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Abstract. I found the most ready way of explaining my employment was to ask
them how it was that they themselves were not curious concerning earthquakes and
volcanos? - why some springs were hot and others cold? - why there were mountains in
Chile, and not a hill in La Plata? These bare questions at once satisfied and silenced the
greater number; some, however (like a few in England who are a century behindhand),
thought that all such inquiries were useless and impious; and that it was quite sufficient
that God had thus made the mountains.
Charles Darwin: The voyage of the Beagle.

Through all the chapter we work over a fixed field K of characteristic 0. Unless oth-
erwise specified all the tensor products are made over K.

Notation. G is the category of graded vector spaces over K.

The tensor algebra generated by V ∈ G is by definition the graded vector space

T (V ) =
⊕
n≥0

⊗nV

endowed with the associative product (v1 ⊗ · · · ⊗ vp)(vp+1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vn.

Let V,W ∈ G. The twist map twtwtw : V ⊗W →W ⊗V is defined by the rule twtwtw(v⊗w) =
(−1)v ww ⊗ v, for every pair of homogeneous elements v ∈ V , w ∈W .

The following convention is adopted in force: let V,W be graded vector spaces and
F : T (V )→ T (W ) a linear map. We denote by

F i : T (V )→
⊗iW, Fj :

⊗jV → T (W ), F ij :
⊗jV →

⊗iW

the compositions of F with the inclusion
⊗jV → T (V ) and/or the projection T (W )→⊗iW .

1. Graded coalgebras

Definition 1.1. A coassociative Z-graded coalgebra is the data of a graded vector space
C = ⊕n∈ZC

n ∈ G and of a coproduct ∆: C → C ⊗ C such that:

• ∆ is a morphism of graded vector spaces.
• (coassociativity) (∆⊗ IdC)∆ = (IdC ⊗∆)∆: C → C ⊗ C ⊗ C.

For simplicity of notation, from now on with the term graded coalgebra we intend a
Z-graded coassociative coalgebra.
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Definition 1.2. Let (C,∆) and (B,Γ) be graded coalgebras. A morphism of graded
coalgebras f : C → B is a morphism of graded vector spaces that commutes with co-
products, i.e.

Γf = (f ⊗ f)∆: C → B ⊗B.
The category of graded coalgebras is denoted by GC.

Example 1.3. Let C = K[t] be the polynomial ring in one variable t (of degree 0). The
linear map

∆: K[t]→ K[t]⊗K[t], ∆(tn) =
n∑
i=0

ti ⊗ tn−i,

gives a coalgebra structure (exercise: check coassociativity).
For every sequence fn ∈ K, n > 0, it is associated a morphism of coalgebras f : C → C
defined as

f(1) = 1, f(tn) =
n∑
s=1

∑
(i1,...,is)∈Ns

i1+···+is=n

fi1fi2 · · · fists.

The verification that ∆f = (f ⊗ f)∆ can be done in the following way: Let {xn} ⊂
C∨ = K[[x]] be the dual basis of {tn}. Then for every a, b, n ∈ N we have:

〈xa ⊗ xb,∆f(tn)〉 =
∑

i1+···+ia+j1+···+jb=n

fi1 · · · fiafj1 · · · fjb ,

〈xa ⊗ xb, f ⊗ f∆(tn)〉 =
∑
s

∑
i1+···+ia=s

∑
j1+···+jb=n−s

fi1 · · · fiafj1 · · · fjb .

Note that the sequence {fn}, n ≥ 1, can be recovered from f by the formula fn =
〈x, f(tn)〉.

Example 1.4. Let A be a graded associative algebra with product µ : A⊗A→ A and
C a graded coassociative coalgebra with coproduct ∆: C → C ⊗ C.
Then Hom∗(C,A) is a graded associative algebra by the convolution product

fg = µ(f ⊗ g)∆.

We left as an exercise the verification that the product in Hom∗(C,A) is associative.
In particular HomG(C,A) = Hom0(C,A) is an associative algebra and C∨ = Hom∗(C,K)
is a graded associative algebra.

Remark 1.5. The above example shows in particular that the dual of a coalgebra is an
algebra. In general the dual of an algebra is not a coalgebra (with some exceptions, see
e.g. Example 2.3). Heuristically, this asymmetry comes from the fact that, for an infinite
dimensional vector space V , there exist a natural map V ∨⊗V ∨ → (V ⊗V )∨, while does
not exist any natural map (V ⊗ V )∨ → V ∨ ⊗ V ∨.

Example 1.6. The dual of the coalgebra C = K[t] (Example 1.3) is exactly the algebra
of formal power series A = K[[x]] = C∨. Every coalgebra morphism f : C → C induces a
local homomorphism of K-algebras f t : A→ A. The morphism f t is uniquely determined
by the power series f t(x) =

∑
n>0 fnx

n and then every morphism of coalgebras f : C →
C is uniquely determined by the sequence fn = 〈f t(x), tn〉 = 〈x, f(tn)〉.
The map f 7→ f t is functorial and then preserves the composition laws.

Definition 1.7. Let (C,∆) be a graded coalgebra; the iterated coproducts ∆n : C →
C⊗n+1 are defined recursively for n ≥ 0 by the formulas

∆0 = IdC , ∆n : C ∆−→ C ⊗ C IdC ⊗∆n−1

−−−−−−−→ C ⊗ C⊗n = C⊗n+1.
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Lemma 1.8. Let (C,∆) be a graded coalgebra. Then:

(1) For every 0 ≤ a ≤ n− 1 we have

∆n = (∆a ⊗∆n−1−a)∆: C →
⊗n+1C.

(2) For every s ≥ 1 and every a0, . . . , as ≥ 0 we have

(∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)∆s = ∆s+
P
ai .

(3) If f : (C,∆) → (B,Γ) is a morphism of graded coalgebras then, for every n ≥ 1
we have

Γnf = (⊗n+1f)∆n : C →
⊗n+1B.

Proof. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0 and use
induction on n. we have:

(∆a ⊗∆n−1−a)∆ = ((IdC ⊗∆a−1)∆⊗∆n−1−a)∆ =

= (IdC ⊗∆a−1 ⊗∆n−1−a)(∆⊗ IdC)∆ =

= (IdC ⊗∆a−1 ⊗∆n−1−a)(IdC ⊗∆)∆ = (IdC ⊗(∆a−1 ⊗∆n−1−a)∆)∆ = ∆n.

[2] Induction on s, being the case s = 1 proved in item 1. If s ≥ 2 we can write

(∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)∆s = (∆a0 ⊗∆a1 ⊗ · · · ⊗∆as)(IdC ⊗∆s−1)∆ =

(∆a0 ⊗ (∆a1 ⊗ · · · ⊗∆as)∆s−1)∆ = (∆a0 ⊗∆s−1+
P

i>0 ai)∆ = ∆s+
P
ai .

[3] By induction on n,

Γnf = (IdB ⊗Γn−1)Γf = (f ⊗ Γn−1f)∆ = (f ⊗ (⊗nf)∆n−1)∆ = (⊗n+1f)∆n.

�

Definition 1.9. Let (C,∆) be a graded coalgebra and p : C → V a morphism of graded
vector spaces. We shall say that p is a system of cogenerators of C if for every c ∈ C
there exists n ≥ 0 such that (⊗n+1p)∆n(c) 6= 0 in

⊗n+1 V .

Example 1.10. In the notation of Example 1.3, the natural projection K[t]→ K⊕Kt
is a system of cogenerators.

Proposition 1.11. Let p : B → V be a system of cogenerators of a graded coalgebra
(B,Γ).
Then every morphism of graded coalgebras φ : (C,∆) → (B,Γ) is uniquely determined
by its composition pφ : C → V .

Proof. Let φ, ψ : (C,∆) → (B,Γ) be two morphisms of graded coalgebras such that
pφ = pψ. In order to prove that φ = ψ it is sufficient to show that for every c ∈ C and
every n ≥ 0 we have

(⊗n+1p)Γn(φ(c)) = (⊗n+1p)Γn(ψ(c)).

By Lemma 1.8 we have Γnφ = (⊗n+1φ)∆n and Γnψ = (⊗n+1ψ)∆n. Therefore

(⊗n+1p)Γnφ = (⊗n+1p)(⊗n+1φ)∆n = (⊗n+1pφ)∆n =

= (⊗n+1pψ)∆n = (⊗n+1p)(⊗n+1ψ)∆n = (⊗n+1p)Γnψ.

�
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Definition 1.12. Let (C,∆) be a graded coalgebra. A linear map d ∈ Homn(C,C) is
called a coderivation of degree n if it satisfies the coLeibniz rule

∆d = (d⊗ IdC + IdC ⊗d)∆.

A coderivation d is called a codifferential if d2 = d ◦ d = 0.
More generally, if θ : C → D is a morphism of graded coalgebras, a morphism of graded
vector spaces d ∈ Homn(C,D) is called a coderivation of degree n (with respect to θ) if

∆Dd = (d⊗ θ + θ ⊗ d)∆C .

In the above definition we have adopted the Koszul sign convention: i.e. if x, y ∈
C, f, g ∈ Hom∗(C,D), h, k ∈ Hom∗(B,C) are homogeneous then (f ⊗ g)(x ⊗ y) =
(−1)g xf(x)⊗ g(y) and (f ⊗ g)(h⊗ k) = (−1)g hfh⊗ gk.

The coderivations of degree n with respect a coalgebra morphism θ : C → D form a
vector space denoted Codern(C,D; θ).
For simplicity of notation we denote Codern(C,C) = Codern(C,C; Id).

Lemma 1.13. Let C θ−→D ρ−→E be morphisms of graded coalgebras. The compositions
with θ and ρ induce linear maps

ρ∗ : Codern(C,D; θ)→ Codern(C,E; ρθ), f 7→ ρf ;

θ∗ : Codern(D,E; ρ)→ Codern(C,E; ρθ), f 7→ fθ.

Proof. Immediate consequence of the equalities

∆Eρ = (ρ⊗ ρ)∆D, ∆Dθ = (θ ⊗ θ)∆C .

�

Lemma 1.14. Let C θ−→D be morphisms of graded coalgebras and let d : C → D be a
θ-coderivation. Then:

(1) For every n

∆n
D ◦ d = (

n∑
i=0

θ⊗i ⊗ d⊗ θ⊗n−i) ◦∆n
C .

(2) If p : D → V is a system of cogenerators, then d is uniquely determined by its
composition pd : C → V .

Proof. The first item is a straightforward induction on n, using the equalities ∆n =
Id⊗∆n−1 and θ⊗i∆i−1

C = ∆i−1
D θ.

For item 2, we need to prove that pd = 0 implies d = 0. Assume that there exists c ∈ C
such that dc 6= 0, then there exists n such that p⊗n+1∆n

Ddc 6= 0. On the other hand

p⊗n+1∆n
Ddc = (

n∑
i=0

(pθ)⊗i ⊗ pd⊗ (pθ)⊗n−i) ◦∆n
Cc = 0.

�

Exercise 1.15. A counity of a graded coalgebra is a morphism of graded vector spaces
ε : C → K such that (ε⊗ IdC)∆ = (IdC ⊗ε)∆ = IdC . Prove that if a counity exists, then
it is unique (Hint: (ε⊗ ε′)∆ =?).

Exercise 1.16. Let (C,∆) be a graded coalgebra. A graded subspace I ⊂ C is called a
coideal if ∆(I) ⊂ C ⊗ I + I ⊗ C. Prove that a subspace is a coideal if and only if is the
kernel of a morphism of coalgebras.
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Exercise 1.17. Let C be a graded coalgebra and d ∈ Coder1(C,C) a codifferential of
degree 1. Prove that the triple (L, δ, [, ]), where:

L = ⊕n∈ZCodern(C,C), [f, g] = fg − (−1)g fgf, δ(f) = [d, f ]

is a differential graded Lie algebra.

2. Connected coalgebras

Definition 2.1. A graded coalgebra (C,∆) is called nilpotent if ∆n = 0 for n >> 0.
It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or
equivalently if C = ∪n ker ∆n.

Example 2.2. The vector space

K[t] = {p(t) ∈ K[t] | p(0) = 0} =
⊕
n>0

Ktn

with the coproduct

∆: K[t]→ K[t]⊗K[t], ∆(tn) =
n−1∑
i=1

ti ⊗ tn−i,

is a locally nilpotent coalgebra. The projection K[t] → K[t], p(t) → p(t) − p(0), is a
morphism of coalgebras.

Example 2.3. Let A = ⊕Ai be a finite dimensional graded associative commutative
K-algebra and let C = A∨ = Hom∗(A,K) be its graded dual.
SinceA and C are finite dimensional, the pairing 〈c1⊗c2, a1⊗a2〉 = (−1)a1 c2〈c1, a1〉〈c2, a2〉
gives a natural isomorphism C ⊗ C = (A ⊗ A)∨ commuting with the twisting maps T ;
we may define ∆ as the transpose of the multiplication map µ : A⊗A→ A.
Then (C,∆) is a coassociative cocommutative coalgebra. Note that C is nilpotent if and
only if A is nilpotent.

Exercise 2.4. Let (C,∆) be a graded coalgebra. Prove that for every a, b ≥ 0

∆a(ker ∆a+b) ⊂
a+1⊗

(ker ∆b).

(Hint: prove first that ∆a(ker ∆a+b) ⊂ ker ∆b ⊗ C⊗a.)

Exercise 2.5. Let (C,∆) be a locally nilpotent graded coalgebra. Prove that every
projection p : C → ker ∆ is a system of cogenerators.

Definition 2.6 ([8, p. 282]). A graded coalgebra (C,∆) is called connected if there is
an element 1 ∈ C such that ∆(1) = 1⊗ 1 (in particular deg(1) = 0) and C = ∪+∞

r=0FrC,
where FrC is defined recursively by the formulas

F0C = K 1, Fr+1C = {x ∈ C | ∆(x)− 1⊗ x− x⊗ 1 ∈ FrC ⊗ FrC}.

Example 2.7. Every locally nilpotent coalgebra is connected (with 1 = 0, see Exer-
cise 2.4). If f : C → D is a surjective morphism of coalgebras and C is connected, then
also D is connected.

Lemma 2.8. Let C be a connected coalgebra and e ∈ C such that ∆(e) = e ⊗ e. Then
either e = 0 or e = 1.
In particular the idempotent 1 as in Definition 2.6 is determined by C.



6 MARCO MANETTI

Proof. Let r be the minimum integer such that e ∈ FrC. If r = 0 then e = t1 for some
t ∈ K; if 1 6= 0 then t2 = t and t = 0, 1.
If r > 0 we have

(e− 1)⊗ (e− 1) = ∆(e)− 1⊗ e− e⊗ 1 + 1⊗ 1 ∈ Fr−1C ⊗ Fr−1C

and then e− 1 ∈ Fr−1C which is a contradiction. �

The reduction of a connected coalgebra C is defined as its quotient C = C/K1; it is
a locally nilpotent coalgebra.

3. The reduced tensor coalgebra

Given a graded vector space V , we denote T (V ) =
⊕

n>0

⊗n V . When considered as
a subset of T (V ) it becomes an ideal of the tensor algebra generated by V .
The reduced tensor coalgebra generated by V is the graded vector space T (V ) endowed
with the coproduct a : T (V )→ T (V )⊗ T (V ):

a(v1 ⊗ · · · ⊗ vn) =
n−1∑
r=1

(v1 ⊗ · · · ⊗ vr)⊗ (vr+1 ⊗ · · · ⊗ vn).

We can also write

a =
+∞∑
n=2

n−1∑
a=1

aa,n−a,

where aa,n−a :
⊗n V →

⊗a V ⊗
⊗n−a V is the inverse of the multiplication map.

The coalgebra (T (V ), a) is coassociative, it is locally nilpotent and the projection
p1 : T (V )→ V is a system of cogenerators: in fact, for every s > 0,

as−1(v1 ⊗ · · · ⊗ vn) =
∑

1≤i1<i2<···<is=n

(v1 ⊗ · · · ⊗ vi1)⊗ · · · ⊗ (vis−1+1 ⊗ · · · ⊗ vn)

and then

ker as−1 =
s−1⊕
i=1

V ⊗i, (⊗sp1)as−1 = ps : T (V )→ V ⊗s.

Exercise 3.1. Let µ :
⊗s T (V ) → T (V ) be the multiplication map. Prove that for

every v1, . . . , vn ∈ V

µas−1(v1 ⊗ · · · ⊗ vn) =
(
n− 1
s− 1

)
v1 ⊗ · · · ⊗ vn.

For every morphism of graded vector spaces f : V → W the induced morphism of
graded algebras

T (f) : T (V )→ T (W ), T (f)(v1 ⊗ · · · ⊗ vn) = f(v1)⊗ · · · ⊗ f(vn)

is also a morphism of graded coalgebras.
If (C,∆) is a locally nilpotent graded coalgebra then, for every c ∈ C, there exists

n > 0 such that ∆n(c) = 0 and then it is defined a morphism of graded vector spaces

1
1−∆

=
∞∑
n=0

∆n : C → T (C).

Proposition 3.2. Let (C,∆) be a locally nilpotent graded coalgebra, then:

(1) The map
1

1−∆
=
∑

n≥0 ∆n : C → T (C) is a morphism of graded coalgebras.
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(2) For every graded vector space V and every morphism of graded coalgebras φ : C →
T (V ), there exists a unique morphism of graded vector spaces f : C → V such
that φ factors as

φ = T (f)
1

1−∆
=
∞∑
n=1

(⊗nf)∆n−1 : C → T (C)→ T (V ).

Proof. [1] We have∑
n≥0

∆n

⊗
∑
n≥0

∆n

∆ =
∑
n≥0

n∑
a=0

(∆a ⊗∆n−a)∆

=
∑
n≥0

n∑
a=0

aa+1,n+1−a∆n+1 = a

∑
n≥0

∆n


where in the last equality we have used the relation a∆0 = 0.
[2] The unicity of f is clear, since by the formula φ = T (f)(

∑
n≥0 ∆n) it follows that

f = p1φ.
To prove the existence of the factorization, take any morphism of graded coalgebras
φ : C → T (V ), denote by f = p1φ and by ψ : C → T (V ) the coalgebra morphism
ψ = T (f)(1 − ∆)−1. Since p1ψ = p1φ and p1 is a system of cogenerators we have
φ = ψ. �

It is useful to restate part of the Proposition 3.2 in the following form

Corollary 3.3. Let V be a fixed graded vector space; for every locally nilpotent graded
coalgebra C the composition with the projection p1 : T (V )→ V induces a bijection

HomGC(C, T (V )) ∼−→HomG(C, V ).

In other words, every morphism of graded vector spaces C → V has a unique lifting to
a morphism of graded coalgebras C → T (V ).

When C is a reduced tensor coalgebra, Proposition 3.2 takes the following more
explicit form

Corollary 3.4. Let U, V be graded vector spaces. the projection. Given f : T (U) → V ,
the linear map F : T (U)→ T (V ):

F (v1 ⊗ · · · ⊗ vn) =
n∑
s=1

∑
1≤i1<i2<···<is=n

f(v1 ⊗ · · · ⊗ vi1)⊗ · · · ⊗ f(vis−1+1 ⊗ · · · ⊗ vis),

is the morphism of graded coalgebras lifting f .

Example 3.5. LetA be an associative graded algebra. Consider the projection p : T (A)→
A, the multiplication map µ : T (A)→ A and its conjugate

µ∗ = −µT (−1), µ∗(a1 ⊗ · · · ⊗ an) = (−1)n−1µ(a1 ⊗ · · · ⊗ an) = (−1)n−1a1a2 · · · an.

The two coalgebra morphisms T (A) → T (A) induced by µ and µ∗ are isomorphisms,
the one inverse of the other.
In fact, the coalgebra morphism F : T (A)→ T (A)

F (a1 ⊗ · · · ⊗ an) =
n∑
s=1

∑
1≤i1<i2<···<is=n

(a1a2 · · · ai1)⊗ · · · ⊗ (ais−1+1 · · · ais)
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is induced by µ (i.e. pF = µ), µ∗F (a) = a for every a ∈ A and for every n ≥ 2

µ∗F (a1 ⊗ · · · ⊗ an) =
n∑
s=1

(−1)s−1
∑

1≤i1<i2<···<is=n

a1a2 · · · an =

=
n∑
s=1

(−1)s−1

(
n− 1
s− 1

)
a1a2 · · · an =

(
n−1∑
s=0

(−1)s
(
n− 1
s

))
a1a2 · · · an = 0.

This implies that µ∗F = p and therefore, if F ∗ : T (A) → T (A) is induced by µ∗ then
pF ∗F = µ∗F = p and by Corollary 3.3 F ∗F is the identity.

Proposition 3.6. Let (C,∆) be a locally nilpotent graded coalgebra, V a graded vector
space and

θ =
∞∑
n=1

(⊗nf)∆n−1 : C → T (V )

the morphism of coalgebras induced by pθ = f ∈ Hom0(C, V ). For every n and every
q ∈ Homk(C, V ), the linear map

Q =
∞∑
n=0

(
n∑
i=0

(f⊗i ⊗ q ⊗ f⊗n−i)∆n : C → T (V )

is the θ-coderivation induced by pQ = q. In particular the map

Coderk(C, T (V ); θ)→ Homk(C, V ), Q 7→ pQ,

is bijective.

Proof. The map Q is the composition of the coalgebra morphism
∑

∆n : C → T (C) and
the map

R : T (C)→ T (V ), R =
∑
i,j≥0

f⊗i ⊗ q ⊗ f⊗j .

It is therefore sufficient to prove that R is a T (f)-coderivation, i.e. that satisfies the
coLeibniz rule

(R⊗ T (f) + T (f)⊗R)a = aR.

Denoting Rn =
∑

i+j=n−1 f
⊗i ⊗ q ⊗ f⊗j we have, for every a, n

aa,n−aRn = (Ra ⊗ f⊗n−a + f⊗a ⊗Rn−a)aa,n−a.

Taking the sum over a, n− a we get the proof. �

Corollary 3.7. Let V be a graded vector space. Every q ∈ Homk(T (V ), V ) induce a
coderivation Q ∈ Coderk(T (V ), T (V )) given by the explicit formula

Q(a1 ⊗ · · · ⊗ an) =

=
∑
i,l

(−1)k(a1+···+ai)a1 ⊗ · · · ⊗ ai ⊗ q(ai+1 ⊗ · · · ⊗ ai+l)⊗ · · · ⊗ an.

Proof. Apply Proposition 3.6 with the map f : T (V )→ V equal to the projection (and
then θ = Id). �

Exercise 3.8. Let p : T (V ) → T (V ) be the projection with kernel K =
⊗0 V and

φ : T (V )→ T (V )⊗T (V ) the unique homomorphism of graded algebras such that φ(v) =
v ⊗ 1 + 1⊗ v for every v ∈ V . Prove that pφ = ap.
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Exercise 3.9. Let A be an associative graded algebra over the field K, for every local
homomorphism of K-algebras γ : K[[x]] → K[[x]], γ(x) =

∑
γnx

n, we can associate a
coalgebra morphism Fγ : T (A)→ T (A) induced by the linear map

fγ : T (A)→ A, f(a1 ⊗ · · · ⊗ an) = γna1 · · · an.

Prove the composition formula Fγδ = FδFγ . (Hint: Example 1.6.)

Exercise 3.10. A graded coalgebra morphism F : T (U) → T (V ) is surjective (resp.:
injective, bijective) if and only if F 1

1 : U → V is surjective (resp.: injective, bijective).
(Hint: F preserves the filtrations of kernels of iterated coproducts.)

4. Rooted trees

Definition 4.1. An unreduced1 rooted forest is the data of a finite set of vertices V and
a flow map f : V → V such that:

Fix(f) =
⋂
n>0

fn(V − Fix(f)),

where Fix(f) = {v ∈ V | f(v) = v} is the subset of fixed points of f .

The vertices of an unreduced rooted forest (V, f) are divided into three disjoint classes:
• Vr = {root vertices} = Fix(f).
• Vt = {tail vertices} = V − f(V ).
• Vi = {internal vertices} = f(V )− {root vertices}.

Every unreduced rooted forest (V, f) can be described by a directed graph with set
of vertices V and oriented edges v→f(v) for every v 6∈ {root vertices}. In our pictures
internal vertices will be denoted by a black dot, while tail and root vertices will be
denoted by a circle.
As an example, the pair (V, f), where V = {1, 2, 3, 4} and f(i) = min(4, i + 1) is an
almost rooted forest described by the oriented graph

◦ •//• •//• ◦//
roottail

Note that the map f : Vt ∪ Vi → Vi ∪ Vr is surjective and then the number of tail
vertices is always greater than or equal to the number of root vertices.

The set of edges {(v, f(v)) | v 6∈ {roots}} is divided into types. An edge (v, f(v)) is
called a root edge if f(v) is a root vertex; it is called a tail edge if v is a tail vertex and it
is called an internal edge if both v, f(v) are both internal vertices. Notice that an edge
may be tail and root at the same time.

The arity (also called valence in literature) |v| of a vertex v is the number of incoming
edges; equivalently

|v| = |{w 6= v | f(w) = v}|.
A rooted forest is an almost rooted forest such that every root has arity 1 and every
internal vertex has arity ≥ 2.
A rooted tree is a rooted forest with exactly one root.

1Here unreduced means not necessarily reduced.
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Every rooted forest is then a disjoint union of rooted trees; the following picture
represents a rooted tree with 5 tail vertices and 4 internal vertices.

◦
•

GGGGG
##

◦
wwwwww

;;

◦
•wwwww
;;

◦
GGGGGG

##

◦
•

GGGGG
##

◦
•wwwww
;;

•
GGGGGG

##

◦
•wwwww
;;

• ◦// root

An automorphism of a rooted forest (V, f) is a bijective map φ : V → V such that
fφ = φf . The group of automorphisms will be denoted by Aut(V, f).

Definition 4.2. Let (V, f) be a rooted forest. An orientation of (V, f) is a total ordering
≤ on the set Vt of tail vertices such that if v ≤ u ≤ w and fk(v) = fh(w), for some
h, k ≥ 0, then there exists l ≥ 0 such that fk(v) = f l(u) = fh(w).
It is often convenient to describe an orientation ≤ by the order-preserving bijection
ν : {1, . . . , n} → Vt, where |Vt| = n. Therefore, an oriented rooted forest is a triple
(V, f, ν) where ν is an orientation of (V, f).

For instance, there are (up to isomorphism) exactly three oriented rooted trees with
3 tails:

◦
•

GG ##

◦
•wwwww
;;

◦
•

GG ##
◦
•ww ;;
• ◦//

1

2

3

◦
•

GG ##

◦
•wwwww
;;

◦
•

GG ##
◦
•ww ;;
• ◦//

3

2

1 ◦
•wwwww
;;

◦
•

GGGGG
##◦ •//• ◦//

1

2

3

Lemma 4.3. Let V be a rooted tree. Then the number of isomorphism classes of orien-
tations on V is equal to

1
|Aut(V )|

∏
v∈Vi

|v|!

Proof. The group of automorphisms of V acts freely on the set of orientations. We note
that every orientation is uniquely determined by:

(1) A total ordering of root edges.
(2) For every internal vertex, a total ordering of incoming edges.

Therefore the product
∏
v∈Vi
|v|! is equal to the number of orientations on the tree V . �

Denote by F (n,m) the set of isomorphism classes of oriented rooted forests with n
tails and m roots. Notice that F (n,m) = ∅ for m > n and F (n, n) contains only one
element, denoted by In.

There are defined naturally two binary operations:

◦ : F (l,m)× F (n, l)→ F (n,m) composition

⊗ : F (n,m)× F (a, b)→ F (n+ a,m+ b) tensor product
The tensor product V ⊗W is the disjoint union of V and W with the orientation

{1, 2, . . .} → Wt shifted by the number of tail vertices of V . For instance Ia ⊗ Ib = Ia+b

and

◦
•



DD

◦
•444
ZZ•
◦OO

1 2

⊗
◦
•



DD

◦
•444
ZZ•
◦OO

1 2

=
◦
•



DD

◦
•444
ZZ•
◦OO

1 2
◦
•



DD

◦
•444
ZZ•
◦OO

3 4

Given (V, f) ∈ F (n, l) and (W, g) ∈ F (l,m) we define W ◦ V in the following way:
first we take the unique bijection η : Vr →Wt such that for i >> 0 the map

Vt
ηf i

−−→Wt
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is nondecreasing. Then we use η to annihilate the root vertices of V with the tail vertices
of W . For instance, for every V ∈ F (n,m) we have V = Im ◦ V = V ◦ In and

◦
•



DD

◦
•444
ZZ•
◦OO

1 2

◦
◦ ◦//

◦
•

GGGGG
##◦ •//• ◦//

1

2

3

=
◦
•

GG ##

◦
•wwwww
;;

◦
•

GG ##
◦
•ww ;;
• ◦//

1

2

3

The operations ◦ and ⊗ are associative and satisfy the interchange law [6]: this means
that

(V ⊗W ) ◦ (A⊗B) = (V ◦A)⊗ (W ◦B)
holds whenever the composites V ◦ A and W ◦ B are defined. By convention we set
I0 = ∅ ∈ F (0, 0) and then I0 ⊗ V = V ⊗ I0 = V for every V .

Exercise 4.4. Given V ∈ F (n,m) denote by

w(V ) = max{a | ∃W ∈ F (n− a,m− a) such that V = Ia ⊗W}.
We shall say that a composition V1 ◦ V2 ◦ · · · ◦ Vr is monotone if w(V1) ≤ w(V2) ≤ · · · ≤
w(Vr). Prove that every oriented rooted forest V ∈ F (n,m) can be written uniquely as
a monotone composition of oriented rooted forests with one internal vertex.

5. Automorphisms of T (V ) and inversion formula.

For every graded vector space V we can define binary operations

◦ : Hom∗(V ⊗l, V ⊗m)×Hom∗(V ⊗n, V ⊗l)→ Hom∗(V ⊗n, V ⊗m) (f, g) 7→ f ◦ g,

⊗ : Hom∗(V ⊗n, V ⊗m)×Hom∗(V ⊗a, V ⊗b)→ Hom∗(V ⊗n+a, V ⊗m+b) (f, g) 7→ f ⊗ g.
By a representation of F = ∪n,mF (n,m) we shall mean a map

Z : F →
⋃
n,m

Hom∗(V ⊗n, V ⊗m)

such that ZIn = IdV ⊗n and commutes with the operations ◦ and ⊗.
Every representation Z is determined by its value on the irreducible trees Tn. Con-
versely, for every sequence of maps fn ∈ Hom∗(V ⊗n, V ), n ≥ 2, there exists an unique
representation

Z(fi) : F →
⋃
n,m

Hom∗(V ⊗n, V ⊗m)

such that
ZTn(fi) = fn.

For instance, the oriented rooted tree

Γ =
◦
•

GG ##

◦
•wwwww
;;

◦
•

GG ##
◦
•ww ;;
• ◦//

1

2

3

gives
ZΓ(fi)(v1 ⊗ v2 ⊗ v3) = f2(f2(v1 ⊗ v2)⊗ v3),

while the oriented rooted forest

Γ =

◦ ◦//

◦
•

GGGGG
##◦ •//• ◦//

3

2

1
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gives
ZΓ(fi)(v1 ⊗ v2 ⊗ v3) = (−1)deg(v1) deg(f2)v1 ⊗ f2(v2 ⊗ v3).

Definition 5.1. For every n,m let S(n,m) ⊂ F (n,m) be the subset of (isomorphism
classes of) oriented rooted forests without internal edges and denote S =

⋃
n,m S(n,m).

Equivalently Γ ∈ S if and only if Γ is the tensor product of irreducible oriented rooted
trees.

Lemma 5.2. For every sequence gn ∈ Hom0(V ⊗n, V ), n ≥ 2, the maps

G =
∑
Γ∈S

ZΓ(gi) : T (V )→ T (V )

F =
∑
Γ∈F

ZΓ(gi) : T (V )→ T (V )

are morphism of graded coalgebras.

Proof. Denote by fmn =
∑

Γ∈ F (n,m) ZΓ(gi). According to Corollary 3.4, G is a coalgebra
morphism, while F is a coalgebra morphism if and only if

fmn =
∑

(i1,...,im)∈Nm

i1+···+im=n

f1
i1 ⊗ · · · ⊗ f

1
im .

On the other hand, every Γ ∈ F (n,m) can be written uniquely as a tensor product of
m oriented trees, i.e. the map⋃

(i1,...,im)∈Nm

i1+···+im=n

F (i1, 1)× · · · × F (im, 1)→ F (n,m), (Γ1, · · · ,Γm) 7→ Γ1 ⊗ · · · ⊗ Γm,

is bijective. The conclusion follows from the fact that

ZΓ1⊗···⊗Γm(fi) = ZΓ1(fi)⊗ · · · ⊗ ZΓm(fi).

�

Lemma 5.3. Given g ∈ Hom0(W,V ) and a sequence of maps gn ∈ Hom0(V ⊗n, V ),
n ≥ 2, for every n,m ≥ 1 denote

fmn =
∑

Γ∈ F (n,m)

ZΓ(gi) ◦ (⊗ng) : W⊗n → V ⊗m.

Then, for every n ≥ 0

f1
n =

n∑
a=2

ga ◦ fan .

Proof. Every Γ ∈ F (n, 1) has a unique decomposition of the form Γ = Ta ◦ Γ′, with
Γ′ ∈ F (n, a) and then ∑

1<a≤n

∑
Γ′∈F (n,a)

ZTa◦Γ′(gi) =
∑

Γ∈F (n,1)

ZΓ(gi).

Composing with (⊗ng) we get the equality f1
n =

∑n
a=2 ga ◦ fan . �

Theorem 5.4 (Inversion formula). For every sequence gn ∈ Hom0(V ⊗n, V ), n ≥ 2, the
morphisms

H =
∑
Γ∈S

ZΓ(−gi) : T (V )→ T (V ), F =
∑
Γ∈F

ZΓ(gi) : T (V )→ T (V )

are isomorphisms and F = H−1.
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Proof. We first note that H(v) = v for every v ∈ V and we can write

H = Id +
∑
m<n

hmn , hmn =
∑

Γ∈S(n,m)

ZΓ(−gi) : V ⊗n → V ⊗m

Denoting K = Id−H, we have ∪n ker(Kn) = T (V ) and then H is invertible with inverse

H−1 = Id +
∞∑
n=1

Kn.

Writing

H−1 =
∑
m≤n

fmn ,

we have, since H−1 is a coalgebra morphism and H ◦ H−1 = Id we have fnn = Id and
for every m < n

fmn =
∑

(i1,...,im)∈Nm

i1+···+im=n

f1
i1 ⊗ · · · ⊗ f

1
im = −

∑
m<i≤n

hmi ◦ f in.

Let n > 0 and assume that
fma =

∑
Γ∈F (a,m)

ZΓ(gi) :

For every m ≤ a < n. We want to prove that for every m ≤ n we have

fmn =
∑

Γ∈F (n,m)

ZΓ(gi).

Since F is a morphism of coalgebras it is not restrictive to assume m = 1 and then

f1
n = −

∑
1<a≤n

h1
a ◦ fan =

∑
1<a≤n

ga ◦
∑

Γ∈F (n,a)

ZΓ(gi).

By Lemma 5.3, with g = Id, we get

f1
n =

∑
1<a≤n

∑
Γ′∈F (n,a)

ZTa◦Γ′(gi) =
∑

Γ∈F (n,1)

ZΓ(gi).

�

Exercise 5.5. Denote by tn the number of oriented rooted trees with n tail vertices
(tn = |F (n, 1)|) and bn the number of oriented binary rooted trees (a binary rooted tree
is a rooted tree where every internal vertex has two incoming edges). Prove the following
series expansion identities:∑

n>0

tnx
n =

x+ 1−
√

1− 6x+ x2

4
,

∑
n>0

bnx
n =

1−
√

1− 4x
2

.

(Hint: denote

f(y) = y − y2, g(y) =
y(1− 2y)
(1− y)

= y − y2 − y3 − · · · .

Use inversion formula in case V = K to prove that f(
∑

n>0 bnx
n) = g(

∑
n>0 tnx

n) = x.)
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6. Koszul sign, symmetrization and unshuffles

Dor every set A we denote by Σ(A) the group of permutations of A and by Σn =
Σ({1, . . . , n}).

The action of the twist map on
⊗2 V extends naturally, for every n ≥ 0, to an action

of the symmetric group Σn on the graded vector space
⊗n V . Notice that

σtwtwtw(v1 ⊗ · · · ⊗ vn) = ±(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)).

Definition 6.1. The Koszul sign ε(V, σ; v1, . . . , vn) = ±1 is defined by the relation

σ−1
twtwtw (v1 ⊗ · · · ⊗ vn) = ε(V, σ; v1, . . . , vn)(vσ(1) ⊗ · · · ⊗ vσ(n))

For notational simplicity we shall write ε(σ; v1, . . . , vn) or ε(σ) when there is no pos-
sible confusion about V and v1, . . . , vn.

Remark 6.2. The twist action on
⊗n(Hom∗(V,W )) is compatible with the conjugate of

the twist action on Hom∗(V ⊗n,W⊗n). This means that

σtwtwtw(f1 ⊗ · · · ⊗ fn) = σtwtwtw ◦ f1 ⊗ · · · ⊗ fn ◦ σ−1
twtwtw .

Define the linear map N :
⊗n V →

⊗n V

N(v1 ⊗ · · · ⊗ vn) =
∑
σ∈Σn

ε(σ; v1, . . . , vn)(vσ(1) ⊗ · · · ⊗ vσ(n))

=
∑
σ∈Σn

σtwtwtw(v1 ⊗ · · · ⊗ vn), v1, . . . , vn ∈ V.

Denoting by (
⊗n V )Σn ⊂

⊗n V the subspace of twist-invariant tensors, we have that
the map

1
n!
N :

⊗nV → (
⊗nV )Σn

is a projection and then ⊗nV = (
⊗nV )Σn ⊕ ker(N).

Lemma 6.3. In the notation above, the kernel of N is the subspace generated by all the
vectors v − σtwtwtw(v), σ ∈ Σn, v ∈

⊗n V .

Proof. Denote by W the subspace generated by the vectors v − σtwtwtw(v): it is clear that
N(W ) = 0 and therefore it is sufficient to prove that Im(N) + W =

⊗n V . For every
v ∈

⊗n V we can write

v =
N

n!
v +

(
v − N

n!
v

)
=
N

n!
v +

1
n!

∑
σ∈Σn

(v − σtwtwtwv).

�

Definition 6.4. The set of unshuffles of type (p, q) is the subset S(p, q) ⊂ Σp+q of
permutations σ such that σ(i) < σ(i+ 1) for every i 6= p.

Since σ ∈ S(p, q) if and only if the restrictions σ : {1, . . . , p} → {1, . . . , p + q},
σ : {p + 1, . . . , p + q} → {1, . . . , p + q}, are increasing maps, it follows easily that the
unshuffles are a set of representatives for the left cosets of the canonical embedding of
Σp × Σq inside Σp+q. More precisely for every η ∈ Σp+q there exists a unique decompo-
sition η = στ with σ ∈ S(p, q) and τ ∈ Σp × Σq.
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Lemma 6.5. For every v1, . . . , vn ∈ V and every a = 0, . . . , n we have

N(v1 ⊗ · · · ⊗ vn) =
∑

σ∈S(a,n−a)

ε(σ)N(vσ(1) ⊗ · · · ⊗ vσ(a))⊗N(vσ(a+1) ⊗ · · · ⊗ vσ(n)).

Proof.

N(v1 ⊗ · · · ⊗ vn) =
∑
η∈Σn

η−1
twtwtw v1 ⊗ · · · ⊗ vn

=
∑

σ∈S(a,n−a)

∑
τ∈Σa×Σn−a

τ−1
twtwtw σ

−1
twtwtw v1 ⊗ · · · ⊗ vn

=
∑

σ∈S(a,n−a)

ε(σ)
∑

τ∈Σa×Σn−a

τ−1
twtwtw vσ(1) ⊗ · · · ⊗ vσ(n)

=
∑

σ∈S(a,n−a)

ε(σ)N(vσ(1) ⊗ · · · ⊗ vσ(a))⊗N(vσ(a+1) ⊗ · · · ⊗ vσ(n)).

�

Consider two graded vector spaces V,M , a positive integer n, two maps

f ∈ Hom0(V,M), q ∈ Homk(
⊗lV,M)

and define

Q =
n−l∑
i=0

f⊗i ⊗ q ⊗ f⊗n−l−i ∈ Homk(
⊗nV,

⊗n−l+1M).

More explicitly

Q(a1 ⊗ · · · ⊗ an) =

=
n−l∑
i=0

(−1)k(a1+···+ai)f(a1)⊗· · ·⊗f(ai)⊗q(ai+1⊗· · ·⊗ai+l)⊗f(ai+l+1)⊗· · ·⊗f(an).

Lemma 6.6. In the notation above

QN(a1 ⊗ · · · ⊗ an) =

=
∑

σ∈S(l,n−l)

ε(σ)N(qN(aσ(1) ⊗ · · · ⊗ aσ(l))⊗ f(aσ(l+1))⊗ · · · ⊗ f(aσ(n)))

= N

 ∑
σ∈S(l,n−l)

ε(σ)qN(aσ(1) ⊗ · · · ⊗ aσ(l))⊗ f(aσ(l+1))⊗ · · · ⊗ f(aσ(n))

 .

and then
Q ◦N =

1
l!(n− l)!

N ◦ (qN ⊗ Id⊗n−l) ◦N.

Proof. Denote
H = {σ ∈ Σn | σ(l + 1) < σ(l + 2) < · · · < σ(n)}

and for every j = 0, . . . , n− l choose permutations τ j ∈ Σ({0, . . . , n− l}), ηj ∈ Σn such
that

τ j(0) = j, τ jtwtwtw ◦ (q ⊗ f⊗n−l) ◦ ηjtwtwtw = f⊗j ⊗ q ⊗ f⊗n−l−j .
We have

Q(a1 ⊗ · · · ⊗ an) =
∑
j

τ jtwtwtw ◦ (q ⊗ f⊗n−l) ◦ ηjtwtwtw(a1 ⊗ · · · ⊗ an)
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and then

QN(a1 ⊗ · · · ⊗ an) =
∑
j

τ jtwtwtw ◦ (q ⊗ f⊗n−l) ◦N(a1 ⊗ · · · ⊗ an).

On the other side, since Σ({0, . . . , n− l}) = ∪jτ jΣn−l, we have∑
σ∈S(l,n−l)

ε(σ)N(qN(aσ(1) ⊗ · · · ⊗ aσ(l))⊗ f(aσ(l+1))⊗ · · · ⊗ f(aσ(n))) =

=
∑
σ∈H

ε(σ)N(q(aσ(1) ⊗ · · · ⊗ aσ(l))⊗ f(aσ(l+1))⊗ · · · ⊗ f(aσ(n)))

=
∑
j

∑
σ∈Σn

ε(σ)τ jtwtwtw(q(aσ(1) ⊗ · · · ⊗ aσ(l))⊗ f(aσ(l+1))⊗ · · · ⊗ f(aσ(n)))

=
∑
j

∑
σ∈Σn

τ jtwtwtw ◦ (q ⊗ f⊗n−l) ◦ σ−1
twtwtw (a1 ⊗ · · · ⊗ an)

=
∑
j

τ jtwtwtw ◦ (q ⊗ f⊗n−l) ◦N(a1 ⊗ · · · ⊗ an).

�

Given two oriented rooted forests Γ,Ω we shall write Γ ∼ Ω is Γ and Ω are isomorphic
as rooted forests, i.e. if they differ only by the orientation.
We have seen that the cardinality of the equivalence class of a oriented rooted tree T is

1
|Aut(T )|

∏
v∈Ti

|v|!

Lemma 6.7. Let Ω ∈ F (n,m) and qi ∈ Hom0(V ⊗i, V ), n ≥ 2. Then we have∑
Γ∼Ω

ZΓ(qi) ◦N =
1

|Aut(Ω)|
N ◦ ZΩ(qiN) ◦N.

In particular, if Γ,Ω ∈ F (n, 1) and Γ ∼ Ω, then

ZΓ(qiN) ◦N = ZΩ(qiN) ◦N.

Proof. Assume that Ω = (V, f, ν), where (V, f) is a rooted forest and ν : {1, . . . , n} → Vt
is a numbering. Define

GΩ = {σ ∈ Σn | ν ◦ σ−1 is an orientation }
and, for every σ ∈ GΩ denote by

σΩ = (V, f, ν ◦ σ−1).

The group Aut(Ω), when interpreted as a subgroup of Σ(Vt), acts freely on GΩ and there
is a bijection

GΩ/Aut(Ω) ' {Γ ∼ Ω}.
Therefore the lemma is equivalent to the equality∑

σ∈GΩ

ZσΩ(qi) ◦N = N ◦ ZΩ(qiN) ◦N.

If n = m, then Ω = In, GΩ = Σn and the formula becomes N2 = n!N that is trivially
verified.
By induction we may assume that the formula holds for every Ω ∈ F (a, b) with a2−b2 <
n2 −m2. Assume first that m > 1, therefore we have

Ω = T1 ⊗ · · · ⊗ Tm, Ti ∈ F (ni, 1).



A VOYAGE ROUND COALGEBRAS 17

Since
∑

i(n
2
i − 1) ≤ n2 −m2 the symmetrization formula holds for every tree Ti.

Denote by R = Σn1 × · · · × Σnm ⊂ Σn and by S ⊂ Σn a set of representatives for the
left cosets of R.
Define also

K = R ∩GΩ = GT1 × · · · ×GTn .

By the inductive formula, applied to trees Ti∑
σ∈K

∑
η∈R

ZσΩ(qi) ◦ η−1
twtwtw =

∑
η∈R

ZΩ(qiN) ◦ η−1
twtwtw .

and then∑
σ∈K

ZσΩ(qi) ◦N =
∑
ρ∈S

∑
σ∈K

∑
η∈R

ZσΩ(qi) ◦ η−1
twtwtw ◦ ρ−1

twtwtw =

=
∑
ρ∈S

∑
η∈R

ZΩ(qiN) ◦ η−1
twtwtw ◦ ρ−1

twtwtw = ZΩ(qiN) ◦N.

For every τ ∈ Σm denote by τ̂ ∈ GΩ the unique element satisfying

τ̂Ω = Tτ(1) ⊗ · · · ⊗ Tτ(m).

Notice that for every τ ∈ Σm and every κ ∈ K we have τ̂ ∈ GσΩ and

GΩ =
⋃

τ∈Σm

τ̂K.

Since every operator qi has even degree we have

Zτ̂Ω(qi) = τ−1
twtwtw ◦ ZΩ(qi) ◦ τ̂twtwtw.

and more generally, for every κ ∈ K

Zτ̂κΩ(qi) = τ−1
twtwtw ◦ ZκΩ(qi) ◦ τ̂twtwtw.

Therefore∑
σ∈GΩ

ZσΩ(qi) ◦N =
∑
τ∈Σm

∑
κ∈K

Zτ̂κΩ(qi) ◦N =
∑
τ∈Σm

∑
κ∈K

τ−1
twtwtw ◦ ZκΩ(qi) ◦ τ̂twtwtw ◦N

=
∑
τ∈Σm

τ−1
twtwtw ◦ ZΩ(qiN) ◦N = N ◦ ZΩ(qiN) ◦N.

Assume now m = 1 and decompose Ω as

Ω = Tm ◦Θ, Θ ∈ F (n,m).

We have GΩ = GΘ and

σΩ = Tm ◦ σΘ, σ ∈ GΩ = GΘ.

By inductive assumption∑
σ

ZσΩ(qi) ◦N = qm ◦
∑
σ

ZσΘ(qi) ◦N = qmN ◦ ZΘ(qiN) ◦N = ZΩ(qiN) ◦N.

�

Definition 6.8. A graded coalgebra (C,∆) is called cocommutative if twtwtw ◦∆ = ∆.

Lemma 6.9. Let (C,∆) be a graded coassociative cocommutative coalgebra. Then the
image of ∆n−1 is contained in the set of Σn-invariant elements of

⊗nC.
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Proof. The twist action of Σn on
⊗nC is generated by the operators twtwtwa = IdNa C ⊗twtwtw⊗

IdNn−a−2 C , 0 ≤ a ≤ n− 2, and, if twtwtw ◦∆ = ∆ then, according to Lemma 1.8

twtwtwa∆n−1 = twtwtwa(IdNa C ⊗∆⊗ IdNn−a−2 C)∆n−2

=(IdNa C ⊗∆⊗ IdNn−a−2 C)∆n−2 = ∆n−1.

�

Exercise 6.10. Prove that a coalgebra C is cocommutative if and only if the algebra
Hom∗(C,A) is commutative for every commutative algebra A.

Exercise 6.11. Let C be a cocommutative graded coalgebra and L a graded Lie algebra.
Prove that Hom∗(C,L) is a graded Lie algebra.

7. Symmetric algebras

Let V be a graded vector space, T (V ) its tensor algebra and denote by I ⊂
⊙∗(V )

be the homogeneous ideal generated by the elements x⊗ y − twtwtw(x⊗ y), x, y ∈ V .
The symmetric algebra generated by V is by definition the quotient

S(V ) =
T (V )
I

=
⊕
n≥0

⊙nV,
⊙nV =

⊗nV⊗nV ∩ I
.

The product in S(V ) is denoted by �. In particular if π : T (V )→ S(V ) is the projection
to the quotient then for every v1, . . . , vn ∈ V , v1 � · · · � vn = π(v1 ⊗ · · · ⊗ vn).

If σ is a permutation of {1, . . . , n}, then for every v ∈
⊗n V we have v − σtwtwtwv ∈ I

and then π(v) = πσtwtwtw(v). More explicitly

v1 � · · · � vn = ε(σ; v1, . . . , vn)(vσ(1) � · · · � vσ(n)).

The map N :
⊗n V →

⊗n V factors to

N :
⊙nV →

⊗nV, N(v1 � · · · � vn) = N(v1 ⊗ · · · ⊗ vn)

and the composition
⊙n V

N−→
⊗n V

π−→
⊙n V is n! Id.

For every morphism of graded vector spaces f : V →W we denote by

S(f) : S(V )→ S(W ), S(f)(v1 � · · · � vn) = f(v1)� · · · � f(vn)

the induced morphism of algebras.

Remark 7.1. For every differential graded vector space W there exists a natural inclusion

Hom∗(V �n,W ) ⊆ Hom∗(V ⊗n,W ) :

given f ∈ Hom∗(V �n,W ) we set

f(v1 ⊗ · · · ⊗ vn) = f(v1 � · · · � vn).

Conversely, a map f ∈ Hom∗(V ⊗n,W ) belongs to Hom∗(V �n,W ) if and only if f =
f ◦ σtwtwtw for every permutation σ ∈ Σn.
As an example, if Γ ∈ F (n, 1) is an oriented rooted tree, then for every sequence fi ∈
Hom0(V ⊗i, V ) we have

ZΓ(fi) ◦N ∈ Hom0(V �n, V ),
and the second part of Lemma 6.7 implies that, if fi ∈ Hom0(V �i, V ), then

ZΓ(fi) ◦N = ZΩ(fi) ◦N
for every Ω ∼ Γ.
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8. The reduced symmetric coalgebra

For every graded vector space V denote S(V ) =
⊕

n>0

⊙n V .

Lemma 8.1. The map l : S(V )→ S(V )⊗ S(V ),

l(v1 � · · · � vn) =
n−1∑
a=1

∑
σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) � · · · � vσ(n))

is a cocommutative coproduct and the map

N : (S(V ), l)→ (T (V ), a)

is an injective morphism of coalgebras.

Proof. The cocommutativity of l is clear from definition. Since N is injective, we only
need to prove that aN = (N ⊗N)l. According to Lemma 6.5, for every a

aa,n−aN(v1 � · · · � vn) = N ⊗N
∑

σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) ⊗ · · · ⊗ vσ(n))

and then

aN(v1 � · · · � vn) =
n−1∑
a=1

aa,n−aN(v1 � · · · � vn) = N ⊗N l(v1 � · · · � vn).

�

Definition 8.2. The reduced symmetric coalgebra generated by V is the graded vector
space S(V ) with the coproduct l defined in Lemma 8.1

l(v1 � · · · � vn) =
n−1∑
a=1

∑
σ∈S(a,n−a)

ε(σ)(vσ(1) � · · · � vσ(a))⊗ (vσ(a+1) � · · · � vσ(n)).

It is often convenient to think the reduced symmetric coalgebra as a subset of the
tensor coalgebra, via the identification provided by N . In particular S(V ) is locally
nilpotent and the projection S(V )→ V is a system of cogenerators.
Moreover, since N is an injective morphism of coalgebras we have

ker ln = N−1(ker an) = N−1(⊕ni=1V
⊗i) = ⊕ni=1V

�i.

For every morphism of graded vector spaces f : V →W we have

N ◦ S(f) = T (f) ◦N : S(V )→ T (W )

and then S(f) : S(V )→ S(W ) is a morphism of graded coalgebras.

Exercise 8.3. Assume V finite dimensional with basis ∂1, . . . , ∂m of degree 0. Prove
that

l(∂n1
1 · · · ∂

nm
m ) =

∑
a1,...,am

(
n1

a1

)
· · ·
(
nm
am

)
∂a1

1 · · · ∂
am
m ⊗ ∂n1−a1

1 · · · ∂nm−am
m

and deduce that the dual algebra S(V )
∨

is isomorphic to the maximal ideal of the power
series ring K[[x1, . . . , xm]], with pairing

〈∂n1
1 · · · ∂

nm
m , f(x)〉 =

∂n1+···+nmf

∂xn1
1 · · · ∂x

nm
m

(0) = (
∏
i

ni!)·(coefficient of xn1
1 · · ·x

nm
m in f(x)).
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Proposition 8.4. Let V be a graded vector space; for every locally nilpotent cocom-
mutative graded coalgebra (C,∆) the composition with the projection (Γ: S(V ) → V )
P : S(V )→ V , gives a bijective map

HomGC(C, S(V ))−→HomG(C, V ), f 7→ Pf,

with inverse

f 7→ P∗f =
+∞∑
n=1

S(f) ◦ π
n!

∆n−1 =
+∞∑
n=1

π ◦ T (f)
n!

∆n−1 : C → S(V ),

where π : T (C)→ S(C), π : T (V )→ S(V ) are the projections.

Notice that

S(f) ◦ π(c1 ⊗ · · · ⊗ cn) = π ◦ T (f)(c1 ⊗ · · · ⊗ cn) = m(c1)� · · · �m(cn)

.

Proof. Since PP∗(f) = f , P : S(V )→ V is a system of cogenerators and N is an injective
morphism of coalgebras, it is sufficient to prove that N ◦P∗(f) : C → T (V ) is a morphism
of graded coalgebras. According to Lemma 6.9 the image of ∆n is contained in the
subspace of symmetric tensors and therefore

∆n−1 = N ◦ π
n!

∆n−1,

Nθ(m) =
+∞∑
n=1

N ◦ S(f) ◦ π
n!

∆n−1 =
+∞∑
n=1

T (f) ◦N ◦ π
n!

∆n−1 =
+∞∑
n=1

T (f) ◦∆n−1

and the conclusion follows from Proposition 3.2. �

Corollary 8.5. Let C be a locally nilpotent cocommutative graded coalgebra, and V a
graded vector space. A morphism θ ∈ HomG(C, S(V )) is a morphism of graded coalgebras
if and only if there exists m ∈ HomG(C, V ) ⊂ HomG(C, S(V )) such that

θ = exp(m)− 1 =
∞∑
n=1

1
n!
mn,

being the n-th power of m is considered with respect to the algebra structure on HomG(C, S(V ))
(Example 1.4).

Proof. An easy computation gives the formula mn = S(m)π∆n−1 for the product defined
in Example 1.4. �

Proposition 8.6. Let V be a graded vector space and C a locally nilpotent cocommu-
tative coalgebra. Then for every coalgebra morphism θ : C → S(V ) and every integer k,
the composition with N : S(V )→ T (V ) gives an isomorphism

Coderk(C, S(V ); θ) ' Coderk(C, T (V );Nθ).

Proof. We need to prove that if Q : C → T (V ) is a coderivation with respect to some
morphism η = Nθ, then Q = NP for some P : C → S(V ). According to Proposition 3.6
we have

Q =
∞∑
n=0

n∑
i=0

(f⊗i ⊗ q ⊗ f⊗n−i)∆n : C → T (V )

for some f ∈ Hom0(C, V ) and q ∈ Homk(C, V ). Since C is cocommutative we have
N∆n = (n+ 1)!∆n and then
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Q =
∞∑
n=0

n∑
i=0

(f⊗i ⊗ q ⊗ f⊗n−i)∆n =
∞∑
n=0

n∑
i=0

(f⊗i ⊗ q ⊗ f⊗n−i) N

(n+ 1)!
∆n.

By Lemma 6.6

Q =
∞∑
n=0

1
n!
N(q ⊗ f⊗n)

N

(n+ 1)!
∆n = N

∞∑
n=0

1
n!

(q ⊗ f⊗n)∆n.

�

Corollary 8.7. Let V be a graded vector space and (C,∆) a locally nilpotent cocommu-
tative coalgebra. Then for every coalgebra morphism θ : C → S(V ) and every integer n,
the composition with the projection P : S(V )→ V gives a bijective map

Codern(C, S(V ); θ)→ Homn(C, V ), Q 7→ PQ,

with inverse

q 7→
+∞∑
n=1

π

n!
(q ⊗ (θ1)⊗n)∆n.

Proof. Immediate consequence of Propositions 3.6 and the same computation made in
the proof of Proposition 8.6. �

Corollary 8.8. Let V be a graded vector space, S(V ) its reduced symmetric coalgebra.
The application Q 7→ {Q1

k} gives an isomorphism of vector spaces

Codern(S(V ), S(V ))→
+∞∏
k=1

Homn(V �k, V )

whose inverse D is given by the formula

D(qi)(v1 � · · · � vn) =
n∑
k=1

∑
σ∈S(k,n−k)

ε(σ)qk(vσ(1) � · · · � vσ(k))� vσ(k+1) � · · · � vσ(n).

In particular for every coderivation Q we have Qij = 0 for every i > j and then the
subcoalgebras

⊕r
i=1

⊙i V are preserved by Q.

Proof. As above we only need to prove that D(qi) is a coderivation. By linearity it is
not restrictive to assume that qi = 0 for every i 6= l. Let r ∈ Homn(

⊗l V, V ) such that
rN =l and let R ∈ Codern(T (V ), T (V )) the coderivation such that R1 = r; we will show
that R ◦N = N ◦D(qi). According to Corollary 3.7

R(a1 ⊗ · · · ⊗ an) =

=
∑
i,l

(−1)k(a1+···+ai)a1 ⊗ · · · ⊗ ai ⊗ r(ai+1 ⊗ · · · ⊗ ai+l)⊗ · · · ⊗ an.

and then, by Lemma 6.6

RN(a1 � · · · � an) =

= N

 ∑
σ∈S(l,n−l)

ε(σ)rN(aσ(1) � · · · � aσ(l))� aσ(l+1))� · · · � aσ(n)


= N

 ∑
σ∈S(l,n−l)

ε(σ)Q1
a(aσ(1) � · · · � aσ(l))� aσ(l+1) � · · · � aσ(n)
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�

9. Q-manifolds

Definition 9.1 ([5, 4.3]). A formal graded pointed Q-manifold is the data (V, q1, q2, . . .)
of a graded vector space V and a sequence of maps

qn ∈ Hom1(V �n, V ), n ≥ 1,

such that the coderivation D(qn) (defined in Corollary 8.8) is a codifferential of the
reduced symmetric coalgebra S(V ).

For notational simplicity, from now we shall simply say Q-manifolds, omitting the
adjectives formal, graded and pointed.

Lemma 9.2. Let V be a graded vector space and qn ∈ Hom1(V �n, V ), for n ≥ 1, be a
sequence of maps. Then D(qn) is a codifferential, i.e. D(qn) ◦D(qn) = 0, if and only if
for every n > 0 and every v1, . . . , vn ∈ V∑

k+l=n+1

∑
σ∈S(k,n−k)

ε(σ; v1, . . . , vn)ql(qk(vσ(1)� · · · � vσ(k))� vσ(k+1)� · · · � vσ(n)) = 0.

Proof. Denote P = D(qn) ◦D(qn) = 1
2 [D(qn), D(qn)]: since P is a coderivation we have

that P = 0 if and only if P 1 = D(qn)1 ◦D(qn) = 0. According to Corollary 8.8

D(qn)(v1 � · · · � vn) =
n∑
k=1

∑
σ∈S(k,n−k)

ε(σ)qk(vσ(1) � . . .� vσ(k))� vσ(k+1) � · · · � vσ(n).

and then P 1(v1 � · · · � vn) is equal to the expression in the statement. �

In particular, if (V, q1, q2, . . .) is an Q-manifold, then (V, q1) is a differential graded
vector space.

Definition 9.3. A morphism f∞ : (V, qi)→ (W, ri) of Q-manifolds is a linear map

f∞ ∈ Hom0(S(V ),W )

such that the morphism P∗f∞ : S(V )→ S(W ) (defined in Proposition 8.4) is a morphism
of differential graded coalgebras, i.e. D(ri)P∗f∞ = P∗f∞D(qi).

The composition of two morphisms f∞ ∈ Hom0(S(V ),W ), g∞ ∈ Hom0(S(U), V ) is
defined as

f∞ ◦ g∞ = f∞(P∗g∞) ∈ Hom0(S(U),W ).

The category of Q-manifolds is equivalent to the full subcategory of DGC (differential
graded coalgebras). If C is a differential graded coalgebra and g = (V, qi) is a Q-manifold
we denote by

MorDGC(C, g) = MorDGC(C, (S(V ), D(qi))).

Remark 9.4. In Definition 9.3 it is sufficient to require (
∑
ri)P∗f∞ = f∞D(qn). In

fact D(ri)P∗f∞ and P∗f∞D(qi) are both P∗f∞-coderivations and then (
∑
ri)P∗f∞ =

f∞D(qn) if and only if D(ri)(P∗f∞) = (P∗f∞)D(qi).

Given two Q-manifolds g1 = (V, q1, q2, . . .), g2 = (W, r1, r2, . . .) we denote

g1 ⊕ g2 = (V ⊕W, q1 ⊕ r1, q2 ⊕ r2, . . .)
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where

qn ⊕ rn(x) =


qn(x) if x ∈ V �n

rn(x) if x ∈W�n

0 if x ∈ V �i ⊗W�n−i and 0 < i < n.

It is immediate from Lemma 9.2 that g1 ⊕ g2 is a Q-manifold.

The next sections will be devoted to the proof of the following important result.

Theorem 9.5. Let (V, q1, q2, . . .) be a Q-manifold and let i : (H, d) → (V, q1) be an
injective quasiisomorphism of complexes. Then there exist a Q-manifold structure
(H, r1, r2, . . .) and two morphisms of Q-manifolds

ı∞ : (H, r1, r2, . . .)→ (V, q1, q2, . . .), π∞ : (V, q1, q2, . . .)→ (H, r1, r2, . . .)

such that r1 = d, ı1 = ı and π∞ ◦ ı∞ = Id.

Remark 9.6. In the situation of Theorem 9.5 The Q-manifold structure (H, r1, r2, . . .)
is unique up to (non canonical) isomorphism. In fact if (H, s1, s2, . . .), j∞ and p∞ is
another triple, then

p∞ ◦ ı∞ : (H, r1, r2, . . .)→ (H, s1, s2, . . .)

is an isomorphism.

The proof will goes as follows: since ı is an injective quasiisomorphism there exists
h ∈ Hom−1(V, V ) such that IdV +[q1, h] is a projection onto the image of ı. Then we give
an explicit construction, in terms of qi, ı and h, of the maps rn, ın: this is done by using
rooted tree formalism. Lastly we prove the existence of π∞ and the unicity properties
using an analog of the decomposition theorem of Q-manifolds.

10. Contractions

Definition 10.1 (Eilenberg and Mac Lane [1, p. 81]). A contraction is the data

( M
ı //

N
π

oo , h)

where M,N are differential graded vector spaces, h ∈ Hom−1(N,N) and ı, π are cochain
maps such that:

(1) (deformation retraction) πı = IdM , ıπ − IdN = dNh+ hdN ,
(2) (annihilation properties) πh = hı = h2 = 0.

The maps ı, π and h are referred as the inclusion, projection and homotopy of the
contraction.

Definition 10.2. A morphism of contractions

f : ( M
ı //

N
π

oo , h)→ ( A
i //

B
p

oo , k)

is a morphism of differential graded vector spaces f : N → B such that fh = kf .

It is an easy exercise to prove that if

f : ( M
ı //

N
π

oo , h)→ ( A
i //

B
p

oo , k)

is a morphism of contractions then there exists an unique morphism of complexes
f ′ : M → B such that f ′π = pf and if ′ = fı.



24 MARCO MANETTI

Remark 10.3. If ( M
ı //

N
π

oo , h) is a contraction, then h2 = h + hdNh = 0. Con-

versely, every h ∈ Hom−1(N,N) satisfying h2 = h + hdNh = 0 gives a contrac-

tion ( M
ı //

N
π

oo , h) where M = ker(dNh + hdN ), ı : M → N is the inclusion and

π = ı−1(IdN +dNh+ hdN ).

Example 10.4. (
K

ı // K[t, dt]
e0

oo ,−
∫

0

)
is a contraction, where e0 is the evaluation at 0 and ı is the inclusion.

Example 10.5. (
K⊕Kt⊕Kdt

ı // K[t, dt]
π

oo , t

∫ 1

0
−
∫

0

)
is a contraction, where

π(q(t) + p(t)dt) = tq(1) + (1− t)q(0) +
(∫ 1

0
p(s)ds

)
dt

and ı is the inclusion.

Lemma 10.6. Let ı : M ↪→ N be an injective morphism of differential graded vector
spaces. Then ı is the inclusion of a contraction if and only if ı : H∗(M)→ H∗(N) is an
isomorphism.

Proof. One implication is clear: if ( M
ı //

N
π

oo , h) is a contraction, then h is a homotopy

between ıπ and the identity on N .
Conversely, it is not restrictive to assume M a subcomplex of N and ı the inclusion;

assume H∗(M) = H∗(N) and denote by d the differential of N . Since H∗(M)→ H∗(N)
is injective we have

M ∩ dN = Z(M) ∩ dN = dM

and we can find a direct sum decomposition

dN = dM ⊕B, B ∩M = ∅.

Moreover H∗(M)→ H∗(N) is surjective and then

Z(N) = Z(M) + dN = Z(M)⊕B.

Choosing a direct sum decomposition

d−1(B) = Z(N)⊕ C

we have (M ⊕ B) ∩ C = 0. In fact, if c = m + b with c ∈ C, m ∈ M and b ∈ B, then
dc = dm ∈ B ∩M = 0 and therefore c ∈ Z(N) ∩ C = 0. Let now n ∈ N , there exist
m ∈M such that dn− dm ∈ B and then n−m ∈ d−1(B). We can write n−m = a+ c,
with a ∈ Z(N) ⊂M ⊕B and c ∈ C. Therefore N = M +B + C and we have proved

N = M ⊕B ⊕ C, d : C '−−−−→ B.

Define therefore π : N →M as the projection with kernel C ⊕B and

h(m+ b+ c) = d−1(b) ∈ C.

�
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Definition 10.7. Given two contractions ( M
ı //

N
π

oo , h) and ( N
i //

P
p

oo , k), their

composition is the contraction defined as

( M
iı //

P
πp

oo , k + ihp).

Example 10.8. Given two contractions ( M
ı //

N
π

oo , h) and ( A
i //

B
p

oo , k) we define

their tensor product as

( M ⊗A
ı⊗i // N ⊗B
π⊗p

oo , h ∗ k), h ∗ k = ıπ ⊗ k + h⊗ IdB .

Denoting by d̂ = d⊗ IdB + IdN ⊗d the differential on N ⊗B, we have

(h ∗ k ◦ d̂+ d̂ ◦ h ∗ k)(x⊗ y) =

= h ∗ k(dx⊗ y + (−1)xx⊗ dy) + d̂(hx⊗ y + (−1)xıπ(x)⊗ ky)

= hdx⊗ y − (−1)xdıπ(x)⊗ ky + (−1)xhx⊗ dy + ıπ(x)⊗ kdy+

+ dhx⊗ y − (−1)xhx⊗ dy + (−1)xdıπ(x)⊗ ky + ıπ(x)⊗ dky
= (hd+ dh)x⊗ y + ıπ(x)⊗ (kd+ dk)y

= ıπx⊗ y − x⊗ y + ıπ(x)⊗ ip(y)− ıπ(x)⊗ y = (ıπ ⊗ ip− IdN ⊗ IdA)x⊗ y.

It is straightforward to verify the annihilation properties of h ∗ k and the associativity
of such tensor product.

Example 10.9. Given a contraction ( M
ı //

N
π

oo , h), its tensor nth power is

⊗n
R( M

ı //
N

π
oo , h) = ( M⊗n

ı⊗n
//
N⊗n

π⊗n
oo , Tnh),

where

Tnh =
n∑
i=1

(ıπ)⊗i−1 ⊗ h⊗ Id⊗n−iN .

Since the differential on N⊗n commutes with the twist action of the symmetric group
Σn, we can take the simmetrization of Tnh

Snh =
1
n!

∑
σ∈Σn

σtwtwtw ◦ Tnh ◦ σ−1
twtwtw .

In order to prove that ( M⊗n
ı⊗n

//
N⊗n

π⊗n
oo , Snh) is a contraction, the only non trivial

condition to verify is (Snh)2 = 0. More generally we have that Tnh◦σtwtwtw ◦Tnh◦σ−1
twtwtw = 0

for every permutation σ: this is an exercise about Koszul rule of signs and it is left to
the reader.

Exercise 10.10. Prove that if N contracts to M , then
⊙nN contracts to

⊙nM .
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11. Contracting Q-manifolds: recursive formulas

In this section (V, q1, q2, . . .) is a fixed Q-manifold and denote by

Q = D(qn) : S(V )→ S(V )

the induced codifferential of degree 1. Denote also

q+ =
∑
i≥2

qi : S(V )→ V,

so that Q1 = q1 + q+.
Assume to have a graded vector space W and a coderivation Q̂ : S(W ) → S(W ) of
degree 1 such that (W, Q̂1

1) is a differential graded vector space. Assume moreover to
have two morphisms of differential graded vector spaces

ϕ1
1 : W → V, π : V →W

and a homotopy K ∈ Hom−1(V, V ) between ϕ1
1 ◦ π and IdV , i.e.

q1ϕ
1
1 = ϕ1

1Q̂
1
1, πq1 = Q̂1

1π, q1K +Kq1 = ϕ1
1π − IdV .

Theorem 11.1. In the above set-up, assume that ϕ : S(W ) → S(V ) is a morphism of
graded coalgebras lifting ϕ1

1. If

(1) ϕ1 = ϕ1
1 +Kq+ϕ, Q̂1 = Q̂1

1 + πq+ϕ,

then, denoting by Q̂ the coderivation indeuced by Q̂1, we have

Qϕ = ϕQ̂, Q̂Q̂ = 0.

Remark 11.2. Using the projection operators P we have ϕ1
1 = ϕP, ϕ1 = Pϕ and then

the equations 1 may be written as

Pϕ = ϕP +K(PQ−QP)ϕ, PQ̂ = Q̂P + π(PQ−QP)ϕ,

or, in a more compact form,

[P, ϕ] = K[P, Q]ϕ, [P, Q̂] = π[P, Q]ϕ.

Proof. (D. Fiorenza [2]) We first prove that

(Qϕ− ϕQ̂)1 = Kq+(Qϕ− ϕQ̂).

We have

(Qϕ− ϕQ̂)1 = Q1ϕ− ϕ1Q̂ = q1ϕ
1 + q+ϕ− ϕ1Q̂

= q1ϕ
1
1 + q1Kq+ϕ+ q+ϕ− ϕ1

1Q̂
1 −Kq+ϕQ̂

= q1ϕ
1
1 + (ϕ1

1π − IdV −Kq1)q+ϕ+ q+ϕ− ϕ1
1Q̂

1 −Kq+ϕQ̂

= q1ϕ
1
1 + ϕ1

1πq+ϕ−Kq1q+ϕ− ϕ1
1Q̂

1 −Kq+ϕQ̂

= q1ϕ
1
1 + ϕ1

1πq+ϕ−Kq1q+ϕ− ϕ1
1Q̂

1
1 − ϕ1

1πq+ϕ−Kq+ϕQ̂

= (q1ϕ
1
1 − ϕ1

1Q̂
1
1)−Kq1q+ϕ−Kq+ϕQ̂

= −Kq1q+ϕ−Kq+ϕQ̂.

Since 0 = Q1Q = q1Q
1 + q+Q = q1q+ + q+Q we have q1q+ = −q+Q and therefore

(Qϕ)1 − (ϕQ̂)1 = −Kq1q+ϕ−Kq+ϕQ̂ = Kq+(Qϕ− ϕQ̂).

The map
δ = Qϕ− ϕQ̂ : S(W )→ S(V )
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is a ϕ-derivation and then, in order to prove that δ = 0, it is sufficient to show that
δ1 = 0. We shall prove by induction on n that δ1 vanishes on

⊙nW ; for n = 0 there
is nothing to prove. Let’s assume n > 0 and δ1(

⊙iW ) = 0 for every i < n, then by
coLeibniz rule, for every w ∈

⊙nW we have δ(w) = δ1(w) ∈ V and therefore

δ1(w) = Kq+δ(w) = Kq+δ
1(w) = 0.

We also have
(Q̂Q̂)1 = Q̂1Q̂ = Q̂1

1Q̂+ πq+ϕQ̂ =
= Q̂1

1Q̂
1 + πq+Qϕ = Q̂1

1πq+ϕ+ πq+Qϕ = π(q1q+ + q+Q)ϕ.
We have already noticed that q1q+ = −q+Q and then (Q̂Q̂)1 = 0. �

Remark 11.3. For later use, we point out that, since (q+ϕ)1
1 = 0, the equalities ϕ1 =

ϕ1
1 +Kq+ϕ and Q̂1 = Q̂1

1 + πq+ϕ of Theorem 11.1, are equivalent to

ϕ1
n = K

n∑
i=2

qiϕ
i
n, Q̂1

n = π

n∑
i=2

qiϕ
i
n, ∀ n ≥ 2.

According to Corollary 3.4, every ϕin depends only of ϕ1
1, ϕ

1
2, . . . , ϕ

1
n−i+1 and then the

hypothesis of Theorem 11.1 implies that ϕ and Q̂ are recursively determined by ϕ1
1, π,K

and qn for n ≥ 1.

Corollary 11.4. Let (V, q1, q2, . . .) be a Q-manifold and let ϕ1
1 : (W, r1) → (V, q1) be

an injective quasiisomorphism of differential graded vector spaces. Then (W, r1) can
be extended to a Q-manifold (W, r1, r2, . . .) and ϕ1

1 can be lifted to a morphism of Q-
manifolds.

Proof. According to Lemma 10.6, we can find a morphism of complexes π : (V, q1) →
(W, r1) and a homotopy K ∈ Hom−1(V, V ) such that

q1K +Kq1 = ϕ1
1π − IdV , πϕ1

1 = IdW .

It is sufficient to define recursively ϕ1
n =

∑n
i=2(Kqi)ϕin as in Remark 11.3; then define

rn =
∑n

i=2(πqi)ϕin and apply Theorem 11.1. �

Remark 11.5. The formulas of Corollary 11.4 commutes with composition of contrac-

tions. Given two contractions ( M
ı //

N
π

oo , h), ( N
i //

P
p

oo , k), their composition

( M
iı //

P
πp

oo , k + ihp) and a codifferential Q : S(P ) → S(P ) there exists two mor-

phisms of graded coalgebras ϕ : S(N)→ S(P ), ψ : S(M)→ S(N) and two codifferentials
Q̂ : S(N)→ S(N), Q̃ : S(M)→ S(M) uniquely defined by the system of equations

[P, ϕ] = k[P, Q]ϕ, [P, Q̂] = p[P, Q]ϕ, ϕP = i,

[P, ψ] = h[P, Q̂]ψ, [P, Q̃] = π[P, Q̂]ψ, ψP = ı.

Then

[P, ϕψ] = [P, ϕ]ψ + ϕ[P, ψ] = k[P, Q]ϕψ + ϕh[P, Q̂]ψ

= k[P, Q]ϕψ + ϕhp[P, Q]ϕψ = k[P, Q]ϕψ + ihp[P, Q]ϕψ

= (k + ihp)[P, Q]ϕψ.

[P, Q̃] = π[P, Q̂]ψ = πp[P, Q]ϕψ.

Corollary 11.6. Let (V, q1, q2, q3, . . .) be an acyclic Q-manifold, where acyclic means
that the complex (V, q1) is acyclic. Then (V, q1, q2, q3, . . .) is isomorphic to (V, q1, 0, 0, . . .).
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Proof. Apply the theorem with W = V , ϕ1
1 = IdV , π = 0 and K any homotopy between

0 and IdV . �

12. Contracting Q-manifolds: global formulas

In this section we will give a description of the morphism ϕ and the coderivation Q̂
of Theorem 11.1 as a sum over rooted trees. We first need the analog of Lemma 5.2 for
reduced symmetric coalgebras. Notice that, since Hom0(V �n, V ) ⊆ Hom0(V ⊗n, V ) (see
Remark 7.1), it makes sense to consider the operators ZΓ(hi) ∈ Hom0(V ⊗n, V ⊗m) for
every oriented rooted forest Γ and every sequence hn ∈ Hom0(V �n, V ).

Lemma 12.1. Let V,W be graded vector spaces. Given ı ∈ Hom0(W,V ) and a sequence
of maps hn ∈ Hom0(V �n, V ), n ≥ 2.
Then, for every n,m ≥ 1 there exists fmn ∈ Hom0(W�n, V �m) such that

N ◦ fmn =
∑

Γ∈F (n,m)
∼

1
|Aut(Γ)|

ZΓ(hi) ◦ (⊗nı) ◦N : W�n → V ⊗m.

Moreover ∑
n,m≥1

fmn : S(V )→ S(V )

is a morphism of graded coalgebras and, for every n ≥ 1

f1
n =

∑
Γ∈F (n,1)

∼

1
|Aut(Γ)|

ZΓ(hi) ◦ (⊗nı) ◦N =
n∑
a=2

ha ◦ fan .

Proof. For every n ≥ 2 let gn ∈ Hom0(V ⊗n, V ) be such that hn = gnN (e.g. gn = hn/n!).
By Lemma 5.2 the morphism∑

Fmn : T (W )→ T (V ), Fmn =
∑

Γ∈F (n,m)

ZΓ(gi) ◦ (⊗nı)

is a morphism of graded coalgebras. According to Lemma 6.7

Fmn ◦N =
∑

Γ∈F (n,m)

ZΓ(gi) ◦N ◦ (�nı) =

=
∑

Γ∈F (n,m)
∼

1
|Aut(Γ)|

N ◦ ZΓ(giN) ◦N ◦ (�nı)

= N ◦
∑

Γ∈F (n,m)
∼

1
|Aut(Γ)|

ZΓ(hi) ◦ (⊗nı) ◦N.

Therefore there exists fmn such that

N ◦ fmn = Fmn ◦N
and then the fmn are the components of a morphism of graded symmetric coalgebras.
By Lemma 5.3 we have

F 1
n =

n∑
a=2

ga ◦ F an ,

and then

f1
n = F 1

n ◦N =
n∑
a=2

ga ◦ F an ◦N =
n∑
a=2

ga ◦N ◦ fan =
n∑
a=2

ha ◦ fan .
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�

It is now convenient to introduce a new formalism. Assume there are given K ∈
Hom−1(V, V ) and a sequence of maps qn ∈ Hom1(V �n, V ), n ≥ 2.
For every oriented tree Γ ∈ F (n, 1), denote by

ZΓ(K, qi) ∈ Hom1(V ⊗n, V )

the composite operator described by the tree Γ, where every internal vertex of arity k
is decorated by qk and every internal edge is decorated by K.
The relation between ZΓ(K, qi) and ZΓ(Kqi) is easy to describe: in fact if n > 1 then
ZΓ(Kqi) = K ◦ ZΓ(K, qi), while if Γ = Tk ◦ Ω with Ω ∈ F (n, k), then ZΓ(K, qi) =
qk ◦ ZΓ(Kqi).

It is now easy to prove the following theorem.

Theorem 12.2. Let (V, q1, q2, . . .) be a Q-manifold and let

π : (V, q1)→ (H, r1), ı : (H, r1)→ (V, q1)

be two morphism of complexes such that πı = IdH .
Assume that there exists K ∈ Hom−1(V, V ) such that

IdV +q1K +Kq1 = ıπ.

Then (H, r1, r2, . . .) is a Q-manifold, where for every n ≥ 2

rn(a1 � · · · � an) =
∑

Γ∈F (n,1)
∼

1
|Aut(Γ)|

∑
σ∈Σn

ε(σ)πZΓ(K, qi)(ı(aσ(1))⊗ · · · ⊗ ı(aσ(n))),

and ı∞ : (H, r1, r2, . . .)→ (V, q1, q2, . . .) is a morphism of Q-manifold, where ı1 = ı and,
for n ≥ 2

ın(a1 � · · · � an) =
∑

Γ∈F (n,1)
∼

1
|Aut(Γ)|

∑
σ∈Σn

ε(σ)KZΓ(K, qi)(ı(aσ(1))⊗ · · · ⊗ ı(aσ(n))).

Proof. We define in and rn as in Corollary 11.4 and then we only need to prove the
explicit formulas. According to Lemma 12.1 we have for every n ≥ 2

ın =
∑

Γ∈F (n,1)
∼

1
|Aut(Γ)|

ZΓ(Kqi) ◦N ◦ S(ı) = K ◦
∑

Γ∈F (n,1)
∼

1
|Aut(Γ)|

ZΓ(K, qi) ◦N ◦ S(ı).

Again by Lemma 12.1 we have

N ◦ ımn = N ◦
∑

Γ∈F (n,m)
∼

1
|Aut(Γ)|

ZΓ(Kqi) ◦ (⊗nı) ◦N.

Therefore

rn =
n∑

m=2

(πqm)ımn =
n∑

m=2

π
qm
m!
◦N ◦ ımn =

n∑
m=2

π
qm
m!
◦N ◦

∑
Γ∈F (n,m)

∼

1
|Aut(Γ)|

ZΓ(Kqi) ◦ (⊗nı) ◦N

=
n∑

m=2

πqm ◦
∑

Γ∈F (n,m)
∼

1
|Aut(Γ)|

ZΓ(Kqi) ◦ (⊗nı) ◦N
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= π
∑

Γ∈F (n,1)
∼

1
|Aut(Γ)|

ZΓ(K, qi) ◦ (⊗nı) ◦N.

�

Exercise 12.3. Use Exercise 8.3, inversion formula 5.4 and symmetrization to prove
the tree formula for reversion of power series of [9] (if you haven’t full text article it is
sufficient to consult Math. Reviews).

13. Homotopy classification of Q-manifolds

Definition 13.1. A morphism {fn} : (V, q1, q2, . . .) → (W, r1, r2, . . .) of Q-manifolds is
called:

(1) linear (sometimes strict) if fn = 0 for every n > 1.
(2) quasiisomorphism if f1 : (V, q1)→ (W, r1) is a quasiisomorphism of complexes.

Given two Q-manifolds g1 = (V, q1, q2, . . .), g2 = (W, r1, r2, . . .) we denote

g1 ⊕ g2 = (V ⊕W, q1 ⊕ r1, q2 ⊕ r2, . . .)

where

qn ⊕ rn(x) =


qn(x) if x ∈ V �n

rn(x) if x ∈W�n

0 if x ∈ V �i ⊗W�n−i and 0 < i < n.

It is immediate from Lemma 9.2 that g1 ⊕ g2 is a Q-manifold. The natural inclusions

i1 : g1 → g1 ⊕ g2, i2 : g1 → g2 ⊕ g2

and the natural projections

p1 : g1 ⊕ g2 → g1, p2 : g1 ⊕ g2 → g2

are linear morphisms.

Proposition 13.2. In the notation above, the diagram

g1 ⊕ g2
p1−→ g1yp2

g2

is a product in the category of locally nilpotent cocommutative differential graded coalge-
bras.

Proof. Assume that C is a locally nilpotent cocommutative differential graded coalgebra
and let

F : C → g1, G : C → g2

be two morphisms of differential graded coalgebras. According to Proposition 8.4 there
exists an unique morphism of graded coalgebras

H : C → S(V ⊕W )

such that
H1 = F 1 ⊕G1 : C → V ⊕W

and then p1H = F , p2H = G. Denoting by d the codifferential of C we have

H1 ◦ d = (F 1 ◦ d)⊕ (G1 ◦ d) = D(qi)1 ◦ F ⊕D(ri)1 ◦G = D(qi × ri)1 ◦H
and then Hd = D(qi × ri)H. �
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Proposition 13.3. Let (C,∆, d) be a differential graded cocommutative coalgebra and
B ⊂ C a differential graded subcoalgebra such that ∆(C) ⊂ B⊗B and the complex C/B
is acyclic. Then for every Q-manifold g the restriction map

MorDGC(C, g)→ MorDGC(B, g)

is surjective.

Proof. Assume g = (V, q1, q2, . . .) and let f : (B, d) → (S(V ), D(qi)) be a morphism
of differential graded coalgebras. Choosing any lifting of f1 : B → V to a morphism
g1 : C → V , we get a morphism of graded coalgebras g : C → S(V ) extending f .
The morphism

ψ := D(qi)g − gd : C → S(V )
is a g-coderivation. Since ψ(B) = 0 and ∆(C) ⊂ B, by Corollary 8.7 we have ψ(C) ⊂ V
and then we have a factorization

ψ :
C

B
→ V.

Since
0 = D(qi)ψ + ψd = q1ψ + ψd

and C/B is acyclic, there exists φ : C → V such that φ(B) = 0 and q1φ − φd = ψ.
Denote by h : C → S(V ) the coalgebra such that h1 = g1 − φ. It is now straightforward
to check that h = g − φ and h is a morphism of differential graded coalgebras. �

Definition 13.4. An Q-manifold (V, q1, q2, . . .) is called linear contractible if (V, q1) is
an acyclic complex and qj = 0 for every j > 1.

Lemma 13.5. Let u = (U, d, 0, . . .) be a linear contractible Q-manifold and

f∞ : g→ h = (W, r1, r2, . . .)

be a morphism of Q-manifolds. Then for every morphism of complexes j : (U, d) →
(W, r1) there exists a morphism of Q-manifolds

g∞ : g⊕ u→ h

such that g∞|g = f∞ and g1(u) = j(u) for every u ∈ U .

Proof. Suppose g = (V, q1, q2, . . .) and consider the filtration of differential subcoalgebras

Cn = S(V )⊕⊕ni=1(V ⊕ U)�i ⊂ S(V ⊕ U).

We have ∆(Cn) ⊂ Cn−1×Cn−1; the quotient Cn/Cn−1 is isomorphic to ⊕ni=1U
�i⊗V �n−i

and then it is acyclic by Künneth formula. We can apply Proposition 13.3. �

Theorem 13.6. Let
f∞ : (H, r1, r2, . . .)→ (V, q1, q2, . . .)

be a morphism of Q-manifolds such that f1 : (H, r1) → (V, q1) is an injective quasi-
isomorphism of complexes. Then there exist a morphism

p∞ : (V, q1, q2, . . .)→ (H, r1, r2, . . .)

such that p∞ ◦ f∞ = Id.

Proof. By Lemma 10.6 we have a direct sum decomposition V = f1(H) ⊕ U , with U
acyclic subcomplex of (V, q1). According to Lemma 13.5 the morphism f∞ extents to an
isomorphism

g∞ : (H, r1, r2, . . .)⊕ (U, q1, 0, . . .)→ (V, q1, q2, . . .).
We can take p∞ the composition of the inverse of g∞ with the projection onto the first
factor. �
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