DEFORMATIONS OF COMPLEX MANIFOLDS AND HOLOMORPHIC
MAPS

MARCO MANETTI

ABSTRACT. These are the notes of the lectures given during the winter school “Algebraic
Curves and its Related Areas ”, January 8-10, 2007 at the NIMS of Daejeon (South Korea).

LECTURE 1. DIFFERENTIAL GRADED LIE ALGEBRAS AND DEFORMATION FUNCTORS

Unless otherwise specified, every vector space is considered over a fixed field K of character-
istic 0; by the symbol ® we mean the tensor product ®x over the field K.

We denote by G the category of Z-graded K-vector spaces. The objects of G are the K-vector
spaces V endowed with a Z-graded direct sum decomposition V' = ®;czV;. The elements of V;
are called homogeneous of degree . The morphisms in G are the degree-preserving linear maps.

IV =®,czVy € G we write deg(a; V) =i € Z if a € V;; if there is no possibility of confusion
about V' we simply denote @ = deg(a; V).

Given two graded vector spaces V,W € G we denote by Hom"(V, W) the vector space of
K-linear maps f: V — W such that f(V;) C W,y for every i € Z. Observe that Hom"(V, W) =
Homg (V, W) is the space of morphisms in the category G.

The tensor product, ®: G x G — G, and the internal Hom, Hom*: G°?» x G — G, are
defined in the following way: given V, W € G, we set

VoW = @(V Q@ W);, where (VW)= @V] ® Wi_j,
= JEL

Hom™ (V, W) = €D Homg (V, ).

Definition 1.1. If VW € G, the twist map tw: VW — W ® V is the linear map defined by
the rule tw(v @ w) = (—1)"“w ® v, for every pair of homogeneous elements v € V, w € W.

Unless otherwise specified we shall use the Koszul signs convention. This means that we
choose as natural isomorphism between V® W and W ® V' the twist map tw and we make every
commutation rule compatible with tw. More informally, to “get the signs right”, whenever an
“object of degree d passes on the other side of an object of degree h, a sign (—1)% must be
inserted”. As an example, if f,g € Hom™(V, W), then f ® g € Hom*(V @ V,W ® W) is defined
by the rule (f ® g)(u®v) = (—=1)7"f(u) ® g(v).

We denote by DG the category of Z-graded differential K-vector spaces (also called complexes
of vector spaces). The objects of DG are the pairs (V,d) where V = @&V is an object of G and
d: V — V is a linear map, called differential such that d(V;) C V;41 and d*> = dod = 0. The
morphisms in DG are the degree-preserving linear maps commuting with the differentials.
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For simplicity we will often consider G as the full subcategory of DG whose objects are the
complexes with trivial differential.

Given (V,d) in DG we denote as usual by Z*(V') = kerd the space of cocycles, by B*(V) =
d(V') the space of coboundaries and by H*(V) = Z*(V)/B*(V) the cohomology of V. A mor-
phism in DG is called a quasi-isomorphism if it induces an isomorphism in homology. A differ-
ential graded vector space (V,d) is called acyclic if H*(V') = 0.

If (V,d),(W,d) € DG then also (V@ W,d ® Id + Id ® 0) € DG; according to Koszul signs
convention, since § € Homg (W, W), we have (Id ® §)(v ® w) = (—1)"v @ &(w). Notice also that
the definition of the differential on tensor products commutes with twist maps, i.e.

twvo(d®Id+1d®0)=(0@Id+Ide@d)otu: VAW - WeV.
There exists also a natural differential p on Hom™(V, W) given by the formula
pf=80f—(=1)Ifod,
(pflv=46(fv) — (—1)Tf(dv), for every v € V.
The Kunneth’s formulas assert that the natural maps
H V) H (W) - H* (Ve W), H*(Hom™(V,W)) — Hom" (H*(V), H*(W)) ,
are isomorphisms of graded vector spaces. In particular if W is acyclic then also V ® W,
Hom™(V, W) and Hom™ (W, V) are acyclic.

The fiber product of two morphisms B LD and C5D in the category DG is defined as
the complex

CxpB=ED(C xpB)n,  (CxpB)y={(c,b) € Cp x By|h(c) = f(b)},

with differential d(c,b) = (dc, db). We point out that if f is a surjective quasi-isomorphism, then
also the projection C' xp B — C'is a surjective quasi-isomorphism.

Definition 1.2. A graded (associative, Z-commutative) algebra is a graded vector space A =
®A; € G endowed with a product 4; x A; — A;4; satisfying the properties:

(1) a(be) = (adb)e.

(2) a(b+c¢) =ab+ ac, (a+b)c = ac+ be.

(3) (Koszul signs convention) ab = (—1)%%ba for a, b homogeneous.

The algebra A is unitary if there exists 1 € Ag such that 1la = al = a for every a € A.

Let A be a graded algebra, then Aj is a commutative K-algebra in the usual sense; conversely
every commutative K-algebra can be considered as a graded algebra concentrated in degree 0. If
I C A is a homogeneous left (resp.: right) ideal then I is also a right (resp.: left) ideal and the
quotient A/I has a natural structure of graded algebra.

Example 1.3. The exterior algebra 4 = ANV of a K-vector space V, endowed with wedge
product, is a graded algebra with A, = A\" V.

Example 1.4 (Polynomial algebras). Given a set {x;}, i € I, of homogeneous indeterminates of
integral degree T; € Z we can consider the graded algebra K[{x;}]. As a K-vector space K[{z;}] is
generated by monomials in the indeterminates x; subjected to the relations z;z; = (—1)% %iz;z;.
In a similar way it is defined A[{x;}] for every graded algebra A.

Notice that the exterior algebras are exactly the polynomial algebras where every indetermi-
nate has degree +1.
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Definition 1.5. A dg-algebra (differential graded algebra) is the data of a graded algebra A
and a K-linear map s: A — A, called differential, with the properties:

(1) s(A,) C Apy1, 82 =0;

(2) (graded Leibnitz rule) s(ab) = s(a)b + (—1)%as(b).
A morphism of dg-algebras is a morphism of graded algebras commuting with differentials; the
category of dg-algebras is denoted by DGA.

Example 1.6 (Koszul algebras). Let V be a vector space and consider the graded algebra

A=EPa, Ai:]{v,

i<0
with the wedge product as a multiplication map. Given a linear map f: V' — K, we may define
a differential s: A; — A; 41
—i —it1
s=fi: A\V—> AV, i<o,
where the contraction operator _ is defined by the formula

h
Faolvr AeeeAvp) = (=1 F(0)or A ATy A+ Ao
j=1

Leibnitz rule implies that on a polynomial algebra K[{x;}], every differential s is uniquely
determined by the values s(z;).

Example 1.7. Let t,dt be indeterminates of degrees f = 0, dt = 1; on the polynomial algebra
Kt, dt] = K[t] ® K[t]dt there exists an obvious differential d such that d(t) = dt, d(dt) = 0. Since
K has characteristic 0, we have H*(K[t,dt]) = H(K[t,dt]) = K. More generally if (4,s) is a
dg-algebra then A[t,dt] = A ® K[t,dt] is a dg-algebra, with differential

s(a®@p(t)) =s(a) @p(t) + (=1)%a@p'(t)dt, s(a® q(t)dt) = s(a) @ q(t)dt.

Definition 1.8. A differential graded Lie algebra (DGLA for short) is the data of a differential
graded vector space (L,d) together a with bilinear map [—,—]: L x L — L (called bracket) of
degree 0 such that:

(1) (graded skewsymmetry) [a,b] = —(—1)des(@)deg®)[p q].

(2) (graded Jacobi identity) [a, [b, c]] = [[a, ], ¢] 4+ (—1)dee(@) dee®)[p [q, (]].

(3) (graded Leibniz rule) d[a,b] = [da, b] + (—1)4°8(*)[qa, db].

The Leibniz rule implies in particular that the bracket of a DGLA L induces a structure of

graded Lie algebra on its cohomology H*(L) = @&; H*(L).

Example 1.9. Given a differential graded vector space (V,d), the space Hom*(V, V'), with the
bracket

[f.9] = fg — (~1)leelfdeslog f
and the differential

df =10, f] = 0f — (-1)*=) f3
is a differential graded Lie algebra. The natural map
H*(Hom*(V,V))— Hom™ (H*(V), H*(V)).

is an isomorphism of graded Lie algebras
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Example 1.10. Given a differential graded Lie algebra L and a commutative K-algebra m there
exists a natural structure of DGLA in the tensor product L ® m given by

dlz@r)=dz®r, [z@ry®s]=[r,y]@rs.

If m is nilpotent (for example if m is the maximal ideal of a local artinian K-algebra), then the
DGLA L ® m is nilpotent; under this assumption, for every a € L° ® m the operator

ada: L@m — L ®m, ad a(b) = [a, b],

is a nilpotent derivation and

+oo
d n
eadazz(an?) :Ldm—L®m

n=0

is an automorphism of the differential graded Lie algebra L ® m.

In order to introduce the basic ideas of the use of DGLAs in deformation theory, we begin with
an example where technical difficulties are reduced at minimum [16]. Consider a finite complex
of vector spaces

V,8): 002yt 2 ym g

Given a local artinian K-algebra A with maximal ideal m4 and residue field K, we define a
deformation of (V) over A as a complex of A-modules of the form

0—V0® A24YT @ A Py g 4,

such that its residue modulo m4 gives the complex (V,d). By base change Hom (Vi ® A, VJ ®
A) = Hom(V% VI ® A) and, since A is a finite dimensional vector space over K, we have
Hom (V% VJ @ A) = Hom(V% V7) ® A. Since, as a K vector space, A = K @ my, the above
condition are equivalent to say that

04 =0+E, where ¢ € Hom'(V,V) @ ma.
The “integrability” condition 5124 = 0 becomes
— = — 1
0= (048 =9+ E0+& =dé + 516:¢€l;

where d and [, | are the differential and the bracket on the differential graded Lie algebra

Hom™(V,V) ® my (Example 1.10). Two deformations 5,4,5:4 are isomorphic if there exists a
commutative diagram

0 — VO(X)A Q) V1®A % Q, VPR A — 0
ld’o J{¢1 J((bn
A A A
0 — VigAd =4 Vigd =& ... 24 VA4 — 0

such that every ¢; is an isomorphism of A-modules whose specialization to the residue field is
the identity. Therefore we can write ¢ := >, ¢; = Id + 1, where 1 € Hom’(V,V) ® m, and,
since K is assumed of characteristic 0 we can take the logarithm and write ¢ = e® for some
a € Hom"(V,V) ® my. The commutativity of the diagram is therefore given by the equation
514 =e%00 0e" % Writing 04 = 0+, 5;1 = 0+ ¢ and using the relation e® oboe™® = e2d4(p)
we get

ada __
f—eagie) gogqp 1

ada

= >, (ada)”
([a,ﬁH[aﬁD—€+nz;om([a7§]—da)~
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In particular, both the integrability condition and isomorphism are entirely written in terms of
the DGLA structure of Hom*(V, V) ® m4. This leads to the following general construction.

Denote by Art the category of local artinian K-algebras with residue field K and by Set the
category of sets (we ignore all the set-theoretic problems, for example by restricting to some
universe). Unless otherwise specified, for every objects A € Art we denote by my its maximal
ideal. Given a differential graded Lie algebra L we define a covariant functor MCy,: Art — Set,

1
MCL(A) = {.’L’ S Lt ®my | dx + §[$,$] = 0}

The equation dx + [x,2]/2 = 0 is called the Maurer-Cartan equation and MCy, is called the
Maurer-Cartan functor associated with L.

Two elements x,y € L ® m, are said to be gauge equivalent if there exists a € LY ® m4 such
that

el = (ada)”
y=e *x.—x—l—nzzom([a,x]—da).

b aeb

The operator * is called gauge action; in fact we have e® x (e” x ) = e’ x x, where e is the
Baker-Campbell-Hausdorff product in the nilpotent Lie algebra L ® m 4, and then * is an action
of the exponential group exp(L® @ m4) on the graded vector space L ® m4.

It is not difficult to see that the set of solutions of the Maurer-Cartan equation is stable under
the gauge action and then it makes sense to consider the functor Def,: Art — Set defined as

MCp (A
Def (A) = L(_ )
gauge equivalence

Remark 1.11. Given a surjective morphism A->+B in the category Art, an element 2 € MCp,(B)
can be lifted to MCL(A) if and only if its equivalence class [x] € Defy(B) can be lifted to
Defr(A). In fact if [z] lifts to Defr (A) then there exists y € MCr(A) and b € L° ® mp such
that a(y) = b * x. It is therefore sufficient to lift b to an element a € L° ® m4 and consider
' =e % xy.

The above computation shows that the functor of infinitesimal deformations of a complex
(V,0) is isomorphic to Defy, where L is the differential graded Lie algebra Hom™(V, V).

The utility of this approach relies on the following result, sometimes called basic theorem of
deformation theory.

Theorem 1.12 (Schlessinger-Stasheff, Deligne, Goldman-Millson). Let f: L — M be a mor-
phism of differential graded Lie algebras (i.e. f commutes with differential and brackets). Then
f induces a natural transformation of functors Defy, — Def ;. Moreover, if:

(1) f: H°(L) — H°(M) is surjective;

(2) f: HY (L) — H'(M) is bijective;

(3) f: H*(L) — H*(M) is injective;

then Defy, — Def s is an isomorphism.

Proof. See e.g. [14]. O

Definition 1.13. On the category of differential graded Lie algebras consider the equivalence
relation generated by: L ~ M if there exists a quasiisomorphism L — M. We shall say that two
DGLAs are quasiisomorphic if they are equivalent under this relation.
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Example 1.14. Denote by K[t dt] the differential graded algebra of polynomial differential
forms over the affine line and for every DGLA L denote L[t,dt] = L ® K[t,dt]. As a graded
vector space L[t,dt] is generated by elements of the form agq(t) + bp(t)dt, for p,q € KJt] and
a,b € L. The differential and the bracket on Ll[t, dt] are

d(aq(t) + bp(t)dt) = (da)q(t) + (—1)**Vaq(t)'dt + (db)p(t)dt,

[aq(t), ch(t)] = [a, clq(t)h(t), laq(t), ch(t)di] = [a, c|q(t)h(t)dt.

For every s € K, the evaluation morphism
es: L[t,dt] = L, es(aq(t) + bp(t)dt) = q(s)a
is a quasiisomorphism of differential graded Lie algebras.

Corollary 1.15. If L, M are quasiisomorphic DGLAs, then there exists an isomorphism of
functors Def, ~ Defy,.

Definition 1.16. A differential graded Lie algebra L is called formal if it is quasiisomorphic,
to its cohomology graded Lie algebra H*(L).

Lemma 1.17. For every differential graded vector space (V,0), the differential graded Lie algebra
Hom™(V, V) is formal.

Proof. For every index i we choose a vector subspace H® C Z‘(V) such that the projection
H? — HY(V) is bijective. The graded vector space H = ®H"® is a quasiisomorphic subcomplex
of V. The subspace K = {f € Hom*(V, V) | f(H) C H} is a differential graded Lie subalgebra
and there exists a commutative diagram of complexes with exact rows

0 — K - Hom*(V,V) — Hom*(H,V/H) — 0

Js | 1

0 — Hom"(H,H) — Hom"(H,V) — Hom"(H,V/H) — 0.

The maps « and § are morphisms of differential graded Lie algebras. Since Hom*(H,V/H) is
acyclic and + is a quasiisomorphism, it follows that also a and (8 are quasiisomorphisms. O

A generic deformation of (V, ) over K[[¢]] is a differential of the form 0 = 0+ tx1 + t2xg +- - -,
where x; € Hom'(V, V) for every i. Taking the series expansion of the integrability condition
[0,0] = 0 we get an infinite number of equations

1) [5,5[11] = dl’l =0

2) [1‘1,.131] = —2[8, $2] = —le‘g

’I’L) Z?:_ll [xi’ mn*i] = _2[875571] = _2d$n

The first equation tell us that d-+tx; is a deformation over K[t]/(t?) of 0 if and only if Oz +210 =
0. The second equation tell us that d + tx; extends to a deformation over K[[t]] only if the
morphism of complexes x1 o x1 is homotopically equivalent to 0.

Vice versa, the existence of x1, x5 satisfying equations 1) and 2) is also sufficient to ensure
that 0 + tz; extends to a deformation over K][[t]]. According to Lemma 1.17, the proof of this
fact follows immediately from the following proposition.
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Proposition 1.18. If a differential graded Lie algebra L is formal, then the two maps

Def  (K[1)/(%)) — Det, (K[t]/(#2))
Def (K[[1]]) = lim Def (K[]/(t")) — Def (K[1)/())

have the same image.

Proof. According to Corollary 1.15 we may assume that L is a graded Lie algebra and therefore
its Maurer-Cartan equation becomes [z,z] = 0, z € L*. Therefore tz; € Defy (K[t]/(t?)) lifts to
Def, (K[t]/(#?)) if and only if there exists 2 € L' such that

2wy, 1] = [tey + 220, tr) +1225] =0 (mod t3) <= [z, 21] =0
and [z1,z1] = 0 implies that ¢tx; € Def g (K[t]/(¢™)) for every n > 3. O

Definition 1.19 ([17]). A covariant functor F': Art — Set is called smooth if for every surjective
morphism A — B in Art, the map F(A) — F(B) is surjective.

Corollary 1.20. If a DGLA L is quasiisomorphic to a DGLA with trivial bracket, then Def,
s smooth.

Proof. Immediate consequence of Corollary 1.15. O

LECTURE 2. DEFORMATIONS OF COMPLEX MANIFOLDS

Unless otherwise specified, every complex manifold is assumed compact and connected. For
every complex manifold X we denote by:

e Ox the holomorphic tangent sheaf of X.

o AR the sheaf of differentiable (p, ¢)-forms of X. More generally if £ is locally free sheaf
of Ox-modules we denote by ARY(E) ~ AL? @, € the sheaf of (p,q)-forms of X with
values in € and by ARY(E) = T'(X, ARY(E)) the space of its global sections.

Definition 2.1. Let (B,by) be germ of complex spaces. A deformation XLXL(B, bp) of a
compact complex manifold X over (B, by) is a pair of holomorphic maps

x-x-L.p
such that:

(1) fi(X) = bo.

(2) There exists an open neighbourhood by € U C B such that f: f~*(U) — U is a proper
flat holomorphic map.

(3) i: X — f~Y(bg) is an isomorphism of complex manifolds.

X is called the total space of the deformation and (B, by) the base germ space.
Definition 2.2. Two deformations of X over the same base

X-xLa(Bby),  X-Lx'-2(B,by)
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are isomorphic if there exists an open neighbourhood by € U C B, and a commutative diagram
of holomorphic maps
X —= 1)
l )
9~ '(U) U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B, by) we denote by Def x (B, by) the set of isomorphism
classes of deformations of X with base (B, bg). It is clear from the definition that if by € U C B
is open, then Defx (B,by) = Defx (U, by). If (B, bg) is the Spec of a local artinian C-algebra A,
then we will denote

Defx(A) = Defx (B, by).

Notice that every element of Def x (4) can be interpreted as a morphism of sheaves of algebras

04 — Ox such that O 4 is flat over A and O 4®4 C — Ox is an isomorphism. Define the functor

Defx: Art — Set

of infinitesimal deformations of X by setting Defx(A) as the set of isomorphism classes of
deformations of X over A. This functor is isomorphic to the deformation functor associated to
the Kodaira-Spencer differential graded Lie algebra of X, that is

KSx = AY"(0x) = @ A% (0x).

The differential on KSx is the Dolbeault differential, while the bracket is defined in local co-
ordinates as the € -bilinear extension of the standard bracket on Ag(’o(@ X) (ﬁ* is the sheaf of
antiholomorphic differential forms). By Dolbeault theorem we have H*(A%*(Ox)) = H (X, O0x)
for every i. The isomorphism Defr g, — Defx is obtained by thinking, via Lie derivation, the
elements of Agéi(@ x) as derivations of degree i of the sheaf of graded algebras @i.Ag{’i. More
precisely, with every z € MCkg, (A) we associate the deformation

Oa(z) = ker(A% @ A 2o, A% @ 4),

where in local holomorphic coordinates z1, ..., 2z,
0 of _
xTr = izjl‘ijdfiaizj, lz(f) = ;mmaizjdzz

Equivalently we can interpret every element of A(;(’l (©x) as a morphism of vector bundles T)O(’ .
T)l(’0 and then also as a variation of the almost complex structure of X. The Maurer-Cartan
equation becomes exactly the integrability condition of the Newlander-Nirenberg theorem (see
e.g. [1], [4]). If we are interested only to infinitesimal deformations, the proof of the isomorphism
Defgs, — Defx can be done without using almost complex structures and therefore without
Newlander-Nirenberg theorem: for full details see either [7] or [3].

Definition 2.3. A compact complex manifold X is said to have unobstructed deformations if
the functor Defx is smooth. This is equivalent to the fact that the Kuranishi family of X is
based on a smooth germ.

As an application of the above results we sketch a proof (due to Deligne, Goldman and Millson)
of the following theorem.
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Theorem 2.4 (Bogomolov-Tian-Todorov). Let X be a compact Kaehler manifold with trivial
canonical bundle. Then X has unobstructed deformations.

Proof. 1t is sufficient to prove that Kodaira-Spencer DGLA K Sx is quasiisomorphic to an abelian
DGLA. Let n be the dimension of X and let w € I'(X, Q%) be a nowhere vanishing holomorphic
n-form; the isomorphism _w: O x — Q’;{l extends to an isomorphism of complexes

i (A (0x),0) — (4% . 9)
and then induces a structure of DGLA on Ay " = @, A"~ P isomorphic to KSx. A straight-

forward local computation (see [14] for a proof) shows that, if o, § € A% """ are d-closed, then
their bracket [a, 8] is J-exact. In particular

Q  =kerdn Ay 1~
is a DGL subalgebra of A’y "*. Consider the complex (R*,d), where

n—1,
keron A P
QAP

endowed with the trivial bracket: the projection Q* — R* is a morphism of DGLA. It is therefore
sufficient to prove that the DGLA morphisms

RP =

A’r;(—l,* Q* R*
are quasiisomorphisms. According to the 99-lemma, d(ker 3) C I'mage(d) and then for every p

the three cohomology groups

ker@ﬂA" Lp kergﬂA?{fl’p

R* , HP An—l,* — il ,
HPR) = ) = 5
a n—1,
HP(Q*):kEraﬂkeraﬂAX P
d(kerdn A% P
are isomorphic. ([

Remark 2.5. For smooth projective manifolds over an algebraically closed field of characteristic 0
the Kodaira-Spencer DGLA is conveniently replaced with al L., structure on the Cech resolution
of the tangent sheaf on an affine cover. This L..-algebra governs infinitesimal deformations [3]
and the Bogomolov-Tian-Todorov theorem can be proved in a completely algebraic way [10].

LECTURE 3. DEFORMATIONS OF HOLOMORPHIC MAPS (AFTER DONATELLA IACONO)

The basic theorems of Kodaira and Spencer [12], [11] about deformations of complex manifolds
have been extended to deformations of holomorphic maps by Horikawa in the papers [5], [6]. In
this section we describe the construction, made by Donatella Iacono in her thesis [7], of the
differential graded Lie algebra governing infinitesimal deformations of a holomorphic map of
complex manifolds.

Definition 3.1. Let f : X — Y be a holomorphic map and A € Art. An infinitesimal defor-
mation of f over Spec(A) is a commutative diagram of complex spaces

XA4>YA

NS
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where S = Spec(A), (Xa,m,S) and (Y4, u, S) are infinitesimal deformations of X and Y, respec-
tively, F is a holomorphic map that restricted to the fibers over the closed point of .S coincides
with f.

Definition 3.2. Let

X4—7T v, and — Ly

N \/

be two infinitesimal deformatlons of f. They are equivalent if there exist blholomorphic maps
¢: X4 — Xy and ¢ : Y4 — Y} (that are equivalence of infinitesimal deformations of X and Y,
respectively) such that the following diagram is commutative:

X,—r Sy,
o |
p

Definition 3.3. The functor of infinitesimal deformations of a holomorphic map f: X — Y is

Def(f) : Art — Set,

isomorphism classes of
A — Def(f)(A) = infinitesimal deformations of
f over Spec(A)
We want to find a differential graded Lie algebra H such that Defpy ~ Def(f). To do this,
it is convenient to define first the deformation functor associated with a pair of morphisms of

differential graded Lie algebras.
Given morphisms of differential graded Lie algebras h : L — M and g : N — M:

L
lh
N —2= M,

we define the functor
Def(, 4y : Art — Set,

Defp, g)(A) = {(z,y,€?) € (L' @ma) x (N' @ma) x exp(M° @my)|
do+ gle,a] =0, dy+ 5lyy] =0, gly) = @ xh()}/ =,
where the equivalence relation = is defined by:
(x1,91,€") = (22,y2,¢7)
if and only if there exist a € (L ® A)°, b€ (N ® A)Y and ¢ € (M ® A)~! such that
To = e *x 11, Yo = e’ sy

and
ez = 90T ePre=Ma)  where T =de+ [g(y1),c].
Notice that if N = M = 0, then Def(; 4) reduces to Def.
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In the above set-up, define the differential graded Lie algebra
M[t,dt] = M @ Clt, dt].

For every s € C, the evaluation morphism of dg-algebras

Clt,dt] = C, es(t) = s, es(dt) =0,
induces a quasiisomorphism of DGLA’s
M]t,dt] = M.

Denote by
H={(,n,m(t,dt)) € L x N x Mt,dt] | h(l) = e1(m(t,dt)), g(n) = eg(m(t,dt))}.
It is clear that H is a differential graded Lie algebra.

Theorem 3.4 (Iacono). In the notation above, there exists an isomorphism of functors
Defy ~ Def(j, 4 -

As a second step we look for two morphisms of DGLA h, g such that Def;, 4) is isomorphic to
the deformation functor of a holomorphic map. Consider the DGLA Agé*(@x) X A%*(@y) and
the morphism

9= (p",q%) A% (Ox) x AV (Oy) = A%y (Oxxr),
where p: X XY — X and ¢: X XY — Y are the projections.

The solutions n = (ny1,ng) of the Maurer-Cartan equation in N = Agé* (Ox) x Ag,’* (©y)
correspond to infinitesimal deformations of both X (induced by n1) and Y (induced by ng).
Moreover the image g(n) satisfies the Maurer-Cartan equation in M = Agé*xy(@ xxv) and so
it is associated with an infinitesimal deformation of X x Y, that is exactly the one obtained as
product of the deformations of X (induced by n;) and of Y (induced by ns). Define the DGLA
L =A%y (Oxxy(—logT)) by the following exact sequence

0— Agé*xy(@XxY(_log ) — A(;)(’*Xy(e)(xy) — A%*(NFlXXY) — 0,

where Np|xxy is the normal bundle of the graph I' C X x Y of the map f. Then we are in the
following situation:

AV (Oxxy (—logT))

K

Agé*xy(@XxY)-

*

g=(p",q")

AY (Bx) x AV (Oy)

Theorem 3.5 (Tacono). In the notation above, there exists an isomorphism of functors
Def(f) ~ Def ;g -
Proof. See [7,9]. O
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