
DIFFERENTIAL GRADED LIE ALGEBRAS AND FORMAL

DEFORMATION THEORY

MARCO MANETTI

Preprint version of: M. Manetti, Differential graded Lie algebras and formal deformation theory, in Algebraic

Geometry: Seattle 2005. Proc. Sympos. Pure Math. 80 (2009) 785-810.

Introduction

This paper aims to do two things: (1) to give a tutorial introduction to differential graded
Lie algebras, functors of Artin rings and obstructions; (2) to explain ideas and techniques un-
derlying some recent papers [29, 31, 32, 11, 17] concerning vanishing theorems for obstructions
to deformations of complex Kähler manifolds.
We assume that the reader has a basic knowledge of algebraic geometry, homological algebra and
deformation theory; for this topic, the young person may read the excellent expository article of
Arcata’s proceedings [39].
The common denominator is the following guiding principle, proposed by Quillen, Deligne and
Drinfeld: in characteristic 0 every deformation problem is governed by a differential graded Lie
algebra. After the necessary background we will restate such principle in a less vague form (Prin-
ciple 1.9).
The guiding principle has been confined in the realm of abstract ideas and personal communica-
tions until the appearance of [37, 13, 24, 25]1 where a clever use of it has permitted interesting
applications in concrete deformation problems. In particular the lecture notes [24] give serious
and convincing motivations for the validity of the guiding principle (called there meta-theorem).
In this paper we apply these ideas in order to prove vanishing theorems for obstruction spaces.
Just to explain the subject of our investigation, consider the example of deformations of a com-
pact complex manifold X with holomorphic tangent bundle ΘX . The well known Kuranishi’s

theorem [26, 39, 5, 14] asserts that there exists a deformation X f−→Def(X) of X over a germ of
complex space Def(X) with the property that the Kodaira-Spencer map TDef(X) → H1(X,ΘX)
is bijective and every deformation of X over an analytic germ S is isomorphic to the pull-back
of f by a holomorphic map S → Def(X).
From Kuranishi’s proof follows moreover that:

(1) Def(X) ' q−1(0), where q : H1(X,ΘX) → H2(X,ΘX) is a germ of holomorphic map
such that q(0) = 0.

(2) The differential of q at 0 is trivial.
(3) The quadratic part of the Mac-Laurin series of q is isomorphic to the quadratic map

H1(X,ΘX)→ H2(X,ΘX), x 7→ 1

2
[x, x],

where [ , ] is the natural bracket in the graded Lie algebra H∗(X,ΘX).

Kuranishi’s proof also says that the higher homogeneous components of the Mac-Laurin series of
q depend by the Green’s operator of the elliptic complex associated to the Dolbeault resolution
of ΘX and therefore are extremely difficult to handle (with very few exceptions, e.g. [42]).
A way to overcome, at least partially, this difficulty is by using infinitesimal methods, i.e. a
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deeper study of deformations of X over fat points, and obstruction theory. It is possible to prove
that it is well defined a vector subspace O ⊂ H2(X,ΘX) which is minimal for the property that
the image of q is contained in a germ of smooth subvariety Y ⊂ H2(X,ΘX) with tangent space
T0Y = O. In particular O = 0 if and only if q = 0. The advantage of this notion is that the space
O, called obstruction space, can be completely computed by infinitesimal methods.
In this paper we will show how the differential graded Lie algebras can be conveniently used to
construct non trivial morphisms of vector spaces H2(X,ΘX)→W such that w(O) = 0.

The content of this paper follows closely my talk at the AMS Summer Institute on Algebraic
Geometry, Seattle (WA) 2005. The main differences concern Section 5, where we answer to some
technical questions arised during the talk of B. Fantechi, and Section 6 where we give a new and
simpler proof of the Kodaira’s principle “ambient cohomology annihilates obstructions”.

1. Differential graded Lie algebras and toy examples of deformation problems

Let K be a fixed field of characteristic 0: unless otherwise specified the bifunctors Hom and
⊗ are intended over K. By a graded vector space we intend a Z-graded vector space over K.
A differential graded vector space is a pair (V, d) where V = ⊕V i is a graded vector space and
d is a differential of degree +1. By following the standard notation, for every differential graded
vector space (V, d) we denote by Zi(V ) = ker(d : V i → V i+1), Bi(V ) = Im(d : V i−1 → V i) and
Hi(V ) = Zi(V )/Bi(V ).

Definition 1.1. A differential graded Lie algebra (DGLA for short) is the data of a differential
graded vector space (L, d) together a with bilinear map [−,−] : L × L → L (called bracket) of
degree 0 such that:

(1) (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a].
(2) (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].
(3) (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

The Leibniz rule implies in particular that the bracket of a DGLA L induces a structure of
graded Lie algebra on its cohomology H∗(L) = ⊕iHi(L).

Example 1.2. Consider a differential graded vector space (V, ∂) and denote

Hom∗(V, V ) = ⊕
i

Homi(V, V ), where

Homi(V, V ) = {f : V → V linear | f(V n) ⊂ f(V n+i) for every n}.
The bracket

[f, g] = fg − (−1)deg(f) deg(g)gf

and the differential
df = [∂, f ] = ∂f − (−1)deg(f)f∂

make Hom∗(V, V ) a differential graded Lie algebra.
Moreover there exists a natural isomorphism of graded Lie algebras

H∗(Hom∗(V, V ))
'−→Hom∗(H∗(V ), H∗(V )).

Example 1.3. Given a differential graded Lie algebra L and a commutative K-algebra m there
exists a natural structure of DGLA in the tensor product L⊗m given by

d(x⊗ r) = dx⊗ r, [x⊗ r, y ⊗ s] = [x, y]⊗ rs.
If m is nilpotent (for example if m is the maximal ideal of a local artinian K-algebra), then the
DGLA L⊗m is nilpotent; under this assumption, for every a ∈ L0 ⊗m the operator

[a,−] : L⊗m→ L⊗m, [a,−](b) = [a, b],
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is a nilpotent derivation and

e[a,−] =

+∞∑
n=0

[a,−]n

n!
: L⊗m→ L⊗m

is an automorphism of the DGLA L⊗m.

In order to introduce the basic ideas of the use of DGLA in deformation theory we begin with
an example where technical difficulties are reduced at minimum. Consider a finite complex of
vector spaces

(V, ∂) : 0−→V 0 ∂−→V 1 ∂−→· · · ∂−→V n−→0.

Given a local artinian K-algebra A with maximal ideal mA and residue field K, we define a
deformation of (V, ∂) over A as a complex of A-modules of the form

0−→V 0 ⊗A ∂A−→V 1 ⊗A ∂A−→· · · ∂A−→V n ⊗A−→0

such that its residue modulo mA gives the complex (V, ∂). Since, as a K vector space, A = K⊕mA,
this last condition is equivalent to say that

∂A = ∂ + ξ, where ξ ∈ Hom1(V, V )⊗mA.

The “integrability” condition ∂
2

A = 0 becomes

0 = (∂ + ξ)2 = ∂ξ + ξ∂ + ξ2 = dξ +
1

2
[ξ, ξ],

where d and [ , ] are the differential and the bracket on the differential graded Lie algebra
Hom∗(V, V )⊗mA.

Two deformations ∂A, ∂
′
A are isomorphic if there exists a commutative diagram

0 −→ V 0 ⊗A ∂A−→ V 1 ⊗A ∂A−→ · · · ∂A−→ V n ⊗A −→ 0yφ0

yφ1

yφn

0 −→ V 0 ⊗A ∂
′
A−→ V 1 ⊗A ∂

′
A−→ · · · ∂

′
A−→ V n ⊗A −→ 0

such that every φi is an isomorphism of A-modules whose specialization to the residue field is
the identity.
Therefore we can write φ :=

∑
i φi = Id+η, where η ∈ Hom0(V, V )⊗mA and, since K is assumed

of characteristic 0 we can take the logarithm and write φ = ea for some a ∈ Hom0(V, V )⊗mA.

The commutativity of the diagram is therefore given by the equation ∂
′
A = ea ◦∂A ◦e−a. Writing

∂A = ∂ + ξ, ∂
′
A = ∂ + ξ′ and using the relation ea ◦ b ◦ e−a = e[a,−](b) we get

ξ′ = e[a,−](∂ + ξ)− ∂ = ξ +
e[a,−] − 1

[a,−]
([a, ξ] + [a, ∂]) = ξ +

∞∑
n=0

([a,−])n

(n+ 1)!
([a, ξ]− da).

In particular both the integrability condition and isomorphism are entirely written in terms of
the DGLA structure of Hom∗(V, V )⊗mA. This leads to the following general construction.

Denote by Art the category of local artinian K-algebras with residue field K and by Set the
category of sets (we ignore all the set-theoretic problems, for example by restricting to some
universe). Unless otherwise specified, for every objects A ∈ Art we denote by mA its maximal
ideal.
Given a differential graded Lie algebra L we define a covariant functor MCL : Art→ Set,

MCL(A) =

{
x ∈ L1 ⊗mA | dx+

1

2
[x, x] = 0

}
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The equation dx + [x, x]/2 = 0 is called the Maurer-Cartan equation and MCL is called the
Maurer-Cartan functor associated to L.
Two elements x, y ∈ L ⊗ mA are said to be gauge equivalent if there exists a ∈ L0 ⊗ mA such
that

y = ea ∗ x := x+

∞∑
n=0

([a,−])n

(n+ 1)!
([a, x]− da).

The operator ∗ is called gauge action; in fact we have ea ∗ (eb ∗ x) = ea•b ∗ x, where • is the
Baker-Campbell-Hausdorff product [18, 40] in the nilpotent Lie algebra L0 ⊗mA, and then ∗ is
an action of the exponential group exp(L0 ⊗mA) on the graded vector space L⊗mA.
It is not difficult to see that the set of solutions of the Maurer-Cartan equation is stable under
the gauge action and then it makes sense to consider the functor DefL : Art→ Set defined as

DefL(A) =
MCL(A)

gauge equivalence
.

Remark 1.4. Given a surjective morphism A
α−→B in the category Art, an element x ∈ MCL(B)

can be lifted to MCL(A) if and only if its equivalence class [x] ∈ DefL(B) can be lifted to
DefL(A).
In fact if [x] lifts to DefL(A) then there exists y ∈ MCL(A) and b ∈ L0 ⊗ mB such that
α(y) = eb ∗ x. It is therefore sufficient to lift b to an element a ∈ L0 ⊗ mA and consider
x′ = e−a ∗ y.

The above computation shows that the functor of infinitesimal deformations of a complex
(V, ∂) is isomorphic to DefL, where L is the differential graded Lie algebra Hom∗(V, V ).

The utility of this approach relies on the following result, sometimes called basic theorem of
deformation theory.

Theorem 1.5 (Schlessinger-Stasheff, Deligne, Goldman-Millson). Let f : L→M be a morphism
of differential graded Lie algebras (i.e. f commutes with differential and brackets). Then f induces
a natural transformation of functors DefL → DefM . Moreover, if:

(1) f : H0(L)→ H0(M) is surjective;
(2) f : H1(L)→ H1(M) is bijective;
(3) f : H2(L)→ H2(M) is injective;

then DefL → DefM is an isomorphism.

Where to find a proof. We do not give a proof here and we refer to the existing literature. The
first published proof is contained in [13]; Goldman and Millson assume that both algebras have
nonnegative degrees (i.e. Li = M i = 0 for every i < 0) but their proof can be easily extended to
the general case (as in [27]) by using the remark about stabilizers given in [24, pag. 19].
Other proofs of (generalizations of) this theorem are in [24, pag. 24], [25] (via homotopy classi-
fication of L∞ algebras) and [28], [30] (via extended deformation functors).
An earlier and essentially equivalent result was given in [37] (Theorem 6.2 in version October 3,
2000). �

Definition 1.6. On the category of differential graded Lie algebras consider the equivalence
relation generated by: L ∼M if there exists a quasiisomorphism L→M . We shall say that two
DGLA are quasiisomorphic if they are equivalent under this relation.

Example 1.7. Denote by K[t, dt] the differential graded algebra of polynomial differential forms
over the affine line and for every DGLA L denote L[t, dt] = L⊗K[t, dt]. As a graded vector space
L[t, dt] is generated by elements of the form aq(t) + bp(t)dt, for p, q ∈ K[t] and a, b ∈ L. The
differential and the bracket on L[t, dt] are

d(aq(t) + bp(t)dt) = (da)q(t) + (−1)deg(a)aq(t)′dt+ (db)p(t)dt,
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[aq(t), ch(t)] = [a, c]q(t)h(t), [aq(t), ch(t)dt] = [a, c]q(t)h(t)dt.

For every s ∈ K, the evaluation morphism

es : L[t, dt]→ L, es(aq(t) + bp(t)dt) = q(s)a

is a quasiisomorphism of differential graded Lie algebras.

Corollary 1.8. If L,M are quasiisomorphic DGLA, then there exists an isomorphism of func-
tors DefL ' DefM .

It is now possible to state a more concrete interpretation of the guiding principle. Recall that
an infinitesimal deformation is a deformation over a base A ∈ Art.

Principle 1.9. Let F : Art→ Set be the functor of infinitesimal deformation of some algebro-
geometric object defined over K. Then there exists a differential graded Lie algebra L, defined up
to quasiisomorphism, such that F ' DefL.

For a slightly stronger version of Principle 1.9 we refer to the discussion in Section 5.9 of [30].

Definition 1.10. A differential graded Lie algebra L is called formal if it is quasiisomorphic,
to its cohomology graded Lie algebra H∗(L).

Lemma 1.11. For every differential graded vector space (V, ∂), the differential graded Lie algebra
Hom∗(V, V ) is formal.

Proof. More generally, for every pair (V, ∂V ), (W,∂W ) of differential graded vector spaces we
consider the differential graded vector space

Hom∗(V,W ) =
⊕
i∈Z

Homi(V,W ),

where
Homi(V,W ) = {f : V →W | f(V j) ⊂W i+j} =

∏
j

Hom(V j ,W i+j).

and the differential is

δ : Homi(V,W )→ Homi+1(V,W ), δ(f) = ∂W f − (−1)deg(f)f∂V .

For every index i we choose a vector subspace Hi ⊂ Zi(V ) such that the projection Hi → Hi(V )
is bijective. The graded vector space H = ⊕Hi is a quasiisomorphic subcomplex of V .
The subspace K = {f ∈ Hom∗(V, V ) | f(H) ⊂ H} is a differential graded Lie subalgebra and
there exists a commutative diagram of complexes with exact rows

0 −→ K
α−→ Hom∗(V, V ) −→ Hom∗(H,V/H) −→ 0yβ yγ yId

0 −→ Hom∗(H,H) −→ Hom∗(H,V ) −→ Hom∗(H,V/H) −→ 0

The maps α and β are morphisms of differential graded Lie algebras. Since Hom∗(H,V/H) is
acyclic and γ is a quasiisomorphism, it follows that also α and β are quasiisomorphisms. �

A generic deformation of (V, ∂) over K[[t]] is a differential of the form ∂̃ = ∂+ tx1 + t2x2 + · · · ,
where xi ∈ Hom1(V, V ) for every i. Taking the series expansion of the integrability condition

[∂̃, ∂̃] = 0 we get an infinite number of equations

1) [∂, x1] = dx1 = 0

2) [x1, x1] = −2[∂, x2] = −2dx2
...

...

n)
∑n−1
i=1 [xi, xn−i] = −2[∂, xn] = −2dxn
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The first equation tell us that ∂+tx1 is a deformation over K[t]/(t2) of ∂ if and only if ∂x1+x1∂ =
0. The second equation tell us that ∂ + tx1 extends to a deformation over K[[t]] only if the
morphism of complexes x1 ◦ x1 is homotopically equivalent to 0.
Vice versa, the existence of x1, x2 satisfying equations 1) and 2) is also sufficient to ensure that
∂ + tx1 extends to a deformation over K[[t]]. According to Lemma 1.11, the proof of this fact
follows immediately from the following proposition.

Proposition 1.12. If a differential graded Lie algebra L is formal, then the two maps

DefL(K[t]/(t3))→ DefL(K[t]/(t2))

DefL(K[[t]]) := lim
←n

DefL(K[t]/(tn))→ DefL(K[t]/(t2))

have the same image.

Proof. According to Corollary 1.8 we may assume that L is a graded Lie algebra and therefore
its Maurer-Cartan equation becomes [x, x] = 0, x ∈ L1.
Therefore tx1 ∈ DefL(K[t]/(t2)) lifts to DefL(K[t]/(t3)) if and only if there exists x2 ∈ L1 such
that

t2[x1, x1] ≡ [tx1 + t2x2, tx1 + t2x2] ≡ 0 (mod t3) ⇐⇒ [x1, x1] = 0

and [x1, x1] = 0 implies that tx1 ∈ DefH(K[t]/(tn)) for every n ≥ 3. �

Beware: the formality of L does not imply that DefL(K[[t]])→ DefL(K[t]/(t3)) is surjective.

2. Three examples of differential graded Lie algebras and related
deformation problems

In this section we leave our toy example we consider three more important examples of defor-
mation functors, namely deformations of holomorphic bundles, deformations of complex mani-
folds and embedded deformations of submanifolds. We work in the complex analytic category
and then K = C.

Unless otherwise specified, every complex manifold is assumed compact and connected. For
every complex manifold X we denote by:

• ΘX the holomorphic tangent sheaf of X.
• Ap,qX the sheaf of differentiable (p, q)-forms of X. More generally if E is locally free sheaf

of OX -modules we denote by Ap,qX (E) ' Ap,qX ⊗OX
E the sheaf of (p, q)-forms of X with

values in E and by Ap,qX (E) = Γ(X,Ap,qX (E)) the space of its global sections.
• For every submanifold Z ⊂ X, we denote by NZ|X the normal sheaf of Z in X.

Example 2.1 (Deformations of locally free sheaves). Let E be a holomorphic locally free sheaf
on a complex manifold X. The functor of isomorphism classes of deformations of E is denoted
by DefE : Art→ Set. A deformation of E over A ∈ Art is the data of a locally free sheaf EA of

OX ⊗A-modules and a morphism πA : EA → E inducing an isomorphism EA ⊗A C '−→E .
Two deformations πA : EA → E and π′A : E ′A → E are isomorphic if there exists an isomorphism
θ : EA → E ′A of OX ⊗A-modules such that πA = π′Aθ.
The graded vector space

K = ⊕i≥0Ki, where Ki = A0,i
X (Hom(E , E)),

endowed with the Dolbeault differential and the natural bracket is a differential graded Lie al-
gebra such that Hi(K) = Exti(E , E).

Theorem 2.2. In the notation above there exists an isomorphism of functors

DefK 'DefE .
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Proof. This is well known and we refer to [12], [21, Chap. VII], [13, Sec. 9.4], [8, Pag. 238]
for a proof (some of these references deals with the equivalent problem of deformations of a
holomorphic vector bundle).
Here we only note that, for every A ∈ Art and every x ∈ MCK(A), the associated deformation
of E over A is the kernel of

∂ + x : A0,0
X (E)⊗A→ A0,1

X (E)⊗A.
�

Example 2.3 (Deformations of complex manifolds). Recall that, given a complex manifold X, a
deformation of X over a local artinian C-algebra A can be interpreted as a morphism of sheaves
of algebras OA → OX such that OA is flat over A and OA ⊗A C → OX is an isomorphism.
Define the functor DefX : Art→ Set of infinitesimal deformations of X setting DefX(A) as the
set of isomorphism classes of deformations of X over A.
This functor is isomorphic to the deformation functor associated to the Kodaira-Spencer differ-
ential graded Lie algebra of X, that is

KSX = A0,∗
X (ΘX) = ⊕iA0,i

X (ΘX).

The differential on KSX is the Dolbeault differential, while the bracket is defined in local co-

ordinates as the Ω
∗
-bilinear extension of the standard bracket on A0,0

X (ΘX) (Ω
∗

is the sheaf of

antiholomorphic differential forms). By Dolbeault theorem we have Hi(A0,∗
X (ΘX)) = Hi(X,ΘX)

for every i.
The isomorphism DefKSX

→ DefX is obtained by thinking, via Lie derivation, the elements of

A0,i
X (ΘX) as derivations of degree i of the sheaf of graded algebras ⊕iA0,i

X . More precisely, to
every x ∈ MCKSX

(A) we associate the deformation

OA(x) = ker(A0,0
X ⊗A

∂+lx−−−→ A0,1
X ⊗A),

where in local holomorphic coordinates z1, . . . , zn

x =
∑
i,j

xijdzi
∂

∂zj
, lx(f) =

∑
i,j

xij
∂f

∂zj
dzi.

Equivalently we can interpret every element of A0,1
X (ΘX) as a morphism of vector bundles T 0,1

X →
T 1,0
X and then also as a variation of the almost complex structure of X. The Maurer-Cartan

equation becomes exactly the integrability condition of the Newlander-Nirenberg theorem (see
e.g. [5], [14]).
If we are interested only to infinitesimal deformations, the proof of the isomorphism DefKSX

→
DefX can be done without using almost complex structures and therefore without Newlander-
Nirenberg theorem; full details will appear in [17].

Example 2.4 (Embedded deformations of submanifolds). Let X be a complex manifold and
let Z ⊂ X be an analytic subvariety defined by a sheaf of ideals I ⊂ OX .
The embedded deformations of Z in X are described by the functor HilbZX : Art→ Set,

HilbZX(A) = {ideal sheaves IA ⊂ OX ⊗C A, flat over A such that IA ⊗A C = I}.

Theorem 2.5. Assume that Z is smooth: denote by

π : A0,∗
X (ΘX)→ A0,∗

Z (NZ|X)

the natural restriction map and by (see Example 1.7)

L = {a ∈ A0,∗
X (ΘX)[t, dt] | e0(a) = 0, πe1(a) = 0}.

Then L is a differential graded Lie algebra, Hi(L) = Hi−1(Z,NZ|X) for every i ∈ Z and there

exists an isomorphism of functors DefL ' HilbZX .
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Proof. This is proved in [31]. Later on this paper (see Remark 8.2) we will give an explicit

description of the isomorphism DefL ' HilbZX . �

3. Functors of Artin rings

The philosophical implication of Theorem 1.5 and its Corollary 1.8 is that it is often useful
to consider quasiisomorphisms of DGLA where the domain and/or the target are differential
graded Lie algebras whose elements may have no geometrical meaning. Therefore it is also useful
to have an abstract theory of functors Art→ Set that fits with this mathematical setting. Such
theory already exists and was introduced, with different motivations, by M. Schlessinger in his
PhD thesis and published in the paper [36]. In this section we sketch the main definitions for
the benefit of non expert reader; more details and the original motivation can be found both in
the original paper and in every introductory book of deformation theory (such as [1], [38]).

Definition 3.1. A functor of Artin rings is a covariant functor F : Art → Set such that
F (K) = {one point}.

The functors of Artin rings are the objects of a category whose morphisms are the natural
transformations. For simplicity of notation, if φ : F → G is a natural transformation we denote
by φ : F (A)→ G(A) the corresponding morphism of sets for every A ∈ Art.

Example 3.2. Let R be a local complete K-algebra with residue field K. The functor

hR : Art→ Set, hR(A) = HomK−alg(R,A),

is a functor of Artin rings.

Definition 3.3. A functor F : Art→ Set is prorepresentable if it is isomorphic to hR for some
R as in Example 3.2.

The category Art is closed under fiber products, i.e. every pair of morphisms C → A, B → A
may be extended to a commutative diagram

(1)

B ×A C −→ Cy y
B −→ A

such that the natural map

hR(B ×A C)→ hR(B)×hR(A) hR(C)

is bijective for every R.

Definition 3.4. Let F : Art→ Set be a functor of Artin rings; for every fiber product

B ×A C −→ Cy y
B

β−→ A

in Art consider the induced map η : F (B ×A C)→ F (B)×F (A) F (C).
We shall say that F is homogeneous if η is bijective whenever β is surjective [34, Def. 2.5].
We shall say that F is a deformation functor if:

(1) η is surjective whenever β is surjective,
(2) η is bijective whenever A = K.

The name deformation functor comes from the fact that almost all functors arising in de-
formation theory satisfy the condition of Definition 3.4. Every prorepresentable functor is a
homogeneous deformation functor.
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Remark 3.5. Our definition of deformation functors involves conditions that are slightly more
restrictive than the classical Schlessinger conditions H1, H2 of [36] and the semi-homogeneity
condition of [34]. The main motivations of this change are:

(1) Functors of Artin rings satisfying Schlessinger condition H1, H2 and H3 do not necessarily
have a “good” obstruction theory (see [9, Example 6.8]).

(2) The definition of deformation functor extends naturally in the framework of derived
deformation theory and extended moduli spaces [28].

Finally it is not difficult to prove that a deformation functor is homogeneous if and only if
satisfies Schlessinger’s condition H4.

The functors MCL (characteristic 6= 2) and HilbXZ (Example 2.4) are homogeneous deforma-
tion functors. The functors DefL (characteristic 0), DefE (Example 2.1) and DefX (Example
2.3) are deformation functors but not homogeneous in general. The verification of 3.4 for MCL
is clear, while the proof that DefL is a deformation functor follows from Remark 1.4.
For the proof that HilbXZ , DefE and DefX are deformation functors we refer to [36] (especially
Examples 3.1 and 3.7), [38], [39] and [43].

Definition 3.6. Let F : Art→ Set be a deformation functor. The set

T 1F = F

(
K[t]

(t2)

)
is called the tangent space of F .

Proposition 3.7. The tangent space of a deformation functor has a natural structure of vector
space over K. For every natural transformation of deformation functors F → G, the induced
map T 1F → T 1G is linear.

Proof. See [36, Lemma 2.10]. �

It is notationally convenient to reserve the letter ε to denote elements of A ∈ Art annihilated
by the maximal ideal mA, and in particular of square zero.

Example 3.8. For the functor hR defined in Example 3.2, its tangent space is

T 1 hR = HomK−alg(R,K[ε]) = HomK

(
mR
m2
R

,K
)
.

Therefore T 1 hR is isomorphic to the Zariski tangent space of Spec(R) at its closed point.

The formal smoothness of Spec(R) is equivalent to the property that A→ B surjective implies
hR(A)→ hR(B) surjective. This motivate the following definition.

Definition 3.9. A functor of Artin rings F is called smooth if F (A) → F (B) is surjective for
every surjective morphism A→ B in Art.
A natural transformation φ : F → G of functors of Artin rings is called smooth if for every
surjective morphism A→ B in Art, the map F (A)→ G(A)×G(B) F (B) is also surjective.

Note that if φ : F → G is a smooth natural transformation, then φ : F (A)→ G(A) is surjective
for every A (take B = K).

In characteristic 0, according to Remark 1.4, for every differential graded Lie algebra L the
natural projection MCL → DefL is smooth.

The majority of deformation functors arising in concrete cases are not proprepresentable; a
weaker version, that correspond to the notion of semiuniversal deformation, is given in next
Theorem.

Theorem 3.10 (Schlessinger, [36]). Let F be a deformation functor with finite dimensional
vector space. Then there exists a local complete noetherian K-algebra R with residue field K and
a smooth natural transformation hR → F inducing an isomorphism on tangent spaces T 1 hR =
T 1F . Moreover R is unique up to non-canonical isomorphism.
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In the situation of Theorem 3.10 the geometric properties of Spec(R) can be determined in
terms of properties of F . Concerning smoothness we have the following:

Lemma 3.11. Let R be a local complete noetherian K-algebra with residue field K, F a defor-
mation functor and hR → F as in Theorem 3.10. The following conditions are equivalent:

(1) R is isomorphic to a power series ring K[[x1, . . . , xn]].
(2) The functor F is smooth.
(3) For every s ≥ 2 the morphism

F

(
K[t]

(ts+1)

)
→ F

(
K[t]

(t2)

)
is surjective.

Proof. The only nontrivial implication is [3⇒ 1]. We assume for simplicity that K is an infinite
field; the useless case of K finite would require a different proof.

We first observe that for every s ≥ 1 the map hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]
(t2)

)
is surjective.

Let n be the embedding dimension of R, then we can write R = K[[x1, . . . , xn]]/I for some
ideal I ⊂ (x1, . . . , xn)2; we want to prove that I = 0. Assume therefore I 6= 0 and denote by
s ≥ 2 the greatest integer such that I ⊂ (x1, . . . , xn)s: we claim that

hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]

(t2)

)
is not surjective. Choosing f ∈ I − (x1, . . . , xn)s+1, after a possible generic linear change of
coordinates of the form xi 7→ xi + aix1, with a2, . . . , ak ∈ K, we may assume that f contains the
monomial xs1 with a nonzero coefficient, say f = cxs1 + . . .; let α : R→ K[t]/(t2) be the morphism
defined by α(x1) = t, α(xi) = 0 for i > 1. Assume that there exists α̃ : R → K[t]/(ts+1) that
lifts α and denote by β : K[[x1, . . . , xn]]→ K[t]/(ts+1) the composition of α̃ with the projection
K[[x1, . . . , xn]] → R. Then β(x1) − t, β(x2), . . . , β(xn) ∈ (t2) and therefore β(f) ≡ cts 6≡ 0
(mod ts+1). �

4. Obstructions

In the set-up of functors of Artin rings, with the term obstructions we intend obstructions for
a deformation functor to be smooth.
We shall say that a morphism α : B → A in Art is a small surjection if α is surjective and
its kernel is annihilated by the maximal ideal mB . The artinian property implies that every
surjective morphism in Art can be decomposed in a finite sequence of small surjections and
then a functor F is smooth if and only if F (B) → F (A) is surjective for every small surjection
B → A.
A small extension is a small surjection together a framing of its kernel. More precisely a small
extension e in Art is an exact sequence of abelian groups

e : 0−→M−→B α−→A−→0,

such that α is a morphism in the category Art and M is an ideal of B annihilated by the
maximal ideal mB . In particular M is a finite dimensional vector space over B/mB = K. A small
extension as above is called principal if M = K.

Definition 4.1. Let F be a functor of Artin rings. An obstruction theory (V, ve) for F is the
data of a K-vector space V and for every small extension in Art

e : 0−→M−→B−→A−→0

of an obstruction map ve : F (A)→ V ⊗M satisfying the following properties:
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(1) If a ∈ F (A) can be lifted to F (B), then ve(a) = 0.
(2) (base change) For every commutative diagram

e1 : 0 −→ M1 −→ B1 −→ A1 −→ 0yαM

yαB

yαA

e2 : 0 −→ M2 −→ B2 −→ A2 −→ 0.

with e1, e2 small extensions and αA, αB morphisms in Art, we have

ve2(αA(a)) = (IdV ⊗ αM )(ve1(a)) for every a ∈ F (A1).

Definition 4.2. An obstruction theory (V, ve) for F is called complete if the converse of item 1
in 4.1 holds; i.e. the lifting exists if and only if the obstruction vanishes.

Clearly if F admits a complete obstruction theory then it admits infinitely ones; it is in
fact sufficient to embed V in a bigger vector space. One of the main interest is to look for the
“smallest” complete obstruction theory.

Remark 4.3. Let e : 0−→M−→B−→A−→0 be a small extension and a ∈ F (A); the obstruction
ve(a) ∈ V ⊗M is uniquely determined by the values (IdV ⊗ f)ve(a) ∈ V , where f varies along
a basis of HomK(M,K). On the other hand, by base change we have (IdV ⊗ f)ve(a) = vε(a),
where ε is the small extension

ε : 0−→K −→ B ⊕K
{(m,−f(m)) | m ∈M}

−→ A−→0.

This implies that every obstruction theory is uniquely determined by its behavior on principal
small extensions.

Example 4.4. Assume K of characteristic 0 and let L be a differential graded Lie algebra. We
want to show that MCL has a “natural” obstruction theory (H2(L), ve).
Let’s consider a small extension in Art

e : 0−→M−→A−→B−→0

and let x ∈ MCL(B) = {x ∈ L1 ⊗ mB | dx +
1

2
[x, x] = 0}; we define an obstruction ve(x) ∈

H2(L⊗M) = H2(L)⊗M in the following way:

first take a lifting x̃ ∈ L1 ⊗mA of x and consider h = dx̃+
1

2
[x̃, x̃] ∈ L2 ⊗M ; we have

dh = d2x̃+ [dx̃, x̃] = [h, x̃]− 1

2
[[x̃, x̃], x̃].

Since [L2⊗M,L1⊗mA] = 0 we have [h, x̃] = 0, by Jacobi identity [[x̃, x̃], x̃] = 0 and then dh = 0.
Define ve(x) as the class of h in H2(L⊗M) = H2(L)⊗M ; the first thing to prove is that ve(x)
is independent from the choice of the lifting x̃; every other lifting is of the form y = x̃ + z,
z ∈ L1 ⊗M and then

dỹ +
1

2
[y, y] = h+ dz.

It is evident from the above computation that (H2(L), ve) is a complete obstruction theory for
the functor MCL.

Definition 4.5. A morphism of obstruction theories (V, ve)→ (W,we) is a linear map θ : V →W
such that we = (θ ⊗ Id)ve for every small extension e.
An obstruction theory (OF , obe) for F is called universal if for every obstruction theory (V, ve)
there exists an unique morphism (OF , obe)→ (V, ve).

Theorem 4.6. Let F be a deformation functor, then:

(1) There exists an universal obstruction theory (OF , obe) for F which is complete.
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(2) Every element of the universal obstruction target OF is of the form obe(a) for some
principal extension

e : 0−→K−→B−→A−→0

and some a ∈ F (A).

Proof. For the proof we refer to [9]. �

It is clear that the universal obstruction theory (OF , obe) is unique up to isomorphism and
depends only by F and not by any additional data.

Definition 4.7. The obstruction space of a deformation functor F is the universal obstruction
target OF .

Corollary 4.8. Let (V, ve) be a complete obstruction theory for a deformation functor F . Then
the obstruction space OF is isomorphic to the vector subspace of V generated by all the obstruc-
tions arising from principal extensions.

Proof. Denote by θ : OF → V the morphism of obstruction theories. Every principal obstruction
is contained in the image of θ and, since V is complete, the morphism θ is injective. �

Remark 4.9. Most authors use Corollary 4.8 as a definition of obstruction space.

Example 4.10. LetR be a local complete K-algebra with residue field K and let n = dimT 1 hR =
dimmR/m

2
R its embedding dimension. Then we can write R = P/I, where P = K[[x1, . . . , xn]]

and I ⊂ m2
P . We claim that

T 2 hR := HomP (I,K) = HomK(I/mP I,K)

is the obstruction space of hR. In fact for every small extension

e : 0−→M−→B−→A−→0

and every α ∈ hR(A) we can lift α to a commutative diagram

0 −→ I −→ P −→ R −→ 0yoba(α) yβ yα
0 −→ M −→ B −→ A −→ 0

with β a morphism of K-algebras. It is easy to verify that

obe(α) = β|I ∈ HomK(I/mP I,M) = T 2 hR⊗M
is well defined, it is a complete obstruction and that (T 2 hR, obe) is the universal obstruction
theory for the functor hR (see [9, Prop. 5.3]).

Let φ : F → G be a natural transformation of deformation functors. Then (OG, obe ◦ φ) is an
obstruction theory for F and then there exists an unique linear map obφ : OF → OG which is
compatible with φ in the obvious sense.

Theorem 4.11 (Standard smoothness criterion). Let φ : F → G be a morphism of deformation
functors. The following conditions are equivalent:

(1) φ is smooth.
(2) T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is bijective.
(3) T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is injective.

Proof. In order to avoid confusion we denote by obFe and obGe the obstruction maps for F and G
respectively.

[1⇒ 2] Every smooth morphism is in particular surjective; therefore if φ is smooth then the
induced morphisms T 1F → T 1G, OF → OG are both surjective.
Assume that obφ(ξ) = 0 and write ξ = obFe (x) for some x ∈ F (A) and some small extension
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e : 0−→K−→B−→A−→0. Since obGe (φ(x)) = 0 the element x lifts to a pair (x, y′) ∈ F (A)×G(A)

G(B) and then the smoothness of φ implies that x lifts to F (B).
[3⇒ 1] We need to prove that for every small extension e : 0−→K−→B−→A−→0 the map

F (B)→ F (A)×G(A) G(B)

is surjective. Fix (x, y′) ∈ F (A)×G(A)G(B) and let y ∈ G(A) be the common image of x and y′.

Then obGe (y) = 0 because y lifts to G(B), hence obFe (x) = 0 by injectivity of obφ. Therefore x lifts
to some x′′ ∈ F (B). In general y′′ = φ(x′′) is not equal to y′. However, (y′′, y′) ∈ G(B)×G(A)G(B)

and therefore there exists v ∈ T 1G such that θ(y′′, v) = (y′′, y′) where

θ : G(B)× T 1G = G(B ×K K[ε])→ G(B)×G(A) G(B)

is induced by the isomorphism

B ×K K[ε]→ B ×A B, (b, b+ αε) 7→ (b, b+ αε).

By assumption T 1F → T 1G is surjective, v lifts to a w ∈ T 1F and setting θ(x′′, w) = (x′′, x′)
we have that x′ is a lifting of x which maps to y′, as required. �

Remark 4.12. In most concrete cases, given a natural transformation F → G it is very difficult to
calculate the map OF → OG, while it is generally easy to describe complete obstruction theories
for F and G and compatible morphism between them. In this situation only the implication
[3⇒ 1] of the standard smoothness criterion holds.

Corollary 4.13. Let L be a differential graded Lie algebra. Then the projection MCL → DefL
induces an isomorphism on obstruction spaces. Therefore every obstruction theory for MCL is
invariant under the gauge action and factors to an obstruction theory for DefL.
In particular, according to Example 4.4, the obstruction space of DefL is contained in H2(L).

Proof. The projection MCL → DefL is smooth. �

Corollary 4.14. Let F be a deformation functor and hR → F a smooth natural transformation.
Then the dimension of OF is equal to the minimum number of generators of an ideal I defining
R as a quotient of a power series ring, i.e. R = K[[x1, . . . , xn]]/I.

Proof. Apply Nakayama’s lemma to the K[[x1, . . . , xn]]-module I and use Example 4.10. �

5. Special obstructions

Let F be a deformation functor with a complete obstruction theory (V, ve). In concrete cases,
the difficulty of computation of the map ve reflects the structure of the small extension e. It is
therefore useful to consider obstructions arising from “special” small extensions that are easier
to compute. The interesting fact is that, under some additional conditions, the knowledge of this
“special obstructions” gives lots of informations.

The primary obstruction is the obstruction map arising from the small extension

0−→ K xy−→ K[x, y]

(x2, y2)
−→ K[x, y]

(x2, xy, y2)
−→0.

Note that
K[x, y]

(x2, xy, y2)
=

K[x]

(x2)
×K

K[y]

(y2)
,

K[x, y]

(x2, y2)
=

K[x]

(x2)
⊗ K[y]

(y2)

and then

F

(
K[x, y]

(x2, xy, y2)

)
= F

(
K[x]

(x2)

)
× F

(
K[y]

(y2)

)
= T 1F × T 1F.
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It is a formal consequence of base change property that the associated obstruction map

b : T 1F × T 1F → V

is bilinear symmetric.
If F is smooth then the primary obstruction vanishes but the converse is generally false. If
F = DefL for some differential graded Lie algebra and we consider the natural obstruction
theory of Example 4.4, the primary obstruction map T 1F × T 1F = H1(L) ×H1(L) → H2(L)
is equal to the induced bracket in cohomology. Therefore, according to Corollary 1.8, if L is a
formal DGLA, then DefL is smooth if and only if its primary obstruction is trivial.

In characteristic 6= 2, the substitution α(t) = x+ y gives a morphism of small extensions

0 −→ K t2−→ K[t]/(t3) −→ K[t]/(t2) −→ 0y2

yα y
0 −→ K xy−→ K[x, y]/(x2, y2) −→ K[x, y]/(x2, xy, y2) −→ 0.

From this and base change axiom it follows that the obstruction of lifting x ∈ T 1F to F (K[t]/(t3))

is equal to
1

2
b(x, x). Therefore the vanishing of the primary obstruction map is equivalent to the

surjectivity of F (K[t]/(t3))→ F (K[t]/(t2)).

The curvilinear obstructions are the obstructions arising from the curvilinear extensions

0−→K tn−→K[t]/(tn+1)−→K[t]/(tn)−→0.

We have seen that the first curvilinear obstruction (n = 2) is essentially the primary obstruction
map. Lemma 3.11 suggests the validity of Item 1 of the following proposition, while Item 2 is
very surprising.

Proposition 5.1. In the above setup, let OcF ⊂ V be the vector subspace generated by the
curvilinear obstructions. Then:

(1) If OcF = 0 then F is smooth.
(2) In general OcF is a proper subspace of the obstruction space OF .
(3) If K is algebraically closed and F = hR, then dimR ≥ dimK T

1F − dimKO
c
F .

Proof. If F has finite dimensional tangent space then Item 1 follows from Theorem 3.10 and
Lemma 3.11; the general case is proved in [9, Cor. 6.4]. Item 3 is proved in [20] (a simplified
proof is in [10]).
Consider the functor F = hR, where R = P/I, P = K[x, y] and I = (x3, y3, x2y2). Then
OF = HomP (I,K) has dimension 3, while x2y2 ∈ I belongs to the kernel of every curvilinear
obstruction. �

We consider now another class of small extensions that, as far as I know, was first used in [15];
such class is quite useful because in concrete cases the induced obstructions are usually much
easier to understand (see next Remark 8.5).
For every A ∈ Art and every A-module M we denote by A ⊕M the trivial extension (with
multiplication rule (a,m)(b, n) = (ab, an + bm)). We define a semitrivial small extension as an
extension of the form

0→ K → A⊕M → A⊕N → 0

for some A ∈ Art and some short exact sequence 0 → K → M → N → 0 of finitely generated
A-modules with mAK = 0.
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Unfortunately, in general the semitrivial obstructions do not generate OF ; consider for instance
F = hR, where

R =
P

I
=

C[x, y]

(f, fx, fy)
, f = x3 + xy5 + y7, fx =

∂f

∂x
, fy =

∂f

∂y
.

Then OF has dimension 3 [35, p. 103], while every semitrivial obstruction φ ∈ HomP (I,C)
verifies φ(f) = 0.
On the positive side we have the following result which is the basic trick of the abstract T 1-lifting
theorem [19], [10].

Theorem 5.2. If K is a field of characteristic 0, then every curvilinear obstruction of a de-
formation functor F is semitrivial. In particular F is smooth if and only if every semitrivial
obstruction vanishes.

Proof. Denote by
K[t]s

(tn)
the free

K[t]

(tn)
-module generated by s. To prove the theorem it is sufficient

to consider the morphism

α :
K[t]

(tn+1)
→ K[t]

(tn)
⊕ K[t]s

(tn)
, α(t) = t+ s

and apply the base change axiom to the morphism of small extension

0 −→ K tn−→ K[t]/(tn+1) −→ K[t]/(tn) −→ 0yn yα yα
0 −→ K tn−1s−→ K[t]

(tn)
⊕ K[t]s

(tn)
−→ K[t]

(tn)
⊕ K[t]s

(tn−1)
−→ 0.

�

Remark 5.3. It is not difficult to prove [4, Appendix] that the space of semitrivial obstructions
of hR is isomorphic to Ext1R(Ω1

R/K,K) and then, for K algebraically closed of characteristic 0,

we get the dimension bound

dimR ≥ dimK Ext0R(Ω1
R/K,K)− dimK Ext1R(Ω1

R/K,K)

proved first in [35].

6. Annihilation of obstructions

Let F : Art → Set be the functor of infinitesimal deformations of some geometric object. If
such object is “reasonable”, then F is a deformation functor and it is provided of a natural and
geometrically defined complete obstruction theory (V, ve). As an example if F = DefX is the
functor of deformations of a complex manifold, then it has a natural obstruction theory with
V = H2(ΘX).
Our goal is to determine the obstruction space OF as a subset of V . In general the inclu-
sion OF ⊂ V is proper: if X is a complex torus of dimension n, then H2(ΘX) has dimension
n2(n − 1)/2, while it is known since the very first works of Kodaira and Spencer that X has
unobstructed deformations [22, p. 408] and then OF = 0.
A way to obtain informations about OF is by annihilation maps: we shall say that a linear map
ω : V → W annihilates the obstructions of F if ω(OF ) = 0 or equivalently if ωve = 0 for every
principal small extension e. Analogous definitions can be done for annihilations of curvilinear
and semitrivial obstructions.
The possibility to describe a deformation functor in the form DefL for some differential graded
Lie algebra L gives a simple and powerful way to construct maps ω : H2(L) → W that an-
nihilate obstructions. The idea is easy: assume it is given a morphism χ : L → M of DGLA,
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then, according to Example 4.4, the morphism in cohomology χ : H2(L) → H2(M) is compat-
ible with the natural transformation χ : DefL → DefM and with obstruction maps. Therefore
if ω : H2(M) → W annihilates the obstructions of DefM , the composition ωχ annihilates the
obstructions of DefL. The best situation is when DefM is unobstructed (e.g. if M is abelian)
and therefore χ itself annihilates the obstructions of DefL.
This procedure is purely formal and it is not necessary for the functor DefM to have any geomet-
rical meaning. In the rest of this section we apply these ideas to deformations of Kähler manifolds.

Let X be a fixed complex manifold. We denote by (AX , d) = (⊕p,qAp,qX , d = ∂ + ∂) its De

Rham complex, by (ker(∂), ∂) the subcomplex of ∂-closed forms and by

(
AX
∂AX

, ∂

)
the quotient

complex of ∂-coexact forms. The contraction maps are denoted by

A0,i
X (ΘX)×Ap,qX

y−→Ap−1,q+iX ,

while the internal product is denoted by

i : A0,∗
X (ΘX)→ Hom∗(AX , AX), ia(ω) = ayω, a ∈ A0,∗

X (ΘX), ω ∈ AX .

Denoting by [ , ] the standard bracket (Example 1.2) in the differential graded Lie algebra
Hom∗(AX , AX), it is straightforward to check the validity of the Cartan homotopy formulas (see
e.g. [29])

ida = [∂, ia], i[a,b] = [ia, [∂, ib]] = [[ia, ∂], ib].

Now we want to introduce a new differential graded Lie algebra which depends by the De Rham
complex of X (the same construction can be made for every double complex of vector spaces).
Define

Htp

(
ker(∂),

AX
∂AX

)
= ⊕Htpi

(
ker(∂),

AX
∂AX

)
,

where

Htpi
(

ker(∂),
AX
∂AX

)
= Homi−1

(
ker(∂),

AX
∂AX

)
,

the differential is

Htpi
(

ker(∂),
AX
∂AX

)
3 f 7→ δ(f) = ∂f + (−1)if∂ ∈ Htpi+1

(
ker(∂),

AX
∂AX

)
and the bracket is

{f, g} = f∂g − (−1)deg(f) deg(g)g∂f.

Proposition 6.1. The linear map

i : A0,∗
X (ΘX)→ Htp

(
ker(∂),

AX
∂AX

)
is a morphism of differential graded Lie algebras.

Proof. Immediate consequence of Cartan formulas. �

It is now possible to give an easy proof of the following result known as Kodaira’s principle
(for more complicated proofs see [6], [33] and [29]).

Theorem 6.2. Let X be a compact Kähler manifold. Then the obstruction space of DefX is
contained in the kernel of the map

i : H2(X,ΘX)→ ⊕p,q Hom(Hp(X,ΩqX), Hp+2(X,Ωq−1X )).
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Proof. For notational simplicity denote by L the DGLA Htp

(
ker(∂),

AX
∂AX

)
. Since X is Kähler,

according to ∂∂-lemma (see e.g. [7]) we have

Hq,p

∂
(ker(∂)) = Hq,p

∂

(
AX
∂AX

)
= Hp(X,ΩqX)

and therefore

H2(L) = ⊕p+q=r+s−1 Hom(Hp(X,ΩqX), Hr(X,ΩsX)).

On the other hand, L is quasiisomorphic to an abelian differential graded Lie algebra: to see this
is sufficient to consider the abelian subalgebra

K =

{
f ∈ L | f(ker(∂)) ⊂ ker(∂)

∂AX
, f(∂AX) = 0

}
' Htp

(
ker(∂)

∂AX
,

ker(∂)

∂AX

)
and observe that the inclusion K ⊂ L is a quasiisomorphism.
According to Corollary 1.8 the functor DefL is isomorphic to DefK and therefore it is smooth
and its obstruction space ODefL is trivial. By Proposition 6.1 and Example 2.3, the morphism
i induces a natural transformation of functors DefX → DefL and a compatible morphism of
obstruction theories ODefX → ODefL = 0. In other words i annihilates the obstruction space of
DefX . �

Corollary 6.3 (Bogomolov-Tian-Todorov [3, 41, 42]). Let X be a compact Kähler manifold with
trivial canonical bundle. Then X has unobstructed deformations, i.e. DefX is a smooth functor.

Proof. Let n = dimX and ω ∈ H0(X,ΩnX) ' C be a holomorphic volume form. Then the con-

traction operator induces isomorphisms Hi(X,ΘX)'Hom(H0(X,ΩnX), Hi(X,Ωn−1X )) and there-
fore the morphism

i : H2(X,ΘX)→ ⊕p,q Hom(Hp(X,ΩqX), Hp+2(X,Ωq−1X ))

is injective. �

7. An approach to “semitrivialized” deformations

Sometimes a deformation of a geometric object is described by a set of deformations of specific
parts of it, plus some compatibility condition. For example a deformation of a variety X can be
described by deformations of the open subsets of an affine covering {Ui}, plus the condition that
the deformations of Ui, Uj are isomorphic on Ui ∩ Uj and such isomorphisms must satisfy the
cocycle condition on triple intersections.
We shall talk about semitrivialized deformations when we consider deformations of a geometric
object together a trivialization of the deformation of a specific part of it.
The most important example concerns embedded deformations of a subvariety Z of a complex
manifold X. Such deformations (over a base B) can be considered as deformations Z ⊂ X of
the inclusion map Z ⊂ X together a trivialization X ' X ×B.

Keeping in mind that deformations=solution on Maurer-Cartan and trivializations=actions
of the gauge group, the guiding principle tell us that in characteristic 0 every semitrivialized
deformation problem is governed by a morphism of differential graded Lie algebras χ : L→ M ,
according to the following definition.

Definition 7.1. Let χ : L → M be a morphism of differential graded Lie algebras. For every
A ∈ Art denote

MCχ(A) =

{
(x, ea) ∈ (L1 ⊗mA)× exp(M0 ⊗mA) | dx+

1

2
[x, x] = 0, ea ∗ χ(x) = 0

}
,
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Defχ(A) =
MCχ(A)

exp(L0 ⊗mA)× exp(dM−1 ⊗mA)
,

where the gauge action is given by the formula

(el, edm) ∗ (x, ea) = (el ∗ x, edmeae−χ(l)) = (el ∗ x, edm•a•(−χ(l))).

The above definition gives two functors of Artin rings

MCχ,Defχ : Art→ Set

that are deformation functors in the sense of Definition 3.4. A proof of this fact, that involves
Baker-Campbell-Hausdorff formula, can be found in [31]. The same argument of Remark 1.4
shows that the projection MCχ → Defχ is smooth and therefore, according to Theorem 4.11
MCχ,Defχ have the same obstruction theories.

The construction of Defχ is also functorial in χ; more precisely, every commutative diagram
of morphisms of differential graded Lie algebras

L
f−→ Hyχ yη

M
f ′−→ I

induces a natural transformation of functors Defχ → Defη.
In order to compute tangent space and obstruction maps of Defχ we need to introduce the

suspension of the mapping cone of χ; it is the differential graded vector space (Cχ, δ), where
Ciχ = Li ⊕M i−1 and the differential δ is defined as

δ(l,m) = (dl, χ(l)− dm).

The tangent space of Defχ is isomorphic to H1(Cχ). In fact

MCχ(K[ε]) =
{

(x, ea) ∈ (L1 ⊗Kε)× exp(M0 ⊗Kε) | dx = 0, ea ∗ χ(x) = χ(x)− da = 0
}

'
{

(x, a) ∈ L1 ×M0 | dx = 0, χ(x)− da = 0
}

= ker(δ : C1
χ → C2

χ).

Two elements (x, a), (y, b) ∈ ker δ are gauge equivalent if and only if there exists (c, z) ∈ L0×M−1
such that

y = x− dc, b = dz + a− χ(c), or equivalently (x, a)− (y, b) = δ(c, z).

The obstruction space of Defχ is naturally contained in H2(Cχ). Since the two functors
MCχ,Defχ have the same obstruction theories it is sufficient to show that the functor MCχ has
a complete obstruction theory (H2(Cχ), ve). Let

τ : 0−→E−→A α−→B−→0

be a small extension and (x, eq) ∈ MCχ(B).
Since α is surjective there exists a pair (y, ep) ∈ L1 ⊗ mA × exp(M0 ⊗ mA) such that α(y) = x
and α(p) = q.
Setting

h = dy +
1

2
[y, y] ∈ L2 ⊗ E, r = ep ∗ χ(y) ∈M1 ⊗ E

we have δ(h, r) = 0. In fact,

dh =
1

2
d[y, y] = [dy, y] = [h, y]− 1

2
[[y, y], y].

By Jacobi identity [[y, y], y] = 0, while [h, y] = 0 because mA annihilates E; therefore dh = 0.
Since χ(y) = e−p ∗ r = r + e−p ∗ 0, we have

χ(h) = d(r + e−p ∗ 0) +
[r + e−p ∗ 0, r + e−p ∗ 0]

2
=
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= dr + d(e−p ∗ 0) +
[e−p ∗ 0, e−p ∗ 0]

2
= dr,

where the last equality follows from the fact that e−p ∗ 0 satisfies the Maurer-Cartan equation
in M ⊗mA.
We define vτ (x, eq) ∈ H2(Cχ) ⊗ E as the cohomology class of (h, r). It is clear from definition
that such class is well defined and is exactly the obstruction of lifting (x, eq) to MCχ(A).

It is an interesting exercise to show that the primary obstruction map is equal to

H1(Cχ)→ H2(Cχ), (x, a) 7→ 1

2
([x, x], [a, χ(x)]).

There exists an analog of Theorem 1.5.

Theorem 7.2. Consider a commutative diagram of of morphisms of differential graded Lie
algebras

L
f−→ Hyχ yη

M
f ′−→ I

and assume that

(1) (f, f ′) : H0(Cχ)→ H0(Cη) is surjective.
(2) (f, f ′) : H1(Cχ)→ H1(Cη) is bijective.
(3) (f, f ′) : H2(Cχ)→ H2(Cη) is injective.

Then the natural transformation Defχ → Defη is an isomorphism.

Proof. For a proof that use extended deformation functors put together [31, Thm. 7.4] and [30,
Thm. 5.71]. Alternatively use [31, Thm. 2.1] to prove next Corollary 7.3 and then apply Theorem
1.5.
Another proof involving L∞-algebras follows from the results of [11]. �

The functors Defχ respect the general Principle 1.9; more precisely:

Corollary 7.3. Let χ : L → M be a morphism of differential graded Lie algebras and consider
the DGLA (see Example 1.7)

H = {(l,m) ∈ L×M [t, dt] | e0(m) = 0, e1(m) = χ(l)}
Then there exists an isomorphism Defχ ' DefH .

Proof. Denote
K = {(l,m) ∈ L×M [t, dt] | e1(m) = χ(l)}

and apply Theorem 7.2 or [31, Thm. 2.1] to the commutative diagram of morphisms of differential
graded Lie algebras

L
f−→ K ←↩ Hyχ ye0 y

M
Id−→ M ← 0

f(l) = (l, χ(l)).

�

Remark 7.4. In most concrete cases the interpretation of a deformations functor as Defχ is
more geometrical than the interpretation as DefH and is more useful in computations. In other
words, Corollary 7.3 is important philosophically but at the moment does not seem very useful
in concrete examples; we refer to [11] for a deeper discussion of this.
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8. Semiregularity annihilates obstructions

One of the most important applications of the formalism introduced in Section 7 is the de-
scription of embedded deformations of a complex submanifold Z ⊂ X in the form Defχ.

As in Example 2.4, we work over the field K = C and we denote by LZ|X the kernel of the
restriction map

π : A0,∗
X (ΘX)→ A0,∗

Z (NZ|X).

The natural inclusion χ : LZ|X → A0,∗
X (ΘX) is a morphism of differential graded Lie algebras

and its cokernel is isomorphic to the Dolbeault complex of NZ|X ; in particular for every i ≥ 0

Hi(Z,NZ|X) ' Hi(A0,∗
Z (NZ|X)) ' Hi+1(Cχ).

The DGLA A0,∗
X (ΘX) can be interpreted, via Lie derivation, as a subalgebra of the DGLA of

derivations of the graded sheaf A0,∗
X . In particular for every A ∈ Art and every a ∈ A0,∗

X (ΘX)⊗
mA, its exponential ea is an automorphism of the graded sheaf of A-modules A0,0

X ⊗A.

Consider now the associated functor Defχ. Since χ is injective we have, for every A ∈ Art

MCχ(A) = {eη ∈ AutA(A0,0
X ⊗A) | η ∈ A0,0

X (TX)⊗mA, e
−η ∗ 0 ∈ L1

Z|X ⊗mA}.

Under this identification the gauge action becomes

exp(L0
Z|X ⊗mA)×MCχ(A)→ MCχ(A), (eµ, eη) 7→ eη ◦ e−µ,

and then

Defχ(A) =
MCχ(A)

exp(L0
Z|X ⊗mA)

.

Denote by I ⊂ A0,0
X the ideal sheaf of differentiable functions vanishing on Z and by I = OX∩I

the holomorphic ideal sheaf of Z. Define then

θ : Defχ(A)→ {ideal sheaves of OX ⊗A}, θ(eη) = (OX ⊗A) ∩ eη(I ⊗A).

Theorem 8.1. The above map θ is well defined and gives an isomorphism of functors θ : Defχ
'−→HilbZX .

Proof. See [31]. �

Remark 8.2. The Theorem 2.5 is an immediate consequence of Theorem 8.1 and Corollary 7.3.

The computation of Section 6, applied to this situation gives a commutative diagram of
morphisms of DGLA

LZ|X
i−→

{
f ∈ Htp

(
ker(∂),

AX
∂AX

)
| f(I ∩ ker(∂)) ⊂ I

I ∩ ∂AX

}
yχ yη

A0,∗
X (TX)

i−→ Htp

(
ker(∂),

AX
∂AX

)
inducing a map of complexes

A0,∗
Z (NZ|X) = Coker(χ)

i−→Coker(η),

and therefore a morphism in cohomology. The analog of Theorem 6.2 becomes:

Theorem 8.3. If X is compact Kähler, then the obstructions of HilbZX are contained in the
kernel of

H1(NZ|X)
i−→H1(Coker(η)) = ⊕

i
Hom

(
Hi(I ∩ ker(∂)), Hi

(
AZ
∂AZ

))
.
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Proof. (Sketch, for more details see [31]) Since Defχ = HilbZX and H1(Coker(η)) = H2(Cη), it
is sufficient to prove that the functor Defη is smooth.

By ∂∂-lemma we have that 0−→I ∩ ∂AX−→∂AX−→∂AZ−→0 is an exact sequence of acyclic
complexes. Denoting

K =

{
f ∈ Htp

(
ker(∂),

AX
∂AX

)
| f(I ∩ ker(∂)) ⊂ I

I ∩ ∂AX

}
,

the projection ker(∂)→ ker(∂)/∂AX induces a commutative diagram

{f ∈ K | f(∂AX) = 0} α−→ Kyµ yη
Htp

(
ker(∂)

∂AX
,
AX
∂AX

)
β−→ Htp

(
ker(∂),

AX
∂AX

)
Since ∂AX is acyclic, β is a quasiisomorphism of DGLA. Moreover, there exists an exact

sequence

0→ Htp

(
∂AX

I ∩ ∂AX
,
AX
∂AX

)
→ Coker(α)→ Htp

(
I ∩ ∂AX ,

I

I ∩ ∂AX

)
→ 0.

Since the complexes
∂AX

I ∩ ∂AX
= ∂AZ and IZ ∩ ∂AX are both acyclic, also Coker(α) is acyclic

and then α is a quasiisomorphism. According to Theorem 7.2 there exists an isomorphism of
functors Defη = Defµ.
On the other side, both algebras on the first column are abelian and then the functor Defµ is
smooth. �

Always assuming X Kähler, the semiregularity map, introduced by Kodaira and Spencer
[23] for divisors and generalized by S. Bloch [2] to subvarieties, can be defined in the following
way: let n be the dimension of X and denote by H the space of harmonic forms on X of type
(n − p + 1, n − p − 1). By Dolbeault theorem and Serre duality, the dual of H is isomorphic to

Hp+1(X,Ωp−1X ).
The composition of the contraction map and integration on Z gives a bilinear map

H1(Z,NZ|X)×H → C, (η, ω) 7→
∫
Z

ηyω

which induces the linear morphism

π : H1(Z,NZ|X)→ H∨ = Hp+1(X,Ωp−1X )

called semiregularity map.
Since H ⊂ I ∩ ker(∂) ∩ ker(∂), the following corollary follows immediately from Theorem 8.3.

Corollary 8.4. Let Z be a smooth closed submanifold of codimension p of a compact Kähler
manifold X. Then the obstruction space of HilbZX is contained in the kernel of the semiregularity
map

π : H1(Z,NZ|X)→ Hp+1(X,Ωp−1X ).

Remark 8.5. Corollary 8.4 was almost proved by S. Bloch in the paper [2]. More precisely he

proved that if the semiregularity map is injective then HilbZX is smooth; although not explicitly
stated in [2], the same proof shows that the semiregularity map annihilates semitrivial obstruc-
tions.
The annihilation of semitrivial obstructions by semiregularity map has been recently generalized
to deformations of coherent modules by Buchweitz and Flenner in [4].
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