PROVE IT YOURSELF THE BAKER-CAMPBELL-HAUSDORFF FORMULA

MARCO MANETTI

Abstract

Exercise sheets distributed at the summer school "Algebra, Topology and Fjords", Nordfjordeid June 3-11, 2011.

1. Notation and set-up

Let R be a unitary associative \mathbb{Q}-algebra and $I \subset R$ a nilpotent ideal. Denote by $1+I=\{1+a \mid a \in$ $I\} \subset R$; notice that every element of $1+I$ is invertible and $(1+a)^{-1}=1+\left(-a+a^{2}+\cdots\right) \in 1+I$. Denote by $\operatorname{End}(R)$ the associative \mathbb{Q}-algebra of endomorphisms of R, considered as a vector space over \mathbb{Q}.
Define the exponential

$$
e: I \rightarrow 1+I \subset R, \quad e^{a}=\sum_{n \geq 0} \frac{a^{n}}{n!}
$$

and the logarithm

$$
\log : 1+I \rightarrow I, \quad \log (1+a)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{a^{n}}{n}
$$

We assume already proved that exponential and logarithm are one the inverse of the other, i.e. for every $a, b \in I$ we have

$$
\log \left(e^{a}\right)=a, \quad e^{\log (1+b)}=1+b
$$

2. The Hausdorff formula

Given $a \in R$ denote

$$
\operatorname{ad} a: R \rightarrow R, \quad(\operatorname{ad} a)(x)=[a, x]=a x-x a
$$

Exercise 2.1. Prove that for every $a, b \in R$ and $n \geq 0$ we have

$$
(\operatorname{ad} a)^{n} b=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} a^{n-i} b a^{i}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b(-a)^{i}
$$

Deduce that if $a \in I$ then ad a is nilpotent in $\operatorname{End}(R)$ and therefore thre are defined the invertible operators

$$
\begin{gathered}
e^{\operatorname{ad} a}=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!} \in \operatorname{End}(R) \\
\frac{e^{\operatorname{ad} a}-I}{\operatorname{ad} a}=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{(n+1)!} \in \operatorname{End}(R) \\
\frac{\operatorname{ad} a}{e^{\operatorname{ad} a}-I}=\left(\frac{e^{\operatorname{ad} a}-I}{\operatorname{ad} a}\right)^{-1}=\sum_{n \geq 0} \frac{B_{n}}{n!}(\operatorname{ad} a)^{n} \in \operatorname{End}(R)
\end{gathered}
$$

where B_{n} are the Bernoulli numbers.
Exercise 2.2. In the notation above prove that:
(1) For every $a \in I$ and $b \in R$

$$
e^{\operatorname{ad} a} b:=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!} b=e^{a} b e^{-a}
$$

(2) For every $a \in I$ and $b \in R$ we have $a b=b a$ if and only if $e^{a} b=b e^{a}$.
(3) For every $a, b \in I$ we have $e^{a} b=b e^{a}$ if and only if $e^{a} e^{b}=e^{b} e^{a}$.
(4) Given $a, b \in I$ such that $a b=b a$, then

$$
e^{a+b}=e^{a} e^{b}=e^{b} e^{a}, \quad \log ((1+a)(1+b))=\log (1+a)+\log (1+b)
$$

Let t be a variable and denote by $d: R[t] \rightarrow R[t], d(a)=a^{\prime}$, the derivation operator:

$$
\left(\sum a_{n} t^{n}\right)^{\prime}=\sum n a_{n} t^{n-1}
$$

Multiplication on the left give an injective morphism of \mathbb{Q}-algebras

$$
\phi: R[t] \rightarrow \operatorname{End}(R[t]), \quad \phi(a) b=a b
$$

Prove that:

$$
\begin{array}{cc}
\phi\left(a^{\prime}\right)=[d, \phi(a)], \quad \forall a \in R[t], \\
\phi\left(e^{a}\right)=e^{\phi(a)}, \quad \phi\left(\left(e^{a}\right)^{\prime}\right)=d e^{\phi(a)}-e^{\phi(a)} d, \quad \phi\left(\left(e^{a}\right)^{\prime} e^{-a}\right)=d-e^{\operatorname{ad} \phi(a)} d, \quad \forall a \in I[t],
\end{array}
$$

and deduce from the injectivity of ϕ that

$$
\left(e^{a}\right)^{\prime} e^{-a}=\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}\left(a^{\prime}\right)
$$

Now, let $a, b \in I$ and define

$$
Z=\log \left(e^{t a} e^{b}\right) \in I[t]
$$

Prove that

$$
\frac{e^{\operatorname{ad} Z}-1}{\operatorname{ad} Z}\left(Z^{\prime}\right)=\left(e^{Z}\right)^{\prime} e^{-Z}=a
$$

and therefore
Therefore $Z=Z(t)$ is the solution of the Cauchy problem

$$
Z^{\prime}=\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z}-1}(a)=\sum_{n \geq 0} \frac{B_{n}}{n!}(\operatorname{ad} Z)^{n}(a), \quad Z(0)=Z_{0}=b,
$$

where the B_{n} 's are the Bernoulli numbers $\left(\sum \frac{B_{n}}{n!} t^{n}=\frac{t}{e^{t}-1}\right)$.
Theorem 2.3. Given $a, b \in I$ we have

$$
e^{a} e^{b}=e^{a \bullet b}, \quad \text { where } \quad a \bullet b=\sum_{n \geq 0} Z_{n}
$$

and

$$
Z_{0}=b, \quad Z_{r+1}=\frac{1}{r+1} \sum_{m \geq 0} \frac{B_{m}}{m!} \sum_{i_{1}+\cdots+i_{m}=r}\left(\operatorname{ad} Z_{i_{1}}\right)\left(\operatorname{ad} Z_{i_{2}}\right) \cdots\left(\operatorname{ad} Z_{i_{m}}\right) a
$$

Proof. Exercise. Hint $\log \left(e^{t a} e^{b}\right)=Z=Z_{0}+t Z_{1}+\cdots+t^{n} Z_{n}+\cdots$.
The first terms of the above series are

$$
a \bullet b=a+b+\frac{1}{2}[a, b]+\frac{1}{12}[a,[a, b]]+\frac{1}{12}[b,[a, b]]+\cdots
$$

Since $\left(e^{a} e^{b}\right) e^{c}=e^{a}\left(e^{b} e^{c}\right)$ the product $I \times I \stackrel{\bullet}{\longrightarrow} I$ is associative. If L is a Lie subalgebra of I and $a, b \in L$, then $a \bullet b \in L$ and $a \bullet b-a-b$ belongs to the Lie ideal generated by [a,b].
The formula of Theorem 2.3 allows to define for every nilpotent Lie algebra L a map

$$
L \times L \rightarrow L, \quad(a, b) \mapsto a \bullet b
$$

commuting with morphisms of Lie algebras. Notice that if $[a, b]=0$ then $a \bullet b=a+b$ and then $a \bullet(-a)=0$.

3. Tree summation formula for BCH product

Recall that a tree is called a rooted tree if one vertex has been designated the root. Every rooted tree has a natural structure of directed tree such that, for every vertex u, there exists a unique directed path from u to the root. We shall write $u \rightarrow v$ if the vertex v belongs to the directed path from u to the root. A leaf is a vertex without incoming edges. A vertex is called internal if it is not a leaf.
From now on, we consider only planar binary rooted trees; we denote by \mathcal{B} the set of finite planar binary rooted trees with the root at the top and the leaves at the bottom (i.e., every directed path moves upward); binary means that every internal vertex has exactly two incoming edges.
We also write

$$
\mathcal{B}=\bigcup_{n>0} \mathcal{B}_{n},
$$

where \mathcal{B}_{n} is the set of planar binary rooted trees with n leaves and, for every $\Gamma \in \mathcal{B}$, we denote by $L(\Gamma)$ the set of leaves of Γ. The planarity of the tree gives, for every internal vertex v, a total ordering of the edges ending on v, from the leftmost to the rightmost.

Definition 3.1. A rightmost branch of a planar binary rooted tree $\Gamma \in \mathcal{B}$ is a maximal connected subgraph $\Omega \subset \Gamma$, with at least two vertices and with the property that every edge of Ω is a rightmost edge of Γ.

Definition 3.2. A local rightmost leaf is a leaf lying on a rightmost branch. Given an internal vertex v, we call $m(v)$ the leaf lying on the rightmost branch containing v. We also denote by $d(v)$ the distance between v and $m(v)$.

Definition 3.3. A subroot is the vertex of a rightmost branch which is nearest to the root. The set of subroots of a finite planar rooted tree Γ will be denoted by $R(\Gamma)$.

Let R be a (non associative) algebra over \mathbb{Q} and $\Gamma \in \mathcal{B}$. Labelling the leaves of Γ with elements of R, we can associate the product element in R obtained by the usual operadic rules, i.e., we perform the product of R at every internal vertex in the order arising from the planar structure of the directed tree. Given any map $f: L(\Gamma) \rightarrow R$ (the labelling), we denote by $Z_{\Gamma}(f) \in R$ the corresponding product element.

Definition 3.4. Given two leaves l_{1} and l_{2} in $\Gamma \in \mathcal{B}$, we say $l_{1} \preceq l_{2}$ if $l_{1}=l_{2}$ or there exists a subroot $v \in R(\Gamma)$ such that $l_{2}=m(v)$ and $l_{1} \rightarrow v$.
Definition 3.5. For every poset (A, \leq), we denote

$$
\mathcal{B}(A)=\{(\Gamma, f) \mid \Gamma \in \mathcal{B}, f:(L(\Gamma), \preceq) \rightarrow(A, \leq), f \text { monotone }\}
$$

In a similar way we define $\mathcal{B}_{n}(A)$, for every $n>0$.
Definition 3.6. Let $b_{n}=B_{n} / n$!, or equivalently $\sum b_{n} t^{n}=\frac{t}{e^{t}-1}$. Given a poset A and $(\Gamma, f) \in \mathcal{B}(A)$, let us define

$$
c_{(\Gamma, f)}:=\prod_{v \in R(\Gamma)} \frac{b_{d(v)}}{t(v)},
$$

where for every subroot $v \in R(\Gamma)$, we have

$$
t(v)=\text { number of leaves } u \in L(\Gamma) \text { such that } u \rightarrow v \text { and } f(u)=f(m(v)) .
$$

Theorem 3.7. Let L be a nilpotent Lie algebra, then for every $a, b \in L$ we have

$$
\begin{equation*}
a \bullet b=\sum_{(\Gamma, f) \in \mathcal{B}(b \leq a)} c_{(\Gamma, f)} Z_{\Gamma}(f) . \tag{1}
\end{equation*}
$$

Proof. Left as exercise. Hint: let $\mathcal{A} \subset \mathcal{B}(b \leq a)$ be the subset of trees having every local rightmost leave labelled by a; then we have

$$
\sum_{(\Gamma, f) \in \mathcal{B}(b \leq a)} c_{(\Gamma, f)} Z_{\Gamma}(f)=b+\sum_{(\Gamma, f) \in \mathcal{A}} c_{(\Gamma, f)} Z_{\Gamma}(f) .
$$

Now use Theorem 2.3 and induction on the number of subroots.
References: details about Hausdorff formula and its proof can be found in the book of B.C. Hall: Lie Groups, Lie Algebras, and representations. An elementary introduction. A detailed proof of Theorem 3.7 will appear in a forthcoming paper by D. Iacono and M. Manetti.

