PROVE IT YOURSELF THE BAKER-CAMPBELL-HAUSDORFF FORMULA

MARCO MANETTI

ABSTRACT. Exercise sheets distributed at the summer school “Algebra, Topology and Fjords”, Nord-
fjordeid June 3-11, 2011.

1. NOTATION AND SET-UP

Let R be a unitary associative Q-algebra and I C R a nilpotent ideal. Denote by 1+ I ={l1+4+a|a €
I} C R; notice that every element of 1+ I is invertible and (1 +a)™' =1+ (—a+a®>+---) € 1 + I.
Denote by End(R) the associative Q-algebra of endomorphisms of R, considered as a vector space over
Q.

Define the exponential

e:I —-14+1CR, ea:za—',
n!

n>0
and the logarithm
x n
log: 1+1—1, log(l+a)=3Y (-1)" 1<,
og: 1+1—1, log(l+a) 7;( )

We assume already proved that exponential and logarithm are one the inverse of the other, i.e. for
every a,b € I we have
log(e”) = a, elos1+b) — 1 1 p,

2. THE HAUSDORFF FORMULA

Given a € R denote
ada: R — R, (ad a)(z) = [a,z] = ax — za.
Exercise 2.1. Prove that for every a,b € R and n > 0 we have
n n n n
d nb — -1 7 nfib 1 — nfib _ i.
(s =3 (1) (7)o > (7)a -0

Deduce that if a € I then ada is nilpotent in End(R) and therefore thre are defined the invertible
operators

edo =% (ada)"  pra(R),

n!
n>0
erda (ada)™
_— = End
ada Z (n+1)! € End(R),
n>0
ada__ (et 1\ _ S 5n (ada)” € End(R)
eada — T ada _n>0 n! ’

where B,, are the Bernoulli numbers.

Exercise 2.2. In the notation above prove that:
(1) Foreverya € T and b€ R

aday .__ (ad a)n __ _ap_—a
e = g ] b=-e%be .
n>0

(2) For every a € I and b € R we have ab = ba if and only if e*b = be®.
(3) For every a,b € I we have e®b = be® if and only if ee® = ebe?.
(4) Given a,b € I such that ab = ba, then

e@tt — b = el log((1+a)(140)) =log(1l + a) + log(1 + b).
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Let ¢ be a variable and denote by d: R[t] — R][t], d(a) = a’, the derivation operator:

(Z ant™) = Z nant™ .

Multiplication on the left give an injective morphism of Q-algebras
¢: R[t] — End(R[t]), ¢(a)b = abd.

Prove that:
¢(a’) =[d,¢(a)],  Vae R,
p(e®) = e p((e)) =de? ™ —e?Dd,  p((e")e ") =d—eM?Wd,  Vaellt],
and deduce from the injectivity of ¢ that
eada _ 1
(e = ().
Now, let a,b € I and define
Z =log(e'®e?) € I]t].

Prove that

eadZ -1

Z/ — ZN\! —Z = a.
—dz £ =(e7)e a
and therefore

Therefore Z = Z(t) is the solution of the Cauchy problem

, adZ B B, L
Z'= a7 @)= 2 —Had2)"(0),  2(0)=Zo =1,
where the B,,’s are the Bernoulli numbers (3 %t” = Ptt—_l)

Theorem 2.3. Given a,b € I we have

e’ = e where aeb= E Ly,

n>0
and ] B
Zo = b, Z’"“:mzﬁ, Z (ad Z;,)(ad Zy,) - - - (ad Z; )a.
m>0 e e
Proof. Exercise. Hint log(e!®e®) = Z = Zo +tZ1 + - +1"Zp + -+ -. 0

The first terms of the above series are

1 1 1
aeb=a+b+ i[a,b] + E[a,[a,b]] + E[b’ [a,b]] + -+ -
Since (e*e?)e® = e(ebe®) the product I x -1 is associative. If L is a Lie subalgebra of I and a,b € L,
then aeb € L and a e b — a — b belongs to the Lie ideal generated by |[a, b].
The formula of Theorem 2.3 allows to define for every nilpotent Lie algebra L a map

LxL— L, (a,b) — aeb

commuting with morphisms of Lie algebras. Notice that if [a,b] = 0 then a @« b = a + b and then
ae(—a)=0.

3. TREE SUMMATION FORMULA FOR BCH PRODUCT

Recall that a tree is called a rooted tree if one vertex has been designated the root. Every rooted tree
has a natural structure of directed tree such that, for every vertex u, there exists a unique directed path
from w to the root. We shall write u — v if the vertex v belongs to the directed path from u to the root.
A leaf is a vertex without incoming edges. A vertex is called internal if it is not a leaf.

From now on, we consider only planar binary rooted trees; we denote by B the set of finite planar
binary rooted trees with the root at the top and the leaves at the bottom (i.e., every directed path
moves upward); binary means that every internal vertex has exactly two incoming edges.

We also write
B= ] B,

n>0
where B,, is the set of planar binary rooted trees with n leaves and, for every I" € B, we denote by L(T")
the set of leaves of I'. The planarity of the tree gives, for every internal vertex v, a total ordering of the
edges ending on v, from the leftmost to the rightmost.
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Definition 3.1. A rightmost branch of a planar binary rooted tree I' € B is a maximal connected
subgraph Q C I', with at least two vertices and with the property that every edge of {2 is a rightmost
edge of T'.

Definition 3.2. A local rightmost leaf is a leaf lying on a rightmost branch. Given an internal vertex
v, we call m(v) the leaf lying on the rightmost branch containing v. We also denote by d(v) the distance
between v and m(v).

Definition 3.3. A subroot is the vertex of a rightmost branch which is nearest to the root. The set of
subroots of a finite planar rooted tree I' will be denoted by R(T").

Let R be a (non associative) algebra over Q and I' € B. Labelling the leaves of T' with elements of
R, we can associate the product element in R obtained by the usual operadic rules, i.e., we perform
the product of R at every internal vertex in the order arising from the planar structure of the directed
tree. Given any map f : L(I') — R (the labelling), we denote by Zr(f) € R the corresponding product
element.

Definition 3.4. Given two leaves [; and l5 in I € B, we say [y = Il if [ = l5 or there exists a subroot
v € R(T') such that I = m(v) and I; — v.

Definition 3.5. For every poset (A4, <), we denote
B(A) ={(I, /)| B, f:(LT),=) = (4 <), f monotone }
In a similar way we define B,,(A), for every n > 0.

Definition 3.6. Let b, = B,,/n!, or equivalently > b,t" = ett—1' Given a poset A and (T, f) € B(A),
let us define

con= ] ba(w)
(r,f) - t(v) )

veER(T)

where for every subroot v € R(T"), we have

t(v) = number of leaves u € L(T") such that v — v and f(u) = f(m(v)).

Theorem 3.7. Let L be a nilpotent Lie algebra, then for every a,b € L we have
(1) aeb= Z cr,pZr(f)-
(T, f)eB(b<a)

Proof. Left as exercise. Hint: let A C B(b < a) be the subset of trees having every local rightmost leave
labelled by a; then we have

Yo cwpZe()=b+ > capZo(f).
(F,f)EB(bSa) (va)e-A
Now use Theorem 2.3 and induction on the number of subroots. O
References: details about Hausdorff formula and its proof can be found in the book of B.C. Hall: Lie

Groups, Lie Algebras, and representations. An elementary introduction. A detailed proof of Theorem 3.7
will appear in a forthcoming paper by D. lacono and M. Manetti.



