
PROVE IT YOURSELF THE BAKER-CAMPBELL-HAUSDORFF FORMULA

MARCO MANETTI

Abstract. Exercise sheets distributed at the summer school “Algebra, Topology and Fjords”, Nord-

fjordeid June 3-11, 2011.

1. Notation and set-up

Let R be a unitary associative Q-algebra and I ⊂ R a nilpotent ideal. Denote by 1 + I = {1 + a | a ∈
I} ⊂ R; notice that every element of 1 + I is invertible and (1 + a)−1 = 1 + (−a + a2 + · · · ) ∈ 1 + I.
Denote by End(R) the associative Q-algebra of endomorphisms of R, considered as a vector space over
Q.

Define the exponential

e : I → 1 + I ⊂ R, ea =
∑
n≥0

an

n!
,

and the logarithm

log : 1 + I → I, log(1 + a) =
∞∑
n=1

(−1)n−1 a
n

n
.

We assume already proved that exponential and logarithm are one the inverse of the other, i.e. for
every a, b ∈ I we have

log(ea) = a, elog(1+b) = 1 + b.

2. The Hausdorff formula

Given a ∈ R denote
ad a : R→ R, (ad a)(x) = [a, x] = ax− xa.

Exercise 2.1. Prove that for every a, b ∈ R and n ≥ 0 we have

(ad a)nb =
n∑
i=0

(−1)i
(
n

i

)
an−ibai =

n∑
i=0

(
n

i

)
an−ib(−a)i.

Deduce that if a ∈ I then ad a is nilpotent in End(R) and therefore thre are defined the invertible
operators

ead a =
∑
n≥0

(ad a)n

n!
∈ End(R),

ead a − I
ad a

=
∑
n≥0

(ad a)n

(n+ 1)!
∈ End(R),

ad a
ead a − I

=
(
ead a − I

ad a

)−1

=
∑
n≥0

Bn
n!

(ad a)n ∈ End(R),

where Bn are the Bernoulli numbers.

Exercise 2.2. In the notation above prove that:
(1) For every a ∈ I and b ∈ R

ead ab :=
∑
n≥0

(ad a)n

n!
b = eabe−a.

(2) For every a ∈ I and b ∈ R we have ab = ba if and only if eab = bea.
(3) For every a, b ∈ I we have eab = bea if and only if eaeb = ebea.
(4) Given a, b ∈ I such that ab = ba, then

ea+b = eaeb = ebea, log((1 + a)(1 + b)) = log(1 + a) + log(1 + b).
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Let t be a variable and denote by d : R[t]→ R[t], d(a) = a′, the derivation operator:

(
∑

ant
n)′ =

∑
nant

n−1.

Multiplication on the left give an injective morphism of Q-algebras

φ : R[t]→ End(R[t]), φ(a)b = ab.

Prove that:
φ(a′) = [d, φ(a)], ∀ a ∈ R[t],

φ(ea) = eφ(a), φ((ea)′) = deφ(a) − eφ(a)d, φ((ea)′e−a) = d− eadφ(a)d, ∀ a ∈ I[t],
and deduce from the injectivity of φ that

(ea)′e−a =
ead a − 1

ad a
(a′).

Now, let a, b ∈ I and define
Z = log(etaeb) ∈ I[t].

Prove that
eadZ − 1

adZ
(Z ′) = (eZ)′e−Z = a.

and therefore
Therefore Z = Z(t) is the solution of the Cauchy problem

Z ′ =
adZ

eadZ − 1
(a) =

∑
n≥0

Bn
n!

(adZ)n(a), Z(0) = Z0 = b,

where the Bn’s are the Bernoulli numbers (
∑ Bn

n! t
n = t

et−1 ).

Theorem 2.3. Given a, b ∈ I we have

eaeb = ea•b, where a • b =
∑
n≥0

Zn,

and

Z0 = b, Zr+1 =
1

r + 1

∑
m≥0

Bm
m!

∑
i1+···+im=r

(adZi1)(adZi2) · · · (adZim)a.

Proof. Exercise. Hint log(etaeb) = Z = Z0 + tZ1 + · · ·+ tnZn + · · · . �

The first terms of the above series are

a • b = a+ b+
1
2

[a, b] +
1
12

[a, [a, b]] +
1
12

[b, [a, b]] + · · ·

Since (eaeb)ec = ea(ebec) the product I×I •−→I is associative. If L is a Lie subalgebra of I and a, b ∈ L,
then a • b ∈ L and a • b− a− b belongs to the Lie ideal generated by [a, b].

The formula of Theorem 2.3 allows to define for every nilpotent Lie algebra L a map

L× L→ L, (a, b) 7→ a • b
commuting with morphisms of Lie algebras. Notice that if [a, b] = 0 then a • b = a + b and then
a • (−a) = 0.

3. Tree summation formula for BCH product

Recall that a tree is called a rooted tree if one vertex has been designated the root. Every rooted tree
has a natural structure of directed tree such that, for every vertex u, there exists a unique directed path
from u to the root. We shall write u→ v if the vertex v belongs to the directed path from u to the root.
A leaf is a vertex without incoming edges. A vertex is called internal if it is not a leaf.

From now on, we consider only planar binary rooted trees; we denote by B the set of finite planar
binary rooted trees with the root at the top and the leaves at the bottom (i.e., every directed path
moves upward); binary means that every internal vertex has exactly two incoming edges.

We also write
B =

⋃
n>0

Bn,

where Bn is the set of planar binary rooted trees with n leaves and, for every Γ ∈ B, we denote by L(Γ)
the set of leaves of Γ. The planarity of the tree gives, for every internal vertex v, a total ordering of the
edges ending on v, from the leftmost to the rightmost.
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Definition 3.1. A rightmost branch of a planar binary rooted tree Γ ∈ B is a maximal connected
subgraph Ω ⊂ Γ, with at least two vertices and with the property that every edge of Ω is a rightmost
edge of Γ.

Definition 3.2. A local rightmost leaf is a leaf lying on a rightmost branch. Given an internal vertex
v, we call m(v) the leaf lying on the rightmost branch containing v. We also denote by d(v) the distance
between v and m(v).

Definition 3.3. A subroot is the vertex of a rightmost branch which is nearest to the root. The set of
subroots of a finite planar rooted tree Γ will be denoted by R(Γ).

Let R be a (non associative) algebra over Q and Γ ∈ B. Labelling the leaves of Γ with elements of
R, we can associate the product element in R obtained by the usual operadic rules, i.e., we perform
the product of R at every internal vertex in the order arising from the planar structure of the directed
tree. Given any map f : L(Γ)→ R (the labelling), we denote by ZΓ(f) ∈ R the corresponding product
element.

Definition 3.4. Given two leaves l1 and l2 in Γ ∈ B, we say l1 � l2 if l1 = l2 or there exists a subroot
v ∈ R(Γ) such that l2 = m(v) and l1 → v.

Definition 3.5. For every poset (A,≤), we denote

B(A) = {(Γ, f) |Γ ∈ B, f : (L(Γ),�)→ (A,≤), f monotone }
In a similar way we define Bn(A), for every n > 0.

Definition 3.6. Let bn = Bn/n!, or equivalently
∑
bnt

n = t
et−1 . Given a poset A and (Γ, f) ∈ B(A),

let us define

c(Γ,f) :=
∏

v∈R(Γ)

bd(v)

t(v)
,

where for every subroot v ∈ R(Γ), we have

t(v) = number of leaves u ∈ L(Γ) such that u→ v and f(u) = f(m(v)).

Theorem 3.7. Let L be a nilpotent Lie algebra, then for every a, b ∈ L we have

(1) a • b =
∑

(Γ,f)∈B(b≤a)

c(Γ,f)ZΓ(f).

Proof. Left as exercise. Hint: let A ⊂ B(b ≤ a) be the subset of trees having every local rightmost leave
labelled by a; then we have ∑

(Γ,f)∈B(b≤a)

c(Γ,f)ZΓ(f) = b+
∑

(Γ,f)∈A

c(Γ,f)ZΓ(f).

Now use Theorem 2.3 and induction on the number of subroots. �

References: details about Hausdorff formula and its proof can be found in the book of B.C. Hall: Lie
Groups, Lie Algebras, and representations. An elementary introduction. A detailed proof of Theorem 3.7
will appear in a forthcoming paper by D. Iacono and M. Manetti.


