
DEFORMATIONS OF COMPLEX MANIFOLDS AND HOLOMORPHIC
MAPS

MARCO MANETTI

Abstract. These are the notes of the lectures given during the winter school “Algebraic

Curves and its Related Areas ”, January 8-10, 2007 at the NIMS of Daejeon (South Korea).

Lecture 1. Differential graded lie algebras and deformation functors

Unless otherwise specified, every vector space is considered over a fixed field K of character-
istic 0; by the symbol ⊗ we mean the tensor product ⊗K over the field K.

We denote by G the category of Z-graded K-vector spaces. The objects of G are the K-vector
spaces V endowed with a Z-graded direct sum decomposition V = ⊕i∈ZVi. The elements of Vi
are called homogeneous of degree i. The morphisms in G are the degree-preserving linear maps.

If V = ⊕n∈ZVn ∈ G we write deg(a;V ) = i ∈ Z if a ∈ Vi; if there is no possibility of confusion
about V we simply denote a = deg(a;V ).

Given two graded vector spaces V,W ∈ G we denote by Homn(V,W ) the vector space of
K-linear maps f : V →W such that f(Vi) ⊂Wi+n for every i ∈ Z. Observe that Hom0(V,W ) =
HomG(V,W ) is the space of morphisms in the category G.

The tensor product, ⊗ : G × G → G, and the internal Hom, Hom∗ : Gop × G → G, are
defined in the following way: given V,W ∈ G, we set

V ⊗W =
⊕
i∈Z

(V ⊗W )i, where (V ⊗W )i =
⊕
j∈Z

Vj ⊗Wi−j ,

Hom∗(V,W ) =
⊕
n

Homn
K(V,W ).

Definition 1.1. If V,W ∈ G, the twist map twtwtw : V ⊗W →W ⊗ V is the linear map defined by
the rule twtwtw(v ⊗ w) = (−1)v ww ⊗ v, for every pair of homogeneous elements v ∈ V , w ∈W .

Unless otherwise specified we shall use the Koszul signs convention. This means that we
choose as natural isomorphism between V ⊗W and W ⊗V the twist map twtwtw and we make every
commutation rule compatible with twtwtw. More informally, to “get the signs right”, whenever an
“object of degree d passes on the other side of an object of degree h, a sign (−1)dh must be
inserted”. As an example, if f, g ∈ Hom∗(V,W ), then f ⊗ g ∈ Hom∗(V ⊗ V,W ⊗W ) is defined
by the rule (f ⊗ g)(u⊗ v) = (−1)g uf(u)⊗ g(v).

We denote by DG the category of Z-graded differential K-vector spaces (also called complexes
of vector spaces). The objects of DG are the pairs (V, d) where V = ⊕Vi is an object of G and
d : V → V is a linear map, called differential such that d(Vi) ⊂ Vi+1 and d2 = d ◦ d = 0. The
morphisms in DG are the degree-preserving linear maps commuting with the differentials.
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For simplicity we will often consider G as the full subcategory of DG whose objects are the
complexes with trivial differential.

Given (V, d) in DG we denote as usual by Z∗(V ) = ker d the space of cocycles, by B∗(V ) =
d(V ) the space of coboundaries and by H∗(V ) = Z∗(V )/B∗(V ) the cohomology of V . A mor-
phism in DG is called a quasi-isomorphism if it induces an isomorphism in homology. A differ-
ential graded vector space (V, d) is called acyclic if H∗(V ) = 0.

If (V, d), (W, δ) ∈ DG then also (V ⊗W,d ⊗ Id + Id ⊗ δ) ∈ DG; according to Koszul signs
convention, since δ ∈ Hom1

K(W,W ), we have (Id⊗ δ)(v ⊗ w) = (−1)vv ⊗ δ(w). Notice also that
the definition of the differential on tensor products commutes with twist maps, i.e.

twtwtw ◦ (d⊗ Id+ Id⊗ δ) = (δ ⊗ Id+ Id⊗ d) ◦ twtwtw : V ⊗W →W ⊗ V.

There exists also a natural differential ρ on Hom∗(V,W ) given by the formula

ρf = δ ◦ f − (−1)ff ◦ d,

(ρf)v = δ(fv)− (−1)ff(dv), for every v ∈ V.
The Kunneth’s formulas assert that the natural maps

H∗(V )⊗H∗(W ) → H∗(V ⊗W ), H∗(Hom∗(V,W )) → Hom∗(H∗(V ),H∗(W )) ,

are isomorphisms of graded vector spaces. In particular if W is acyclic then also V ⊗ W ,
Hom∗(V,W ) and Hom∗(W,V ) are acyclic.

The fiber product of two morphisms B
f−→D and C

h−→D in the category DG is defined as
the complex

C ×D B =
⊕
n

(C ×D B)n, (C ×D B)n = {(c, b) ∈ Cn ×Bn |h(c) = f(b)},

with differential d(c, b) = (dc, db). We point out that if f is a surjective quasi-isomorphism, then
also the projection C ×D B → C is a surjective quasi-isomorphism.

Definition 1.2. A graded (associative, Z-commutative) algebra is a graded vector space A =
⊕Ai ∈ G endowed with a product Ai ×Aj → Ai+j satisfying the properties:

(1) a(bc) = (ab)c.
(2) a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.
(3) (Koszul signs convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every a ∈ A.

Let A be a graded algebra, then A0 is a commutative K-algebra in the usual sense; conversely
every commutative K-algebra can be considered as a graded algebra concentrated in degree 0. If
I ⊂ A is a homogeneous left (resp.: right) ideal then I is also a right (resp.: left) ideal and the
quotient A/I has a natural structure of graded algebra.

Example 1.3. The exterior algebra A =
∧∗

V of a K-vector space V , endowed with wedge
product, is a graded algebra with Ai =

∧i
V .

Example 1.4 (Polynomial algebras). Given a set {xi}, i ∈ I, of homogeneous indeterminates of
integral degree xi ∈ Z we can consider the graded algebra K[{xi}]. As a K-vector space K[{xi}] is
generated by monomials in the indeterminates xi subjected to the relations xixj = (−1)xi xjxjxi.
In a similar way it is defined A[{xi}] for every graded algebra A.

Notice that the exterior algebras are exactly the polynomial algebras where every indetermi-
nate has degree +1.
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Definition 1.5. A dg-algebra (differential graded algebra) is the data of a graded algebra A
and a K-linear map s : A→ A, called differential, with the properties:

(1) s(An) ⊂ An+1, s2 = 0;
(2) (graded Leibnitz rule) s(ab) = s(a)b+ (−1)aas(b).

A morphism of dg-algebras is a morphism of graded algebras commuting with differentials; the
category of dg-algebras is denoted by DGA.

Example 1.6 (Koszul algebras). Let V be a vector space and consider the graded algebra

A =
⊕
i≤0

Ai, Ai =
−i∧
V ,

with the wedge product as a multiplication map. Given a linear map f : V → K , we may define
a differential s : Ai → Ai+1

s = f y :
−i∧
V →

−i+1∧
V , i < 0 ,

where the contraction operator y is defined by the formula

f y(v1 ∧ · · · ∧ vh) =
h∑
j=1

(−1)j−1f(vj)v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vh.

Leibnitz rule implies that on a polynomial algebra K[{xi}], every differential s is uniquely
determined by the values s(xi).

Example 1.7. Let t, dt be indeterminates of degrees t = 0, dt = 1; on the polynomial algebra
K[t, dt] = K[t]⊕K[t]dt there exists an obvious differential d such that d(t) = dt, d(dt) = 0. Since
K has characteristic 0, we have H∗(K[t, dt]) = H0(K[t, dt]) = K. More generally if (A, s) is a
dg-algebra then A[t, dt] = A⊗K[t, dt] is a dg-algebra, with differential

s(a⊗ p(t)) = s(a)⊗ p(t) + (−1)aa⊗ p′(t)dt, s(a⊗ q(t)dt) = s(a)⊗ q(t)dt.

Definition 1.8. A differential graded Lie algebra (DGLA for short) is the data of a differential
graded vector space (L, d) together a with bilinear map [−,−] : L × L → L (called bracket) of
degree 0 such that:

(1) (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a].
(2) (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].
(3) (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

The Leibniz rule implies in particular that the bracket of a DGLA L induces a structure of
graded Lie algebra on its cohomology H∗(L) = ⊕iHi(L).

Example 1.9. Given a differential graded vector space (V, ∂), the space Hom∗(V, V ), with the
bracket

[f, g] = fg − (−1)deg(f) deg(g)gf

and the differential
df = [∂, f ] = ∂f − (−1)deg(f)f∂

is a differential graded Lie algebra. The natural map

H∗(Hom∗(V, V )) '−→Hom∗(H∗(V ),H∗(V )).

is an isomorphism of graded Lie algebras
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Example 1.10. Given a differential graded Lie algebra L and a commutative K-algebra m there
exists a natural structure of DGLA in the tensor product L⊗m given by

d(x⊗ r) = dx⊗ r, [x⊗ r, y ⊗ s] = [x, y]⊗ rs.

If m is nilpotent (for example if m is the maximal ideal of a local artinian K-algebra), then the
DGLA L⊗m is nilpotent; under this assumption, for every a ∈ L0 ⊗m the operator

ad a : L⊗m → L⊗m, ad a(b) = [a, b] ,

is a nilpotent derivation and

ead a =
+∞∑
n=0

(ad a)n

n!
: L⊗m → L⊗m

is an automorphism of the differential graded Lie algebra L⊗m.

In order to introduce the basic ideas of the use of DGLAs in deformation theory, we begin with
an example where technical difficulties are reduced at minimum [16]. Consider a finite complex
of vector spaces

(V, ∂) : 0−→V 0 ∂−→V 1 ∂−→· · · ∂−→V n−→0.
Given a local artinian K-algebra A with maximal ideal mA and residue field K, we define a

deformation of (V, ∂) over A as a complex of A-modules of the form

0−→V 0 ⊗A
∂A−→V 1 ⊗A

∂A−→· · · ∂A−→V n ⊗A−→0,

such that its residue modulo mA gives the complex (V, ∂). By base change HomA(V i ⊗A, V j ⊗
A) = Hom(V i, V j ⊗ A) and, since A is a finite dimensional vector space over K, we have
Hom(V i, V j ⊗ A) = Hom(V i, V j) ⊗ A. Since, as a K vector space, A = K ⊕ mA, the above
condition are equivalent to say that

∂A = ∂ + ξ, where ξ ∈ Hom1(V, V )⊗mA.

The “integrability” condition ∂
2

A = 0 becomes

0 = (∂ + ξ)2 = ∂ξ + ξ∂ + ξ2 = dξ +
1
2
[ξ, ξ],

where d and [ , ] are the differential and the bracket on the differential graded Lie algebra
Hom∗(V, V ) ⊗ mA (Example 1.10). Two deformations ∂A, ∂

′
A are isomorphic if there exists a

commutative diagram

0 −→ V 0 ⊗A
∂A−→ V 1 ⊗A

∂A−→ · · · ∂A−→ V n ⊗A −→ 0yφ0

yφ1

yφn

0 −→ V 0 ⊗A
∂
′
A−→ V 1 ⊗A

∂
′
A−→ · · · ∂

′
A−→ V n ⊗A −→ 0

such that every φi is an isomorphism of A-modules whose specialization to the residue field is
the identity. Therefore we can write φ :=

∑
i φi = Id + η, where η ∈ Hom0(V, V ) ⊗ mA and,

since K is assumed of characteristic 0 we can take the logarithm and write φ = ea for some
a ∈ Hom0(V, V ) ⊗ mA. The commutativity of the diagram is therefore given by the equation
∂
′
A = ea ◦∂A ◦ e−a. Writing ∂A = ∂+ ξ, ∂

′
A = ∂+ ξ′ and using the relation ea ◦ b ◦ e−a = ead a(b)

we get

ξ′ = ead a(∂ + ξ)− ∂ = ξ +
ead a − 1

ad a
([a, ξ] + [a, ∂]) = ξ +

∞∑
n=0

(ad a)n

(n+ 1)!
([a, ξ]− da).
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In particular, both the integrability condition and isomorphism are entirely written in terms of
the DGLA structure of Hom∗(V, V )⊗mA. This leads to the following general construction.

Denote by Art the category of local artinian K-algebras with residue field K and by Set the
category of sets (we ignore all the set-theoretic problems, for example by restricting to some
universe). Unless otherwise specified, for every objects A ∈ Art we denote by mA its maximal
ideal. Given a differential graded Lie algebra L we define a covariant functor MCL : Art → Set,

MCL(A) =
{
x ∈ L1 ⊗mA | dx+

1
2
[x, x] = 0

}
The equation dx + [x, x]/2 = 0 is called the Maurer-Cartan equation and MCL is called the
Maurer-Cartan functor associated with L.
Two elements x, y ∈ L ⊗ mA are said to be gauge equivalent if there exists a ∈ L0 ⊗ mA such
that

y = ea ∗ x := x+
∞∑
n=0

(ad a)n

(n+ 1)!
([a, x]− da).

The operator ∗ is called gauge action; in fact we have ea ∗ (eb ∗ x) = ea•b ∗ x, where • is the
Baker-Campbell-Hausdorff product in the nilpotent Lie algebra L0⊗mA, and then ∗ is an action
of the exponential group exp(L0 ⊗mA) on the graded vector space L⊗mA.
It is not difficult to see that the set of solutions of the Maurer-Cartan equation is stable under
the gauge action and then it makes sense to consider the functor DefL : Art → Set defined as

DefL(A) =
MCL(A)

gauge equivalence
.

Remark 1.11. Given a surjective morphism A
α−→B in the category Art, an element x ∈ MCL(B)

can be lifted to MCL(A) if and only if its equivalence class [x] ∈ DefL(B) can be lifted to
DefL(A). In fact if [x] lifts to DefL(A) then there exists y ∈ MCL(A) and b ∈ L0 ⊗ mB such
that α(y) = eb ∗ x. It is therefore sufficient to lift b to an element a ∈ L0 ⊗ mA and consider
x′ = e−a ∗ y.

The above computation shows that the functor of infinitesimal deformations of a complex
(V, ∂) is isomorphic to DefL, where L is the differential graded Lie algebra Hom∗(V, V ).

The utility of this approach relies on the following result, sometimes called basic theorem of
deformation theory.

Theorem 1.12 (Schlessinger-Stasheff, Deligne, Goldman-Millson). Let f : L → M be a mor-
phism of differential graded Lie algebras (i.e. f commutes with differential and brackets). Then
f induces a natural transformation of functors DefL → DefM . Moreover, if:

(1) f : H0(L) → H0(M) is surjective;
(2) f : H1(L) → H1(M) is bijective;
(3) f : H2(L) → H2(M) is injective;

then DefL → DefM is an isomorphism.

Proof. See e.g. [14]. �

Definition 1.13. On the category of differential graded Lie algebras consider the equivalence
relation generated by: L ∼M if there exists a quasiisomorphism L→M . We shall say that two
DGLAs are quasiisomorphic if they are equivalent under this relation.
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Example 1.14. Denote by K[t, dt] the differential graded algebra of polynomial differential
forms over the affine line and for every DGLA L denote L[t, dt] = L ⊗ K[t, dt]. As a graded
vector space L[t, dt] is generated by elements of the form aq(t) + bp(t)dt, for p, q ∈ K[t] and
a, b ∈ L. The differential and the bracket on L[t, dt] are

d(aq(t) + bp(t)dt) = (da)q(t) + (−1)deg(a)aq(t)′dt+ (db)p(t)dt,

[aq(t), ch(t)] = [a, c]q(t)h(t), [aq(t), ch(t)dt] = [a, c]q(t)h(t)dt.

For every s ∈ K, the evaluation morphism

es : L[t, dt] → L, es(aq(t) + bp(t)dt) = q(s)a

is a quasiisomorphism of differential graded Lie algebras.

Corollary 1.15. If L,M are quasiisomorphic DGLAs, then there exists an isomorphism of
functors DefL ' DefM .

Definition 1.16. A differential graded Lie algebra L is called formal if it is quasiisomorphic,
to its cohomology graded Lie algebra H∗(L).

Lemma 1.17. For every differential graded vector space (V, ∂), the differential graded Lie algebra
Hom∗(V, V ) is formal.

Proof. For every index i we choose a vector subspace Hi ⊂ Zi(V ) such that the projection
Hi → Hi(V ) is bijective. The graded vector space H = ⊕Hi is a quasiisomorphic subcomplex
of V . The subspace K = {f ∈ Hom∗(V, V ) | f(H) ⊂ H} is a differential graded Lie subalgebra
and there exists a commutative diagram of complexes with exact rows

0 −→ K
α−→ Hom∗(V, V ) −→ Hom∗(H,V/H) −→ 0yβ yγ yId

0 −→ Hom∗(H,H) −→ Hom∗(H,V ) −→ Hom∗(H,V/H) −→ 0.

The maps α and β are morphisms of differential graded Lie algebras. Since Hom∗(H,V/H) is
acyclic and γ is a quasiisomorphism, it follows that also α and β are quasiisomorphisms. �

A generic deformation of (V, ∂) over K[[t]] is a differential of the form ∂̃ = ∂+ tx1 + t2x2 + · · · ,
where xi ∈ Hom1(V, V ) for every i. Taking the series expansion of the integrability condition
[∂̃, ∂̃] = 0 we get an infinite number of equations

1) [∂, x1] = dx1 = 0
2) [x1, x1] = −2[∂, x2] = −2dx2

...
...

n)
∑n−1
i=1 [xi, xn−i] = −2[∂, xn] = −2dxn

The first equation tell us that ∂+tx1 is a deformation over K[t]/(t2) of ∂ if and only if ∂x1+x1∂ =
0. The second equation tell us that ∂ + tx1 extends to a deformation over K[[t]] only if the
morphism of complexes x1 ◦ x1 is homotopically equivalent to 0.

Vice versa, the existence of x1, x2 satisfying equations 1) and 2) is also sufficient to ensure
that ∂ + tx1 extends to a deformation over K[[t]]. According to Lemma 1.17, the proof of this
fact follows immediately from the following proposition.
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Proposition 1.18. If a differential graded Lie algebra L is formal, then the two maps

DefL(K[t]/(t3)) → DefL(K[t]/(t2))

DefL(K[[t]]) := lim
←n

DefL(K[t]/(tn)) → DefL(K[t]/(t2))

have the same image.

Proof. According to Corollary 1.15 we may assume that L is a graded Lie algebra and therefore
its Maurer-Cartan equation becomes [x, x] = 0, x ∈ L1. Therefore tx1 ∈ DefL(K[t]/(t2)) lifts to
DefL(K[t]/(t3)) if and only if there exists x2 ∈ L1 such that

t2[x1, x1] ≡ [tx1 + t2x2, tx1 + t2x2] ≡ 0 (mod t3) ⇐⇒ [x1, x1] = 0

and [x1, x1] = 0 implies that tx1 ∈ DefH(K[t]/(tn)) for every n ≥ 3. �

Definition 1.19 ([17]). A covariant functor F : Art → Set is called smooth if for every surjective
morphism A→ B in Art, the map F (A) → F (B) is surjective.

Corollary 1.20. If a DGLA L is quasiisomorphic to a DGLA with trivial bracket, then DefL
is smooth.

Proof. Immediate consequence of Corollary 1.15. �

Lecture 2. Deformations of complex manifolds

Unless otherwise specified, every complex manifold is assumed compact and connected. For
every complex manifold X we denote by:

• ΘX the holomorphic tangent sheaf of X.
• Ap,qX the sheaf of differentiable (p, q)-forms of X. More generally if E is locally free sheaf

of OX -modules we denote by Ap,qX (E) ' Ap,qX ⊗OX
E the sheaf of (p, q)-forms of X with

values in E and by Ap,qX (E) = Γ(X,Ap,qX (E)) the space of its global sections.

Definition 2.1. Let (B, b0) be germ of complex spaces. A deformation X
i−→X f−→(B, b0) of a

compact complex manifold X over (B, b0) is a pair of holomorphic maps

X
i−→X f−→B

such that:

(1) fi(X) = b0.
(2) There exists an open neighbourhood b0 ∈ U ⊂ B such that f : f−1(U) → U is a proper

flat holomorphic map.
(3) i : X → f−1(b0) is an isomorphism of complex manifolds.

X is called the total space of the deformation and (B, b0) the base germ space.

Definition 2.2. Two deformations of X over the same base

X
i−→X f−→(B, b0), X

j−→X ′ g−→(B, b0)
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are isomorphic if there exists an open neighbourhood b0 ∈ U ⊂ B, and a commutative diagram
of holomorphic maps

X
i //

j

��

f−1(U)

f

��yyttttttttt

g−1(U) g
// U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B, b0) we denote by DefX(B, b0) the set of isomorphism
classes of deformations of X with base (B, b0). It is clear from the definition that if b0 ∈ U ⊂ B
is open, then DefX(B, b0) = DefX(U, b0). If (B, b0) is the Spec of a local artinian C-algebra A,
then we will denote

DefX(A) = DefX(B, b0).

Notice that every element of DefX(A) can be interpreted as a morphism of sheaves of algebras
OA → OX such that OA is flat over A and OA⊗AC → OX is an isomorphism. Define the functor

DefX : Art → Set

of infinitesimal deformations of X by setting DefX(A) as the set of isomorphism classes of
deformations of X over A. This functor is isomorphic to the deformation functor associated to
the Kodaira-Spencer differential graded Lie algebra of X, that is

KSX = A0,∗
X (ΘX) = ⊕iA0,i

X (ΘX).

The differential on KSX is the Dolbeault differential, while the bracket is defined in local co-
ordinates as the Ω

∗
-bilinear extension of the standard bracket on A0,0

X (ΘX) (Ω
∗

is the sheaf of
antiholomorphic differential forms). By Dolbeault theorem we have Hi(A0,∗

X (ΘX)) = Hi(X,ΘX)
for every i. The isomorphism DefKSX

→ DefX is obtained by thinking, via Lie derivation, the
elements of A0,i

X (ΘX) as derivations of degree i of the sheaf of graded algebras ⊕iA0,i
X . More

precisely, with every x ∈ MCKSX
(A) we associate the deformation

OA(x) = ker(A0,0
X ⊗A

∂+lx−−−→ A0,1
X ⊗A),

where in local holomorphic coordinates z1, . . . , zn

x =
∑
i,j

xijdzi
∂

∂zj
, lx(f) =

∑
i,j

xij
∂f

∂zj
dzi.

Equivalently we can interpret every element of A0,1
X (ΘX) as a morphism of vector bundles T 0,1

X →
T 1,0
X and then also as a variation of the almost complex structure of X. The Maurer-Cartan

equation becomes exactly the integrability condition of the Newlander-Nirenberg theorem (see
e.g. [1], [4]). If we are interested only to infinitesimal deformations, the proof of the isomorphism
DefKSX

→ DefX can be done without using almost complex structures and therefore without
Newlander-Nirenberg theorem: for full details see either [7] or [3].

Definition 2.3. A compact complex manifold X is said to have unobstructed deformations if
the functor DefX is smooth. This is equivalent to the fact that the Kuranishi family of X is
based on a smooth germ.

As an application of the above results we sketch a proof (due to Deligne, Goldman and Millson)
of the following theorem.
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Theorem 2.4 (Bogomolov-Tian-Todorov). Let X be a compact Kaehler manifold with trivial
canonical bundle. Then X has unobstructed deformations.

Proof. It is sufficient to prove that Kodaira-Spencer DGLAKSX is quasiisomorphic to an abelian
DGLA. Let n be the dimension of X and let ω ∈ Γ(X,ΩnX) be a nowhere vanishing holomorphic
n-form; the isomorphism yω : ΘX → Ωn−1

X extends to an isomorphism of complexes

i : (A0,∗
X (ΘX), ∂) → (An−1,∗

X , ∂)

and then induces a structure of DGLA on An−1,∗
X =

⊕
pA

n−1,p isomorphic to KSX . A straight-
forward local computation (see [14] for a proof) shows that, if α, β ∈ An−1,∗

X are ∂-closed, then
their bracket [α, β] is ∂-exact. In particular

Q∗ = ker ∂ ∩An−1,∗
X

is a DGL subalgebra of An−1,∗
X . Consider the complex (R∗, ∂), where

Rp =
ker ∂ ∩An−1,p

X

∂An−2,p
X

endowed with the trivial bracket: the projection Q∗ → R∗ is a morphism of DGLA. It is therefore
sufficient to prove that the DGLA morphisms

An−1,∗
X

Q∗oo // R∗

are quasiisomorphisms. According to the ∂∂-lemma, ∂(ker ∂) ⊂ Image(∂) and then for every p
the three cohomology groups

Hp(R∗) =
ker ∂ ∩An−1,p

X

∂An−2,p
X

, Hp(An−1,∗
X ) =

ker ∂ ∩An−1,p
X

∂An−1,p−1
X

,

Hp(Q∗) =
ker ∂ ∩ ker ∂ ∩An−1,p

X

∂(ker ∂ ∩An−1,p−1
X )

are isomorphic. �

Remark 2.5. For smooth projective manifolds over an algebraically closed field of characteristic 0
the Kodaira-Spencer DGLA is conveniently replaced with al L∞ structure on the Cech resolution
of the tangent sheaf on an affine cover. This L∞-algebra governs infinitesimal deformations [3]
and the Bogomolov-Tian-Todorov theorem can be proved in a completely algebraic way [10].

Lecture 3. Deformations of holomorphic maps (after Donatella Iacono)

The basic theorems of Kodaira and Spencer [12], [11] about deformations of complex manifolds
have been extended to deformations of holomorphic maps by Horikawa in the papers [5], [6]. In
this section we describe the construction, made by Donatella Iacono in her thesis [7], of the
differential graded Lie algebra governing infinitesimal deformations of a holomorphic map of
complex manifolds.

Definition 3.1. Let f : X → Y be a holomorphic map and A ∈ Art. An infinitesimal defor-
mation of f over Spec(A) is a commutative diagram of complex spaces

XA
F //

π
  B

BB
BB

BB
B YA

µ
~~}}

}}
}}

}}

S,
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where S = Spec(A), (XA, π, S) and (YA, µ, S) are infinitesimal deformations of X and Y , respec-
tively, F is a holomorphic map that restricted to the fibers over the closed point of S coincides
with f .

Definition 3.2. Let

XA
F //

π
  A

AA
AA

AA
A YA

µ
��~~

~~
~~

~~
and X ′A

F ′
//

π′   A
AA

AA
AA

A
Y ′A

µ′��~~
~~

~~
~

S S

be two infinitesimal deformations of f . They are equivalent if there exist biholomorphic maps
φ : XA → X ′A and ψ : YA → Y ′A (that are equivalence of infinitesimal deformations of X and Y ,
respectively) such that the following diagram is commutative:

XA
F //

φ

��

YA

ψ

��
X ′A

F ′
// Y ′A.

Definition 3.3. The functor of infinitesimal deformations of a holomorphic map f : X → Y is

Def(f) : Art → Set,

A 7−→ Def(f)(A) =


isomorphism classes of

infinitesimal deformations of
f over Spec(A)

 .

We want to find a differential graded Lie algebra H such that DefH ' Def(f). To do this,
it is convenient to define first the deformation functor associated with a pair of morphisms of
differential graded Lie algebras.

Given morphisms of differential graded Lie algebras h : L→M and g : N →M :
L

h

��
N

g // M,

we define the functor
Def(h,g) : Art → Set,

Def(h,g)(A) = {(x, y, ep) ∈ (L1 ⊗mA)× (N1 ⊗mA)× exp(M0 ⊗mA)|

dx+
1
2
[x, x] = 0, dy +

1
2
[y, y] = 0, g(y) = ep ∗ h(x)}/ ≈,

where the equivalence relation ≈ is defined by:

(x1, y1, e
p1) ≈ (x2, y2, e

p2)

if and only if there exist a ∈ (L⊗A)0, b ∈ (N ⊗A)0 and c ∈ (M ⊗A)−1 such that

x2 = ea ∗ x1, y2 = eb ∗ y1
and

ep2 = eg(b)eT ep1e−h(a), where T = dc+ [g(y1), c].
Notice that if N = M = 0, then Def(h,g) reduces to DefL.
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In the above set-up, define the differential graded Lie algebra

M [t, dt] = M ⊗ C[t, dt].

For every s ∈ C, the evaluation morphism of dg-algebras

C[t, dt] es−→ C, es(t) = s, es(dt) = 0,

induces a quasiisomorphism of DGLA’s

M [t, dt] es−→M.

Denote by

H = {(l, n,m(t, dt)) ∈ L×N ×M [t, dt] | h(l) = e1(m(t, dt)), g(n) = e0(m(t, dt))}.
It is clear that H is a differential graded Lie algebra.

Theorem 3.4 (Iacono). In the notation above, there exists an isomorphism of functors

DefH ' Def(h,g) .

As a second step we look for two morphisms of DGLA h, g such that Def(h,g) is isomorphic to
the deformation functor of a holomorphic map. Consider the DGLA A0,∗

X (ΘX)× A0,∗
Y (ΘY ) and

the morphism
g = (p∗, q∗) : A0,∗

X (ΘX)×A0,∗
Y (ΘY ) → A0,∗

X×Y (ΘX×Y ),
where p : X × Y → X and q : X × Y → Y are the projections.

The solutions n = (n1, n2) of the Maurer-Cartan equation in N = A0,∗
X (ΘX) × A0,∗

Y (ΘY )
correspond to infinitesimal deformations of both X (induced by n1) and Y (induced by n2).
Moreover the image g(n) satisfies the Maurer-Cartan equation in M = A0,∗

X×Y (ΘX×Y ) and so
it is associated with an infinitesimal deformation of X × Y , that is exactly the one obtained as
product of the deformations of X (induced by n1) and of Y (induced by n2). Define the DGLA
L = A0,∗

X×Y (ΘX×Y (−log Γ)) by the following exact sequence

0 → A0,∗
X×Y (ΘX×Y (−log Γ)) → A0,∗

X×Y (ΘX×Y ) → A0,∗
Γ (NΓ|X×Y ) → 0,

where NΓ|X×Y is the normal bundle of the graph Γ ⊂ X × Y of the map f . Then we are in the
following situation:

A0,∗
X×Y (ΘX×Y (−log Γ))

� _

h

��
A0,∗
X (ΘX)×A0,∗

Y (ΘY )
g=(p∗,q∗) // A0,∗

X×Y (ΘX×Y ).

Theorem 3.5 (Iacono). In the notation above, there exists an isomorphism of functors

Def(f) ' Def(h,g) .

Proof. See [7, 9]. �
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