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1 Introduction

Let K be a fixed algebraically closed field of characteristic 0, X ⊂ A
n = A

n
K

a closed subscheme. Denote by Art the category of local artinian K -algebras
with residue field K .

Definition 1.1. An infinitesimal deformation of X over A ∈ Art is a commu-
tative diagram of schemes

X
i ��

��

XA

fA

��
Spec(K ) �� Spec(A)

such that fA is flat and the induced morphism X → XA ×Spec(A) Spec(K ) is an
isomorphism.

It is not difficult to see (cf. [1]) that XA is affine and more precisely
it is isomorphic to a closed subscheme of A

n × Spec(A). Two deformations
X

i−→XA
fA−→Spec(A), X

j−→X̃A
gA−→Spec(A) are isomorphic if there exists a

commutative diagram of schemes

X
i ��

j

��

XA

fA

��θ�����������

X̃A gA

�� Spec(A)

It is easy to prove that necessarily θ is an isomorphism (cf. [8]). Since flatness
commutes with base change, for every deformations X i−→XA

fA−→Spec(A) and
every morphism A→ B in the category Art, the diagram

X ��

��

XA ×Spec(A) Spec(B)

��
Spec(K ) �� Spec(B)
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is a deformation of X over Spec(B); it is then defined a covariant functor
DefX : Art → Set,

DefX(A) = { isomorphism classes of deformations of X over A }.

The set DefX(K ) contains only one point.
In a similar way we can define the functor HilbX : Art → Set of embedded

deformations of X into A
n: HilbX(A) is the set of closed subschemes XA ⊂

A
n × Spec(A) such that the restriction to XA of the projection on the second

factor is a flat map XA → Spec(A) and XA ∩ (An × Spec(K )) = X × Spec(K ).
In these notes we give a recipe for the construction of two differential graded

Lie algebras H, L together two isomorphism of functors

DefL =
MCL
gauge

→ DefX , DefH =
MCH
gauge

→ HilbX .

The DGLAs L, H are unique up to quasiisomorphism and their cohomology
can be computed in terms of the cotangent complex of X. For the notion of
differential graded Lie algebra, Maurer-Cartan functors and gauge equivalence
we refer to [7], [8], [3], [6].

Moreover we can choose H as a differential graded Lie subalgebra of L such
that Hi = Li for every i > 0.

2 Flatness and relations

In this section A ∈ Art is a fixed local artinian K -algebra with residue field K .

Lemma 2.1. Let M be an A-module, if M ⊗A K = 0 then M = 0.

Proof. If M is finitely generated this is Nakayama’s lemma. In the general case
consider a filtration of ideals 0 = I0 ⊂ I1 ⊂ . . . ⊂ In = A such that Ii+1/Ii = K

for every i. Applying the right exact functor ⊗AM to the exact sequences of
A-modules

0−→K =
Ii+1

Ii
−→A
Ii
−→ A

Ii+1
−→0

we get by induction that M ⊗A (A/Ii) = 0 for every i.

The following is a special case of the local flatness criterion [9, Thm. 22.3]

Theorem 2.2. For an A-module M the following conditions are equivalent:

1. M is free.

2. M is flat.

3. TorA1 (M,K ) = 0.
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Proof. The only nontrivial assertion is 3) ⇒ 1). Assume TorA1 (M,K ) = 0
and let F be a free module such that F ⊗A K = M ⊗A K . Since M →
M⊗AK is surjective there exists a morphism α : F →M such that its reduction
α : F⊗AK →M⊗AK is an isomorphism. Denoting byK the kernel of α and by
C its cokernel we have C⊗AK = 0 and then C = 0; K⊗AK = TorA1 (M,K ) = 0
and then K = 0.

Corollary 2.3. Let h : P → L be a morphism of flat A-modules, A ∈ Art. If
h : P ⊗A K → L ⊗A K is injective (resp.: surjective) then also h is injective
(resp.: surjective).

Proof. Same proof of Theorem 2.2.

Corollary 2.4. Let 0 →M → N → P → 0 be an exact sequence of A-modules
with N flat. Then:

1. M ⊗A K → N ⊗A K injective ⇒ P flat.

2. P flat ⇒M flat and M ⊗A K → N ⊗A K injective.

Proof. Take the associated long TorA∗ (−,K ) exact sequence and apply 2.2 and
2.3.

Corollary 2.5. Let

P
f−→Q g−→R h−→M−→0 (1)

be a complex of A-modules such that:

1. P,Q,R are flat.

2. Q
g−→R h−→M−→0 is exact.

3. P ⊗A K
f−→Q⊗A K

g−→R⊗A K
h−→M ⊗A K−→0 is exact.

Then M is flat and the sequence (1) is exact.

Proof. Denote by H = kerh = Im g and g = φη, where φ : H → R is the
inclusion and η : Q→ H; by assumption we have an exact diagram

P ⊗A K
f �� Q⊗A K

g ��

η

��

R⊗A K
h �� M ⊗A K �� 0

H ⊗A K

φ

��

�� 0

which allows to prove, after an easy diagram chase, that φ is injective. According
to Corollary 2.4 H and M are flat modules. Denoting L = ker g we have, since
H is flat, that also L is flat and L⊗AK → Q⊗A K injective. This implies that
P ⊗A K → L⊗A K is surjective. By Corollary 2.3 P → L is surjective.
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Corollary 2.6. Let n > 0 and

0−→I−→P0
d1−→P1−→ . . . dn−→Pn,

a complex of A-modules with P0, . . . , Pn flat. Assume that

0−→I ⊗A K−→P0 ⊗A K
d1−→P1 ⊗A K−→ . . . dn−→Pn ⊗A K

is exact; then I, coker(dn) are flat modules and the natural morphism I →
ker(P0 ⊗A K → P1 ⊗A K ) is surjective.

Proof. Induction on n and Corollary 2.5.

3 Differential graded algebras, I

Unless otherwise specified by the symbol ⊗ we mean the tensor product ⊗K

over the field K . We denote by:

• G the category of Z-graded K -vector space; given an object V = ⊕Vi,
i ∈ Z, of G and a homogeneous element v ∈ Vi we denote by v = i its
degree.

• DG the category of Z-graded differential K -vector space (also called com-
plexes of vector spaces).

Given (V, d) in DG we denote as usual by Z(V ) = ker d, B(V ) = d(V ), H(V ) =
Z(V )/B(V ).

Given an integer n, the shift functor [n] : DG → DG is defined by setting
V [n] = K [n] ⊗ V , V ∈ DG, f [n] = IdK [n] ⊗ f , f ∈ MorDG, where

K [n]i =
{

K if i+ n = 0
0 otherwise

More informally, the complex V [n] is the complex V with degrees shifted by
n, i.e. V [n]i = Vi+n, and differential multiplied by (−1)n.

Given two graded vector spaces V,W , the “graded Hom” is the graded vector
space

Hom∗
K

(V,W ) = ⊕n Homn
K

(V,W ) ∈ G,

where by definition Homn
K

(V,W ) is the set of K -linear map f : V → W such
that f(Vi) ⊂Wi+n fore every i ∈ Z. Note that Hom0

K
(V,W ) = HomG(V,W ) is

the space of morphisms in the category G and there exist natural isomorphisms

Homn
K

(V,W ) = HomG(V [−n],W ) = HomG(V,W [n]).

4



A morphism in DG is called a quasiisomorphism if it induces an isomorphism
in homology. A commutative diagram in DG

A ��

g

��

B

f

��
C �� D

is called cartesian if the morphism A→ C×DB is an isomorphism; it is an easy
exercise in homological algebra to prove that if f is a surjective (resp.: injective)
quasiisomorphism, then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, Z-commutative) algebra is a graded vec-
tor space A = ⊕Ai ∈ G endowed with a product Ai ×Aj → Ai+j satisfying the
properties:

1. a(bc) = (ab)c.

2. a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.

3. (Koszul sign convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every
a ∈ A.

Let A be a graded algebra, then A0 is a commutative K -algebra in the usual
sense; conversely every commutative K -algebra can be considered as a graded
algebra concentrated in degree 0. If I ⊂ A is a homogeneous left (resp.: right)
ideal then I is also a right (resp.: left) ideal and the quotient A/I has a natural
structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set {xi}, i ∈ I, of homogeneous
indeterminates of integral degree xi ∈ Z we can consider the graded algebra
K [{xi}]. As a K -vector space K [{xi}] is generated by monomials in the inde-
terminates xi. Equivalently K [{xi}] can be defined as the symmetric algebra⊕

n≥0

⊙n
V , where V = ⊕i∈IKxi ∈ G. In some cases, in order to avoid

confusion about terminology, for a monomial xα1
i1
. . . xαn

in
it is defined:

• The internal degree
∑

h xih
αh.

• The external degree
∑

h αh.

In a similar way it is defined A[{xi}] for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded
algebra A and a K -linear map s : A→ A, called differential, with the properties:

1. s(An) ⊂ An+1, s2 = 0.

2. (graded Leibnitz rule) s(ab) = s(a)b+ (−1)aas(b).
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A morphism of dg-algebras is a morphism of graded algebras commuting with
differentials; the category of dg-algebras is denoted by DGA.

In the sequel, for every dg-algebra A we denote by A� the underlying graded
algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:

1. 1 ∈ Z(A).

2. 1 ∈ B(A) if and only if H(A) = 0.

3. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of
Z(A).

4. If A is local with maximal idealM then s(M) ⊂M if and only ifH(A) �= 0.

�
A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such

that s(I) ⊂ I; there exists an obvious bijection between differential ideals and
kernels of morphisms of dg-algebras.

On a polynomial algebra K [{xi}] a differential s is uniquely determined by
the values s(xi).

Example 3.5. Let t, dt be inderminates of degrees t = 0, dt = 1; on the
polynomial algebra K [t, dt] = K [t] ⊕ K [t]dt there exists an obvious differ-
ential d such that d(t) = dt, d(dt) = 0. Since K has characteristic 0, we
have H(K [t, dt]) = K . More generally if (A, s) is a dg-algebra then A[t, dt]
is a dg-algebra with differential s(a ⊗ p(t)) = s(a) ⊗ p(t) + (−1)aa ⊗ p′(t)dt,
s(a⊗ q(t)dt) = s(a) ⊗ q(t)dt.

Definition 3.6. A morphism of dg-algebras B → A is a quasiisomorphism if
the induced morphism H(B) → H(A) is an isomorphism.

Given a morphism of dg-algebras B → A the space DernB(A,A) of B-
derivations of degree n is by definition

DernB(A,A) = {φ ∈ Homn
K

(A,A) |φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}.
We also consider the graded vector space

Der∗B(A,A) =
⊕
n∈Z

DernB(A,A) ∈ G.

There exists a structure of differential graded Lie algebra on Der∗B(A,A) with
differential

d : DernB(A,A) → Dern+1
B (A,A), dφ = dAφ− (−1)nφdA

and bracket

[f, g] = fg − (−1)f ggf.

Exercise 3.7. Verify that d[f, g] = [df, g] + (−1)f [f, dg]. �
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4 The DG-resolvent

Let X ⊂ A
n be a closed subscheme, R0 = K [x1, . . . , xn] the ring of regular

functions on A
n, I0 ⊂ R0 the ideal of X and OX = R0/I the function ring of

X.
Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism R→ OX

such that R = R0[y1, y2, . . . ] is a countably generated graded polynomial R0-
algebra, every indeterminate yi has negative degree and, if R = ⊕i≤0Ri, then
Ri is a finitely generated free R0 module.

Choosing a set of generators f1, . . . , fs1 of the ideal I0 we first consider the
graded-commutative polynomial dg-algebra

R(1) = K [x1, . . . , xn, y1, . . . , ys1 ] = R0[y1, . . . , ys1 ], xi = 0, yi = −1

with differential d defined by dxi = 0, dyj = fj . Note that (R(1), d), considered
as a complex of R0 modules, is the Koszul complex of the sequence f1, . . . , fs1 .
By construction the complex of R0-modules

. . .−→R(1)−2
d−→R(1)−1

d−→R0
π−→OX−→0

is exact in R0 and OX . If (R(−1), d) → OX is a quasiisomorphism of dg-algebras
(e.g. if X is a complete intersection) the construction is done. Otherwise let
fs1+1, . . . , fs2 ∈ ker d∩R(1)−1 be a set of generators of the R0 module (ker d∩
R(1)−1)/dR(1)−2 and define

R(2) = R(1)[ys1+1, . . . , ys2 ], yj = −2, dyj = fj , j = s1 + 1, . . . , s2.

Repeating in a recursive way the above argument (step by step killing cycles)
we get a chain of polynomial dg-algebras

R0 = R(0) ⊂ R(1) ⊂ . . . ⊂ R(i) ⊂ . . .

such that (R(i), d) → OX is a quasiisomorphism in degree > −i. Setting

R = ∪R(i) = K [x1, . . . , xn, y1, . . . , ym, . . . ] =
⊕
i≤0

Ri,

the projection π : R→ OX is a quasiisomorphism of dg-algebras; in particular

. . .
d−→R−i

d−→ . . . d−→R−2
d−→R−1

d−→R0
π−→OX−→0

is a free resolution of the R0 module OX .
We denote by:

1. Zi = ker d ∩Ri.

2. L = Der∗
K

(R,R).

3. H = Der∗R0
(R,R) = {g ∈ L | g(R0) = 0}.
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It is clear that, since gRi ⊂ Ri+j for every g ∈ Lj , Li = Hi for every i > 0
and then the DGLAs L, H have the same Maurer-Cartan functorMCH =MCL.
Moreover R is a free graded algebra and then Lj is in bijection with the maps
of “degree j” {xi, yh} → R.

Consider a fixed η ∈ MCH(A). Recalling the definition of MCH we have
that η =

∑
ηi ⊗ ai ∈ Der1R0

(R,R) ⊗mA and the A-derivation

d+ η : R⊗A→ R⊗A, (d+ η)(x⊗ a) = dx⊗ a+
∑
ηi(x) ⊗ aia

is a differential. Denoting by OA the cokernel of d+ η : R−1 ⊗A→ R0 ⊗A we
have by Corollary 2.5 that (R ⊗ A, d + η) → OA is a quasiisomorphism, OA is
flat and OA ⊗K = OX . Therefore we have natural transformations of functors

MCH =MCL → HilbX → DefX .

Lemma 4.1. The above morphisms of functors are surjective.

Proof. Let OA be a flat A-algebra such that OA ⊗A K = OX ; since R0 is a free
K -algebra, the projection R0

π−→OX can be extended to a morphism of flat A-
algebras R0 ⊗A πA−→OA. According to Corollary 2.3 πA is surjective; this proves
that HilbX(A) → DefX(A) is surjective (in effect it is possible to prove directly
that HilbX → DefX is smooth, cf. [1]). An element of HilbX(A) gives an exact
sequence of flat A-modules

R0 ⊗A πA−→OA−→0.

Denoting by I0,A ⊂ R0 ⊗A the kernel of πA we have that I0,A is A-flat and the
projection I0,A → I0 is surjective. We can therefore extend the restriction to
R(1) of the differential d to a differential dA on R(1)⊗A by setting dA(yj) ∈ I0,A

a lifting of d(yj), j = 1, . . . , s1. Again by local flatness criterion the kernel Z−1,A

of R−1 ⊗ A = R(1)−1 ⊗ A dA−→R0 ⊗ A is flat and surjects onto Z−1. The same
argument as above, with I0,A replaced by Z−1,A shows that d can be extended
to a differential dA on R(2) and then by induction to a differential dA on R⊗A
such that (R ⊗ A, dA) → OA is a quasiisomorphism. If a1, . . . , ar is a K -basis
of the maximal ideal of A we can write dA(x⊗ 1) = dx⊗ 1 +

∑
ηi(x) ⊗ ai and

then η =
∑
ηi ⊗ ai ∈MCH(A).

If ξ ∈ Der0R0
(R,R) ⊗ mA, A ∈ Art, then eξ : R ⊗ A → R ⊗ A is an au-

tomorphism inducing the identity on R and R0 ⊗ A. Therefore the morphism
MCH(A) → HilbX(A) factors through DefH(A) → HilbX(A). Similarly the
morphism MCL(A) → DefX(A) factors through DefL(A) → DefX(A).

Theorem 4.2. The natural transformations

DefH → HilbX , DefL → DefX

are isomorphisms of functors.
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Proof. We have already proved the surjectivity. The injectivity follows from the
following lifting argument. Given dA, d′A : R ⊗ A → R ⊗ A two liftings of the
differential d and f0 : R0 ⊗A→ R0 ⊗A a lifting of the identity on R0 such that
f0dA(R−1 ⊗ A) ⊂ d′A(R−1 ⊗ A) there exists an isomorphism f : (R ⊗ A, dA) →
(R⊗A, d′A) extending f0 and the identity on R. This is essentially trivial because
R ⊗ A is a free R0 ⊗ A graded algebra and (R ⊗ A, d′A) is exact in degree < 0.
Thinking f as an automorphism of the graded algebra R ⊗ A we have, since
K has characteristic 0, that f = eξ for some ξ ∈ L0 and ξ ∈ H0 if and only
if f0 = Id. By the definition of gauge action d′A − d = exp(ξ)(dA − d); the
injectivity follows.

Proposition 4.3. If I ⊂ R0 is the ideal of X ⊂ A
n then:

1. Hi(H) = Hi(L) = 0 for every i < 0.

2. H0(H) = 0, H0(L) = DerK (OX ,OX).

3. H1(H) = HomOX
(I/I2,OX) and H1(L) is the cokernel of the natural

morphism

DerK (R0,OX) α−→HomOX
(I/I2,OX).

Proof. There exists a short exact sequence of complexes

0−→H−→L−→Der∗
K

(R0, R)−→0.

Since R0 is free and R is exact in degree < 0 we have:

Hi(Der∗
K

(R0, R)) =
{

0 i �= 0,
DerK (R0,OX) i = 0.

Moreover DerK (OX ,OX) is the kernel of α and then it is sufficient to compute
Hi(H) for i ≤ 1.

Every g ∈ Zi(H), i ≤ 0, is a R0-derivation g : R → R such that g(R) ⊂
⊕i<0Ri and gd = ±dg. As above R is free and exact in degree < 0, a standard
argument shows that g is a coboundary. If g ∈ Z1(H) then g(R−1) ⊂ R0 and,
since gd+ dg = 0, g induces a morphism

g :
R−1

dR−2
= I−→ R0

dR−1
= OX .

The easy verification that Z1(H) → HomR0(I,OX) induces an isomorphism
H1(H) → HomR0(I,OX) is left to the reader.
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5 Differential graded algebras, II

Lemma 5.1. Let A be graded algebra: if every a �= 0 is invertible then A = A0

is a field.

Proof. Assume that there exists a ∈ Ai, a �= 0, i > 0. Then 1 − a �= 0 and by
assumption we have

1 = (1 − a)
n∑

j=−n

aj , aj ∈ Aj .

This is equivalent to the system of equations
{
a−n = 0
ai−j − aa−j = δij , j < n

The solution is aj = 0 for j < 0, aj = aj for j > 0; in particular an+1 = 0 and
then a is not invertible.

Lemma 5.2. Let A be a graded algebra and let I ⊂ A be a left ideal. Then the
following conditions are equivalent:

1. I is the unique left maximal ideal.

2. A0 is a local ring with maximal ideal M and I =M ⊕i 
=0 Ai.

Proof. 1⇒2: For every t ∈ K , t �= 0, the morphism φ : A → A, x → xtx, is an
isomorphism of graded algebras, in particular φ(I) = I and the Vandermonde’s
argument shows that I is homogeneous and then bilateral. By Lemma 5.1
the quotient A/I is a field and I = M ⊕i 
=0 Ai with M ⊂ A0 maximal. Let
a ∈ A0 − M , then a �∈ I and a is invertible in A; since a−1 ∈ A0 a is also
invertible in A0 and then A0 is a local ring. 2⇒1: Let J ⊂ A be a proper left
ideal, then J ∩A0 ⊂M and therefore J ⊂M ⊕i 
=0 Ai = I.

Let A be a graded algebra, if A→ B is a morphism of graded algebras then
B has a natural structure of A-algebra. Given two A-algebras B,C it is defined
their tensor product B⊗AC as the quotient of B⊗K C = ⊕n,mBn⊗K Cm by the
ideal generated by ba⊗ c− b⊗ ac for every a ∈ A, b ∈ B, c ∈ C. B ⊗A C has a
natural structure of graded algebra with degrees b⊗ c = b+c and multiplication
(b⊗c)(β⊗γ) = (−1)c βbβ⊗cγ. Note in particular that A[{xi}] = A⊗K K [{xi}].

Given a dg-algebra A and h ∈ K it is defined an evaluation morphism
eh : A[t, dt] → A, eh(a⊗ p(t)) = ap(h), eh(a⊗ q(t)dt) = 0.

Lemma 5.3. For every dg-algebra A the evaluation map eh : A[t, dt] → A in-
duces an isomorphism H(A[t, dt]) → H(A) independent from h ∈ K .

Proof. Let ı : A → A[t, dt] be the inclusion, since ehı = IdA it is sufficient to
prove that ı : H(A) → H(A[t, dt]) is bijective. For every n > 0 denote Bn =
Atn ⊕ Atn−1dt; since d(Bn) ⊂ Bn and A[t, dt] = ı(A)

⊕
n>0Bn it is sufficient
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to prove that H(Bn) = 0 for every n. Let z ∈ Zi(Bn), z = atn +nbtn−1dt, then
0 = dz = datn + ((−1)ia + db)ntn−1dt which implies a = (−1)i−1db and then
z = (−1)i−1d(btn).

Definition 5.4. Given two morphisms of dg-algebras f, g : A→ B, a homotopy
between f and g is a morphism H : A → B[t, dt] such that H0 := e0 ◦ H = f ,
H1 := e1 ◦ H = g. We denote by [A,B] the quotient of HomDGA(A,B) by
the equivalence relation ∼ generated by homotopy. If B → C is a morphism of
dg-algebras with kernel J , a homotopy H : A→ B[t, dt] is called constant on C
if the image of H is contained in B⊕j≥0 (Jtj+1 ⊕Jtjdt). Two dg-algebras A,B
are said to be homotopically equivalent if there exist morphisms f : A → B,
g : B → A such that fg ∼ IdB, gf ∼ IdA.

According to Lemma 5.3 homotopic morphisms induce the same morphism
in homology.

Lemma 5.5. Given morphisms of dg-algebras,

A

f
��

g
		 B

h ��

l

		 C ,

if f ∼ g and h ∼ l then hf ∼ lg.

Proof. It is obvious from the definitions that hg ∼ lg. For every a ∈ K there
exists a commutative diagram

B ⊗ K [t, dt]
h⊗Id ��

ea

��

C ⊗ K [t, dt]

ea

��
B

h �� C

.

If F : A → B[t, dt] is a homotopy between f and g, then, considering the com-
position of F with h⊗ Id, we get a homotopy between hf and hg.

Example 5.6. Let A be a dg-algebra, {xi} a set of indeterminates of integral
degree and consider the dg-algebra B = A[{xi, dxi}], where dxi is an indetermi-
nate of degree dxi = xi +1 and the differential dB is the unique extension of dA
such that dB(xi) = dxi, dB(dxi) = 0 for every i. The inclusion i : A → B and
the projection π : B → A, π(xi) = π(dxi) = 0 give a homotopy equivalence be-
tween A and B. In fact πi = IdA; consider now the homotopy H : B → B[t, dt]
given by

H(xi) = xit, H(dxi) = dH(xi) = dxit+ (−1)xixidt, H(a) = a, ∀a ∈ A.

Taking the evaluation at t = 0, 1 we get H0 = ip, H1 = IdB .

Exercise 5.7. Let f, g : A → C, h : B → C be morphisms of dg-algebras. If
f ∼ g then f ⊗ h ∼ g ⊗ h : A⊗K B → C. �
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Remark 5.8. In view of future geometric applications, it seems reasonable to
define the spectrum of a unitary dg-algebra A as the usual spectrum of the com-
mutative ring Z0(A).

If S ⊂ Z0(A) is a multiplicative part we can consider the localized dg-algebra
S−1A with differential d(a/s) = da/s. Since the localization is an exact functor
in the category of Z0(A) modules we have H(S−1A) = S−1H(A). If φ : A →
C is a morphism of dg-algebras and φ(s) is invertible for every s ∈ S then
there is a unique morphism ψ : S−1A → C extending φ. Moreover if φ is a
quasiisomorphism then also ψ is a quasiisomorphism (easy exercise).

If P ⊂ Z0(A) is a prime ideal, then we denote as usual AP = S−1A, where
S = Z0(A) − P. It is therefore natural to define Spec(A) as the ringed space
(X, Ã), where X is the spectrum of A and Ã is the (quasi coherent) sheaf of
dg-algebras with stalks AP , P ∈ X.

6 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential
graded vector space (M, s) together two associative distributive multiplication
maps A×M →M , M ×A→M with the properties:

1. AiMj ⊂Mi+j , MiAj ⊂Mi+j .

2. am = (−1)a mma, for homogeneous a ∈ A, m ∈M .

3. s(am) = s(a)m+ (−1)aas(m).

If A = A0 we recover the usual notion of complex of A-modules.
If M is an A-dg-module then M [n] = K [n]⊗K M has a natural structure of

A-dg-module with multiplication maps

(e⊗m)a = e⊗ma, a(e⊗m) = (−1)nae⊗ am, e ∈ K [n], m ∈M, a ∈ A.

The tensor product N ⊗A M is defined as the quotient of N ⊗K M by the
graded submodules generated by all the elements na⊗m− n⊗ am.

Given two A-dg-modules (M,dM ), (N, dN ) we denote by

Homn
A(M,N) = {f ∈ Homn

K
(M,N) | f(ma) = f(m)a, m ∈M,a ∈ A}

Hom∗A(M,N) =
⊕
n∈Z

Homn
A(M,N).

The graded vector space Hom∗A(M,N) has a natural structure of A-dg-
module with left multiplication (af)(m) = af(m) and differential

d : Homn
A(M,N) → Homn+1

A (M,N), df = [d, f ] = dN ◦ f − (−1)nf ◦ dM .
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Note that f ∈ Hom0
A(M,N) is a morphism of A-dg-modules if and only

if df = 0. A homotopy between two morphism of dg-modules f, g : M → N
is a h ∈ Hom−1

A (M,N) such that f − g = dh = dNh + hdM . Homotopically
equivalent morphisms induce the same morphism in homology.

Morphisms of A-dg-modules f : L → M , h : N → P induce, by compo-
sition, morphisms f∗ : Hom∗A(M,N) → Hom∗A(L,N), h∗ : Hom∗A(M,N) →
Hom∗A(M,P );

Lemma 6.1. In the above notation if f is homotopic to g and h is homotopic
to l then f∗ is homotopic to g∗ and l∗ is homotopic to h∗.

Proof. Let p ∈ Hom−1
A (L,M) be a homotopy between f and g, It is a straight-

forward verification to see that the composition with p is a homotopy between
f∗ and g∗. Similarly we prove that h∗ is homotopic to l∗.

Lemma 6.2. Let A → B be a morphism of unitary dg-algebras, M an A-dg-
module, N a B-dg-modules. Then there exists a natural isomorphism of B-dg-
modules

Hom∗A(M,N) � Hom∗B(M ⊗A B,N).

Proof. Consider the natural maps:

Hom∗A(M,N)
L �� Hom∗B(M ⊗A B,N)
R



 ,

Lf(m⊗ b) = f(m)b, Rg(m) = g(m⊗ 1).

We left as exercise the easy verification that L,R = L−1 are isomorphism of
B-dg-modules.

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

DernB(A,M) = {φ ∈ Homn
K

(A,M)|φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}

Der∗B(A,M) =
⊕
n∈Z

DernB(A,M).

As in the case of Hom∗, there exists a structure of A-dg-module on Der∗B(A,M)
with product (aφ)(b) = aφ(b) and differential

d : DernB(A,M) → Dern+1
B (A,M), dφ = [d, φ] = dMφ− (−1)nφdA.

Given φ ∈ DernB(A,M) and f ∈ Homm
A (M,N) their composition fφ belongs

to Dern+m
B (A,N).

Proposition 6.3. Let B → A be a morphisms of dg-algebras: there exists an
A-dg-module ΩA/B together a closed derivation δ : A → ΩA/B of degree 0 such
that, for every A-dg-module M , the composition with δ gives an isomorphism

Hom∗A(ΩA/B ,M) = Der∗B(A,M).
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Proof. Consider the graded vector space

FA =
⊕
Aδx, x ∈ A homogeneous, δx = x.

FA is an A-dg-module with multiplication a(bδx) = abδx and differential

d(aδx) = daδx+ (−1)aaδ(dx).

Note in particular that d(δx) = δ(dx). Let I ⊂ FA be the homogeneous sub-
module generated by the elements

δ(x+ y) − δx− δy, δ(xy) − x(δy) − (−1)x yy(δx), δ(b), b ∈ B,

Since d(I) ⊂ I the quotient ΩA/B = FA/I is still an A-dg-module. By con-
struction the map δ : A → ΩA/B is a derivation of degree 0 such that dδ =
dΩδ − δdA = 0. Let ◦δ : Hom∗A(ΩA/B ,M) → Der∗B(A,M) be the composition
with δ:

a) L is a morphism of A-dg-modules. In fact (af)◦ δ = a(f ◦ δ) for every a ∈ A
and

d(f ◦ δ)(x) = dM (f(δx)) − (−1)ffδ(dx) =

= dM (f(δx)) − (−1)ff(d(δx)) = df ◦ δ.

b) ◦δ is surjective. Let φ ∈ DernB(A,M); define a morphism f ∈ Homn
A(FA,M)

by the rule f(aδx) = (−1)naaφ(x); an easy computation shows that f(I) =
0 and then f factors to f ∈ Homn

A(ΩA/B ,M): by construction f ◦ δ = φ.

c) ◦δ is injective. In fact the image of δ generate ΩA/B .

When B=K we denote for notational simplicity Der∗(A,M)=Der∗
K

(A,M),
ΩA = ΩA/K . Note that if C → B is a morphism of dg-algebras, then the
natural map ΩA/C → ΩA/B is surjective and ΩA/C = ΩA/B whenever C → B
is surjective.

Definition 6.4. The module ΩA/B is called the module of relative Kähler dif-
ferentials of A over B and δ the universal derivation.

By the universal property, the module of differential and the universal deriva-
tion are unique up to isomorphism.

Example 6.5. If A� = K [{xi}] is a polynomial algebra then ΩA = ⊕iAδxi and
δ : A→ ΩA is the unique derivation such that δ(xi) = δxi.

Proposition 6.6. Let B → A be a morphism of dg-algebras and S ⊂ Z0(A)
a multiplicative part. Then there exists a natural isomorphism S−1ΩA/B =
ΩS−1A/B.
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Proof. The closed derivation δ : A → ΩA/B extends naturally to δ : S−1A →
S−1ΩA/B , δ(a/s) = δa/s, and by the universal property there exists a unique
morphism of S−1A modules f : ΩS−1A/B → S−1ΩA/B and a unique morphism
of A modules g : ΩA/B → ΩS−1A/B . The morphism g extends to a morphism
of S−1A modules g : S−1ΩA/B → ΩS−1A/B . Clearly these morphisms commute
with the universal closed derivations and then gf = Id. On the other hand,
by the universal property, the restriction of fg to ΩA/B must be the natural
inclusion ΩA/B → S−1ΩA/B and then also fg = Id.

7 Projective modules

Definition 7.1. An A-dg-module P is called projective if for every surjective
quasiisomorphism f : M → N and every g : P → N there exists h : P →M such
that fh = g.

M

qisf
����

P g
�� N

⇒

⇒

M

qisf
����

P g
��

h

����������
N

.

Exercise 7.2. Prove that if A = A0 and P = P0 then P is projective in the
sense of 7.1 if and only if P0 is projective in the usual sense. �

Lemma 7.3. Let P be a projective A-dg-module, f : P →M a morphism of A-
dg-modules and φ : M → N a surjective quasiisomorphism. If φf is homotopic
to 0 then also f is homotopic to 0.

Proof. We first note that there exist natural isomorphisms Homi
A(P,M [j]) =

Homi+j
A (P,M). Let h : P → N [−1] be a homotopy between φf and 0 and con-

sider the A-dg-modules M ⊕N [−1], M ⊕M [−1] endowed with the differentials

d : Mn ⊕Nn−1 →Mn+1 ⊕Nn, d(m1, n2) = (dm1, f(m1) − dn2),

d : Mn ⊕Mn−1 →Mn+1 ⊕Mn, d(m1,m2) = (dm1,m1 − dm2).

The map IdM ⊕ f : M ⊕M [−1] →M ⊕N [−1] is a surjective quasiisomorphism
and (φ, h) : P → M ⊕ N [−1] is morphism of A-dg-modules. If (φ, l) : P →
M ⊕M [−1] is a lifting of (φ, h) then l is a homotopy between φ and 0.

Lemma 7.4. Let f : M → N be a morphism of A-dg-modules, then there exist
morphisms of A-dg-modules π : L → M , g : L → N such that g is surjective, π
is a homotopy equivalence and g is homotopically equivalent to fπ.
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Proof. Consider L =M ⊕N ⊕N [−1] with differential

d : Mn ⊕Nn ⊕Nn−1 →Mn+1 ⊕Nn+1 ⊕Nn, d(m,n1, n2) = (dm, dn1, n1 − dn2).

We define g(m,n1, n2) = f(m) + n1, π(m,n1, n2) = m and s : M → L, s(m) =
(m, 0, 0). Since gs = f and πs = IdM it is sufficient to prove that sπ is
homotopic to IdL. Take h ∈ Hom−1

A (L,L), h(m,n1, n2) = (0, n2, 0); then

d(h(m,n1, n2)) + hd(m,n1, n2) = (0, n1, n2) = (IdL − sπ)(m,n1, n2).

Theorem 7.5. Let P be a projective A-dg-module: For every quasiisomorphism
f : M → N the induced map Hom∗A(P,M) → Hom∗A(P,N) is a quasiisomor-
phism.

Proof. By Lemma 7.4 it is not restrictive to assume f surjective. For a fixed
integer i we want to prove that Hi(Hom∗A(P,M)) = Hi(Hom∗A(P,N)). Replac-
ing M and N with M [i] and N [i] it is not restrictive to assume i = 0. Since
Z0(Hom∗A(P,N)) is the set of morphisms of A-dg-modules and P is projective,
the map

Z0(Hom∗A(P,M)) → Z0(Hom∗A(P,N))

is surjective. If φ ∈ Z0(Hom∗A(P,M)) and fφ ∈ B0(Hom∗A(P,N)) then by
Lemma 7.3 also φ is a coboundary.

A projective resolution of an A-dg-module M is a surjective quasiisomor-
phism P →M with P projective. We will show in next section that projective
resolutions always exist. This allows to define for every pair of of A-dg-modules
M,N

Exti(M,N) = Hi(Hom∗A(P,N)),

where P →M is a projective resolution.

Exercise 7.6. Prove that the definition of Ext’s is independent from the choice
of the projective resolution. �

8 Semifree resolutions

From now on K is a fixed dg-algebra.

Definition 8.1. A K-dg-algebra (R, s) is called semifree if:

1. The underlying graded algebra R is a polynomial algebra over K K[{xi}],
i ∈ I.
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2. There exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . , ∪n∈NI(n) = I, such that
s(xi) ∈ R(n) for every i ∈ I(n+ 1), where by definition R(n) = K[{xi}],
i ∈ I(n).

Note that R(0) = K, R(n) is a dg-subalgebra of R and R = ∪R(n).

Let R = K[{xi}] = ∪R(n) be a semifree K-dg-algebra, S a K-dg-algebra;
to give a morphism f : R → S is the same to give a sequence of morphisms
fn : R(n) → S such that fn+1 extends fn for every n. Given a morphism
fn : R(n) → S, the set of extensions fn+1 : R(n + 1) → S is in bijection with
the set of sequences {fn+1(xi)}, i ∈ I(n + 1) − I(n), such that s(fn+1(xi)) =
fn(s(xi)), fn+1(xi) = xi.

Example 8.2. K [t, dt] is semifree with filtration K ⊕K dt ⊂ K [t, dt]. For every
dg-algebra A and every a ∈ A0 there exists a unique morphism f : K [t, dt] → A
such that f(t) = a.

Exercise 8.3. Let (V, s) be a complex of vector spaces, the differential s ex-
tends to a unique differential s on the symmetric algebra

⊙
V such that s(

⊙n
V ) ⊂⊙n

V for every n. Prove that (
⊙
V, s) is semifree. �

Exercise 8.4. The tensor product (over K) of two semifree K-dg-algebras is
semifree. �

Proposition 8.5. Let (R = K[{xi}], s), i ∈ ∪I(n), be a semifree K-dg-algebra:
for every surjective quasiisomorphism of K-dg-algebras f : A → B and every
morphism g : R→ B there exists a lifting h : R→ A such that fh = g. Moreover
any two of such liftings are homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism hn : R(n) → A
such that fhn equals the restriction of g to R(n) = K [{xi}], i ∈ I(n). Let i ∈
I(n+1)−I(n), we need to define hn+1(xi) with the properties fhn+1(xi) = g(xi),
dhn+1(xi) = hn(dxi) and hn+1(xi) = xi. Since dhn(dxi) = 0 and fhn(dxi) =
g(dxi) = dg(xi) we have that hn(dxi) is exact in A, say hn(dxi) = dai; more-
over d(f(ai) − g(xi)) = f(dai) − g(dxi) = 0 and, since Z(A) → Z(B) is surjec-
tive there exists bi ∈ A such that f(ai + bi) = g(xi) and then we may define
hn+1(xi) = ai + bi. The inverse limit of hn gives the required lifting.
Let h, l : R → A be liftings of g and denote by J ⊂ A the kernel of f ; by
assumption J is acyclic and consider the dg-subalgebra C ⊂ A[t, dt],

C = A⊕j≥0 (Jtj+1 ⊕ Jtjdt).

We construct by induction on n a coherent sequence of morphisms Hn : R(n) →
C giving a homotopy between h and l. Denote by N ⊂ K [t, dt] the differential
ideal generated by t(t − 1); there exists a direct sum decomposition K [t, dt] =
K ⊕ K t⊕ K dt⊕N . We may write:

Hn(x) = h(x) + (l(x) − h(x))t+ an(x)dt+ bn(x, t),
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with an(x) ∈ J and bn(x, t) ∈ J⊗N . Since dHn(x) = Hn(dx) we have for every
x ∈ R(n):

(−1)x(l(x) − h(x)) + d(an(x)) = an(dx), d(bn(x, t)) = bn(dx, t). (2)

Let i ∈ I(n+ 1) − I(n), we seek for an+1(xi) ∈ J and bn+1(xi, t) ∈ J ⊗N such
that, setting

Hn+1(xi) = h(xi) + (l(xi) − h(xi))t+ an+1(xi)dt+ bn+1(xi, t),

we want to have

0 = dHn+1(xi) −Hn(dxi)

= ((−1)xi(l(xi) − h(xi)) + dan+1(xi) − an(dxi))dt+ dbn+1(xi, t) − bn(dxi, t).

Since both J and J ⊗N are acyclic, such a choice of an+1(xi) and bn+1(xi, t) is
possible if and only if (−1)dxi(l(xi)−h(xi)) + an(dxi) and bn(dxi, t) are closed.
According to Equation 2 we have

d((−1)dxi(l(xi) − h(xi) + an(dxi)) = (−1)dxi(l(dxi) − h(dxi)) + d(an(dxi))

= an(d2xi) = 0,

dbn(dxi, t) = bn(d2xi, t) = 0.

Definition 8.6. A K-semifree resolution (also called resolvent) of a K-dg-
algebra A is a surjective quasiisomorphism R → A with R semifree K-dg-
algebra.

By 8.5 if a semifree resolution exists then it is unique up to homotopy.

Theorem 8.7. Every K-dg-algebra admits a K-semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-
algebras K = R(0) ⊂ R(1) ⊂ . . . ⊂ R(n) ⊂ . . . and morphisms fn : R(n) → A
such that:

1. R(n+ 1) = R(n)[{xi}], dxi ∈ R(n).

2. fn+1 extends fn.

3. f1 : Z(R(1)) → Z(A), f2 : R(2) → A are surjective.

4. f−1
n (B(A)) ∩ Z(R(n)) ⊂ B(R(n+ 1)) ∩R(n), for every n > 0.
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It is then clear that R = ∪R(n) and f = lim
←
fn give a semifree resolution.

Z(A) is a graded algebra and therefore there exists a polynomial graded algebra
R(1) = K[{xi}] and a surjective morphism f1 : R(1) → Z(A); we set the trivial
differential d = 0 on R(1). Let vi be a set of homogeneous generators of the ideal
f−1
1 (B(A)), if f1(vi) = dai it is not restrictive to assume that the ai’s generate
A. We then define R(2) = R(1)[{xi}], f2(xi) = ai and dxi = vi. Assume now by
induction that we have defined fn : R(n) → A and let {vj} be a set of generators
of f−1

n (B(A)) ∩Z(R(n)), considered as an ideal of Z(R(n)); If fn(vj) = daj we
define R(n+ 1) = R(n)[{xj}], dxj = vj and fn+1(xj) = aj .

Remark 8.8. It follows from the above proof that if Ki = Ai = 0 for every
i > 0 then there exists a semifree resolution R→ A with Ri = 0 for every i > 0.

Exercise 8.9. If, in the proof of Theorem 8.7 we choose at every step {vi} =
f−1
n (B(A)) ∩ Z(R(n)) we get a semifree resolution called canonical. Show

that every morphism of dg-algebras has a natural lift to their canonical res-
olutions. �

Given two semifree resolutions R → A, S → A we can consider a semifree
resolution P → R×AS of the fibred product and we get a commutative diagram
of semifree resolutions

P ��

�� ���
��

��
��

R

��
R �� A.

Definition 8.10. An A-dg-module F is called semifree if F = ⊕i∈IAmi, mi ∈
Z and there exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . ⊂ I(n) ⊂ . . . such that

i ∈ I(n+ 1) ⇒ dmi ∈ F (n) = ⊕i∈I(n)Ami.

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism
F →M with F semifree.

The proof of the following two results is essentially the same of 8.5 and 8.7:

Proposition 8.11. Every semifree module is projective.

Theorem 8.12. Every A-dg-module admits a semifree resolution.

Exercise 8.13. An A-dg-moduleM is called flat if for every quasiisomorphism
f : N → P the morphism f ⊗ Id : N ⊗M → P ⊗M is a quasiisomorphism.
Prove that every semifree module is flat. �

Example 8.14. If R = K[{xi}] is a K-semifree algebra then ΩR/K = ⊕Rδxi

is a semifree R-dg-module.
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9 The cotangent complex

Proposition 9.1. Assume it is given a commutative diagram of K-dg-algebras

R
f ��

p


�

��
��

��
S

��

R
g



p
����

��
��

�

A

If there exists a homotopy between f and g, constant on A, then the induced
morphisms of A-dg-modules

f, g : ΩR/K ⊗R A→ ΩS/K ⊗S A

are homotopic.

Proof. Let J ⊂ S be the kernel of S → A and let H : R→ S⊕j≥0(Jtj+1⊕Jtjdt)
be a homotopy between f and g; the first terms of H are

H(x) = f(x) + t(g(x) − f(x)) + dt q(x) + . . . .

From dH(x) = H(dx) we get g(x) − f(x) = q(dx) + dq(x) and from H(xy) =
H(x)H(y) follows q(xy) = q(x)f(y)+(−1)xf(x)q(y). Since f(x)−g(x), q(x) ∈ J
for every x, the map

q : ΩR/K ⊗R A→ ΩS/K ⊗S A, q(δx·r ⊗ a) = δ(q(x))f(r) ⊗ a,

is a well defined element of Hom−1
A (ΩR/K ⊗R A,ΩS/K ⊗S A). By definition

f, g : ΩR/K ⊗R A→ ΩS/K ⊗S A are defined by

f(δx·r ⊗ a) = δ(f(x))f(r) ⊗ a, g(δx·r ⊗ a) = δ(g(x))g(r) ⊗ a = δ(g(x))f(r) ⊗ a.

A straightforward verification shows that dq = f − g.

Definition 9.2. Let R→ A be a K-semifree resolution, the A-dg-module LA/K =
ΩR/K ⊗R A is called the relative cotangent complex of A over K. By 9.1 the
homotopy class of LA/K is independent from the choice of the resolution. For
every A-dg-module M the vector spaces

T i(A/K,M) = Hi(Hom∗A(LA/K ,M)) = ExtiA(LA/K ,M),

Ti(A/K,M) = Hi(LA/K ⊗M)) = TorAi (LA/K ,M),

are called respectively the cotangent and tangent cohomolgy of the morphism
K → A with coefficient on M .

Lemma 9.3. Let p : R → S be a surjective quasiisomorphism of semifree dg-
algebras: consider on S the structure of R-dg-module induced by p. Then:

20



1. p∗ : Der∗(R,R) → Der∗(R,S), f → pf , is a surjective quasiisomorphism.

2. p∗ : Der∗(S, S) → Der∗(R,S), f → fp, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the
values at its generators, in particular p∗ is surjective and p∗ is injective. Since
ΩR is semifree, by 7.5 the morphism p∗ : Hom∗R(ΩR, R) → Hom∗R(ΩR, S) is a
quasiisomorphism. By base change Der∗(R,S) = Hom∗S(ΩR ⊗R S, S) and, since
p : ΩR⊗RS → ΩS is a homotopy equivalence, also p∗ is a quasiisomorphism.

Every morphism f : A→ B of dg-algebras induces a morphism of B modules
LA ⊗A B → LB unique up to homotopy. In fact if R → A and P → B
are semifree resolution, then there exists a lifting of f , R → P , unique up
to homotopy constant on B. The morphism ΩR → ΩP induce a morphism
ΩR ⊗RB = LA ⊗AB → ΩP ⊗P B = LB . If B is a localization of A we have the
following

Theorem 9.4. Let A be a dg-algebra, S ⊂ Z0(A) a multiplicative part: then
the morphism

LA ⊗A S
−1A→ LS−1A

is a quasiisomorphism of S−1A modules.

Proof. (sketch) Denote by f : R → A, g : P → S−1A two semifree resolutions
and by

H = {x ∈ Z0(R) | f(x) ∈ S}, K = {x ∈ Z0(P ) | g(x) is invertible }.

The natural morphisms H−1R → S−1A, K−1P → S−1A are both surjective
quasiisomorphisms. By the lifting property of semifree algebras we have a chain
of morphisms

R
α−→P β−→H−1R

γ−→K−1P

with γ the localization of α. Since βα and γβ are homotopic to the natural
inclusions R→ H−1R, P → K−1P , the composition of morphisms

ΩR ⊗R S
−1A

α−→ΩP ⊗P S
−1A

β−→ΩH−1R ⊗H−1R S
−1A = ΩR ⊗R S

−1A,

ΩP ⊗P S
−1A

β−→ΩH−1R ⊗H−1R S
−1A

γ−→ΩK−1P ⊗K−1P S
−1A = ΩP ⊗P S

−1A

are homotopic to the identity and hence quasiisomorphisms.

Example 9.5. Hypersurface singularities.
Let X = V (f) ⊂ A

n, f ∈K [x1, . . . , xn], be an affine hypersurface and denote by
A = K [X] = K [x1, . . . , xn]/(f) its structure ring. A DG-resolvent of A is given
by R = K [x1, . . . , xn, y], where y has degree −1 and the differential is given by
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s(y) = f . The R-module ΩR is semifreely generated by dx1, . . . , dxn, dy, with
the differential

s(dy) = d(s(y)) = df =
∑

i

∂f

∂xi
dxi.

The cotangent complex LA is therefore

0−→Ady s−→
n⊕

i=1

Adxi−→0.

In particular T i(A/K , A) = Exti(LA, A) = 0 for every i �= 0, 1. The cokernel of s
is isomorphic to ΩA and then T 0(A/K , A) = Ext0(LA, A) = DerK (A,A). If f is
reduced then s is injective, LA is quasiisomorphic to ΩA and then T 1(A/K , A) =
Ext1(ΩA, A).

Exercise 9.6. In the set-up of Example 9, prove that theA-module T 1(A/K , A)
is finitely generated and supported in the singular locus of X. �

10 The controlling differential graded Lie alge-
bra

Let p : R → S be a surjective quasiisomorphism of semifree algebras and let
I = ker p. By the lifting property of S there exists a morphism of dg-algebras
e : S → R such that pe = IdS . Define

Lp = {f ∈ Der∗(R,R) | f(I) ⊂ I}.

It is immediate to verify that Lp is a dg-Lie subalgebra of Der∗(R,R). We may
define a map

θp : Lp → Der∗(S, S), θp(f) = p ◦ f ◦ e.

Since pf(I) = 0 for every f ∈ Lp, the definition of θp is independent from the
choice of e.

Lemma 10.1. θp is a morphism of DGLA.

Proof. For every f, g ∈ Lp, s ∈ S, we have:

d(θpf)(s) = dpfe(s) − (−1)fpfe(ds) = pdfe(s) − (−1)fpfd(e(s)) = θp(df)(s).

Since pfep = pf and pgep = pg

[θpf, θpg] = pfepge− (−1)f gpgepfe = p(fg − (−1)f ggf)e = θp([f, g]).
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Theorem 10.2. The following is a cartesian diagram of quasiisomorphisms of
DGLA

Lp
� � ıp ��

θp

��

Der∗(R,R)

p∗

��
Der∗(S, S)

p∗
�� Der∗(R,S)

,

where ıp is the inclusion.

We recall that cartesian means that it is commutative and that Lp is iso-
morphic to the fibred product of p∗ and p∗.

Proof. Since pfep = pf for every f ∈ Lp we have p∗θp(f) = pfep = pf = p∗f
and the diagram is commutative. Let

K = {(f, g) ∈ Der∗(R,R) × Der∗(S, S) | pf = gp}

be the fibred product; the map Lp → K, f → (f, θp(f)), is clearly injective.
Conversely take (f, g) ∈ K and x ∈ I, since pf(x) = gp(x) = 0 we have f(I) ⊂ I,
f ∈ Lp. Since p is surjective g is uniquely determined by f and then g = θp(f).
This proves that the diagram is cartesian. By 9.3 p∗ (resp.: p∗) is a surjective
(resp.: injective) quasiisomorphism, by a standard argument in homological
algebra also θp (resp.: ıp) is a surjective (resp.: injective) quasiisomorphism.

Corollary 10.3. Let P → A, Q → A be semifree resolutions of a dg-algebra.
Then Der∗(P, P ) and Der∗(Q,Q) are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution R → A and surjective quasiiso-
morphisms p : R→ P , q : R→ Q. Then there exists a sequence of quasiisomor-
phisms of DGLA

Lp

θp

������������
ıp

������������ Lq

ıq

��										
θq

������������

Der∗(P, P ) Der∗(R,R) Der∗(Q,Q).

Remark 10.4. If R→ A is a semifree resolution then

Hi(Der∗(R,R)) = Hi(HomR(ΩR, R)) = Hi(HomR(ΩR, A)) =

= Hi(HomA(ΩR ⊗R A,A)) = Exti(LA, A).
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Unfortunately, contrarily to what happens to the cotangent complex, the
application R→ Der∗(R,R) is quite far from being a functor: it only earns some
functorial properties when composed with a suitable functor DGLA → D.

Let D be a category and F : DGLA → D be a functor which sends quasi-
isomorphisms into isomorphisms of D1. By 10.3, if P → A, Q → A are
semifree resolutions then F(Der∗(P, P )) � F(Der∗(Q,Q)); now we prove that
the recipe of the proof of 10.3 gives a NATURAL isomorphism independent from
the choice of P, p, q. For notational simplicity denote F(P ) = F(Der∗(P, P ))
and for every surjective quasiisomorphism p : R → P of semifree dg-algebras,
F(p) = F(θp)F(ıp)−1 : F(R) → F(P ).

Lemma 10.5. Let p : R → P , q : P → Q be surjective quasiisomorphisms of
semifree dg-algebras, then F(qp) = F(q)F(p).

Proof. Let I = ker p, J = ker q, H = ker qp = p−1(J), e : P → R, s : Q → P
sections. Note that e(J) ⊂ H. Let L = Lq×Der∗(P,P )Lp, if (f, g) ∈ L and x ∈ H
then pg(x) = pg(ep(x)) = f(x) ∈ J and then g(x) ∈ H, g ∈ Lqp; denoting
α : L→ Lqp, α(f, g) = g, we have a commutative diagram of quasiisomorphisms
of DGLA

Lqp

ıqp

��






































θqp

���
��

��
��

��
��

��
��

��
��

��
��

�

L

α

������������� β ��

γ

��

Lp

θp

��

ıp

�� Der∗(R,R)

Lq ıq

��

θq

��

Der∗(P, P )

Der∗(Q,Q)

and then

F(qp) = F(θqp)F(ıqp)−1 = F(θq)F(γ)F(α)−1F(α)F(β)−1F(ıp)−1 =

= F(θq)F(ıq)−1F(θp)F(ıp)−1 = F(q)F(p).

Let P be a semifree dg-algebra Q = P [{xi, dxi}] = P ⊗K K [{xi, dxi}],
i : P → Q the natural inclusion and π : Q→ P the projection π(xi) = π(dxi) =
0: note that i, π are quasiisomorphisms. Since P,Q are semifree we can define

1The examples that we have in mind are the associated deformation functor and the ho-
motopy class of the corresponding L∞-algebra
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a morphism of DGLA

i : Der∗(P, P ) −→ Der∗(Q,Q),
(if)(xi) = (if)(dxi) = 0,
(if)(p) = i(f(p)), p ∈ P.

Since π∗i = π∗ : Der∗(P, P ) → Der∗(Q,P ), according to 9.3 i is an injective
quasiisomorphism.

Lemma 10.6. Let P,Q as above, let q : Q→ R a surjective quasiisomorphism
of semifree algebras. If p = qi : P → R is surjective then F(p) = F(q)F(i).

Proof. Let L = Der∗(P, P ) ×Der∗(Q,Q) Lq be the fibred product of i and ıq; if
(f, g) ∈ L then g = if and for every x ∈ ker p, i(f(x)) = g(i(x)) ∈ ker q∩ i(P ) =
i(ker p). Denoting α : L→ Lp, α(f, g) = f , we have a commutative diagram of
quasiisomorphisms

Der∗(P, P ) i �� Der∗(Q,Q)

Lp

ıp

������������

θp ������������������������ L
α



��














��������������� �� Lq

ıq

������������

θq������������������������

Der∗(R,R)

and then F(q)F(i) = F(θq)F(ıq)−1F(i) = F(θp)F(ıp)−1.

Lemma 10.7. Let p0, p1 : P → R be surjective quasiisomorphisms of semifree
algebras. If p0 is homotopic to p1 then F(p0) = F(p1).

Proof. We prove first the case P = R[t, dt] and pi = ei, i = 0, 1, the evaluation
maps. Denote by

L = {f ∈ Der∗(P, P ) | f(R) ⊂ R, f(t) = f(dt) = 0}.

Then L ⊂ Leα for every α = 0, 1, θeα : L → Der∗(P, P ) is an isomorphism
not depending from α and L ⊂ Leα

⊂ Der∗(R,R) are quasiisomorphic DGLA.
This proves that F(e0) = F(e1). In the general case we can find commutative
diagrams, α = 0, 1,

P [{xj , dxj}]
q ��

qα

��������������
R[t, dt]

eα

��
P

i

��

pα

�� R

with q surjective quasiisomorphism. We then have F(p0) = F(q0)F(i)−1 =
F(e0)F(q)F(i)−1 = F(e1)F(q)F(i)−1 = F(q1)F(i)−1 = F(p1).
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We are now able to prove the following

Theorem 10.8. Let

R
p ��

q

��

P

��
Q �� A

be a commutative diagram of surjective quasiisomorphisms of dg-algebras with
P,Q,R semifree. Then Ψ = F(p)F(q)−1 : F(Q) → F(P ) does not depend from
R, p, q.

Proof. Consider two diagrams as above

R0
p0 ��

q0

��

P

��
Q �� A,

R1
p1 ��

q1

��

P

��
Q �� A.

There exists a commutative diagram of surjective quasiisomorphisms of semifree
algebras

T
t1 ��

t0

��

R1

q1

��
R0 q0

�� Q.

By Lemma 10.5 F(q0)F(t0) = F(q1)F(t1). According to 8.5 the morphisms
p0t0, p1t1 : T → P are homotopic and then F(p0)F(t0) = F(p1)F(t1). This
implies that F(p0)F(q0)−1 = F(p1)F(q1)−1.
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