N$ and every $g: P \to N$ there exists $h: P \to M$ such that fh = g.

Exercise 7.2. Prove that if $A = A_0$ and $P = P_0$ then P is projective in the sense of 7.1 if and only if P_0 is projective in the usual sense.

Lemma 7.3. Let P be a projective A-dg-module, $f: P \to M$ a morphism of Adg-modules and $\phi: M \to N$ a surjective quasiisomorphism. If ϕf is homotopic to 0 then also f is homotopic to 0.

Proof. We first note that there exist natural isomorphisms $\operatorname{Hom}_{A}^{i}(P, M[j]) = \operatorname{Hom}_{A}^{i+j}(P, M)$. Let $h: P \to N[-1]$ be a homotopy between ϕf and 0 and consider the A-dg-modules $M \oplus N[-1]$, $M \oplus M[-1]$ endowed with the differentials

 $d: M_n \oplus N_{n-1} \to M_{n+1} \oplus N_n, \quad d(m_1, n_2) = (dm_1, f(m_1) - dn_2),$

$$d: M_n \oplus M_{n-1} \to M_{n+1} \oplus M_n, \quad d(m_1, m_2) = (dm_1, m_1 - dm_2).$$

The map $Id_M \oplus f \colon M \oplus M[-1] \to M \oplus N[-1]$ is a surjective quasiisomorphism and $(\phi, h) \colon P \to M \oplus N[-1]$ is morphism of A-dg-modules. If $(\phi, l) \colon P \to M \oplus M[-1]$ is a lifting of (ϕ, h) then l is a homotopy between ϕ and 0.

Lemma 7.4. Let $f: M \to N$ be a morphism of A-dg-modules, then there exist morphisms of A-dg-modules $\pi: L \to M$, $g: L \to N$ such that g is surjective, π is a homotopy equivalence and g is homotopically equivalent to $f\pi$.

Proof. Consider $L = M \oplus N \oplus N[-1]$ with differential

$$d: M_n \oplus N_n \oplus N_{n-1} \to M_{n+1} \oplus N_{n+1} \oplus N_n, \quad d(m, n_1, n_2) = (dm, dn_1, n_1 - dn_2).$$

We define $g(m, n_1, n_2) = f(m) + n_1$, $\pi(m, n_1, n_2) = m$ and $s: M \to L$, s(m) = m(m, 0, 0). Since gs = f and $\pi s = Id_M$ it is sufficient to prove that $s\pi$ is homotopic to Id_L . Take $h \in \operatorname{Hom}_A^{-1}(L,L)$, $h(m, n_1, n_2) = (0, n_2, 0)$; then

$$d(h(m, n_1, n_2)) + hd(m, n_1, n_2) = (0, n_1, n_2) = (Id_L - s\pi)(m, n_1, n_2).$$

Theorem 7.5. Let P be a projective A-dg-module: For every quasiisomorphism $f: M \to N$ the induced map $\operatorname{Hom}_A^*(P, M) \to \operatorname{Hom}_A^*(P, N)$ is a quasiisomorphism.

Proof. By Lemma 7.4 it is not restrictive to assume f surjective. For a fixed integer i we want to prove that $H^i(\operatorname{Hom}_A^*(P, M)) = H^i(\operatorname{Hom}_A^*(P, N))$. Replacing M and N with M[i] and N[i] it is not restrictive to assume i = 0. Since $Z^{0}(\operatorname{Hom}_{A}^{*}(P, N))$ is the set of morphisms of A-dg-modules and P is projective, the map

$$Z^0(\operatorname{Hom}^*_A(P, M)) \to Z^0(\operatorname{Hom}^*_A(P, N))$$

is surjective. If $\phi \in Z^0(\operatorname{Hom}_A^*(P,M))$ and $f\phi \in B^0(\operatorname{Hom}_A^*(P,N))$ then by Lemma 7.3 also ϕ is a coboundary.

A projective resolution of an A-dg-module M is a surjective quasiisomorphism $P \to M$ with P projective. We will show in next section that projective resolutions always exist. This allows to define for every pair of of A-dg-modules M, N

$$\operatorname{Ext}^{i}(M, N) = H^{i}(\operatorname{Hom}_{A}^{*}(P, N)),$$

where $P \to M$ is a projective resolution.

Exercise 7.6. Prove that the definition of Ext's is independent from the choice of the projective resolution. \triangle

Semifree resolutions 8

From now on K is a fixed dg-algebra.

Definition 8.1. A K-dg-algebra (R, s) is called semifree if:

1. The underlying graded algebra R is a polynomial algebra over $K K[\{x_i\}]$, $i \in I$.

2. There exists a filtration $\emptyset = I(0) \subset I(1) \subset \ldots$, $\bigcup_{n \in \mathbb{N}} I(n) = I$, such that $s(x_i) \in R(n)$ for every $i \in I(n+1)$, where by definition $R(n) = K[\{x_i\}], i \in I(n)$.

Note that R(0) = K, R(n) is a dg-subalgebra of R and $R = \bigcup R(n)$.

Let $R = K[\{x_i\}] = \cup R(n)$ be a semifree K-dg-algebra, S a K-dg-algebra; to give a morphism $f: R \to S$ is the same to give a sequence of morphisms $f_n: R(n) \to S$ such that f_{n+1} extends f_n for every n. Given a morphism $f_n: R(n) \to S$, the set of extensions $f_{n+1}: R(n+1) \to S$ is in bijection with the set of sequences $\{f_{n+1}(x_i)\}, i \in I(n+1) - I(n)$, such that $s(f_{n+1}(x_i)) = f_n(s(x_i)), \overline{f_{n+1}(x_i)} = \overline{x_i}$.

Example 8.2. $\mathbb{K}[t, dt]$ is semifree with filtration $\mathbb{K} \oplus \mathbb{K} dt \subset \mathbb{K}[t, dt]$. For every dg-algebra A and every $a \in A_0$ there exists a unique morphism $f \colon \mathbb{K}[t, dt] \to A$ such that f(t) = a.

Exercise 8.3. Let (V, s) be a complex of vector spaces, the differential s extends to a unique differential s on the symmetric algebra $\bigcirc V$ such that $s(\bigcirc^n V) \subset \bigcirc^n V$ for every n. Prove that $(\bigcirc V, s)$ is semifree.

Exercise 8.4. The tensor product (over K) of two semifree K-dg-algebras is semifree. \triangle

Proposition 8.5. Let $(R = K[\{x_i\}], s), i \in \cup I(n)$, be a semifree K-dg-algebra: for every surjective quasiisomorphism of K-dg-algebras $f: A \to B$ and every morphism $g: R \to B$ there exists a lifting $h: R \to A$ such that fh = g. Moreover any two of such liftings are homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism $h_n: R(n) \to A$ such that fh_n equals the restriction of g to $R(n) = \mathbb{K}[\{x_i\}], i \in I(n)$. Let $i \in I(n+1)-I(n)$, we need to define $h_{n+1}(x_i)$ with the properties $fh_{n+1}(x_i) = g(x_i)$, $dh_{n+1}(x_i) = h_n(dx_i)$ and $\overline{h_{n+1}(x_i)} = \overline{x_i}$. Since $dh_n(dx_i) = 0$ and $fh_n(dx_i) = g(dx_i) = dg(x_i)$ we have that $h_n(dx_i)$ is exact in A, say $h_n(dx_i) = da_i$; moreover $d(f(a_i) - g(x_i)) = f(da_i) - g(dx_i) = 0$ and, since $Z(A) \to Z(B)$ is surjective there exists $b_i \in A$ such that $f(a_i + b_i) = g(x_i)$ and then we may define $h_{n+1}(x_i) = a_i + b_i$. The inverse limit of h_n gives the required lifting.

Let $h, l: R \to A$ be liftings of g and denote by $J \subset A$ the kernel of f; by assumption J is acyclic and consider the dg-subalgebra $C \subset A[t, dt]$,

$$C = A \oplus_{j>0} (Jt^{j+1} \oplus Jt^j dt).$$

We construct by induction on n a coherent sequence of morphisms $H_n: R(n) \to C$ giving a homotopy between h and l. Denote by $N \subset \mathbb{K}[t, dt]$ the differential ideal generated by t(t-1); there exists a direct sum decomposition $\mathbb{K}[t, dt] = \mathbb{K} \oplus \mathbb{K} t \oplus \mathbb{K} dt \oplus N$. We may write:

$$H_n(x) = h(x) + (l(x) - h(x))t + a_n(x)dt + b_n(x,t),$$

with $a_n(x) \in J$ and $b_n(x,t) \in J \otimes N$. Since $dH_n(x) = H_n(dx)$ we have for every $x \in R(n)$:

$$(-1)^{\overline{x}}(l(x) - h(x)) + d(a_n(x)) = a_n(dx), \quad d(b_n(x,t)) = b_n(dx,t).$$
(2)

Let $i \in I(n+1) - I(n)$, we seek for $a_{n+1}(x_i) \in J$ and $b_{n+1}(x_i, t) \in J \otimes N$ such that, setting

$$H_{n+1}(x_i) = h(x_i) + (l(x_i) - h(x_i))t + a_{n+1}(x_i)dt + b_{n+1}(x_i, t),$$

we want to have

$$0 = dH_{n+1}(x_i) - H_n(dx_i)$$

= $((-1)^{\overline{x_i}}(l(x_i) - h(x_i)) + da_{n+1}(x_i) - a_n(dx_i))dt + db_{n+1}(x_i, t) - b_n(dx_i, t).$

Since both J and $J \otimes N$ are acyclic, such a choice of $a_{n+1}(x_i)$ and $b_{n+1}(x_i,t)$ is possible if and only if $(-1)^{\overline{dx_i}}(l(x_i) - h(x_i)) + a_n(dx_i)$ and $b_n(dx_i,t)$ are closed. According to Equation 2 we have

$$d((-1)^{\overline{dx_i}}(l(x_i) - h(x_i) + a_n(dx_i)) = (-1)^{\overline{dx_i}}(l(dx_i) - h(dx_i)) + d(a_n(dx_i))$$
$$= a_n(d^2x_i) = 0,$$
$$db_n(dx_i, t) = b_n(d^2x_i, t) = 0.$$

Definition 8.6. A K-semifree resolution (also called resolvent) of a K-dgalgebra A is a surjective quasiisomorphism $R \to A$ with R semifree K-dgalgebra.

By 8.5 if a semifree resolution exists then it is unique up to homotopy.

Theorem 8.7. Every K-dg-algebra admits a K-semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-algebras $K = R(0) \subset R(1) \subset \ldots \subset R(n) \subset \ldots$ and morphisms $f_n \colon R(n) \to A$ such that:

- 1. $R(n+1) = R(n)[\{x_i\}], dx_i \in R(n).$
- 2. f_{n+1} extends f_n .
- 3. $f_1 \colon Z(R(1)) \to Z(A), f_2 \colon R(2) \to A$ are surjective.
- $4. \ f_n^{-1}(B(A)) \cap Z(R(n)) \subset B(R(n+1)) \cap R(n), \, \text{for every} \ n > 0.$

It is then clear that $R = \bigcup R(n)$ and $f = \lim_{i \to \infty} f_n$ give a semifree resolution. Z(A) is a graded algebra and therefore there exists a polynomial graded algebra $R(1) = K[\{x_i\}]$ and a surjective morphism $f_1: R(1) \to Z(A)$; we set the trivial differential d = 0 on R(1). Let v_i be a set of homogeneous generators of the ideal $f_1^{-1}(B(A))$, if $f_1(v_i) = da_i$ it is not restrictive to assume that the a_i 's generate A. We then define $R(2) = R(1)[\{x_i\}], f_2(x_i) = a_i$ and $dx_i = v_i$. Assume now by induction that we have defined $f_n: R(n) \to A$ and let $\{v_j\}$ be a set of generators of $f_n^{-1}(B(A)) \cap Z(R(n))$, considered as an ideal of Z(R(n)); If $f_n(v_j) = da_j$ we define $R(n+1) = R(n)[\{x_j\}], dx_j = v_j$ and $f_{n+1}(x_j) = a_j$.

Remark 8.8. It follows from the above proof that if $K_i = A_i = 0$ for every i > 0 then there exists a semifree resolution $R \to A$ with $R_i = 0$ for every i > 0.

Exercise 8.9. If, in the proof of Theorem 8.7 we choose at every step $\{v_i\} = f_n^{-1}(B(A)) \cap Z(R(n))$ we get a semifree resolution called *canonical*. Show that every morphism of dg-algebras has a natural lift to their canonical resolutions.

Given two semifree resolutions $R \to A$, $S \to A$ we can consider a semifree resolution $P \to R \times_A S$ of the fibred product and we get a commutative diagram of semifree resolutions

Definition 8.10. An A-dg-module F is called semifree if $F = \bigoplus_{i \in I} Am_i$, $\overline{m_i} \in \mathbb{Z}$ and there exists a filtration $\emptyset = I(0) \subset I(1) \subset \ldots \subset I(n) \subset \ldots$ such that

$$i \in I(n+1) \Rightarrow dm_i \in F(n) = \bigoplus_{i \in I(n)} Am_i.$$

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism $F \to M$ with F semifree.

The proof of the following two results is essentially the same of 8.5 and 8.7:

Proposition 8.11. Every semifree module is projective.

Theorem 8.12. Every A-dg-module admits a semifree resolution.

Exercise 8.13. An A-dg-module M is called *flat* if for every quasiisomorphism $f: N \to P$ the morphism $f \otimes Id: N \otimes M \to P \otimes M$ is a quasiisomorphism. Prove that every semifree module is flat.

Example 8.14. If $R = K[\{x_i\}]$ is a K-semifree algebra then $\Omega_{R/K} = \bigoplus R \delta x_i$ is a semifree R-dg-module.

9 The cotangent complex

Proposition 9.1. Assume it is given a commutative diagram of K-dg-algebras

If there exists a homotopy between f and g, constant on A, then the induced morphisms of A-dg-modules

$$f,g\colon\Omega_{R/K}\otimes_R A\to\Omega_{S/K}\otimes_S A$$

are homotopic.

Proof. Let $J \subset S$ be the kernel of $S \to A$ and let $H: R \to S \oplus_{j \ge 0} (Jt^{j+1} \oplus Jt^j dt)$ be a homotopy between f and g; the first terms of H are

$$H(x) = f(x) + t(g(x) - f(x)) + dt q(x) + \dots$$

From dH(x) = H(dx) we get g(x) - f(x) = q(dx) + dq(x) and from H(xy) = H(x)H(y) follows $q(xy) = q(x)f(y) + (-1)^{\overline{x}}f(x)q(y)$. Since $f(x) - g(x), q(x) \in J$ for every x, the map

$$q \colon \Omega_{R/K} \otimes_R A \to \Omega_{S/K} \otimes_S A, \quad q(\delta x \cdot r \otimes a) = \delta(q(x))f(r) \otimes a,$$

is a well defined element of $\operatorname{Hom}_{A}^{-1}(\Omega_{R/K} \otimes_{R} A, \Omega_{S/K} \otimes_{S} A)$. By definition $f, g: \Omega_{R/K} \otimes_{R} A \to \Omega_{S/K} \otimes_{S} A$ are defined by

$$f(\delta x \cdot r \otimes a) = \delta(f(x))f(r) \otimes a, \quad g(\delta x \cdot r \otimes a) = \delta(g(x))g(r) \otimes a = \delta(g(x))f(r) \otimes a$$

A straightforward verification shows that dq = f - g.

Definition 9.2. Let $R \to A$ be a K-semifree resolution, the A-dg-module $\mathbb{L}_{A/K} = \Omega_{R/K} \otimes_R A$ is called the relative cotangent complex of A over K. By 9.1 the homotopy class of $\mathbb{L}_{A/K}$ is independent from the choice of the resolution. For every A-dg-module M the vector spaces

$$T^{i}(A/K, M) = H^{i}(\operatorname{Hom}_{A}^{*}(\mathbb{L}_{A/K}, M)) = \operatorname{Ext}_{A}^{i}(\mathbb{L}_{A/K}, M),$$

$$T_i(A/K, M) = H_i(\mathbb{L}_{A/K} \otimes M)) = \operatorname{Tor}_i^A(\mathbb{L}_{A/K}, M),$$

are called respectively the cotangent and tangent cohomolgy of the morphism $K \rightarrow A$ with coefficient on M.

Lemma 9.3. Let $p: R \to S$ be a surjective quasiisomorphism of semifree dgalgebras: consider on S the structure of R-dg-module induced by p. Then:

- 1. p_* : Der^{*}(R, R) \rightarrow Der^{*}(R, S), $f \rightarrow pf$, is a surjective quasiisomorphism.
- 2. p^* : Der^{*}(S,S) \rightarrow Der^{*}(R,S), $f \rightarrow fp$, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the values at its generators, in particular p_* is surjective and p^* is injective. Since Ω_R is semifree, by 7.5 the morphism $p_* \colon \operatorname{Hom}^*_R(\Omega_R, R) \to \operatorname{Hom}^*_R(\Omega_R, S)$ is a quasiisomorphism. By base change $\operatorname{Der}^*(R, S) = \operatorname{Hom}^*_S(\Omega_R \otimes_R S, S)$ and, since $p \colon \Omega_R \otimes_R S \to \Omega_S$ is a homotopy equivalence, also p^* is a quasiisomorphism. \Box

Every morphism $f: A \to B$ of dg-algebras induces a morphism of B modules $\mathbb{L}_A \otimes_A B \to \mathbb{L}_B$ unique up to homotopy. In fact if $R \to A$ and $P \to B$ are semifree resolution, then there exists a lifting of $f, R \to P$, unique up to homotopy constant on B. The morphism $\Omega_R \to \Omega_P$ induce a morphism $\Omega_R \otimes_R B = \mathbb{L}_A \otimes_A B \to \Omega_P \otimes_P B = \mathbb{L}_B$. If B is a localization of A we have the following

Theorem 9.4. Let A be a dg-algebra, $S \subset Z_0(A)$ a multiplicative part: then the morphism

$$\mathbb{L}_A \otimes_A S^{-1}A \to \mathbb{L}_{S^{-1}A}$$

is a quasiisomorphism of $S^{-1}A$ modules.

Proof. (sketch) Denote by $f: R \to A, g: P \to S^{-1}A$ two semifree resolutions and by

$$H = \{ x \in Z_0(R) \, | \, f(x) \in S \}, \qquad K = \{ x \in Z_0(P) \, | \, g(x) \text{ is invertible } \}.$$

The natural morphisms $H^{-1}R \to S^{-1}A$, $K^{-1}P \to S^{-1}A$ are both surjective quasiisomorphisms. By the lifting property of semifree algebras we have a chain of morphisms

$$R \xrightarrow{\alpha} P \xrightarrow{\beta} H^{-1} R \xrightarrow{\gamma} K^{-1} P$$

with γ the localization of α . Since $\beta \alpha$ and $\gamma \beta$ are homotopic to the natural inclusions $R \to H^{-1}R$, $P \to K^{-1}P$, the composition of morphisms

$$\Omega_R \otimes_R S^{-1} A \xrightarrow{\alpha} \Omega_P \otimes_P S^{-1} A \xrightarrow{\beta} \Omega_{H^{-1}R} \otimes_{H^{-1}R} S^{-1} A = \Omega_R \otimes_R S^{-1} A,$$

$$\Omega_P \otimes_P S^{-1}A \xrightarrow{\beta} \Omega_{H^{-1}R} \otimes_{H^{-1}R} S^{-1}A \xrightarrow{\gamma} \Omega_{K^{-1}P} \otimes_{K^{-1}P} S^{-1}A = \Omega_P \otimes_P S^{-1}A$$

are homotopic to the identity and hence quasiisomorphisms.

Example 9.5. Hypersurface singularities.

Let $X = V(f) \subset \mathbb{A}^n, f \in \mathbb{K}[x_1, \dots, x_n]$, be an affine hypersurface and denote by $A = \mathbb{K}[X] = \mathbb{K}[x_1, \dots, x_n]/(f)$ its structure ring. A DG-resolvent of A is given by $R = \mathbb{K}[x_1, \dots, x_n, y]$, where y has degree -1 and the differential is given by

s(y) = f. The *R*-module Ω_R is semifreely generated by dx_1, \ldots, dx_n, dy , with the differential

$$s(dy) = d(s(y)) = df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i.$$

The cotangent complex \mathbb{L}_A is therefore

$$0 \longrightarrow Ady \xrightarrow{s} \bigoplus_{i=1}^{n} Adx_i \longrightarrow 0.$$

In particular $T^i(A/\mathbb{K}, A) = \operatorname{Ext}^i(\mathbb{L}_A, A) = 0$ for every $i \neq 0, 1$. The cokernel of s is isomorphic to Ω_A and then $T^0(A/\mathbb{K}, A) = \operatorname{Ext}^0(\mathbb{L}_A, A) = \operatorname{Der}_{\mathbb{K}}(A, A)$. If f is reduced then s is injective, \mathbb{L}_A is quasiisomorphic to Ω_A and then $T^1(A/\mathbb{K}, A) = \operatorname{Ext}^1(\Omega_A, A)$.

Exercise 9.6. In the set-up of Example 9, prove that the A-module $T^1(A/\mathbb{K}, A)$ is finitely generated and supported in the singular locus of X.

10 The controlling differential graded Lie algebra

Let $p: R \to S$ be a surjective quasiisomorphism of semifree algebras and let $I = \ker p$. By the lifting property of S there exists a morphism of dg-algebras $e: S \to R$ such that $pe = Id_S$. Define

$$L_p = \{ f \in \operatorname{Der}^*(R, R) \, | \, f(I) \subset I \}.$$

It is immediate to verify that L_p is a dg-Lie subalgebra of $\text{Der}^*(R, R)$. We may define a map

$$\theta_p \colon L_p \to \operatorname{Der}^*(S, S), \qquad \theta_p(f) = p \circ f \circ e.$$

Since pf(I) = 0 for every $f \in L_p$, the definition of θ_p is independent from the choice of e.

Lemma 10.1. θ_p is a morphism of DGLA.

Proof. For every $f, g \in L_p$, $s \in S$, we have:

$$d(\theta_p f)(s) = dpfe(s) - (-1)^f pfe(ds) = pdfe(s) - (-1)^f pfd(e(s)) = \theta_p(df)(s).$$

Since pfep = pf and pgep = pg

$$[\theta_p f, \theta_p g] = pfepge - (-1)^{\overline{f} \, \overline{g}} pgepfe = p(fg - (-1)^{\overline{f} \, \overline{g}} gf)e = \theta_p([f, g]).$$

Theorem 10.2. The following is a cartesian diagram of quasiisomorphisms of DGLA

$$L_{p} \xrightarrow{\iota_{p}} \operatorname{Der}^{*}(R, R)$$

$$\downarrow^{\theta_{p}} \qquad \qquad \downarrow^{p_{*}}$$

$$\operatorname{Der}^{*}(S, S) \xrightarrow{\tau^{*}} \operatorname{Der}^{*}(R, S)$$

where i_p is the inclusion.

We recall that cartesian means that it is commutative and that L_p is isomorphic to the fibred product of p_* and p^* .

Proof. Since pfep = pf for every $f \in L_p$ we have $p^*\theta_p(f) = pfep = pf = p_*f$ and the diagram is commutative. Let

$$K = \{(f,g) \in \operatorname{Der}^*(R,R) \times \operatorname{Der}^*(S,S) \mid pf = gp\}$$

be the fibred product; the map $L_p \to K$, $f \to (f, \theta_p(f))$, is clearly injective. Conversely take $(f, g) \in K$ and $x \in I$, since pf(x) = gp(x) = 0 we have $f(I) \subset I$, $f \in L_p$. Since p is surjective g is uniquely determined by f and then $g = \theta_p(f)$. This proves that the diagram is cartesian. By 9.3 p_* (resp.: p^*) is a surjective (resp.: injective) quasiisomorphism, by a standard argument in homological algebra also θ_p (resp.: i_p) is a surjective (resp.: injective) quasiisomorphism. \Box

Corollary 10.3. Let $P \to A$, $Q \to A$ be semifree resolutions of a dg-algebra. Then $\text{Der}^*(P, P)$ and $\text{Der}^*(Q, Q)$ are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution $R \to A$ and surjective quasiisomorphisms $p: R \to P, q: R \to Q$. Then there exists a sequence of quasiisomorphisms of DGLA

Remark 10.4. If $R \to A$ is a semifree resolution then

 $H^{i}(\operatorname{Der}^{*}(R,R)) = H^{i}(\operatorname{Hom}_{R}(\Omega_{R},R)) = H^{i}(\operatorname{Hom}_{R}(\Omega_{R},A)) =$

$$= H^{i}(\operatorname{Hom}_{A}(\Omega_{R} \otimes_{R} A, A)) = \operatorname{Ext}^{i}(\mathbb{L}_{A}, A).$$

Unfortunately, contrarily to what happens to the cotangent complex, the application $R \to \text{Der}^*(R, R)$ is quite far from being a functor: it only earns some functorial properties when composed with a suitable functor **DGLA** \to **D**.

Let **D** be a category and $\mathcal{F}: \mathbf{DGLA} \to \mathbf{D}$ be a functor which sends quasiisomorphisms into isomorphisms of \mathbf{D}^1 . By 10.3, if $P \to A$, $Q \to A$ are semifree resolutions then $\mathcal{F}(\mathrm{Der}^*(P, P)) \simeq \mathcal{F}(\mathrm{Der}^*(Q, Q))$; now we prove that the recipe of the proof of 10.3 gives a NATURAL isomorphism independent from the choice of P, p, q. For notational simplicity denote $\mathcal{F}(P) = \mathcal{F}(\mathrm{Der}^*(P, P))$ and for every surjective quasiisomorphism $p: R \to P$ of semifree dg-algebras, $\mathcal{F}(p) = \mathcal{F}(\theta_p)\mathcal{F}(\imath_p)^{-1}: \mathcal{F}(R) \to \mathcal{F}(P).$

Lemma 10.5. Let $p: R \to P$, $q: P \to Q$ be surjective quasiisomorphisms of semifree dg-algebras, then $\mathcal{F}(qp) = \mathcal{F}(q)\mathcal{F}(p)$.

Proof. Let $I = \ker p$, $J = \ker q$, $H = \ker qp = p^{-1}(J)$, $e: P \to R$, $s: Q \to P$ sections. Note that $e(J) \subset H$. Let $L = L_q \times_{\operatorname{Der}^*(P,P)} L_p$, if $(f,g) \in L$ and $x \in H$ then $pg(x) = pg(ep(x)) = f(x) \in J$ and then $g(x) \in H$, $g \in L_{qp}$; denoting $\alpha: L \to L_{qp}$, $\alpha(f,g) = g$, we have a commutative diagram of quasiisomorphisms of DGLA

and then

$$\mathcal{F}(qp) = \mathcal{F}(\theta_{qp})\mathcal{F}(i_{qp})^{-1} = \mathcal{F}(\theta_q)\mathcal{F}(\gamma)\mathcal{F}(\alpha)^{-1}\mathcal{F}(\alpha)\mathcal{F}(\beta)^{-1}\mathcal{F}(i_p)^{-1} =$$
$$= \mathcal{F}(\theta_q)\mathcal{F}(i_q)^{-1}\mathcal{F}(\theta_p)\mathcal{F}(i_p)^{-1} = \mathcal{F}(q)\mathcal{F}(p).$$

Let P be a semifree dg-algebra $Q = P[\{x_i, dx_i\}] = P \otimes_{\mathbb{K}} \mathbb{K}[\{x_i, dx_i\}],$ $i: P \to Q$ the natural inclusion and $\pi: Q \to P$ the projection $\pi(x_i) = \pi(dx_i) = 0$: note that i, π are quasiisomorphisms. Since P, Q are semifree we can define

¹The examples that we have in mind are the associated deformation functor and the homotopy class of the corresponding L_{∞} -algebra

a morphism of DGLA

$$i: \operatorname{Der}^*(P, P) \longrightarrow \operatorname{Der}^*(Q, Q),$$
$$(if)(x_i) = (if)(dx_i) = 0,$$
$$(if)(p) = i(f(p)), p \in P.$$

Since $\pi_* i = \pi^* \colon \text{Der}^*(P, P) \to \text{Der}^*(Q, P)$, according to 9.3 *i* is an injective quasiisomorphism.

Lemma 10.6. Let P, Q as above, let $q: Q \to R$ a surjective quasiisomorphism of semifree algebras. If $p = qi: P \to R$ is surjective then $\mathcal{F}(p) = \mathcal{F}(q)\mathcal{F}(i)$.

Proof. Let $L = \text{Der}^*(P, P) \times_{\text{Der}^*(Q,Q)} L_q$ be the fibred product of i and i_q ; if $(f,g) \in L$ then g = if and for every $x \in \ker p$, $i(f(x)) = g(i(x)) \in \ker q \cap i(P) = i(\ker p)$. Denoting $\alpha \colon L \to L_p$, $\alpha(f,g) = f$, we have a commutative diagram of quasiisomorphisms

and then $\mathcal{F}(q)\mathcal{F}(i) = \mathcal{F}(\theta_q)\mathcal{F}(i_q)^{-1}\mathcal{F}(i) = \mathcal{F}(\theta_p)\mathcal{F}(i_p)^{-1}.$

Lemma 10.7. Let $p_0, p_1: P \to R$ be surjective quasiisomorphisms of semifree algebras. If p_0 is homotopic to p_1 then $\mathcal{F}(p_0) = \mathcal{F}(p_1)$.

Proof. We prove first the case P = R[t, dt] and $p_i = e_i$, i = 0, 1, the evaluation maps. Denote by

$$L = \{ f \in \text{Der}^*(P, P) \mid f(R) \subset R, f(t) = f(dt) = 0 \}.$$

Then $L \subset L_{e_{\alpha}}$ for every $\alpha = 0, 1, \ \theta_{e_{\alpha}} \colon L \to \text{Der}^*(P, P)$ is an isomorphism not depending from α and $L \subset L_{e_{\alpha}} \subset \text{Der}^*(R, R)$ are quasiisomorphic DGLA. This proves that $\mathcal{F}(e_0) = \mathcal{F}(e_1)$. In the general case we can find commutative diagrams, $\alpha = 0, 1$,

with q surjective quasiisomorphism. We then have $\mathcal{F}(p_0) = \mathcal{F}(q_0)\mathcal{F}(i)^{-1} = \mathcal{F}(e_0)\mathcal{F}(q)\mathcal{F}(i)^{-1} = \mathcal{F}(q_1)\mathcal{F}(i)^{-1} = \mathcal{F}(p_1).$

We are now able to prove the following

Theorem 10.8. Let

be a commutative diagram of surjective quasiisomorphisms of dg-algebras with P, Q, R semifree. Then $\Psi = \mathcal{F}(p)\mathcal{F}(q)^{-1} \colon \mathcal{F}(Q) \to \mathcal{F}(P)$ does not depend from R, p, q.

Proof. Consider two diagrams as above

There exists a commutative diagram of surjective quasiisomorphisms of semifree algebras

By Lemma 10.5 $\mathcal{F}(q_0)\mathcal{F}(t_0) = \mathcal{F}(q_1)\mathcal{F}(t_1)$. According to 8.5 the morphisms $p_0t_0, p_1t_1: T \to P$ are homotopic and then $\mathcal{F}(p_0)\mathcal{F}(t_0) = \mathcal{F}(p_1)\mathcal{F}(t_1)$. This implies that $\mathcal{F}(p_0)\mathcal{F}(q_0)^{-1} = \mathcal{F}(p_1)\mathcal{F}(q_1)^{-1}$.

References

- M. Artin: Deformations of singularities. Tata Institute of Fundamental Research, Bombay (1976).
- [2] L.L. Avramov, H.-B. Foxby: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71 (1991) 129-155.
- [3] W.M. Goldman, J.J. Millson: The deformation theory of representations of fundamental groups of compact kähler manifolds Publ. Math. I.H.E.S. 67 (1988) 43-96.
- [4] P.H. Griffiths, J.W Morgan: Rational Homotopy Theory and Differential Forms. Birkhäuser Progress in Mathematics 16 (1981).

- [5] V. Hinich: Homological algebra of homotopy algebras. Preprint qalg/9702015.
- [6] M. Kontsevich: Topics in algebra-deformation theory. Notes (1994):
- M. Manetti: Deformation theory via differential graded Lie algebras. In Seminari di Geometria Algebrica 1998-1999 Scuola Normale Superiore (1999).
- [8] M. Manetti Lectures on deformations of complex manifolds. Dispense corso di Dottorato Roma I (2001).
- [9] H. Matsumura: Commutative Ring Theory. Cambridge University Press (1986).
- [10] V.P. Palamodov: Deformations of complex spaces. Uspekhi Mat. Nauk.
 31:3 (1976) 129-194. Transl. Russian Math. Surveys **31:3** (1976) 129-197.
- [11] V.P. Palamodov: Deformations of complex spaces. In: Several complex variables IV. Encyclopaedia of Mathematical Sciences 10, Springer-Verlag (1986) 105-194.
- [12] D. Quillen: On the (co)homology of commutative rings. Proc. Sympos. Pure Math. 17 (1970) 65-87.
- [13] E. Sernesi: An overview of classical deformation theory. In this volume.
- [14] N. Spaltenstein: Resolutions of unbounded complexes. Comp. Math. 65 (1988) 121-154.