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1 Introduction

Let K be a fixed algebraically closed field of characteristic 0, X C A" = Ag
a closed subscheme. Denote by Art the category of local artinian K-algebras
with residue field K.

Definition 1.1. An infinitesimal deformation of X over A € Art is a commu-

tative diagram of schemes

X— o X4

Lk

Spec(K ) —— Spec(A)

such that fa is flat and the induced morphism X — X4 Xgpec(a) Spec(K) is an
isomorphism.

It is not difficult to see (cf. [1]) that X4 is affine and more precisely
it is isomorphic to a closed subscheme of A™ x Spec(A4). Two deformations
XLXAA Spec(A), X—215X 42 Spec(A) are isomorphic if there exists a
commutative diagram of schemes

X —— X4
jl / l/fA
X4 —= Spec(A)

It is easy to prove that necessarily 6 is an isomorphism (cf. [8]). Since flatness
commutes with base change, for every deformations X ——X 4% Spec(A) and
every morphism A — B in the category Art, the diagram

X ——— X4 Xgpec(a) Spec(B)

| l

Spec(K) ————— Spec(B)



is a deformation of X over Spec(B); it is then defined a covariant functor
Defx: Art — Set,

Def x (A) = { isomorphism classes of deformations of X over A }.

The set Def x (K) contains only one point.

In a similar way we can define the functor Hilbx : Art — Set of embedded
deformations of X into A™: Hilbx(A) is the set of closed subschemes X4 C
A™ x Spec(A) such that the restriction to X4 of the projection on the second
factor is a flat map X4 — Spec(4) and X4 N (A" x Spec(K)) = X x Spec(K).

In these notes we give a recipe for the construction of two differential graded
Lie algebras H, £ together two isomorphism of functors

MC MC
DefL = R — Defx, DefH = H
gauge gauge

— Hilbx .

The DGLAs £, H are unique up to quasiisomorphism and their cohomology
can be computed in terms of the cotangent complex of X. For the notion of
differential graded Lie algebra, Maurer-Cartan functors and gauge equivalence
we refer to [7], [8], [3], [6].

Moreover we can choose ‘H as a differential graded Lie subalgebra of £ such
that H* = £ for every i > 0.

2 Flatness and relations

In this section A € Art is a fixed local artinian K-algebra with residue field K.
Lemma 2.1. Let M be an A-module, if M @ 4 K =0 then M = 0.

Proof. If M is finitely generated this is Nakayama’s lemma. In the general case

consider a filtration of ideals 0 = Iy C I C ... C I, = A such that I, /I; =K

for every i. Applying the right exact functor ® 4 M to the exact sequences of

A-modules

L A A
—

-

K =
0— I; I L

—0

we get by induction that M ®4 (A/1;) = 0 for every i. O
The following is a special case of the local flatness criterion [9, Thm. 22.3]
Theorem 2.2. For an A-module M the following conditions are equivalent:
1. M is free.
2. M is flat.
3. Tor{(M,K) = 0.



Proof. The only nontrivial assertion is 3) = 1). Assume Tor{(M,K) = 0
and let F' be a free module such that F ® 4 K = M ®4 K. Since M —
M®4K is surjective there exists a morphism a: F' — M such that its reduction
a: FoaK — M®4K is an isomorphism. Denoting by K the kernel of o and by
C its cokernel we have C®4K = 0 and then C' = 0; K®,K = Tor{' (M,K) =0
and then K = 0. O

Corollary 2.3. Let h: P — L be a morphism of flat A-modules, A € Art. If
h: PaK — L®a K is injective (resp.: surjective) then also h is injective
(resp.: surjective).

Proof. Same proof of Theorem 2.2. O

Corollary 2.4. Let 0 = M — N — P — 0 be an exact sequence of A-modules
with N flat. Then:

1. M®4 K — N®4a K injective = P flat.
2. P flat = M flat and M ® 4 K — N ®4 K injective.

Proof. Take the associated long Torf(—, K) exact sequence and apply 2.2 and
2.3. O

Corollary 2.5. Let
PR M—0 (1)
be a complex of A-modules such that:
1. P,Q,R are flat.
2. QLRLM—@ is exact.
3. P®AKLQ ®AKLR®A KLM ®4 K —0 s exact.
Then M is flat and the sequence (1) is exact.

Proof. Denote by H = kerh = Img and g = ¢n, where ¢: H — R is the
inclusion and 7: @ — H; by assumption we have an exact diagram

P®AK—f>Q®AK g/R®AK—h>M®AK—>0
\ E

H®y4 K

N

which allows to prove, after an easy diagram chase, that ¢ is injective. According
to Corollary 2.4 H and M are flat modules. Denoting L = ker g we have, since
H is flat, that also L is flat and L® 4 K — Q ® 4 K injective. This implies that
P®4K — L®4K is surjective. By Corollary 2.3 P — L is surjective. U




Corollary 2.6. Letn >0 and
0—sI—P-2%p—. . 2np,
a complex of A-modules with Py, ... , P, flat. Assume that
0—I@sK—Py@s K-P 0 K— ... 2P, 94K

is exact; then I,coker(d,) are flat modules and the natural morphism I —
ker(Po ®4 K — Py ®4 K) is surjective.

Proof. Induction on n and Corollary 2.5. O

3 Differential graded algebras, I

Unless otherwise specified by the symbol ® we mean the tensor product ®x
over the field K. We denote by:

e G the category of Z-graded K-vector space; given an object V = &V,
i € Z, of G and a homogeneous element v € V; we denote by v = i its
degree.

e DG the category of Z-graded differential K-vector space (also called com-
plexes of vector spaces).

Given (V,d) in DG we denote as usual by Z(V) = kerd, B(V) =d(V), H(V) =
Z(V)/B(V).

Given an integer n, the shift functor [n]: DG — DG is defined by setting
Vin]|=K[n]®V,V € DG, f[n| = Idk}, ® f, f € Morpg, where

(K ifitn=0
K [n]: _{ 0 otherwise

More informally, the complex V'[n] is the complex V with degrees shifted by
n, i.e. Vin|; = Viyy, and differential multiplied by (—1)".

Given two graded vector spaces V, W the “graded Hom” is the graded vector
space

Homg (V, W) = &, Homg (V, W) € G,

where by definition Homy (V, W) is the set of K-linear map f: V' — W such
that f(V;) C Wi, fore every i € Z. Note that Hom$ (V, W) = Homg (V, W) is
the space of morphisms in the category G and there exist natural isomorphisms

Homg (V, W) = Homg (V[—n], W) = Homg (V, W|n]).



A morphism in DG is called a quasiisomorphism if it induces an isomorphism
in homology. A commutative diagram in DG

A——B

P

C——D

is called cartesian if the morphism A — C X p B is an isomorphism; it is an easy
exercise in homological algebra to prove that if f is a surjective (resp.: injective)
quasiisomorphism, then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, Z-commutative) algebra is a graded vec-

tor space A = ®A; € G endowed with a product A; x A; — A4 satisfying the
properties:

1. a(bc) = (ab)c.
2. a(b+c¢) =ab+ac, (a+ b)c = ac+ be.
3. (Koszul sign convention) ab = (—1)%%ba for a,b homogeneous.

The algebra A is unitary if there exists 1 € Ay such that la = al = a for every
a€ A

Let A be a graded algebra, then Ag is a commutative K -algebra in the usual
sense; conversely every commutative K -algebra can be considered as a graded
algebra concentrated in degree 0. If I C A is a homogeneous left (resp.: right)
ideal then I is also a right (resp.: left) ideal and the quotient A/ has a natural
structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set {x;}, i € I, of homogeneous
indeterminates of integral degree T; € Z we can consider the graded algebra
K[{z;}]. As a K-vector space K[{z;}] is generated by monomials in the inde-
terminates x;. Equivalently K[{z;}] can be defined as the symmetric algebra
D,>0O"V, where V = ®;c/Kz; € G. In some cases, in order to avoid
confusion about terminology, for a monomial xf‘ll . xf‘n" it is defined:

e The internal degree Y, T, ap,.

e The external degree ), .

In a similar way it is defined A[{x;}] for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded
algebra A and a K -linear map s: A — A, called differential, with the properties:

1. s(A,) C Apyq, 8% =0.
2. (graded Leibnitz rule) s(ab) = s(a)b+ (—1)%as(b).



A morphism of dg-algebras is a morphism of graded algebras commuting with
differentials; the category of dg-algebras is denoted by DGA.

In the sequel, for every dg-algebra A we denote by Ay the underlying graded
algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:
1. 1€ Z(A).
2. 1€ B(A) if and only if H(A) = 0.
3. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of
Z(A).
4. If Aislocal with maximal ideal M then s(M) C M if and only if H(A) # 0.
A

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such
that s(I) C I; there exists an obvious bijection between differential ideals and
kernels of morphisms of dg-algebras.

On a polynomial algebra K [{z;}] a differential s is uniquely determined by
the values s(z;).

Example 3.5. Let t,dt be inderminates of degrees ¢ = 0, dt = 1; on the
polynomial algebra K[t,dt] = K|[t] @& K|[t]dt there exists an obvious differ-
ential d such that d(t) = dt, d(dt) = 0. Since K has characteristic 0, we
have H(Kt,dt]) = K. More generally if (4,s) is a dg-algebra then A[t, dt]
is a dg-algebra with differential s(a ® p(t)) = s(a) ® p(t) + (—=1)% @ p'(t)dt,
s(a ® q(t)dt) = s(a) ® q(t)dt.

Definition 3.6. A morphism of dg-algebras B — A is a quasiisomorphism if
the induced morphism H(B) — H(A) is an isomorphism.

Given a morphism of dg-algebras B — A the space Der’y(A, A) of B-
derivations of degree n is by definition

Derj(A, A) = {¢ € Homy (4, A)| ¢(ab) =¢(a)b + (—1)""ad(b), ¢(B)=0}.
We also consider the graded vector space

Derp(4,4) = @ Derh (4, A) € G.
nez

There exists a structure of differential graded Lie algebra on Derp (4, A) with
differential

d: Dery(A, A) — Der’yT (A, A), dp =dap — (—1)"pd
and bracket
f.91 = fg = (1) 7gf.
Exercise 3.7. Verify that d[f, g] = [df, g] + (=1)7[f, dg]. A



4 The DG-resolvent

Let X C A™ be a closed subscheme, Ry = K|x1,...,,] the ring of regular
functions on A™, Iy C Ry the ideal of X and Ox = Ry/I the function ring of
X.

Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism R — Ox
such that R = Ro[y1,¥2,-..] is a countably generated graded polynomial Ry-
algebra, every indeterminate y; has negative degree and, if R = @®;<oR;, then
R; is a finitely generated free Ry module.

Choosing a set of generators fi,... , fs, of the ideal Iy we first consider the
graded-commutative polynomial dg-algebra

R(1)=K[z1,. o yZn, Y1, s Ysy) = Ro[Y1,- -+ »Ysy]s T;, =0, y;=-1

with differential d defined by dx; = 0, dy; = f;. Note that (R(1),d), considered
as a complex of Ry modules, is the Koszul complex of the sequence fi,... , fs,.
By construction the complex of Rp-modules

.o —>R(1),2i>R(1),1 LROLOX—)O

is exact in Ry and Ox. If (R(—1),d) — Ox is a quasiisomorphism of dg-algebras
(e.g. if X is a complete intersection) the construction is done. Otherwise let
fs1+1s--- 5 [s, € kerdN R(1)_1 be a set of generators of the Ry module (kerd N
R(1)-1)/dR(1)_2 and define

R(2)2R<1)[y51+17“' vysz]v y_j:_Zv dyj:fja j:51+]—7~~ y 2.

Repeating in a recursive way the above argument (step by step killing cycles)
we get a chain of polynomial dg-algebras

Ry=R0O)CR(l)C...CR(i)C...
such that (R(7),d) — Ox is a quasiisomorphism in degree > —i. Setting

R=UR@G) =K[z1,... ,Zn, Y1, ,Ym,---| = PRy,
i<0

the projection m: R — Ox is a quasiisomorphism of dg-algebras; in particular

d d d d d x
...—R_;—...—R_9s—R 11— Ry—0Ox—0

is a free resolution of the Ry module Ox.
We denote by:

1. Z; =kerdN R;.
2. L= Derff( (Ra R)
3. H =Dery (R,R) ={g € L|g(Ro) = 0}.



It is clear that, since gR; C R;1; for every g € L7, L = H' for every i > 0
and then the DGLAs £, H have the same Maurer-Cartan functor MCy = MC.
Moreover R is a free graded algebra and then £7 is in bijection with the maps
of “degree j” {z;,yn} — R.

Consider a fixed n € MCy/(A). Recalling the definition of MCy we have
that = >_7; ® a; € Derp, (R, R) ® m4 and the A-derivation

d+n:R®A— RR® A, (d—l—n)(m@a):dx®a—|—2m(x)®aia

is a differential. Denoting by O4 the cokernel of d +7n: R_1 ® A — Ry ® A we
have by Corollary 2.5 that (R® A,d +n) — O4 is a quasiisomorphism, Q4 is
flat and O4 ® K = Ox. Therefore we have natural transformations of functors

MC'H = MCﬁ — Hlle — DefX .
Lemma 4.1. The above morphisms of functors are surjective.

Proof. Let O4 be a flat A-algebra such that O4 ® 4 K = Ox; since Ry is a free
K -algebra, the projection Ry——@x can be extended to a morphism of flat A-
algebras Ry ® AZ%50,4. According to Corollary 2.3 74 is surjective; this proves
that Hilbx (A) — Defx (A) is surjective (in effect it is possible to prove directly
that Hilbx — Defx is smooth, cf. [1]). An element of Hilbx (A) gives an exact
sequence of flat A-modules

Ry ® AW—A>OA—>0.

Denoting by Ip,.4 C Ry ® A the kernel of m4 we have that Iy 4 is A-flat and the
projection Iy 4 — Iy is surjective. We can therefore extend the restriction to
R(1) of the differential d to a differential d4 on R(1)® A by setting da(y;) € Io,a
alifting of d(y;), 7 = 1,... ,s1. Again by local flatness criterion the kernel Z_; 4
of R1®A=R(1)1 ® A&Ro ® A is flat and surjects onto Z_;. The same
argument as above, with Iy 4 replaced by Z_; 4 shows that d can be extended
to a differential d4 on R(2) and then by induction to a differential d4 on R® A

such that (R® A,da) — O4 is a quasiisomorphism. If ay, ... ,a, is a K-basis
of the maximal ideal of A we can write da(z ® 1) =dzr® 1+ > n;(x) ® a; and
thenn:Zm@)aiGMC’H(A). O

If € € Der%O(R,R) ®@ma, A € Art, then e: R® A - R® A is an au-
tomorphism inducing the identity on R and Ry ® A. Therefore the morphism
MCy(A) — Hilbx(A) factors through Defy(A) — Hilbx(A). Similarly the
morphism MCr(A) — Def x (A) factors through Def(A) — Def x(A).

Theorem 4.2. The natural transformations
DefH — Hﬂbx, Def£ — DefX

are isomorphisms of functors.



Proof. We have already proved the surjectivity. The injectivity follows from the
following lifting argument. Given da,d’y;: R® A — R ® A two liftings of the
differential d and fo: Ry ® A — Ry ® A a lifting of the identity on Ry such that
foda(R-1 ® A) C d’4(R-1 ® A) there exists an isomorphism f: (R® A,da) —
(R®A,d,) extending fo and the identity on R. This is essentially trivial because
R® Ais a free Ry ® A graded algebra and (R® A, d)) is exact in degree < 0.
Thinking f as an automorphism of the graded algebra R ® A we have, since
K has characteristic 0, that f = ef for some ¢ € £° and ¢ € HO if and only
if fo = Id. By the definition of gauge action d’y — d = exp(§)(da — d); the
injectivity follows. O

Proposition 4.3. If I C Ry is the ideal of X C A™ then:
1. H((H) = HY(L) =0 for every i < 0.
2. HY(H) =0, H°(L) = Derx (Ox,Ox).

3. H'(H) = Homoe, (I/I?,0x) and H'(L) is the cokernel of the natural
morphism

DerK (Ro, Ox)i HOIHOX (I/IQ,Ox).

Proof. There exists a short exact sequence of complexes
0—H—L— Derg (Ro, R)—0.
Since Ry is free and R is exact in degree < 0 we have:

H'(Derj (Ro, 1)) :{ Derk (Ro, Ox) i=0.
Moreover Derg (Ox,Ox) is the kernel of o and then it is sufficient to compute
Hi(H) for i <1.

Every g € Z'(H), i < 0, is a Ro-derivation g: R — R such that g(R) C
@i<oR; and gd = +dg. As above R is free and exact in degree < 0, a standard
argument shows that g is a coboundary. If g € Z!(H) then g(R_1) C Ry and,
since gd + dg = 0, g induces a morphism

g: =]/— =
dR_o dR_q

R_ R
LR 0 — Oy.

The easy verification that Z!'(H) — Hompg, (I, Ox) induces an isomorphism
H'(H) — Homg, (I, Ox) is left to the reader. d



5 Differential graded algebras, II

Lemma 5.1. Let A be graded algebra: if every a # 0 is invertible then A = Ag
s a field.

Proof. Assume that there exists a € A;, a # 0, ¢ > 0. Then 1 — a # 0 and by
assumption we have

1:(1—a)Zaj, ajEAj.

j=—n

This is equivalent to the system of equations

a_, =0
Qi—j —aa—j; = 5ija j<n

The solution is a; = 0 for j < 0, a; = @’ for j > 0; in particular "' = 0 and
then a is not invertible. O

Lemma 5.2. Let A be a graded algebra and let I C A be a left ideal. Then the
following conditions are equivalent:

1. I is the unique left mazimal ideal.
2. Ay is a local ring with mazimal ideal M and I = M @20 A;.

Proof. 1=2: For every t € K, t # 0, the morphism ¢: A — A, x — xt%, is an
isomorphism of graded algebras, in particular ¢(I) = I and the Vandermonde’s
argument shows that [ is homogeneous and then bilateral. By Lemma 5.1
the quotient A/I is a field and I = M @®;29 A; with M C Ay maximal. Let
a € Ag — M, then a ¢ I and a is invertible in A; since a=! € Ay a is also
invertible in Ag and then Ag is a local ring. 2=1: Let J C A be a proper left
ideal, then J N Ay C M and therefore J C M @;20 A; = 1. O

Let A be a graded algebra, if A — B is a morphism of graded algebras then
B has a natural structure of A-algebra. Given two A-algebras B, C' it is defined
their tensor product B® 4 C' as the quotient of Bk C' = @y, 1 By, Ok Chyy, by the
ideal generated by ba ® ¢ — b® ac for every a € A, be B,c€ C. B4 C has a
natural structure of graded algebra with degrees b ® ¢ = b+¢ and multiplication
(b®c)(B®7) = (—=1)°PbB®cy. Note in particular that A[{z;}] = A®k K [{z;}].

Given a dg-algebra A and h € K it is defined an evaluation morphism
en: Alt,dt] — A, ep(a @ p(t)) = ap(h), en(a @ q(t)dt) = 0.

Lemma 5.3. For every dg-algebra A the evaluation map ey : At,dt] — A in-
duces an isomorphism H(A[t,dt]) — H(A) independent from h € K.

Proof. Let 1: A — Alt,dt] be the inclusion, since ept = Id, it is sufficient to
prove that «: H(A) — H(AJt,dt]) is bijective. For every n > 0 denote B,, =

At™ @ At"Ldt; since d(By) C B, and A[t,dt] = 1(A) @, -, Bx it is sufficient
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to prove that H(B,) = 0 for every n. Let z € Z;(B,,), z = at™ 4+ nbt"~1dt, then
0 = dz = dat™ + ((—1)%a + db)nt"~1dt which implies a = (—1)*~'db and then
z = (=1)"d(bt"). O

Definition 5.4. Given two morphisms of dg-algebras f,g: A — B, a homotopy
between f and g is a morphism H: A — Blt,dt] such that Hy := eg o H = f,
Hy := e 0 H = g. We denote by [A, B] the quotient of Hompga (A, B) by
the equivalence relation ~ generated by homotopy. If B — C is a morphism of
dg-algebras with kernel J, a homotopy H: A — Blt,dt] is called constant on C
if the image of H is contained in B ®;>o (J/ Tt @ Jtidt). Two dg-algebras A, B
are said to be homotopically equivalent if there exist morphisms f: A — B,
g: B — A such that fg ~ Idg, gf ~ 1d4.

According to Lemma 5.3 homotopic morphisms induce the same morphism
in homology.

Lemma 5.5. Given morphisms of dg-algebras,

if f~gandh~1then hf ~lg.

Proof. It is obvious from the definitions that hg ~ lg. For every a € K there
exists a commutative diagram

BoK[td] 22L c oKt di .

Lk

B——C

If F: A — Blt,dt] is a homotopy between f and g, then, considering the com-
position of F' with h ® Id, we get a homotopy between hf and hg. O

Example 5.6. Let A be a dg-algebra, {z;} a set of indeterminates of integral
degree and consider the dg-algebra B = A[{z;, dx;}], where dx; is an indetermi-
nate of degree dxr; = T; + 1 and the differential dg is the unique extension of d4
such that dg(z;) = dx;, dg(dx;) = 0 for every i. The inclusion i: A — B and
the projection 7: B — A, m(x;) = w(dx;) = 0 give a homotopy equivalence be-
tween A and B. In fact mi = Id 4; consider now the homotopy H: B — Blt, dt|
given by

H(z;) = x;t, H(dw;) = dH(z;) = dx;t + (—1)"2;dt, H(a) =a, Va € A.

Taking the evaluation at ¢t = 0,1 we get Hy = ip, H; = Idp.

Exercise 5.7. Let f,g: A — C, h: B — C be morphisms of dg-algebras. If
f~gthen f®h~g®h: AQx B — C. A

11



Remark 5.8. In view of future geometric applications, it seems reasonable to
define the spectrum of a unitary dg-algebra A as the usual spectrum of the com-
mutative ring Zo(A).

If S C Zy(A) is a multiplicative part we can consider the localized dg-algebra
S—1A with differential d(a/s) = da/s. Since the localization is an exact functor
in the category of Zo(A) modules we have H(S™1A) = ST1H(A). If ¢: A —
C is a morphism of dg-algebras and ¢(s) is invertible for every s € S then
there is a unique morphism ¥: ST'A — C estending ¢. Moreover if ¢ is a
quasiisomorphism then also V¥ is a quasiisomorphism (easy exercise).

If P C Zy(A) is a prime ideal, then we denote as usual Ap = S™1A, where
S = Zy(A) — P. It is therefore natural to define Spec(A) as the ringed space
(X, A), where X is the spectrum of A and A is the (quasi coherent) sheaf of
dg-algebras with stalks Ap, P € X.

6 Differential graded modules

Let (A,s) be a fixed dg-algebra, by an A-dg-module we mean a differential
graded vector space (M, s) together two associative distributive multiplication
maps A x M — M, M x A — M with the properties:

1. AiMj - MH—jv MlA] - MH‘j'
2. am = (—1)*"ma, for homogeneous a € A, m € M.
3. s(am) = s(a)m + (—1)%as(m).

If A= Ay we recover the usual notion of complex of A-modules.
If M is an A-dg-module then M[n] = K[n] ®k M has a natural structure of
A-dg-module with multiplication maps

(e®@m)a =e®ma, ale®@m) = (—1)""e @ am, e€Kn],meM,acA.

The tensor product N ® 4 M is defined as the quotient of N ®x M by the
graded submodules generated by all the elements na ® m —n ® am.
Given two A-dg-modules (M, dys), (N, dy) we denote by

Hom'y (M, N) = { f € Homg (M, N)| f(ma) = f(m)a, m € M,a € A}
Hom’ (M, N) = @5 Hom'; (M, N).
nez

The graded vector space Hom% (M, N) has a natural structure of A-dg-
module with left multiplication (af)(m) = af(m) and differential

d: Hom'j(M,N) — Hom;"' (M, N),  df =[d,f]=dnyof—(=1)"fodum.

12



Note that f € Hom%(M ,N) is a morphism of A-dg-modules if and only
if df = 0. A homotopy between two morphism of dg-modules f,g: M — N
is a h € Hom'(M, N) such that f — g = dh = dyh + hdy;. Homotopically
equivalent morphisms induce the same morphism in homology.

Morphisms of A-dg-modules f: L — M, h: N — P induce, by compo-
sition, morphisms f*: Hom% (M, N) — Hom% (L, N), h.: Hom’ (M,N) —
Hom’ (M, P);

Lemma 6.1. In the above notation if f is homotopic to g and h is homotopic
to | then f* is homotopic to g* and l. is homotopic to h..

Proof. Let p € HOle(L, M) be a homotopy between f and g, It is a straight-
forward verification to see that the composition with p is a homotopy between
f* and g*. Similarly we prove that h, is homotopic to [,. O

Lemma 6.2. Let A — B be a morphism of unitary dg-algebras, M an A-dg-
module, N a B-dg-modules. Then there exists a natural isomorphism of B-dg-
modules

Hom’ (M, N) ~ Homp (M ®4 B, N).

Proof. Consider the natural maps:

L
Hom’ (M, N) ——= Hompi(M ®4 B, N) ,
R

Lfm®b) = f(m)b,  Rg(m)=g(m&1).

We left as exercise the easy verification that L, R = L~! are isomorphism of
B-dg-modules. O

Given a morphism of dg-algebras B — A and an A-dg-module M we set:
Derfy(A, M) = {¢ € Homg (4, M)|$(ab) =(a)b + (—1)""ag(b), ¢(B)=0}

Derfy (A, M) = P Derfy (4, M).
nez

As in the case of Hom™, there exists a structure of A-dg-module on Derj; (A, M)
with product (a¢)(b) = a¢(b) and differential

d: Derfy(A, M) — Derst (A, M), dp =d, o] =dyop — (—1)"d4.

Given ¢ € Der’y (A, M) and f € Hom')' (M, N) their composition f¢ belongs
to Dery™ ™ (A, N).

Proposition 6.3. Let B — A be a morphisms of dg-algebras: there exists an
A-dg-module Q4 p together a closed derivation §: A — Qa,p of degree 0 such
that, for every A-dg-module M, the composition with 6 gives an isomorphism

Hom’ (4/p, M) = Derg(A, M).
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Proof. Consider the graded vector space
Fy = @ Adx, x € A homogeneous, or =T7.
F, is an A-dg-module with multiplication a(bdzx) = abdz and differential
d(adz) = dadz + (—1)%ad(dz).

Note in particular that d(dz) = d(dx). Let I C F4 be the homogeneous sub-
module generated by the elements

5(z +y) —ox — oy, o(xy) —x(dy) — (=1)"Yy(6x), 6&(b),be B,

Since d(I) C I the quotient Q4,5 = Fa/I is still an A-dg-module. By con-
struction the map 6: A — Q4/p is a derivation of degree 0 such that dj =
dad — ddg = 0. Let od: Hom (4,5, M) — Derg(A, M) be the composition
with §:

a) L is a morphism of A-dg-modules. In fact (af)od = a(f o) for every a € A
and

d(f 0 8)(x) = du (f(62)) — (~1)7 fo(dw) =

— i (f(52)) — (~1)7 f(d(62)) = df 0.

b) of is surjective. Let ¢ € Derp(A, M); define a morphism f € Hom' (Fa, M)
by the rule f(adz) = (—1)"®a¢(z); an easy computation shows that f(I) =
0 and then f factors to f € Hom'y (24,5, M): by construction fod = ¢.

c) od is injective. In fact the image of § generate Q4 /5.

O

When B=K we denote for notational simplicity Der* (A4, M)=Derg (A, M),
Q4 = Qa/x. Note that if C — B is a morphism of dg-algebras, then the
natural map Q4,c — Q4/p is surjective and Q4,0 = Q4,p whenever C' — B
is surjective.

Definition 6.4. The module 24 ,p is called the module of relative Kahler dif-
ferentials of A over B and & the universal derivation.

By the universal property, the module of differential and the universal deriva-
tion are unique up to isomorphism.

Example 6.5. If Ay = K[{z;}] is a polynomial algebra then Q4 = &;Adz; and
0: A — Qy4 is the unique derivation such that §(z;) = dx;.

Proposition 6.6. Let B — A be a morphism of dg-algebras and S C Zy(A)
a multiplicative part. Then there exists a natural isomorphism S™1Q4 /B =

957114/3.
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Proof. The closed derivation 6: A — Q4,5 extends naturally to 4: S'A —
S‘lﬂA/B, d(a/s) = da/s, and by the universal property there exists a unique
morphism of $~'A modules f: Qg-14/B — S_lQA/B and a unique morphism
of A modules g: Q4/p — Qg-14/p. The morphism g extends to a morphism
of S~1 A modules g: S’lﬂA/B — Qg-14/p- Clearly these morphisms commute
with the universal closed derivations and then gf = Id. On the other hand,
by the universal property, the restriction of fg to 4,5 must be the natural
inclusion 4/ —>S_1(2A/B and then also fg = Id. O

7 Projective modules

Definition 7.1. An A-dg-module P is called projective if for every surjective
quasiisomorphism f: M — N and every g: P — N there exists h: P — M such
that fh = g.

M = M.
fiqis /f qis
P——>N = P——>N

Exercise 7.2. Prove that if A = Ay and P = P, then P is projective in the
sense of 7.1 if and only if P, is projective in the usual sense. A

Lemma 7.3. Let P be a projective A-dg-module, f: P — M a morphism of A-
dg-modules and ¢: M — N a surjective quasiisomorphism. If ¢f is homotopic
to 0 then also f is homotopic to 0.

Proof. We first note that there exist natural isomorphisms Hom'’y (P, M[j]) =
Hom',” (P, M). Let h: P — N[~1] be a homotopy between ¢f and 0 and con-
sider the A-dg-modules M & N|[—1], M & M|[—1] endowed with the differentials

d: Mn 2 Nn—l - M77.+1 2] Nna d(mlan2) = (dmlaf(ml) - dn2)7

d: Mn D Mn,1 — Mn+1 &) Mn, d(ml,mg) = (dml,ml — dmg)

The map Idy ® f: M @ M[—1] — M & N[—1] is a surjective quasiisomorphism
and (¢,h): P — M @ N[—1] is morphism of A-dg-modules. If (¢,l): P —
M @ M[-1] is a lifting of (¢, h) then [ is a homotopy between ¢ and 0. |

Lemma 7.4. Let f: M — N be a morphism of A-dg-modules, then there exist
morphisms of A-dg-modules m: L — M, g: L — N such that g is surjective, ™
1s a homotopy equivalence and g is homotopically equivalent to fr.
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Proof. Consider L = M & N & N[—1] with differential
d: Mn D Nn D Nn—l — M7L+1 D Nn+1 D Nn, d(m,nl,ng) = (dm,dnl, ny — d’ﬂ,g)

We define g(m,ny1,n2) = f(m) 4+ ny, 7(m,n1,n2) =m and s: M — L, s(m) =
(m,0,0). Since gs = f and ws = Idys it is sufficient to prove that sm is
homotopic to Idy,. Take h € Hom;ll(L,L), h(m,ny,n92) = (0,ng,0); then

d(h(m,n1,n2)) + hd(m,ny,n2) = (0,n1,n2) = (Idg, — sw)(m,ny,ns).
O

Theorem 7.5. Let P be a projective A-dg-module: For every quasiisomorphism
f: M — N the induced map Hom’ (P, M) — Hom’ (P, N) is a quasiisomor-
phism.

Proof. By Lemma 7.4 it is not restrictive to assume f surjective. For a fixed
integer i we want to prove that H*(Hom’ (P, M)) = H'(Hom, (P, N)). Replac-
ing M and N with M[i] and NJi] it is not restrictive to assume ¢ = 0. Since
Z%(Hom’ (P, N)) is the set of morphisms of A-dg-modules and P is projective,
the map

Z°(Hom* (P, M)) — Z°(Hom* (P, N))

is surjective. If ¢ € Z°(Hom’ (P, M)) and f¢ € B°(Hom’ (P, N)) then by
Lemma 7.3 also ¢ is a coboundary. O

A projective resolution of an A-dg-module M is a surjective quasiisomor-
phism P — M with P projective. We will show in next section that projective
resolutions always exist. This allows to define for every pair of of A-dg-modules
M, N

Ext‘(M, N) = H'(Hom% (P, N)),
where P — M is a projective resolution.

Exercise 7.6. Prove that the definition of Ext’s is independent from the choice
of the projective resolution. A

8 Semifree resolutions

From now on K is a fixed dg-algebra.
Definition 8.1. A K-dg-algebra (R, s) is called semifree if:
1. The underlying graded algebra R is a polynomial algebra over K K[{x;}],
iel.
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2. There exists a filtration 0 = I(0) C I(1) C ... , UnenI(n) = I, such that
s(xz;) € R(n) for every i € I(n + 1), where by definition R(n) = K[{z;}],
i€ 1I(n).

Note that R(0) = K, R(n) is a dg-subalgebra of R and R = UR(n).

Let R = K[{x;}] = UR(n) be a semifree K-dg-algebra, S a K-dg-algebra;
to give a morphism f: R — S is the same to give a sequence of morphisms
fn: R(n) — S such that f,41 extends f, for every n. Given a morphism
fn: R(n) — S, the set of extensions fp41: R(n+ 1) — S is in bijection with
the set of sequences {fn+1(z:)}, i € I(n+ 1) — I(n), such that s(fnt1(zs)) =
fn(s(xi)), frsr(wi) =T

Example 8.2. K [t, dt] is semifree with filtration K &K dt C K[t, dt]. For every
dg-algebra A and every a € Ag there exists a unique morphism f: K¢, dt] — A
such that f(t) = a.

Exercise 8.3. Let (V,s) be a complex of vector spaces, the differential s ex-
tends to a unique differential s on the symmetric algebra () V such that s((" V)
O" V for every n. Prove that ((OV,s) is semifree. A

Exercise 8.4. The tensor product (over K) of two semifree K-dg-algebras is
semifree. A

Proposition 8.5. Let (R = K[{x;}],s), i € UI(n), be a semifree K-dg-algebra:
for every surjective quasiisomorphism of K-dg-algebras f: A — B and every
morphism g: R — B there exists a lifting h: R — A such that fh = g. Moreover
any two of such liftings are homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism h,: R(n) — A
such that fh, equals the restriction of g to R(n) = K[{x;}], ¢ € I(n). Let i €
I(n+1)—1I(n), we need to define h,, 11 (z;) with the properties fh,11(x;) = g(z;),
dhpi1(x;) = hp(dz;) and hyeq(x;) = T;. Since dhy,(dz;) = 0 and fh,(dz;) =
g(dz;) = dg(x;) we have that h,(dz;) is exact in A, say h,(dz;) = da;; more-
over d(f(a;) — g(x;)) = f(da;) — g(dz;) = 0 and, since Z(A) — Z(B) is surjec-
tive there exists b; € A such that f(a; + b;) = g(z;) and then we may define
hnt1(x;) = a; + b;. The inverse limit of h,, gives the required lifting.

Let h,l: R — A be liftings of ¢ and denote by J C A the kernel of f; by
assumption J is acyclic and consider the dg-subalgebra C' C Al[t, dt],

C=A®5 (JUT @ Jtat).

We construct by induction on n a coherent sequence of morphisms H,,: R(n) —
C giving a homotopy between h and [. Denote by N C K[t,dt] the differential
ideal generated by t(t — 1); there exists a direct sum decomposition K [¢,dt] =
K eKteKdte N. We may write:

H,(z) = h(x) + (I(z) — h(x))t + an(x)dt + by (x, 1),
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with a,(z) € J and b, (z,t) € JQN. Since dH,(z) = H, (dx) we have for every
z € R(n):

(=D)7(U(=) — h(@)) + d(an(2)) = an(dz), d(bn(x,1)) = bn(da,t).  (2)

Let i € I(n+ 1) — I(n), we seek for ant1(z;) € J and by11(x;,¢) € J ® N such
that, setting

Hy 1 (25) = h(zi) + (U(xi) — h(w:))t + anpr(25)dt + by (@i, 1),
we want to have

0=dHnt1(z:) — Hy(dz;)
= (=17 ) — (1)) + dan1(22) = an(di))dt + db (20, ) = b (i, ).

Since both J and J ® N are acyclic, such a choice of ap+1(x;) and by (x4, t) is
possible if and only if (—1)%i(I(z;) — h(2;)) + an(dz;) and b, (dz;,t) are closed.
According to Equation 2 we have

d((=1)" (U(xs) = h(xs) + an(da)) = (=) ((dzs) — h(dw:)) + d(an(dz;))
= an(d2xi) =0,
dby (da;,t) = by (d%xz;,t) = 0.

O

Definition 8.6. A K-semifree resolution (also called resolvent) of a K-dg-
algebra A is a surjective quasiisomorphism R — A with R semifree K-dg-
algebra.

By 8.5 if a semifree resolution exists then it is unique up to homotopy.
Theorem 8.7. Every K-dg-algebra admits a K-semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-
algebras K = R(0) C R(1) C ... C R(n) C ... and morphisms f,: R(n) — A
such that:

1. R(n+1)=R(n)[{x;}], dz; € R(n).

[\)

. fny1 extends f,.

f1: Z(R(1)) = Z(A), fa: R(2) — A are surjective.

- W

7 H(B(A) N Z(R(n)) € B(R(n+ 1)) N R(n), for every n > 0.
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It is then clear that R = UR(n) and f = lim f,, give a semifree resolution.
Z(A) is a graded algebra and therefore there exists a polynomial graded algebra
R(1) = K[{z;}] and a surjective morphism f;: R(1) — Z(A); we set the trivial
differential d = 0 on R(1). Let v; be a set of homogeneous generators of the ideal
frH(B(A)), if f1(v;) = da; it is not restrictive to assume that the a;’s generate
A. We then define R(2) = R(1)[{z:}], fo(z:) = a; and dz; = v;. Assume now by
induction that we have defined f,,: R(n) — A and let {v;} be a set of generators
of f,71(B(A)) N Z(R(n)), considered as an ideal of Z(R(n)); If f,(v;) = da; we
define R(n+ 1) = R(n)[{z;}], dz; = v; and fr4+1(z;) = a,. O

Remark 8.8. It follows from the above proof that if K; = A; = 0 for every
i > 0 then there exists a semifree resolution R — A with R; = 0 for every i > 0.

Exercise 8.9. If, in the proof of Theorem 8.7 we choose at every step {v;} =
fH(B(A)) N Z(R(n)) we get a semifree resolution called canonical. Show

n
that every morphism of dg-algebras has a natural lift to their canonical res-

olutions. A

Given two semifree resolutions R — A, S — A we can consider a semifree
resolution P — R x 4.5 of the fibred product and we get a commutative diagram

of semifree resolutions
P——R

R— A

Definition 8.10. An A-dg-module F' is called semifree if F' = ®;c;Am;, T; €
Z and there exists a filtration § = I(0) C I(1) C ... C I(n) C ... such that

1€ I(?’L+ 1) = dm,; € F(n) = @ie[(n)Ami.

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism
F — M with F semifree.

The proof of the following two results is essentially the same of 8.5 and 8.7:
Proposition 8.11. FEvery semifree module is projective.
Theorem 8.12. FEvery A-dg-module admits a semifree resolution.

Exercise 8.13. An A-dg-module M is called flat if for every quasiisomorphism
f: N — P the morphism f ® Id: N® M — P ® M is a quasiisomorphism.
Prove that every semifree module is flat. A

Example 8.14. If R = K[{r;}] is a K-semifree algebra then Qg /x = GRIx;
is a semifree R-dg-module.
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9 The cotangent complex
Proposition 9.1. Assume it is given a commutative diagram of K-dg-algebras

Rt-5<% g

NV

A

If there exists a homotopy between f and g, constant on A, then the induced
morphisms of A-dg-modules

[,9: Qr/xk ®r A — Qg/x ®s A
are homotopic.

Proof. Let J C S be the kernel of S — A and let H: R — S (Jt/ T @ Jtddt)
be a homotopy between f and g; the first terms of H are

H(z) = f(z) +t(g(x) = f(2)) +dig(x) +....

From dH (z) = H(dx) we get g(z) — f(x) = q(dx) 4+ dg(z) and from H(zy) =

H(z)H(y) follows q(zy) = q(2)f(y)+(=1)"f(x)q(y). Since f(z)—g(x), q(z) € J
for every x, the map

q: Qpr/k ®r A — Qg/k ®s A, q(ézr®a) =6(q(x))f(r) ®a,

is a well defined element of Homzl(QR/K ®r A,Qg/k ®s A). By definition
fra: QR/K ®Rr A — QS/K ®g A are defined by

fOz-r®a)=6(f(x)f(r)@a, g(0z-r®a)=25(g(x))g(r)®a=5g(x))f(r)®a
A straightforward verification shows that dg = f — g¢. O

Definition 9.2. Let R — A be a K -semifree resolution, the A-dg-module L 4/ =
Qr/k ®r A is called the relative cotangent complex of A over K. By 9.1 the
homotopy class of Ly, is independent from the choice of the resolution. For
every A-dg-module M the vector spaces

T'(A/K,M) = H'(Hom® (La,x, M)) = Ext'y(La/r, M),

Ti(A/K,M) = H;(La/x ® M)) = Tor; (La/x, M),

are called respectively the cotangent and tangent cohomolgy of the morphism
K — A with coefficient on M.

Lemma 9.3. Let p: R — S be a surjective quasiisomorphism of semifree dg-
algebras: consider on S the structure of R-dg-module induced by p. Then:

20



1. py: Der* (R, R) — Der* (R, S), f — pf, is a surjective quasiisomorphism.
2. p*: Der*(S,S) — Der*(R,S), f — fp, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the
values at its generators, in particular p, is surjective and p* is injective. Since
Qg is semifree, by 7.5 the morphism p,: Hompx (g, R) — Homy(Qg, S) is a
quasiisomorphism. By base change Der* (R, S) = Homg(Qr ®r S, S) and, since
p: Qr®rS — Qg is a homotopy equivalence, also p* is a quasiisomorphism. O

Every morphism f: A — B of dg-algebras induces a morphism of B modules
Ly ®4 B — Lp unique up to homotopy. In fact if R - A and P — B
are semifree resolution, then there exists a lifting of f, R — P, unique up
to homotopy constant on B. The morphism Q2 — Qp induce a morphism
OrRrB=La®4B — Qp®p B =1Lg. If Bis alocalization of A we have the
following

Theorem 9.4. Let A be a dg-algebra, S C Zy(A) a multiplicative part: then
the morphism

La®aS'A—Lg-1y
is a quasiisomorphism of STt A modules.

Proof. (sketch) Denote by f: R — A, g: P — S™!A two semifree resolutions
and by

H={xe Zy(R)| f(z) € S}, K ={z € Zy(P) | g(x) is invertible }.

The natural morphisms H~ 'R — S~'A, K~'P — S~1A are both surjective
quasiisomorphisms. By the lifting property of semifree algebras we have a chain
of morphisms

R-P L 'R KP

with ~ the localization of a. Since Sa and /3 are homotopic to the natural
inclusions R — H~ 'R, P — K 1P, the composition of morphisms

Qr®r STTA-SQp ®p S_lAi}QH*IR @u-1p STTA=Qr®p ST A,

Qp@p S ALy g @y g STIATQ, p @k p STIA= Qpop STIA

are homotopic to the identity and hence quasiisomorphisms. O

Example 9.5. Hypersurface singularities.

Let X =V(f) C A", feK]z1,... ,zy], be an affine hypersurface and denote by
A=K[X]=K][z1,...,2,]/(f) its structure ring. A DG-resolvent of A is given
by R =K][z1,...,2n,y], where y has degree —1 and the differential is given by
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s(y) = f. The R-module Qg is semifreely generated by dz1,... ,dz,, dy, with
the differential

sldy) = d(s() = d&f = Y %fdx

The cotangent complex L4 is therefore

0— Ady—"- @ Adx;—0.
i=1
In particular T*(A/K, A) = Ext(IL4, A) = 0 for every i # 0, 1. The cokernel of s
is isomorphic to Q4 and then T°(A/K , A) = Ext’(La, A) = Derg (A, A). If f is
reduced then s is injective, L4 is quasiisomorphic to Q4 and then T (A/K, A) =
Ext! (Qa,A).

Exercise 9.6. In the set-up of Example 9, prove that the A-module T*(A/K, A)
is finitely generated and supported in the singular locus of X. A

10 The controlling differential graded Lie alge-
bra

Let p: R — S be a surjective quasiisomorphism of semifree algebras and let
I = kerp. By the lifting property of S there exists a morphism of dg-algebras
e: S — R such that pe = Idg. Define

L, = {f € Der*(R, R) | f(I) C I}.

It is immediate to verify that L, is a dg-Lie subalgebra of Der* (R, R). We may
define a map

HP:LP_)Der*(S7S)a ep(f):pofoe'

Since pf(I) = 0 for every f € L,, the definition of 8, is independent from the
choice of e.

Lemma 10.1. 6, is a morphism of DGLA.

Proof. For every f,g € Ly, s € S, we have:

d(60,£)(s) = dpfe(s) — (—1)pfe(ds) = pdfe(s) — (1) pfd(e(s)) = 0,(df)(s).
Since pfep = pf and pgep = pg

05,059 = pfepge — (—1)7 Ipgepfe = p(fg — (~1)7 Tgf)e = 0,([f, g]).
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Theorem 10.2. The following is a cartesian diagram of quasiisomorphisms of
DGLA

L, . Der* (R, R)

lep |

Der*(S,S) —— Der*(R, S)
p

)

where 1, 1s the inclusion.

We recall that cartesian means that it is commutative and that L, is iso-
morphic to the fibred product of p, and p*.

Proof. Since pfep = pf for every f € L, we have p*0,(f) = pfep = pf = p.f
and the diagram is commutative. Let

K ={(f,9) € Der’(R, R) x Dex" (S, S) | pf = gp}

be the fibred product; the map L, — K, f — (f,0,(f)), is clearly injective.
Conversely take (f,g) € K and z € I, since pf(z) = gp(xz) = 0 we have f(I) C I,
f € L,. Since p is surjective g is uniquely determined by f and then g = 0,(f).
This proves that the diagram is cartesian. By 9.3 p, (resp.: p*) is a surjective
(resp.: injective) quasiisomorphism, by a standard argument in homological
algebra also 0, (resp.: 1,,) is a surjective (resp.: injective) quasiisomorphism. O

Corollary 10.3. Let P — A, Q — A be semifree resolutions of a dg-algebra.
Then Der*(P, P) and Der*(Q, Q) are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution R — A and surjective quasiiso-
morphisms p: R — P, q: R — Q. Then there exists a sequence of quasiisomor-
phisms of DGLA

Ly Ly
Der*(P, P) Der*(R, R) Der*(Q, Q).

Remark 10.4. If R — A is a semifree resolution then

H'(Der*(R, R)) = H' (Homg(Qg, R)) = H (Hompg(Qr, A)) =

= H'(Hom(Qr ®r A, A)) = Ext'(L A, A).
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Unfortunately, contrarily to what happens to the cotangent complex, the
application R — Der™ (R, R) is quite far from being a functor: it only earns some
functorial properties when composed with a suitable functor DGLA — D.

Let D be a category and F: DGLA — D be a functor which sends quasi-
isomorphisms into isomorphisms of D'. By 10.3, if P — A, Q — A are
semifree resolutions then F(Der*(P, P)) =~ F(Der*(Q, Q)); now we prove that
the recipe of the proof of 10.3 gives a NATURAL isomorphism independent from
the choice of P,p,q. For notational simplicity denote F(P) = F(Der* (P, P))
and for every surjective quasiisomorphism p: R — P of semifree dg-algebras,
F(p) = F(6,)F(1,)"": F(R) — F(P).

Lemma 10.5. Let p: R — P, q: P — @ be surjective quasiisomorphisms of
semifree dg-algebras, then F(qp) = F(q)F(p).

Proof. Let I = kerp, J = kerq, H = kerqp = p~1(J),e: P — R, 5: Q — P
sections. Note that e(J) C H. Let L = Lq Xper+(p,py Lyp, if (f,9) € Land x € H
then pg(x) = pg(ep(z)) = f(x) € J and then g(z) € H, g € L,p; denoting
a: L — Ly, a(f,g9) = g, we have a commutative diagram of quasiisomorphisms
of DGLA

L

and then

Fqp) = F(0qp) F (1qp) ™" = F(0g)F(7)F () F(a) F(B) " Fl1p) ™ =

= }—(Gq)f(lq)ilf(ap)f(zp)il = F(q)F(p)-

Let P be a semifree dg-algebra Q = P[{x;,dz;}] = P ®@g K[{z;,dz;}],
i: P — @ the natural inclusion and 7: @ — P the projection 7(x;) = 7(dx;) =
0: note that i, 7 are quasiisomorphisms. Since P, are semifree we can define

IThe examples that we have in mind are the associated deformation functor and the ho-
motopy class of the corresponding Lc-algebra



a morphism of DGLA

i: Der*(P,P) — Der*(Q, Q),
(if) (i) = (if)(dzs) =0,
(if)(p) = i(f(p), p € P.

Since m.i = 7*: Der*(P,P) — Der"(Q, P), according to 9.3 i is an injective
quasiisomorphism.

Lemma 10.6. Let P,Q as above, let g: Q — R a surjective quasiisomorphism
of semifree algebras. If p = qi: P — R is surjective then F(p) = F(q)F(i).

Proof. Let L = Der™(P, P) Xper+(Q,0) Lq be the fibred product of i and ¢; if
(f,9) € L then g = if and for every = € kerp, i(f(x)) = g(i(x)) € kergni(P) =
i(kerp). Denoting a: L — Ly, a(f, g) = f, we have a commutative diagram of
quasiisomorphisms

Der*(Q, Q)

/D“\/\
\

Der”(

and then F(q)F (i) = F(0,)F (1q) " F (i) = F(0,)F (1,) L. U

Lemma 10.7. Let pg,p1: P — R be surjective quasiisomorphisms of semifree
algebras. If po is homotopic to p1 then F(po) = F(p1).

Proof. We prove first the case P = RJt,dt] and p; = e;, i = 0,1, the evaluation
maps. Denote by

L={f € Da*(P,P)| f(R) C R, f(t) = f(dt) = 0}.

Then L C L., for every o = 0,1, 0., : L — Der*(P, P) is an isomorphism
not depending from « and L C L., C Der*(R, R) are quasiisomorphic DGLA.
This proves that F(eg) = F(er). In the general case we can find commutative
diagrams, o =0, 1,

P[{x;,dz;}] -~ R[t, dt]
1 \l
P————=R

with ¢ surjective quasiisomorphism. We then have F (po)

= Flgo)F (i)~
Fleo)F(q)F(i)~! = Flen) F(@)F (i)~ = Flq)F (@)~ = F(p).

O
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We are now able to prove the following

Theorem 10.8. Let

p
—_—

R P
Q A
be a commutative diagram of surjective quasiisomorphisms of dg-algebras with

P,Q, R semifree. Then ¥ = F(p)F(q)~t: F(Q) — F(P) does not depend from
R;p,q.

 ——

Proof. Consider two diagrams as above

Ro Po Rl p1 P
%l l ml l
Q——=A, Q—A

There exists a commutative diagram of surjective quasiisomorphisms of semifree
algebras

T#Rl

Ry o Q.

By Lemma 10.5 F(qo)F (to) = F(q1)F(t1). According to 8.5 the morphisms
poto,p1t1: T — P are homotopic and then F(pg)F(to) = F(p1)F(t1). This
implies that F(po)F(go) " = F(p1)F(q1) ™" O
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