A VOYAGE ROUND COALGEBRAS

MARCO MANETTI

voyage.tex; version August 24, 2010

Abstract

I found the most ready way of explaining my employment was to ask them how it was that they themselves were not curious concerning earthquakes and volcanos? - why some springs were hot and others cold? - why there were mountains in Chile, and not a hill in La Plata? These bare questions at once satisfied and silenced the greater number; some, however (like a few in England who are a century behindhand), thought that all such inquiries were useless and impious; and that it was quite sufficient that God had thus made the mountains. Charles Darwin: The voyage of the Beagle.

Through all the chapter we work over a fixed field \mathbb{K} of characteristic 0 . Unless otherwise specified all the tensor products are made over \mathbb{K}.

Notation. G is the category of graded vector spaces over \mathbb{K}.
The tensor algebra generated by $V \in \mathbf{G}$ is by definition the graded vector space

$$
T(V)=\underset{n \geq 0}{\bigoplus} \bigotimes^{n} V
$$

endowed with the associative product $\left(v_{1} \otimes \cdots \otimes v_{p}\right)\left(v_{p+1} \otimes \cdots \otimes v_{n}\right)=v_{1} \otimes \cdots \otimes v_{n}$.
Let $V, W \in \mathbf{G}$. The twist map $\mathbf{t w}: V \otimes W \rightarrow W \otimes V$ is defined by the $\operatorname{rule} \mathbf{t w}(v \otimes w)=$ $(-1)^{\bar{v}} \bar{w} w \otimes v$, for every pair of homogeneous elements $v \in V, w \in W$.
The following convention is adopted in force: let V, W be graded vector spaces and $F: T(V) \rightarrow T(W)$ a linear map. We denote by

$$
F^{i}: T(V) \rightarrow \bigotimes^{i} W, \quad F_{j}: \bigotimes^{j} V \rightarrow T(W), \quad F_{j}^{i}: \bigotimes^{j} V \rightarrow \bigotimes^{i} W
$$

the compositions of F with the inclusion $\bigotimes^{j} V \rightarrow T(V)$ and/or the projection $T(W) \rightarrow$ $\otimes^{i} W$.

1. Graded coalgebras

Definition 1.1. A coassociative \mathbb{Z}-graded coalgebra is the data of a graded vector space $C=\oplus_{n \in \mathbb{Z}} C^{n} \in \mathbf{G}$ and of a coproduct $\Delta: C \rightarrow C \otimes C$ such that:

- Δ is a morphism of graded vector spaces.
- (coassociativity) $\left(\Delta \otimes \operatorname{Id}_{C}\right) \Delta=\left(\operatorname{Id}_{C} \otimes \Delta\right) \Delta: C \rightarrow C \otimes C \otimes C$.

For simplicity of notation, from now on with the term graded coalgebra we intend a \mathbb{Z}-graded coassociative coalgebra.

Definition 1.2. Let (C, Δ) and (B, Γ) be graded coalgebras. A morphism of graded coalgebras $f: C \rightarrow B$ is a morphism of graded vector spaces that commutes with coproducts, i.e.

$$
\Gamma f=(f \otimes f) \Delta: C \rightarrow B \otimes B
$$

The category of graded coalgebras is denoted by GC.
Example 1.3. Let $C=\mathbb{K}[t]$ be the polynomial ring in one variable t (of degree 0). The linear map

$$
\Delta: \mathbb{K}[t] \rightarrow \mathbb{K}[t] \otimes \mathbb{K}[t], \quad \Delta\left(t^{n}\right)=\sum_{i=0}^{n} t^{i} \otimes t^{n-i}
$$

gives a coalgebra structure (exercise: check coassociativity).
For every sequence $f_{n} \in \mathbb{K}, n>0$, it is associated a morphism of coalgebras $f: C \rightarrow C$ defined as

$$
f(1)=1, \quad f\left(t^{n}\right)=\sum_{s=1}^{n} \sum_{\substack{\left(i_{1}, \ldots, i_{s}\right) \in \mathbb{N}^{s} \\ i_{1}+\cdots+i_{s}=n}} f_{i_{1}} f_{i_{2}} \cdots f_{i_{s}} t^{s}
$$

The verification that $\Delta f=(f \otimes f) \Delta$ can be done in the following way: Let $\left\{x^{n}\right\} \subset$ $C^{\vee}=\mathbb{K}[[x]]$ be the dual basis of $\left\{t^{n}\right\}$. Then for every $a, b, n \in N$ we have:

$$
\begin{gathered}
\left\langle x^{a} \otimes x^{b}, \Delta f\left(t^{n}\right)\right\rangle=\sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{b}=n} f_{i_{1}} \cdots f_{i_{a}} f_{j_{1}} \cdots f_{j_{b}} \\
\left\langle x^{a} \otimes x^{b}, f \otimes f \Delta\left(t^{n}\right)\right\rangle=\sum_{s} \sum_{i_{1}+\cdots+i_{a}=s} \sum_{j_{1}+\cdots+j_{b}=n-s} f_{i_{1}} \cdots f_{i_{a}} f_{j_{1}} \cdots f_{j_{b}}
\end{gathered}
$$

Note that the sequence $\left\{f_{n}\right\}, n \geq 1$, can be recovered from f by the formula $f_{n}=$ $\left\langle x, f\left(t^{n}\right)\right\rangle$.

Example 1.4. Let A be a graded associative algebra with product $\mu: A \otimes A \rightarrow A$ and C a graded coassociative coalgebra with coproduct $\Delta: C \rightarrow C \otimes C$.
Then $\operatorname{Hom}^{*}(C, A)$ is a graded associative algebra by the convolution product

$$
f g=\mu(f \otimes g) \Delta
$$

We left as an exercise the verification that the product in $\operatorname{Hom}^{*}(C, A)$ is associative. In particular $\operatorname{Hom}_{\mathbf{G}}(C, A)=\operatorname{Hom}^{0}(C, A)$ is an associative algebra and $C^{\vee}=\operatorname{Hom}^{*}(C, \mathbb{K})$ is a graded associative algebra.

Remark 1.5. The above example shows in particular that the dual of a coalgebra is an algebra. In general the dual of an algebra is not a coalgebra (with some exceptions, see e.g. Example 2.3). Heuristically, this asymmetry comes from the fact that, for an infinite dimensional vector space V, there exist a natural map $V^{\vee} \otimes V^{\vee} \rightarrow(V \otimes V)^{\vee}$, while does not exist any natural map $(V \otimes V)^{\vee} \rightarrow V^{\vee} \otimes V^{\vee}$.

Example 1.6. The dual of the coalgebra $C=\mathbb{K}[t]$ (Example 1.3) is exactly the algebra of formal power series $A=\mathbb{K}[[x]]=C^{\vee}$. Every coalgebra morphism $f: C \rightarrow C$ induces a local homomorphism of \mathbb{K}-algebras $f^{t}: A \rightarrow A$. The morphism f^{t} is uniquely determined by the power series $f^{t}(x)=\sum_{n>0} f_{n} x^{n}$ and then every morphism of coalgebras $f: C \rightarrow$ C is uniquely determined by the sequence $f_{n}=\left\langle f^{t}(x), t^{n}\right\rangle=\left\langle x, f\left(t^{n}\right)\right\rangle$.
The map $f \mapsto f^{t}$ is functorial and then preserves the composition laws.
Definition 1.7. Let (C, Δ) be a graded coalgebra; the iterated coproducts $\Delta^{n}: C \rightarrow$ $C^{\otimes n+1}$ are defined recursively for $n \geq 0$ by the formulas

$$
\Delta^{0}=\operatorname{Id}_{C}, \quad \Delta^{n}: C \xrightarrow{\Delta} C \otimes C \xrightarrow{\operatorname{Id}_{C} \otimes \Delta^{n-1}} C \otimes C^{\otimes n}=C^{\otimes n+1}
$$

Lemma 1.8. Let (C, Δ) be a graded coalgebra. Then:
(1) For every $0 \leq a \leq n-1$ we have

$$
\Delta^{n}=\left(\Delta^{a} \otimes \Delta^{n-1-a}\right) \Delta: C \rightarrow \bigotimes^{n+1} C
$$

(2) For every $s \geq 1$ and every $a_{0}, \ldots, a_{s} \geq 0$ we have

$$
\left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s}=\Delta^{s+\sum a_{i}}
$$

(3) If $f:(C, \Delta) \rightarrow(B, \Gamma)$ is a morphism of graded coalgebras then, for every $n \geq 1$ we have

$$
\Gamma^{n} f=\left(\otimes^{n+1} f\right) \Delta^{n}: C \rightarrow \bigotimes^{n+1} B
$$

Proof. [1] If $a=0$ or $n=1$ there is nothing to prove, thus we can assume $a>0$ and use induction on n. we have:

$$
\begin{gathered}
\left(\Delta^{a} \otimes \Delta^{n-1-a}\right) \Delta=\left(\left(\operatorname{Id}_{C} \otimes \Delta^{a-1}\right) \Delta \otimes \Delta^{n-1-a}\right) \Delta= \\
=\left(\operatorname{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a}\right)\left(\Delta \otimes \operatorname{Id}_{C}\right) \Delta= \\
=\left(\operatorname{Id}_{C} \otimes \Delta^{a-1} \otimes \Delta^{n-1-a}\right)\left(\operatorname{Id}_{C} \otimes \Delta\right) \Delta=\left(\operatorname{Id}_{C} \otimes\left(\Delta^{a-1} \otimes \Delta^{n-1-a}\right) \Delta\right) \Delta=\Delta^{n}
\end{gathered}
$$

[2] Induction on s, being the case $s=1$ proved in item 1 . If $s \geq 2$ we can write

$$
\begin{aligned}
& \left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s}=\left(\Delta^{a_{0}} \otimes \Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right)\left(\operatorname{Id}_{C} \otimes \Delta^{s-1}\right) \Delta= \\
& \left(\Delta^{a_{0}} \otimes\left(\Delta^{a_{1}} \otimes \cdots \otimes \Delta^{a_{s}}\right) \Delta^{s-1}\right) \Delta=\left(\Delta^{a_{0}} \otimes \Delta^{s-1+\sum_{i>0} a_{i}}\right) \Delta=\Delta^{s+\sum a_{i}}
\end{aligned}
$$

[3] By induction on n,

$$
\Gamma^{n} f=\left(\operatorname{Id}_{B} \otimes \Gamma^{n-1}\right) \Gamma f=\left(f \otimes \Gamma^{n-1} f\right) \Delta=\left(f \otimes\left(\otimes^{n} f\right) \Delta^{n-1}\right) \Delta=\left(\otimes^{n+1} f\right) \Delta^{n}
$$

Definition 1.9. Let (C, Δ) be a graded coalgebra and $p: C \rightarrow V$ a morphism of graded vector spaces. We shall say that p is a system of cogenerators of C if for every $c \in C$ there exists $n \geq 0$ such that $\left(\otimes^{n+1} p\right) \Delta^{n}(c) \neq 0$ in $\bigotimes^{n+1} V$.

Example 1.10. In the notation of Example 1.3, the natural projection $\mathbb{K}[t] \rightarrow \mathbb{K} \oplus \mathbb{K} t$ is a system of cogenerators.

Proposition 1.11. Let $p: B \rightarrow V$ be a system of cogenerators of a graded coalgebra (B, Γ).
Then every morphism of graded coalgebras $\phi:(C, \Delta) \rightarrow(B, \Gamma)$ is uniquely determined by its composition $p \phi: C \rightarrow V$.

Proof. Let $\phi, \psi:(C, \Delta) \rightarrow(B, \Gamma)$ be two morphisms of graded coalgebras such that $p \phi=p \psi$. In order to prove that $\phi=\psi$ it is sufficient to show that for every $c \in C$ and every $n \geq 0$ we have

$$
\left(\otimes^{n+1} p\right) \Gamma^{n}(\phi(c))=\left(\otimes^{n+1} p\right) \Gamma^{n}(\psi(c))
$$

By Lemma 1.8 we have $\Gamma^{n} \phi=\left(\otimes^{n+1} \phi\right) \Delta^{n}$ and $\Gamma^{n} \psi=\left(\otimes^{n+1} \psi\right) \Delta^{n}$. Therefore

$$
\begin{aligned}
& \left(\otimes^{n+1} p\right) \Gamma^{n} \phi=\left(\otimes^{n+1} p\right)\left(\otimes^{n+1} \phi\right) \Delta^{n}=\left(\otimes^{n+1} p \phi\right) \Delta^{n}= \\
& =\left(\otimes^{n+1} p \psi\right) \Delta^{n}=\left(\otimes^{n+1} p\right)\left(\otimes^{n+1} \psi\right) \Delta^{n}=\left(\otimes^{n+1} p\right) \Gamma^{n} \psi
\end{aligned}
$$

Definition 1.12. Let (C, Δ) be a graded coalgebra. A linear map $d \in \operatorname{Hom}^{n}(C, C)$ is called a coderivation of degree n if it satisfies the coLeibniz rule

$$
\Delta d=\left(d \otimes \operatorname{Id}_{C}+\operatorname{Id}_{C} \otimes d\right) \Delta
$$

A coderivation d is called a codifferential if $d^{2}=d \circ d=0$.
More generally, if $\theta: C \rightarrow D$ is a morphism of graded coalgebras, a morphism of graded vector spaces $d \in \operatorname{Hom}^{n}(C, D)$ is called a coderivation of degree n (with respect to θ) if

$$
\Delta_{D} d=(d \otimes \theta+\theta \otimes d) \Delta_{C}
$$

In the above definition we have adopted the Koszul sign convention: i.e. if $x, y \in$ $C, f, g \in \operatorname{Hom}^{*}(C, D), h, k \in \operatorname{Hom}^{*}(B, C)$ are homogeneous then $(f \otimes g)(x \otimes y)=$ $(-1)^{\bar{g} \bar{x}} f(x) \otimes g(y)$ and $(f \otimes g)(h \otimes k)=(-1)^{\bar{g}}{ }^{\bar{h}} f h \otimes g k$.

The coderivations of degree n with respect a coalgebra morphism $\theta: C \rightarrow D$ form a vector space denoted $\operatorname{Coder}^{n}(C, D ; \theta)$.
For simplicity of notation we denote $\operatorname{Coder}^{n}(C, C)=\operatorname{Coder}^{n}(C, C ; I d)$.
Lemma 1.13. Let $C \stackrel{\theta}{\longrightarrow} D \xrightarrow{\rho} E$ be morphisms of graded coalgebras. The compositions with θ and ρ induce linear maps

$$
\begin{array}{ll}
\rho_{*}: \operatorname{Coder}^{n}(C, D ; \theta) \rightarrow \operatorname{Coder}^{n}(C, E ; \rho \theta), & f \mapsto \rho f ; \\
\theta^{*}: \operatorname{Coder}^{n}(D, E ; \rho) \rightarrow \operatorname{Coder}^{n}(C, E ; \rho \theta), & f \mapsto f \theta
\end{array}
$$

Proof. Immediate consequence of the equalities

$$
\Delta_{E} \rho=(\rho \otimes \rho) \Delta_{D}, \quad \Delta_{D} \theta=(\theta \otimes \theta) \Delta_{C}
$$

Lemma 1.14. Let $C \xrightarrow{\theta} D$ be morphisms of graded coalgebras and let $d: C \rightarrow D$ be a θ-coderivation. Then:
(1) For every n

$$
\Delta_{D}^{n} \circ d=\left(\sum_{i=0}^{n} \theta^{\otimes i} \otimes d \otimes \theta^{\otimes n-i}\right) \circ \Delta_{C}^{n} .
$$

(2) If $p: D \rightarrow V$ is a system of cogenerators, then d is uniquely determined by its composition pd: $C \rightarrow V$.

Proof. The first item is a straightforward induction on n, using the equalities $\Delta^{n}=$ $\operatorname{Id} \otimes \Delta^{n-1}$ and $\theta^{\otimes i} \Delta_{C}^{i-1}=\Delta_{D}^{i-1} \theta$.
For item 2, we need to prove that $p d=0$ implies $d=0$. Assume that there exists $c \in C$ such that $d c \neq 0$, then there exists n such that $p^{\otimes n+1} \Delta_{D}^{n} d c \neq 0$. On the other hand

$$
p^{\otimes n+1} \Delta_{D}^{n} d c=\left(\sum_{i=0}^{n}(p \theta)^{\otimes i} \otimes p d \otimes(p \theta)^{\otimes n-i}\right) \circ \Delta_{C}^{n} c=0
$$

Exercise 1.15. A counity of a graded coalgebra is a morphism of graded vector spaces $\epsilon: C \rightarrow \mathbb{K}$ such that $\left(\epsilon \otimes \operatorname{Id}_{C}\right) \Delta=\left(\operatorname{Id}_{C} \otimes \epsilon\right) \Delta=\operatorname{Id}_{C}$. Prove that if a counity exists, then it is unique (Hint: $\left(\epsilon \otimes \epsilon^{\prime}\right) \Delta=$?).

Exercise 1.16. Let (C, Δ) be a graded coalgebra. A graded subspace $I \subset C$ is called a coideal if $\Delta(I) \subset C \otimes I+I \otimes C$. Prove that a subspace is a coideal if and only if is the kernel of a morphism of coalgebras.

Exercise 1.17. Let C be a graded coalgebra and $d \in \operatorname{Coder}^{1}(C, C)$ a codifferential of degree 1. Prove that the triple $(L, \delta,[]$,$) , where:$

$$
L=\oplus_{n \in \mathbb{Z}} \operatorname{Coder}^{n}(C, C), \quad[f, g]=f g-(-1)^{\bar{g} \bar{f}} g f, \quad \delta(f)=[d, f]
$$

is a differential graded Lie algebra.

2. Connected coalgebras

Definition 2.1. A graded coalgebra (C, Δ) is called nilpotent if $\Delta^{n}=0$ for $n \gg 0$. It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or equivalently if $C=\cup_{n} \operatorname{ker} \Delta^{n}$.

Example 2.2. The vector space

$$
\overline{\mathbb{K}[t]}=\{p(t) \in \mathbb{K}[t] \mid p(0)=0\}=\bigoplus_{n>0} \mathbb{K} t^{n}
$$

with the coproduct

$$
\Delta: \overline{\mathbb{K}[t]} \rightarrow \overline{\mathbb{K}[t]} \otimes \overline{\mathbb{K}[t]}, \quad \Delta\left(t^{n}\right)=\sum_{i=1}^{n-1} t^{i} \otimes t^{n-i}
$$

is a locally nilpotent coalgebra. The projection $\mathbb{K}[t] \rightarrow \overline{\mathbb{K}[t]}, p(t) \rightarrow p(t)-p(0)$, is a morphism of coalgebras.

Example 2.3. Let $A=\oplus A_{i}$ be a finite dimensional graded associative commutative \mathbb{K}-algebra and let $C=A^{\vee}=\operatorname{Hom}^{*}(A, \mathbb{K})$ be its graded dual.
Since A and C are finite dimensional, the pairing $\left\langle c_{1} \otimes c_{2}, a_{1} \otimes a_{2}\right\rangle=(-1)^{\overline{a_{1}} \overline{c_{2}}}\left\langle c_{1}, a_{1}\right\rangle\left\langle c_{2}, a_{2}\right\rangle$ gives a natural isomorphism $C \otimes C=(A \otimes A)^{\vee}$ commuting with the twisting maps T; we may define Δ as the transpose of the multiplication map $\mu: A \otimes A \rightarrow A$.
Then (C, Δ) is a coassociative cocommutative coalgebra. Note that C is nilpotent if and only if A is nilpotent.
Exercise 2.4. Let (C, Δ) be a graded coalgebra. Prove that for every $a, b \geq 0$

$$
\Delta^{a}\left(\operatorname{ker} \Delta^{a+b}\right) \subset \bigotimes^{a+1}\left(\operatorname{ker} \Delta^{b}\right)
$$

(Hint: prove first that $\Delta^{a}\left(\operatorname{ker} \Delta^{a+b}\right) \subset \operatorname{ker} \Delta^{b} \otimes C^{\otimes a}$.)
Exercise 2.5. Let (C, Δ) be a locally nilpotent graded coalgebra. Prove that every projection $p: C \rightarrow \operatorname{ker} \Delta$ is a system of cogenerators.
Definition 2.6 ([8, p. 282]). A graded coalgebra (C, Δ) is called connected if there is an element $1 \in C$ such that $\Delta(1)=1 \otimes 1$ (in particular $\operatorname{deg}(1)=0$) and $C=\cup_{r=0}^{+\infty} F_{r} C$, where $F_{r} C$ is defined recursively by the formulas

$$
F_{0} C=\mathbb{K} 1, \quad F_{r+1} C=\left\{x \in C \mid \Delta(x)-1 \otimes x-x \otimes 1 \in F_{r} C \otimes F_{r} C\right\}
$$

Example 2.7. Every locally nilpotent coalgebra is connected (with $1=0$, see Exercise 2.4). If $f: C \rightarrow D$ is a surjective morphism of coalgebras and C is connected, then also D is connected.

Lemma 2.8. Let C be a connected coalgebra and $e \in C$ such that $\Delta(e)=e \otimes e$. Then either $e=0$ or $e=1$.
In particular the idempotent 1 as in Definition 2.6 is determined by C.

Proof. Let r be the minimum integer such that $e \in F_{r} C$. If $r=0$ then $e=t 1$ for some $t \in \mathbb{K}$; if $1 \neq 0$ then $t^{2}=t$ and $t=0,1$.
If $r>0$ we have

$$
(e-1) \otimes(e-1)=\Delta(e)-1 \otimes e-e \otimes 1+1 \otimes 1 \in F_{r-1} C \otimes F_{r-1} C
$$

and then $e-1 \in F_{r-1} C$ which is a contradiction.
The reduction of a connected coalgebra C is defined as its quotient $\bar{C}=C / \mathbb{K} 1$; it is a locally nilpotent coalgebra.

3. The reduced tensor coalgebra

Given a graded vector space V, we denote $\overline{T(V)}=\bigoplus_{n>0} \otimes^{n} V$. When considered as a subset of $T(V)$ it becomes an ideal of the tensor algebra generated by V.
The reduced tensor coalgebra generated by V is the graded vector space $\overline{T(V)}$ endowed with the coproduct $\mathfrak{a}: \overline{T(V)} \rightarrow \overline{T(V)} \otimes \overline{T(V)}$:

$$
\mathfrak{a}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{r=1}^{n-1}\left(v_{1} \otimes \cdots \otimes v_{r}\right) \otimes\left(v_{r+1} \otimes \cdots \otimes v_{n}\right)
$$

We can also write

$$
\mathfrak{a}=\sum_{n=2}^{+\infty} \sum_{a=1}^{n-1} \mathfrak{a}_{a, n-a}
$$

where $\mathfrak{a}_{a, n-a}: \bigotimes^{n} V \rightarrow \bigotimes^{a} V \otimes \bigotimes^{n-a} V$ is the inverse of the multiplication map.
The coalgebra $(\overline{T(V)}, \mathfrak{a})$ is coassociative, it is locally nilpotent and the projection $p^{1}: \overline{T(V)} \rightarrow V$ is a system of cogenerators: in fact, for every $s>0$,

$$
\mathfrak{a}^{s-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n}\left(v_{1} \otimes \cdots \otimes v_{i_{1}}\right) \otimes \cdots \otimes\left(v_{i_{s-1}+1} \otimes \cdots \otimes v_{n}\right)
$$

and then

$$
\operatorname{ker} \mathfrak{a}^{s-1}=\bigoplus_{i=1}^{s-1} V^{\otimes i}, \quad\left(\otimes^{s} p^{1}\right) \mathfrak{a}^{s-1}=p^{s}: \overline{T(V)} \rightarrow V^{\otimes s}
$$

Exercise 3.1. Let $\mu: \otimes^{s} \overline{T(V)} \rightarrow \overline{T(V)}$ be the multiplication map. Prove that for every $v_{1}, \ldots, v_{n} \in V$

$$
\mu \mathfrak{a}^{s-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\binom{n-1}{s-1} v_{1} \otimes \cdots \otimes v_{n}
$$

For every morphism of graded vector spaces $f: V \rightarrow W$ the induced morphism of graded algebras

$$
T(f): \overline{T(V)} \rightarrow \overline{T(W)}, \quad T(f)\left(v_{1} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}\right) \otimes \cdots \otimes f\left(v_{n}\right)
$$

is also a morphism of graded coalgebras.
If (C, Δ) is a locally nilpotent graded coalgebra then, for every $c \in C$, there exists $n>0$ such that $\Delta^{n}(c)=0$ and then it is defined a morphism of graded vector spaces

$$
\frac{1}{1-\Delta}=\sum_{n=0}^{\infty} \Delta^{n}: C \rightarrow \overline{T(C)}
$$

Proposition 3.2. Let (C, Δ) be a locally nilpotent graded coalgebra, then:
(1) The $\operatorname{map} \frac{1}{1-\Delta}=\sum_{n \geq 0} \Delta^{n}: C \rightarrow \overline{T(C)}$ is a morphism of graded coalgebras.
(2) For every graded vector space V and every morphism of graded coalgebras $\phi: C \rightarrow$ $\overline{T(V)}$, there exists a unique morphism of graded vector spaces $f: C \rightarrow V$ such that ϕ factors as

$$
\phi=T(f) \frac{1}{1-\Delta}=\sum_{n=1}^{\infty}\left(\otimes^{n} f\right) \Delta^{n-1}: C \rightarrow \overline{T(C)} \rightarrow \overline{T(V)}
$$

Proof. [1] We have

$$
\begin{aligned}
\left(\left(\sum_{n \geq 0} \Delta^{n}\right) \otimes\left(\sum_{n \geq 0} \Delta^{n}\right)\right) \Delta & =\sum_{n \geq 0} \sum_{a=0}^{n}\left(\Delta^{a} \otimes \Delta^{n-a}\right) \Delta \\
& =\sum_{n \geq 0} \sum_{a=0}^{n} \mathfrak{a}_{a+1, n+1-a} \Delta^{n+1}=\mathfrak{a}\left(\sum_{n \geq 0} \Delta^{n}\right)
\end{aligned}
$$

where in the last equality we have used the relation $\mathfrak{a} \Delta^{0}=0$.
[2] The unicity of f is clear, since by the formula $\phi=T(f)\left(\sum_{n \geq 0} \Delta^{n}\right)$ it follows that $f=p^{1} \phi$.
To prove the existence of the factorization, take any morphism of graded coalgebras $\phi: C \rightarrow \overline{T(V)}$, denote by $f=p^{1} \phi$ and by $\psi: C \rightarrow \overline{T(V)}$ the coalgebra morphism $\psi=T(f)(1-\Delta)^{-1}$. Since $p^{1} \psi=p^{1} \phi$ and p^{1} is a system of cogenerators we have $\phi=\psi$.

It is useful to restate part of the Proposition 3.2 in the following form
Corollary 3.3. Let V be a fixed graded vector space; for every locally nilpotent graded coalgebra C the composition with the projection $p^{1}: \overline{T(V)} \rightarrow V$ induces a bijection

$$
\operatorname{Hom}_{\mathbf{G C}}(C, \overline{T(V)}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{G}}(C, V) .
$$

In other words, every morphism of graded vector spaces $C \rightarrow V$ has a unique lifting to a morphism of graded coalgebras $C \rightarrow \overline{T(V)}$.

When C is a reduced tensor coalgebra, Proposition 3.2 takes the following more explicit form

Corollary 3.4. Let U, V be graded vector spaces. the projection. Given $f: \overline{T(U)} \rightarrow V$, the linear map $F: \overline{T(U)} \rightarrow \overline{T(V)}$:

$$
F\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{s=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n} f\left(v_{1} \otimes \cdots \otimes v_{i_{1}}\right) \otimes \cdots \otimes f\left(v_{i_{s-1}+1} \otimes \cdots \otimes v_{i_{s}}\right)
$$

is the morphism of graded coalgebras lifting f.
Example 3.5. Let A be an associative graded algebra. Consider the projection $p: \overline{T(A)} \rightarrow$ A, the multiplication map $\mu: \overline{T(A)} \rightarrow A$ and its conjugate
$\mu^{*}=-\mu T(-1), \quad \mu^{*}\left(a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{n-1} \mu\left(a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{n-1} a_{1} a_{2} \cdots a_{n}$.
The two coalgebra morphisms $\overline{T(A)} \rightarrow \overline{T(A)}$ induced by μ and μ^{*} are isomorphisms, the one inverse of the other.
In fact, the coalgebra morphism $F: \overline{T(A)} \rightarrow \overline{T(A)}$

$$
F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{s=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n}\left(a_{1} a_{2} \cdots a_{i_{1}}\right) \otimes \cdots \otimes\left(a_{i_{s-1}+1} \cdots a_{i_{s}}\right)
$$

is induced by μ (i.e. $p F=\mu$), $\mu^{*} F(a)=a$ for every $a \in A$ and for every $n \geq 2$

$$
\begin{gathered}
\mu^{*} F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{s=1}^{n}(-1)^{s-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s}=n} a_{1} a_{2} \cdots a_{n}= \\
=\sum_{s=1}^{n}(-1)^{s-1}\binom{n-1}{s-1} a_{1} a_{2} \cdots a_{n}=\left(\sum_{s=0}^{n-1}(-1)^{s}\binom{n-1}{s}\right) a_{1} a_{2} \cdots a_{n}=0 .
\end{gathered}
$$

This implies that $\mu^{*} F=p$ and therefore, if $F^{*}: \overline{T(A)} \rightarrow \overline{T(A)}$ is induced by μ^{*} then $p F^{*} F=\mu^{*} F=p$ and by Corollary 3.3 $F^{*} F$ is the identity.
Proposition 3.6. Let (C, Δ) be a locally nilpotent graded coalgebra, V a graded vector space and

$$
\theta=\sum_{n=1}^{\infty}\left(\otimes^{n} f\right) \Delta^{n-1}: C \rightarrow \overline{T(V)}
$$

the morphism of coalgebras induced by $p \theta=f \in \operatorname{Hom}^{0}(C, V)$. For every n and every $q \in \operatorname{Hom}^{k}(C, V)$, the linear map

$$
Q=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\left(f^{\otimes i} \otimes q \otimes f^{\otimes n-i}\right) \Delta^{n}: C \rightarrow \overline{T(V)}\right.
$$

is the θ-coderivation induced by $p Q=q$. In particular the map

$$
\operatorname{Coder}^{k}(C, \overline{T(V)} ; \theta) \rightarrow \operatorname{Hom}^{k}(C, V), \quad Q \mapsto p Q
$$

is bijective.
Proof. The map Q is the composition of the coalgebra morphism $\sum \Delta^{n}: C \rightarrow \overline{T(C)}$ and the map

$$
R: \overline{T(C)} \rightarrow \overline{T(V)}, \quad R=\sum_{i, j \geq 0} f^{\otimes i} \otimes q \otimes f^{\otimes j}
$$

It is therefore sufficient to prove that R is a $T(f)$-coderivation, i.e. that satisfies the coLeibniz rule

$$
(R \otimes T(f)+T(f) \otimes R) \mathfrak{a}=\mathfrak{a} R
$$

Denoting $R_{n}=\sum_{i+j=n-1} f^{\otimes i} \otimes q \otimes f^{\otimes j}$ we have, for every a, n

$$
\mathfrak{a}_{a, n-a} R_{n}=\left(R_{a} \otimes f^{\otimes n-a}+f^{\otimes a} \otimes R_{n-a}\right) \mathfrak{a}_{a, n-a} .
$$

Taking the sum over $a, n-a$ we get the proof.
Corollary 3.7. Let V be a graded vector space. Every $q \in \operatorname{Hom}^{k}(\overline{T(V)}, V)$ induce a coderivation $Q \in \operatorname{Coder}^{k}(\overline{T(V)}, \overline{T(V)})$ given by the explicit formula

$$
\begin{aligned}
& Q\left(a_{1} \otimes \cdots \otimes a_{n}\right)= \\
& =\sum_{i, l}(-1)^{k\left(\overline{a_{1}}+\cdots+\overline{a_{i}}\right)} a_{1} \otimes \cdots \otimes a_{i} \otimes q\left(a_{i+1} \otimes \cdots \otimes a_{i+l}\right) \otimes \cdots \otimes a_{n} .
\end{aligned}
$$

Proof. Apply Proposition 3.6 with the map $f: \overline{T(V)} \rightarrow V$ equal to the projection (and then $\theta=\mathrm{Id}$).
Exercise 3.8. Let $p: T(V) \rightarrow \overline{T(V)}$ be the projection with kernel $\mathbb{K}=\otimes^{0} V$ and $\phi: T(V) \rightarrow T(V) \otimes T(V)$ the unique homomorphism of graded algebras such that $\phi(v)=$ $v \otimes 1+1 \otimes v$ for every $v \in V$. Prove that $p \phi=\mathfrak{a} p$.

Exercise 3.9. Let A be an associative graded algebra over the field \mathbb{K}, for every local homomorphism of \mathbb{K}-algebras $\gamma: \underline{K}[[x]] \rightarrow \mathbb{K}[[x]], \gamma(x)=\sum \gamma_{n} x^{n}$, we can associate a coalgebra morphism $F_{\gamma}: \overline{T(A)} \rightarrow \overline{T(A)}$ induced by the linear map

$$
f_{\gamma}: \overline{T(A)} \rightarrow A, \quad f\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\gamma_{n} a_{1} \cdots a_{n}
$$

Prove the composition formula $F_{\gamma \delta}=F_{\delta} F_{\gamma}$. (Hint: Example 1.6.)
Exercise 3.10. A graded coalgebra morphism $F: \overline{T(U)} \rightarrow \overline{T(V)}$ is surjective (resp.: injective, bijective) if and only if $F_{1}^{1}: U \rightarrow V$ is surjective (resp.: injective, bijective). (Hint: F preserves the filtrations of kernels of iterated coproducts.)

4. Rooted trees

Definition 4.1. An unreduced ${ }^{1}$ rooted forest is the data of a finite set of vertices V and a flow map $f: V \rightarrow V$ such that:

$$
\operatorname{Fix}(f)=\bigcap_{n>0} f^{n}(V-\operatorname{Fix}(f))
$$

where $\operatorname{Fix}(f)=\{v \in V \mid f(v)=v\}$ is the subset of fixed points of f.
The vertices of an unreduced rooted forest (V, f) are divided into three disjoint classes:

- $V_{r}=\{$ root vertices $\}=\operatorname{Fix}(f)$.
- $V_{t}=\{$ tail vertices $\}=V-f(V)$.
- $V_{i}=\{$ internal vertices $\}=f(V)-\{$ root vertices $\}$.

Every unreduced rooted forest (V, f) can be described by a directed graph with set of vertices V and oriented edges $v \rightarrow f(v)$ for every $v \notin\{$ root vertices $\}$. In our pictures internal vertices will be denoted by a black dot, while tail and root vertices will be denoted by a circle.
As an example, the pair (V, f), where $V=\{1,2,3,4\}$ and $f(i)=\min (4, i+1)$ is an almost rooted forest described by the oriented graph

Note that the map $f: V_{t} \cup V_{i} \rightarrow V_{i} \cup V_{r}$ is surjective and then the number of tail vertices is always greater than or equal to the number of root vertices.

The set of edges $\{(v, f(v)) \mid v \notin\{$ roots $\}\}$ is divided into types. An edge $(v, f(v))$ is called a root edge if $f(v)$ is a root vertex; it is called a tail edge if v is a tail vertex and it is called an internal edge if both $v, f(v)$ are both internal vertices. Notice that an edge may be tail and root at the same time.

The arity (also called valence in literature) $|v|$ of a vertex v is the number of incoming edges; equivalently

$$
|v|=|\{w \neq v \mid f(w)=v\}|
$$

A rooted forest is an almost rooted forest such that every root has arity 1 and every internal vertex has arity ≥ 2.
A rooted tree is a rooted forest with exactly one root.

[^0]Every rooted forest is then a disjoint union of rooted trees; the following picture represents a rooted tree with 5 tail vertices and 4 internal vertices.

An automorphism of a rooted forest (V, f) is a bijective map $\phi: V \rightarrow V$ such that $f \phi=\phi f$. The group of automorphisms will be denoted by $\operatorname{Aut}(V, f)$.
Definition 4.2. Let (V, f) be a rooted forest. An orientation of (V, f) is a total ordering \leq on the set V_{t} of tail vertices such that if $v \leq u \leq w$ and $f^{k}(v)=f^{h}(w)$, for some $h, k \geq 0$, then there exists $l \geq 0$ such that $f^{k}(v)=f^{l}(u)=f^{h}(w)$.
It is often convenient to describe an orientation \leq by the order-preserving bijection $\nu:\{1, \ldots, n\} \rightarrow V_{t}$, where $\left|V_{t}\right|=n$. Therefore, an oriented rooted forest is a triple (V, f, ν) where ν is an orientation of (V, f).

For instance, there are (up to isomorphism) exactly three oriented rooted trees with 3 tails:

Lemma 4.3. Let V be a rooted tree. Then the number of isomorphism classes of orientations on V is equal to

$$
\frac{1}{|\operatorname{Aut}(V)|} \prod_{v \in V_{i}}|v|!
$$

Proof. The group of automorphisms of V acts freely on the set of orientations. We note that every orientation is uniquely determined by:
(1) A total ordering of root edges.
(2) For every internal vertex, a total ordering of incoming edges.

Therefore the product $\prod_{v \in V_{i}}|v|$! is equal to the number of orientations on the tree V.
Denote by $F(n, m)$ the set of isomorphism classes of oriented rooted forests with n tails and m roots. Notice that $F(n, m)=\emptyset$ for $m>n$ and $F(n, n)$ contains only one element, denoted by \mathbb{I}_{n}.

There are defined naturally two binary operations:

$$
\begin{array}{cc}
\circ: F(l, m) \times F(n, l) \rightarrow F(n, m) \quad \text { composition } \\
\otimes: F(n, m) \times F(a, b) \rightarrow F(n+a, m+b) & \text { tensor product }
\end{array}
$$

The tensor product $V \otimes W$ is the disjoint union of V and W with the orientation $\{1,2, \ldots\} \rightarrow W_{t}$ shifted by the number of tail vertices of V. For instance $\mathbb{I}_{a} \otimes \mathbb{I}_{b}=\mathbb{I}_{a+b}$ and

Given $(V, f) \in F(n, l)$ and $(W, g) \in F(l, m)$ we define $W \circ V$ in the following way: first we take the unique bijection $\eta: V_{r} \rightarrow W_{t}$ such that for $i \gg 0$ the map

$$
V_{t} \xrightarrow{\eta f^{i}} W_{t}
$$

is nondecreasing. Then we use η to annihilate the root vertices of V with the tail vertices of W. For instance, for every $V \in F(n, m)$ we have $V=\mathbb{I}_{m} \circ V=V \circ \mathbb{I}_{n}$ and

The operations \circ and \otimes are associative and satisfy the interchange law [6]: this means that

$$
(V \otimes W) \circ(A \otimes B)=(V \circ A) \otimes(W \circ B)
$$

holds whenever the composites $V \circ A$ and $W \circ B$ are defined. By convention we set $\mathbb{I}_{0}=\emptyset \in F(0,0)$ and then $\mathbb{I}_{0} \otimes V=V \otimes \mathbb{I}_{0}=V$ for every V.

Exercise 4.4. Given $V \in F(n, m)$ denote by

$$
w(V)=\max \left\{a \mid \exists W \in F(n-a, m-a) \text { such that } V=\mathbb{I}_{a} \otimes W\right\}
$$

We shall say that a composition $V_{1} \circ V_{2} \circ \cdots \circ V_{r}$ is monotone if $w\left(V_{1}\right) \leq w\left(V_{2}\right) \leq \cdots \leq$ $w\left(V_{r}\right)$. Prove that every oriented rooted forest $V \in F(n, m)$ can be written uniquely as a monotone composition of oriented rooted forests with one internal vertex.

5. Automorphisms of $\overline{T(V)}$ and inversion formula.

For every graded vector space V we can define binary operations

$$
\circ: \operatorname{Hom}^{*}\left(V^{\otimes l}, V^{\otimes m}\right) \times \operatorname{Hom}^{*}\left(V^{\otimes n}, V^{\otimes l}\right) \rightarrow \operatorname{Hom}^{*}\left(V^{\otimes n}, V^{\otimes m}\right) \quad(f, g) \mapsto f \circ g
$$

$\otimes: \operatorname{Hom}^{*}\left(V^{\otimes n}, V^{\otimes m}\right) \times \operatorname{Hom}^{*}\left(V^{\otimes a}, V^{\otimes b}\right) \rightarrow \operatorname{Hom}^{*}\left(V^{\otimes n+a}, V^{\otimes m+b}\right) \quad(f, g) \mapsto f \otimes g$.
By a representation of $\mathcal{F}=\cup_{n, m} F(n, m)$ we shall mean a map

$$
Z: \mathcal{F} \rightarrow \bigcup_{n, m} \operatorname{Hom}^{*}\left(V^{\otimes n}, V^{\otimes m}\right)
$$

such that $Z_{\mathbb{I}_{n}}=\mathrm{Id}_{V \otimes n}$ and commutes with the operations \circ and \otimes.
Every representation Z is determined by its value on the irreducible trees \mathbb{T}_{n}. Conversely, for every sequence of maps $f_{n} \in \operatorname{Hom}^{*}\left(V^{\otimes n}, V\right), n \geq 2$, there exists an unique representation

$$
Z\left(f_{i}\right): \mathcal{F} \rightarrow \bigcup_{n, m} \operatorname{Hom}^{*}\left(V^{\otimes n}, V^{\otimes m}\right)
$$

such that

$$
Z_{\mathbb{T}_{n}}\left(f_{i}\right)=f_{n}
$$

For instance, the oriented rooted tree

$$
\Gamma=\underbrace{10}_{30} 0^{10} \rightarrow 0
$$

gives

$$
Z_{\Gamma}\left(f_{i}\right)\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=f_{2}\left(f_{2}\left(v_{1} \otimes v_{2}\right) \otimes v_{3}\right)
$$

while the oriented rooted forest

$$
\Gamma=\begin{aligned}
& 30 \\
& 20 \xrightarrow{30} \longrightarrow 0 \\
& 10 \longrightarrow 0
\end{aligned}
$$

gives

$$
Z_{\Gamma}\left(f_{i}\right)\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=(-1)^{\operatorname{deg}\left(v_{1}\right) \operatorname{deg}\left(f_{2}\right)} v_{1} \otimes f_{2}\left(v_{2} \otimes v_{3}\right)
$$

Definition 5.1. For every n, m let $S(n, m) \subset F(n, m)$ be the subset of (isomorphism classes of) oriented rooted forests without internal edges and denote $\mathcal{S}=\bigcup_{n, m} S(n, m)$.

Equivalently $\Gamma \in \mathcal{S}$ if and only if Γ is the tensor product of irreducible oriented rooted trees.
Lemma 5.2. For every sequence $g_{n} \in \operatorname{Hom}^{0}\left(V^{\otimes n}, V\right), n \geq 2$, the maps

$$
\begin{aligned}
& G=\sum_{\Gamma \in \mathcal{S}} Z_{\Gamma}\left(g_{i}\right): \overline{T(V)} \rightarrow \overline{T(V)} \\
& F=\sum_{\Gamma \in \mathcal{F}} Z_{\Gamma}\left(g_{i}\right): \overline{T(V)} \rightarrow \overline{T(V)}
\end{aligned}
$$

are morphism of graded coalgebras.
Proof. Denote by $f_{n}^{m}=\sum_{\Gamma \in F(n, m)} Z_{\Gamma}\left(g_{i}\right)$. According to Corollary 3.4, G is a coalgebra morphism, while F is a coalgebra morphism if and only if

$$
f_{n}^{m}=\sum_{\substack{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}^{m} \\ i_{1}+\cdots+i_{m}=n}} f_{i_{1}}^{1} \otimes \cdots \otimes f_{i_{m}}^{1}
$$

On the other hand, every $\Gamma \in F(n, m)$ can be written uniquely as a tensor product of m oriented trees, i.e. the map

$$
\bigcup_{\substack{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}^{m} \\ i_{1}+\cdots+i_{m}=n}} F\left(i_{1}, 1\right) \times \cdots \times F\left(i_{m}, 1\right) \rightarrow F(n, m), \quad\left(\Gamma_{1}, \cdots, \Gamma_{m}\right) \mapsto \Gamma_{1} \otimes \cdots \otimes \Gamma_{m},
$$

is bijective. The conclusion follows from the fact that

$$
Z_{\Gamma_{1} \otimes \cdots \otimes \Gamma_{m}}\left(f_{i}\right)=Z_{\Gamma_{1}}\left(f_{i}\right) \otimes \cdots \otimes Z_{\Gamma_{m}}\left(f_{i}\right) .
$$

Lemma 5.3. Given $g \in \operatorname{Hom}^{0}(W, V)$ and a sequence of maps $g_{n} \in \operatorname{Hom}^{0}\left(V^{\otimes n}, V\right)$, $n \geq 2$, for every $n, m \geq 1$ denote

$$
f_{n}^{m}=\sum_{\Gamma \in F(n, m)} Z_{\Gamma}\left(g_{i}\right) \circ\left(\otimes^{n} g\right): W^{\otimes n} \rightarrow V^{\otimes m}
$$

Then, for every $n \geq 0$

$$
f_{n}^{1}=\sum_{a=2}^{n} g_{a} \circ f_{n}^{a}
$$

Proof. Every $\Gamma \in F(n, 1)$ has a unique decomposition of the form $\Gamma=\mathbb{T}_{a} \circ \Gamma^{\prime}$, with $\Gamma^{\prime} \in F(n, a)$ and then

$$
\sum_{1<a \leq n} \sum_{\Gamma^{\prime} \in F(n, a)} Z_{\mathbb{T}_{a} \circ \Gamma^{\prime}}\left(g_{i}\right)=\sum_{\Gamma \in F(n, 1)} Z_{\Gamma}\left(g_{i}\right) .
$$

Composing with ($\otimes^{n} g$) we get the equality $f_{n}^{1}=\sum_{a=2}^{n} g_{a} \circ f_{n}^{a}$.
Theorem 5.4 (Inversion formula). For every sequence $g_{n} \in \operatorname{Hom}^{0}\left(V^{\otimes n}, V\right), n \geq 2$, the morphisms

$$
H=\sum_{\Gamma \in \mathcal{S}} Z_{\Gamma}\left(-g_{i}\right): \overline{T(V)} \rightarrow \overline{T(V)}, \quad F=\sum_{\Gamma \in \mathcal{F}} Z_{\Gamma}\left(g_{i}\right): \overline{T(V)} \rightarrow \overline{T(V)}
$$

are isomorphisms and $F=H^{-1}$.

Proof. We first note that $H(v)=v$ for every $v \in V$ and we can write

$$
H=\mathrm{Id}+\sum_{m<n} h_{n}^{m}, \quad h_{n}^{m}=\sum_{\Gamma \in S(n, m)} Z_{\Gamma}\left(-g_{i}\right): V^{\otimes n} \rightarrow V^{\otimes m}
$$

Denoting $K=\mathrm{Id}-H$, we have $\cup_{n} \operatorname{ker}\left(K^{n}\right)=\overline{T(V)}$ and then H is invertible with inverse

$$
H^{-1}=\mathrm{Id}+\sum_{n=1}^{\infty} K^{n}
$$

Writing

$$
H^{-1}=\sum_{m \leq n} f_{n}^{m}
$$

we have, since H^{-1} is a coalgebra morphism and $H \circ H^{-1}=\mathrm{Id}$ we have $f_{n}^{n}=\mathrm{Id}$ and for every $m<n$

$$
f_{n}^{m}=\sum_{\substack{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}^{m} \\ i_{1}+\cdots+i_{m}=n}} f_{i_{1}}^{1} \otimes \cdots \otimes f_{i_{m}}^{1}=-\sum_{m<i \leq n} h_{i}^{m} \circ f_{n}^{i}
$$

Let $n>0$ and assume that

$$
f_{a}^{m}=\sum_{\Gamma \in F(a, m)} Z_{\Gamma}\left(g_{i}\right):
$$

For every $m \leq a<n$. We want to prove that for every $m \leq n$ we have

$$
f_{n}^{m}=\sum_{\Gamma \in F(n, m)} Z_{\Gamma}\left(g_{i}\right)
$$

Since F is a morphism of coalgebras it is not restrictive to assume $m=1$ and then

$$
f_{n}^{1}=-\sum_{1<a \leq n} h_{a}^{1} \circ f_{n}^{a}=\sum_{1<a \leq n} g_{a} \circ \sum_{\Gamma \in F(n, a)} Z_{\Gamma}\left(g_{i}\right)
$$

By Lemma 5.3 , with $g=\mathrm{Id}$, we get

$$
f_{n}^{1}=\sum_{1<a \leq n} \sum_{\Gamma^{\prime} \in F(n, a)} Z_{\mathbb{T}_{a} \circ \Gamma^{\prime}}\left(g_{i}\right)=\sum_{\Gamma \in F(n, 1)} Z_{\Gamma}\left(g_{i}\right) .
$$

Exercise 5.5. Denote by t_{n} the number of oriented rooted trees with n tail vertices $\left(t_{n}=|F(n, 1)|\right)$ and b_{n} the number of oriented binary rooted trees (a binary rooted tree is a rooted tree where every internal vertex has two incoming edges). Prove the following series expansion identities:

$$
\sum_{n>0} t_{n} x^{n}=\frac{x+1-\sqrt{1-6 x+x^{2}}}{4}, \quad \sum_{n>0} b_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2}
$$

(Hint: denote

$$
f(y)=y-y^{2}, \quad g(y)=\frac{y(1-2 y)}{(1-y)}=y-y^{2}-y^{3}-\cdots
$$

Use inversion formula in case $V=\mathbb{K}$ to prove that $\left.f\left(\sum_{n>0} b_{n} x^{n}\right)=g\left(\sum_{n>0} t_{n} x^{n}\right)=x.\right)$

6. Koszul sign, symmetrization and unshuffles

Dor every set A we denote by $\Sigma(A)$ the group of permutations of A and by $\Sigma_{n}=$ $\Sigma(\{1, \ldots, n\})$.

The action of the twist map on $\bigotimes^{2} V$ extends naturally, for every $n \geq 0$, to an action of the symmetric group Σ_{n} on the graded vector space $\bigotimes^{n} V$. Notice that

$$
\sigma_{\mathbf{t w}}\left(v_{1} \otimes \cdots \otimes v_{n}\right)= \pm\left(v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}\right)
$$

Definition 6.1. The $\operatorname{Koszul} \operatorname{sign} \epsilon\left(V, \sigma ; v_{1}, \ldots, v_{n}\right)= \pm 1$ is defined by the relation

$$
\sigma_{\mathbf{t w}}^{-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\epsilon\left(V, \sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

For notational simplicity we shall write $\epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)$ or $\epsilon(\sigma)$ when there is no possible confusion about V and v_{1}, \ldots, v_{n}.

Remark 6.2. The twist action on $\bigotimes^{n}\left(\operatorname{Hom}^{*}(V, W)\right)$ is compatible with the conjugate of the twist action on $\operatorname{Hom}^{*}\left(V^{\otimes n}, W^{\otimes n}\right)$. This means that

$$
\sigma_{\mathbf{t w}}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sigma_{\mathbf{t w}} \circ f_{1} \otimes \cdots \otimes f_{n} \circ \sigma_{\mathbf{t w}}^{-1} .
$$

Define the linear map $N: \otimes^{n} V \rightarrow \bigotimes^{n} V$

$$
\begin{aligned}
N\left(v_{1} \otimes \cdots \otimes v_{n}\right) & =\sum_{\sigma \in \Sigma_{n}} \epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right) \\
& =\sum_{\sigma \in \Sigma_{n}} \sigma_{\mathbf{t w}}\left(v_{1} \otimes \cdots \otimes v_{n}\right), \quad v_{1}, \ldots, v_{n} \in V .
\end{aligned}
$$

Denoting by $\left(\bigotimes^{n} V\right)^{\Sigma_{n}} \subset \bigotimes^{n} V$ the subspace of twist-invariant tensors, we have that the map

$$
\frac{1}{n!} N: \bigotimes^{n} V \rightarrow\left(\bigotimes^{n} V\right)^{\Sigma_{n}}
$$

is a projection and then

$$
\otimes^{n} V=\left(\bigotimes^{n} V\right)^{\Sigma_{n}} \oplus \operatorname{ker}(N) .
$$

Lemma 6.3. In the notation above, the kernel of N is the subspace generated by all the vectors $v-\sigma_{\mathbf{t w}}(v), \sigma \in \Sigma_{n}, v \in \bigotimes^{n} V$.

Proof. Denote by W the subspace generated by the vectors $v-\sigma_{\mathbf{t w}}(v)$: it is clear that $N(W)=0$ and therefore it is sufficient to prove that $\operatorname{Im}(N)+W=\bigotimes^{n} V$. For every $v \in \bigotimes^{n} V$ we can write

$$
v=\frac{N}{n!} v+\left(v-\frac{N}{n!} v\right)=\frac{N}{n!} v+\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left(v-\sigma_{\mathbf{t w}} v\right) .
$$

Definition 6.4. The set of unshuffles of type (p, q) is the subset $S(p, q) \subset \Sigma_{p+q}$ of permutations σ such that $\sigma(i)<\sigma(i+1)$ for every $i \neq p$.

Since $\sigma \in S(p, q)$ if and only if the restrictions $\sigma:\{1, \ldots, p\} \rightarrow\{1, \ldots, p+q\}$, $\sigma:\{p+1, \ldots, p+q\} \rightarrow\{1, \ldots, p+q\}$, are increasing maps, it follows easily that the unshuffles are a set of representatives for the left cosets of the canonical embedding of $\Sigma_{p} \times \Sigma_{q}$ inside Σ_{p+q}. More precisely for every $\eta \in \Sigma_{p+q}$ there exists a unique decomposition $\eta=\sigma \tau$ with $\sigma \in S(p, q)$ and $\tau \in \Sigma_{p} \times \Sigma_{q}$.

Lemma 6.5. For every $v_{1}, \ldots, v_{n} \in V$ and every $a=0, \ldots, n$ we have

$$
N\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) N\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(a)}\right) \otimes N\left(v_{\sigma(a+1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

Proof.

$$
\begin{aligned}
N\left(v_{1} \otimes \cdots \otimes v_{n}\right) & =\sum_{\eta \in \Sigma_{n}} \eta_{\mathbf{t w}}^{-1} v_{1} \otimes \cdots \otimes v_{n} \\
& =\sum_{\sigma \in S(a, n-a)} \sum_{\tau \in \Sigma_{a} \times \Sigma_{n-a}} \tau_{\mathbf{t w}}^{-1} \sigma_{\mathbf{t w}}^{-1} v_{1} \otimes \cdots \otimes v_{n} \\
& =\sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) \sum_{\tau \in \Sigma_{a} \times \Sigma_{n-a}} \tau_{\mathbf{t w}}^{-1} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)} \\
& =\sum_{\sigma \in S(a, n-a)} \epsilon(\sigma) N\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(a)}\right) \otimes N\left(v_{\sigma(a+1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
\end{aligned}
$$

Consider two graded vector spaces V, M, a positive integer n, two maps

$$
f \in \operatorname{Hom}^{0}(V, M), \quad q \in \operatorname{Hom}^{k}\left(\bigotimes^{l} V, M\right)
$$

and define

$$
Q=\sum_{i=0}^{n-l} f^{\otimes i} \otimes q \otimes f^{\otimes n-l-i} \in \operatorname{Hom}^{k}\left(\bigotimes^{n} V, \otimes^{n-l+1} M\right)
$$

More explicitly

$$
\begin{aligned}
& Q\left(a_{1} \otimes \cdots \otimes a_{n}\right)= \\
= & \sum_{i=0}^{n-l}(-1)^{k\left(\overline{a_{1}}+\cdots+\overline{a_{i}}\right)} f\left(a_{1}\right) \otimes \cdots \otimes f\left(a_{i}\right) \otimes q\left(a_{i+1} \otimes \cdots \otimes a_{i+l}\right) \otimes f\left(a_{i+l+1}\right) \otimes \cdots \otimes f\left(a_{n}\right) .
\end{aligned}
$$

Lemma 6.6. In the notation above

$$
\begin{aligned}
& Q N\left(a_{1} \otimes \cdots \otimes a_{n}\right)= \\
& \quad=\sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) N\left(q N\left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(l)}\right) \otimes f\left(a_{\sigma(l+1)}\right) \otimes \cdots \otimes f\left(a_{\sigma(n)}\right)\right) \\
& \quad=N\left(\sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) q N\left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(l)}\right) \otimes f\left(a_{\sigma(l+1)}\right) \otimes \cdots \otimes f\left(a_{\sigma(n)}\right)\right)
\end{aligned}
$$

and then

$$
Q \circ N=\frac{1}{l!(n-l)!} N \circ\left(q N \otimes \mathrm{Id}^{\otimes n-l}\right) \circ N
$$

Proof. Denote

$$
H=\left\{\sigma \in \Sigma_{n} \mid \sigma(l+1)<\sigma(l+2)<\cdots<\sigma(n)\right\}
$$

and for every $j=0, \ldots, n-l$ choose permutations $\tau^{j} \in \Sigma(\{0, \ldots, n-l\}), \eta^{j} \in \Sigma_{n}$ such that

$$
\tau^{j}(0)=j, \quad \tau_{\mathbf{t w}}^{j} \circ\left(q \otimes f^{\otimes n-l}\right) \circ \eta_{\mathbf{t w}}^{j}=f^{\otimes j} \otimes q \otimes f^{\otimes n-l-j}
$$

We have

$$
Q\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{j} \tau_{\mathbf{t w}}^{j} \circ\left(q \otimes f^{\otimes n-l}\right) \circ \eta_{\mathbf{t w}}^{j}\left(a_{1} \otimes \cdots \otimes a_{n}\right)
$$

and then

$$
Q N\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{j} \tau_{\mathbf{t w}}^{j} \circ\left(q \otimes f^{\otimes n-l}\right) \circ N\left(a_{1} \otimes \cdots \otimes a_{n}\right) .
$$

On the other side, since $\Sigma(\{0, \ldots, n-l\})=\cup_{j} \tau^{j} \Sigma_{n-l}$, we have

$$
\begin{aligned}
& \quad \sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) N\left(q N\left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(l)}\right) \otimes f\left(a_{\sigma(l+1)}\right) \otimes \cdots \otimes f\left(a_{\sigma(n)}\right)\right)= \\
& =\sum_{\sigma \in H} \epsilon(\sigma) N\left(q\left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(l)}\right) \otimes f\left(a_{\sigma(l+1)}\right) \otimes \cdots \otimes f\left(a_{\sigma(n)}\right)\right) \\
& =\sum_{j} \sum_{\sigma \in \Sigma_{n}} \epsilon(\sigma) \tau_{\mathbf{t w}}^{j}\left(q\left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(l)}\right) \otimes f\left(a_{\sigma(l+1)}\right) \otimes \cdots \otimes f\left(a_{\sigma(n)}\right)\right) \\
& \quad=\sum_{j} \sum_{\sigma \in \Sigma_{n}} \tau_{\mathbf{t w}}^{j} \circ\left(q \otimes f^{\otimes n-l}\right) \circ \sigma_{\mathbf{t w}}^{-1}\left(a_{1} \otimes \cdots \otimes a_{n}\right) \\
& \quad=\sum_{j} \tau_{\mathbf{t w}}^{j} \circ\left(q \otimes f^{\otimes n-l}\right) \circ N\left(a_{1} \otimes \cdots \otimes a_{n}\right) .
\end{aligned}
$$

Given two oriented rooted forests Γ, Ω we shall write $\Gamma \sim \Omega$ is Γ and Ω are isomorphic as rooted forests, i.e. if they differ only by the orientation.
We have seen that the cardinality of the equivalence class of a oriented rooted tree T is

$$
\frac{1}{|\operatorname{Aut}(T)|} \prod_{v \in T_{i}}|v|!
$$

Lemma 6.7. Let $\Omega \in F(n, m)$ and $q_{i} \in \operatorname{Hom}^{0}\left(V^{\otimes i}, V\right), n \geq 2$. Then we have

$$
\sum_{\Gamma \sim \Omega} Z_{\Gamma}\left(q_{i}\right) \circ N=\frac{1}{|\operatorname{Aut}(\Omega)|} N \circ Z_{\Omega}\left(q_{i} N\right) \circ N .
$$

In particular, if $\Gamma, \Omega \in F(n, 1)$ and $\Gamma \sim \Omega$, then

$$
Z_{\Gamma}\left(q_{i} N\right) \circ N=Z_{\Omega}\left(q_{i} N\right) \circ N .
$$

Proof. Assume that $\Omega=(V, f, \nu)$, where (V, f) is a rooted forest and $\nu:\{1, \ldots, n\} \rightarrow V_{t}$ is a numbering. Define

$$
G_{\Omega}=\left\{\sigma \in \Sigma_{n} \mid \nu \circ \sigma^{-1} \text { is an orientation }\right\}
$$

and, for every $\sigma \in G_{\Omega}$ denote by

$$
\sigma \Omega=\left(V, f, \nu \circ \sigma^{-1}\right) .
$$

The group $\operatorname{Aut}(\Omega)$, when interpreted as a subgroup of $\Sigma\left(V_{t}\right)$, acts freely on G_{Ω} and there is a bijection

$$
G_{\Omega} / \operatorname{Aut}(\Omega) \simeq\{\Gamma \sim \Omega\} .
$$

Therefore the lemma is equivalent to the equality

$$
\sum_{\sigma \in G_{\Omega}} Z_{\sigma \Omega}\left(q_{i}\right) \circ N=N \circ Z_{\Omega}\left(q_{i} N\right) \circ N .
$$

If $n=m$, then $\Omega=\mathbb{I}_{n}, G_{\Omega}=\Sigma_{n}$ and the formula becomes $N^{2}=n!N$ that is trivially verified.
By induction we may assume that the formula holds for every $\Omega \in F(a, b)$ with $a^{2}-b^{2}<$ $n^{2}-m^{2}$. Assume first that $m>1$, therefore we have

$$
\Omega=T_{1} \otimes \cdots \otimes T_{m}, \quad T_{i} \in F\left(n_{i}, 1\right) .
$$

Since $\sum_{i}\left(n_{i}^{2}-1\right) \leq n^{2}-m^{2}$ the symmetrization formula holds for every tree T_{i}.
Denote by $R=\Sigma_{n_{1}} \times \cdots \times \Sigma_{n_{m}} \subset \Sigma_{n}$ and by $S \subset \Sigma_{n}$ a set of representatives for the left cosets of R.
Define also

$$
K=R \cap G_{\Omega}=G_{T_{1}} \times \cdots \times G_{T_{n}}
$$

By the inductive formula, applied to trees T_{i}

$$
\sum_{\sigma \in K} \sum_{\eta \in R} Z_{\sigma \Omega}\left(q_{i}\right) \circ \eta_{\mathbf{t w}}^{-1}=\sum_{\eta \in R} Z_{\Omega}\left(q_{i} N\right) \circ \eta_{\mathbf{t w}}^{-1}
$$

and then

$$
\begin{aligned}
\sum_{\sigma \in K} Z_{\sigma \Omega}\left(q_{i}\right) \circ N=\sum_{\rho \in S} \sum_{\sigma \in K} & \sum_{\eta \in R} Z_{\sigma \Omega}\left(q_{i}\right) \circ \eta_{\mathbf{t w}}^{-1} \circ \rho_{\mathbf{t w}}^{-1}= \\
& =\sum_{\rho \in S} \sum_{\eta \in R} Z_{\Omega}\left(q_{i} N\right) \circ \eta_{\mathbf{t w}}^{-1} \circ \rho_{\mathbf{t w}}^{-1}=Z_{\Omega}\left(q_{i} N\right) \circ N
\end{aligned}
$$

For every $\tau \in \Sigma_{m}$ denote by $\hat{\tau} \in G_{\Omega}$ the unique element satisfying

$$
\hat{\tau} \Omega=T_{\tau(1)} \otimes \cdots \otimes T_{\tau(m)}
$$

Notice that for every $\tau \in \Sigma_{m}$ and every $\kappa \in K$ we have $\hat{\tau} \in G_{\sigma \Omega}$ and

$$
G_{\Omega}=\bigcup_{\tau \in \Sigma_{m}} \hat{\tau} K
$$

Since every operator q_{i} has even degree we have

$$
Z_{\hat{\tau} \Omega}\left(q_{i}\right)=\tau_{\mathbf{t w}}^{-1} \circ Z_{\Omega}\left(q_{i}\right) \circ \hat{\tau}_{\mathbf{t w}}
$$

and more generally, for every $\kappa \in K$

$$
Z_{\hat{\tau} \kappa \Omega}\left(q_{i}\right)=\tau_{\mathbf{t w}}^{-1} \circ Z_{\kappa \Omega}\left(q_{i}\right) \circ \hat{\tau}_{\mathbf{t w}}
$$

Therefore

$$
\begin{aligned}
\sum_{\sigma \in G_{\Omega}} Z_{\sigma \Omega}\left(q_{i}\right) \circ N & =\sum_{\tau \in \Sigma_{m}} \sum_{\kappa \in K} Z_{\hat{\tau} \kappa \Omega}\left(q_{i}\right) \circ N=\sum_{\tau \in \Sigma_{m}} \sum_{\kappa \in K} \tau_{\mathbf{t w}}^{-1} \circ Z_{\kappa \Omega}\left(q_{i}\right) \circ \hat{\tau}_{\mathbf{t w}} \circ N \\
& =\sum_{\tau \in \Sigma_{m}} \tau_{\mathbf{t w}}^{-1} \circ Z_{\Omega}\left(q_{i} N\right) \circ N=N \circ Z_{\Omega}\left(q_{i} N\right) \circ N
\end{aligned}
$$

Assume now $m=1$ and decompose Ω as

$$
\Omega=\mathbb{T}_{m} \circ \Theta, \quad \Theta \in F(n, m)
$$

We have $G_{\Omega}=G_{\Theta}$ and

$$
\sigma \Omega=\mathbb{T}_{m} \circ \sigma \Theta, \quad \sigma \in G_{\Omega}=G_{\Theta}
$$

By inductive assumption

$$
\sum_{\sigma} Z_{\sigma \Omega}\left(q_{i}\right) \circ N=q_{m} \circ \sum_{\sigma} Z_{\sigma \Theta}\left(q_{i}\right) \circ N=q_{m} N \circ Z_{\Theta}\left(q_{i} N\right) \circ N=Z_{\Omega}\left(q_{i} N\right) \circ N
$$

Definition 6.8. A graded coalgebra (C, Δ) is called cocommutative if tw $\circ \Delta=\Delta$.
Lemma 6.9. Let (C, Δ) be a graded coassociative cocommutative coalgebra. Then the image of Δ^{n-1} is contained in the set of Σ_{n}-invariant elements of $\bigotimes^{n} C$.

Proof. The twist action of Σ_{n} on $\otimes{ }^{n} C$ is generated by the operators $\mathbf{t w} \mathbf{w}_{a}=\operatorname{Id}_{\otimes}{ }^{a} C \otimes \mathbf{t w} \otimes$ $\mathrm{Id}_{\otimes^{n-a-2} C}, 0 \leq a \leq n-2$, and, if $\mathbf{t w} \circ \Delta=\Delta$ then, according to Lemma 1.8

$$
\begin{aligned}
\mathbf{t w}_{a} \Delta^{n-1}= & \mathbf{t w}_{a}\left(\mathrm{Id}_{\otimes^{a} C} \otimes \Delta \otimes \operatorname{Id}_{\bigotimes^{n-a-2} C}\right) \Delta^{n-2} \\
& =\left(\operatorname{Id}_{\otimes^{a} C} \otimes \Delta \otimes \operatorname{Id}_{\otimes^{n-a-2} C}\right) \Delta^{n-2}=\Delta^{n-1}
\end{aligned}
$$

Exercise 6.10. Prove that a coalgebra C is cocommutative if and only if the algebra $\operatorname{Hom}^{*}(C, A)$ is commutative for every commutative algebra A.

Exercise 6.11. Let C be a cocommutative graded coalgebra and L a graded Lie algebra. Prove that $\operatorname{Hom}^{*}(C, L)$ is a graded Lie algebra.

7. SYMMETRIC ALGEBRAS

Let V be a graded vector space, $T(V)$ its tensor algebra and denote by $I \subset \bigodot^{*}(V)$ be the homogeneous ideal generated by the elements $x \otimes y-\mathbf{t w}(x \otimes y), x, y \in V$. The symmetric algebra generated by V is by definition the quotient

$$
S(V)=\frac{T(V)}{I}=\bigoplus_{n \geq 0} \bigodot^{n} V, \quad \bigodot^{n} V=\frac{\bigotimes^{n} V}{\bigotimes{ }^{n} V \cap I}
$$

The product in $S(V)$ is denoted by \odot. In particular if $\pi: T(V) \rightarrow S(V)$ is the projection to the quotient then for every $v_{1}, \ldots, v_{n} \in V, v_{1} \odot \cdots \odot v_{n}=\pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)$.

If σ is a permutation of $\{1, \ldots, n\}$, then for every $v \in \bigotimes^{n} V$ we have $v-\sigma_{\mathbf{t w}} v \in I$ and then $\pi(v)=\pi \sigma_{\mathbf{t w}}(v)$. More explicitly

$$
v_{1} \odot \cdots \odot v_{n}=\epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

The map $N: \bigotimes^{n} V \rightarrow \bigotimes^{n} V$ factors to

$$
N: \odot^{n} V \rightarrow \bigotimes^{n} V, \quad N\left(v_{1} \odot \cdots \odot v_{n}\right)=N\left(v_{1} \otimes \cdots \otimes v_{n}\right)
$$

and the composition $\bigodot^{n} V \xrightarrow{N} \bigotimes^{n} V \xrightarrow{\pi} \bigodot^{n} V$ is $n!$ Id.
For every morphism of graded vector spaces $f: V \rightarrow W$ we denote by

$$
S(f): S(V) \rightarrow S(W), \quad S(f)\left(v_{1} \odot \cdots \odot v_{n}\right)=f\left(v_{1}\right) \odot \cdots \odot f\left(v_{n}\right)
$$

the induced morphism of algebras.
Remark 7.1. For every differential graded vector space W there exists a natural inclusion

$$
\operatorname{Hom}^{*}\left(V^{\odot n}, W\right) \subseteq \operatorname{Hom}^{*}\left(V^{\otimes n}, W\right):
$$

given $f \in \operatorname{Hom}^{*}\left(V^{\odot n}, W\right)$ we set

$$
f\left(v_{1} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1} \odot \cdots \odot v_{n}\right)
$$

Conversely, a map $f \in \operatorname{Hom}^{*}\left(V^{\otimes n}, W\right)$ belongs to $\operatorname{Hom}^{*}\left(V^{\odot n}, W\right)$ if and only if $f=$ $f \circ \sigma_{\mathbf{t w}}$ for every permutation $\sigma \in \Sigma_{n}$.
As an example, if $\Gamma \in F(n, 1)$ is an oriented rooted tree, then for every sequence $f_{i} \in$ $\operatorname{Hom}^{0}\left(V^{\otimes i}, V\right)$ we have

$$
Z_{\Gamma}\left(f_{i}\right) \circ N \in \operatorname{Hom}^{0}\left(V^{\odot n}, V\right)
$$

and the second part of Lemma 6.7 implies that, if $f_{i} \in \operatorname{Hom}^{0}\left(V^{\odot i}, V\right)$, then

$$
Z_{\Gamma}\left(f_{i}\right) \circ N=Z_{\Omega}\left(f_{i}\right) \circ N
$$

for every $\Omega \sim \Gamma$.

8. The Reduced symmetric coalgebra

For every graded vector space V denote $\overline{S(V)}=\bigoplus_{n>0} \bigodot^{n} V$.
Lemma 8.1. The map $\mathfrak{l}: \overline{S(V)} \rightarrow \overline{S(V)} \otimes \overline{S(V)}$,

$$
\mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

is a cocommutative coproduct and the map

$$
N:(\overline{S(V)}, \mathfrak{l}) \rightarrow(\overline{T(V)}, \mathfrak{a})
$$

is an injective morphism of coalgebras.
Proof. The cocommutativity of \mathfrak{l} is clear from definition. Since N is injective, we only need to prove that $\mathfrak{a} N=(N \otimes N) \mathfrak{l}$. According to Lemma 6.5, for every a
$\mathfrak{a}_{a, n-a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=N \otimes N \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \otimes \cdots \otimes v_{\sigma(n)}\right)$ and then

$$
\mathfrak{a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \mathfrak{a}_{a, n-a} N\left(v_{1} \odot \cdots \odot v_{n}\right)=N \otimes N \mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right) .
$$

Definition 8.2. The reduced symmetric coalgebra generated by V is the graded vector space $\overline{S(V)}$ with the coproduct \mathfrak{l} defined in Lemma 8.1

$$
\mathfrak{l}\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{a=1}^{n-1} \sum_{\sigma \in S(a, n-a)} \epsilon(\sigma)\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(a)}\right) \otimes\left(v_{\sigma(a+1)} \odot \cdots \odot v_{\sigma(n)}\right)
$$

It is often convenient to think the reduced symmetric coalgebra as a subset of the tensor coalgebra, via the identification provided by N. In particular $\overline{S(V)}$ is locally nilpotent and the projection $\overline{S(V)} \rightarrow V$ is a system of cogenerators.
Moreover, since N is an injective morphism of coalgebras we have

$$
\operatorname{ker} \mathfrak{l}^{n}=N^{-1}\left(\operatorname{ker} \mathfrak{a}^{n}\right)=N^{-1}\left(\oplus_{i=1}^{n} V^{\otimes i}\right)=\oplus_{i=1}^{n} V^{\odot i}
$$

For every morphism of graded vector spaces $f: V \rightarrow W$ we have

$$
N \circ S(f)=T(f) \circ N: S(V) \rightarrow T(W)
$$

and then $S(f): \overline{S(V)} \rightarrow \overline{S(W)}$ is a morphism of graded coalgebras.

Exercise 8.3. Assume V finite dimensional with basis $\partial_{1}, \ldots, \partial_{m}$ of degree 0 . Prove that

$$
\mathfrak{l}\left(\partial_{1}^{n_{1}} \cdots \partial_{m}^{n_{m}}\right)=\sum_{a_{1}, \ldots, a_{m}}\binom{n_{1}}{a_{1}} \cdots\binom{n_{m}}{a_{m}} \partial_{1}^{a_{1}} \cdots \partial_{m}^{a_{m}} \otimes \partial_{1}^{n_{1}-a_{1}} \cdots \partial_{m}^{n_{m}-a_{m}}
$$

and deduce that the dual algebra $\overline{S(V)}{ }^{\vee}$ is isomorphic to the maximal ideal of the power series ring $\mathbb{K}\left[\left[x_{1}, \ldots, x_{m}\right]\right]$, with pairing

$$
\left\langle\partial_{1}^{n_{1}} \cdots \partial_{m}^{n_{m}}, f(x)\right\rangle=\frac{\partial^{n_{1}+\cdots+n_{m}} f}{\partial x_{1}^{n_{1}} \cdots \partial x_{m}^{n_{m}}}(0)=\left(\prod_{i} n_{i}!\right) \cdot\left(\text { coefficient of } x_{1}^{n_{1}} \cdots x_{m}^{n_{m}} \text { in } f(x)\right) .
$$

Proposition 8.4. Let V be a graded vector space; for every locally nilpotent cocommutative graded coalgebra (C, Δ) the composition with the projection $(\Gamma: \overline{S(V)} \rightarrow V)$ $\mathcal{P}: \overline{S(V)} \rightarrow V$, gives a bijective map

$$
\operatorname{Hom}_{\mathbf{G C}}(C, \overline{S(V)}) \longrightarrow \operatorname{Hom}_{\mathbf{G}}(C, V), \quad f \mapsto \mathcal{P} f
$$

with inverse

$$
f \mapsto \mathcal{P}^{*} f=\sum_{n=1}^{+\infty} \frac{S(f) \circ \pi}{n!} \Delta^{n-1}=\sum_{n=1}^{+\infty} \frac{\pi \circ T(f)}{n!} \Delta^{n-1}: C \rightarrow \overline{S(V)}
$$

where $\pi: T(C) \rightarrow S(C), \pi: T(V) \rightarrow S(V)$ are the projections.
Notice that

$$
S(f) \circ \pi\left(c_{1} \otimes \cdots \otimes c_{n}\right)=\pi \circ T(f)\left(c_{1} \otimes \cdots \otimes c_{n}\right)=m\left(c_{1}\right) \odot \cdots \odot m\left(c_{n}\right)
$$

Proof. Since $\mathcal{P P}^{*}(f)=f, \mathcal{P}: \overline{S(V)} \rightarrow V$ is a system of cogenerators and N is an injective morphism of coalgebras, it is sufficient to prove that $N \circ \mathcal{P}^{*}(f): C \rightarrow \overline{T(V)}$ is a morphism of graded coalgebras. According to Lemma 6.9 the image of Δ^{n} is contained in the subspace of symmetric tensors and therefore

$$
\begin{aligned}
\Delta^{n-1} & =N \circ \frac{\pi}{n!} \Delta^{n-1} \\
N \theta(m)=\sum_{n=1}^{+\infty} \frac{N \circ S(f) \circ \pi}{n!} \Delta^{n-1} & =\sum_{n=1}^{+\infty} \frac{T(f) \circ N \circ \pi}{n!} \Delta^{n-1}=\sum_{n=1}^{+\infty} T(f) \circ \Delta^{n-1}
\end{aligned}
$$

and the conclusion follows from Proposition 3.2.
Corollary 8.5. Let C be a locally nilpotent cocommutative graded coalgebra, and V a graded vector space. A morphism $\theta \in \operatorname{Hom}_{\mathbf{G}}(C, \overline{S(V)})$ is a morphism of graded coalgebras if and only if there exists $m \in \operatorname{Hom}_{\mathbf{G}}(C, V) \subset \operatorname{Hom}_{\mathbf{G}}(C, \overline{S(V)})$ such that

$$
\theta=\exp (m)-1=\sum_{n=1}^{\infty} \frac{1}{n!} m^{n}
$$

being the n-th power of m is considered with respect to the algebra structure on $\operatorname{Hom}_{\mathbf{G}}(C, \overline{S(V)})$ (Example 1.4).

Proof. An easy computation gives the formula $m^{n}=S(m) \pi \Delta^{n-1}$ for the product defined in Example 1.4.

Proposition 8.6. Let V be a graded vector space and C a locally nilpotent cocommutative coalgebra. Then for every coalgebra morphism $\theta: C \rightarrow \overline{S(V)}$ and every integer k, the composition with $N: \overline{S(V)} \rightarrow \overline{T(V)}$ gives an isomorphism

$$
\operatorname{Coder}^{k}(C, \overline{S(V)} ; \theta) \simeq \operatorname{Coder}^{k}(C, \overline{T(V)} ; N \theta)
$$

Proof. We need to prove that if $Q: C \rightarrow \overline{T(V)}$ is a coderivation with respect to some morphism $\eta=N \theta$, then $Q=N P$ for some $P: C \rightarrow \overline{S(V)}$. According to Proposition 3.6 we have

$$
Q=\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(f^{\otimes i} \otimes q \otimes f^{\otimes n-i}\right) \Delta^{n}: C \rightarrow \overline{T(V)}
$$

for some $f \in \operatorname{Hom}^{0}(C, V)$ and $q \in \operatorname{Hom}^{k}(C, V)$. Since C is cocommutative we have $N \Delta^{n}=(n+1)!\Delta^{n}$ and then

$$
Q=\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(f^{\otimes i} \otimes q \otimes f^{\otimes n-i}\right) \Delta^{n}=\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(f^{\otimes i} \otimes q \otimes f^{\otimes n-i}\right) \frac{N}{(n+1)!} \Delta^{n} .
$$

By Lemma 6.6

$$
Q=\sum_{n=0}^{\infty} \frac{1}{n!} N\left(q \otimes f^{\otimes n}\right) \frac{N}{(n+1)!} \Delta^{n}=N \sum_{n=0}^{\infty} \frac{1}{n!}\left(q \otimes f^{\otimes n}\right) \Delta^{n} .
$$

Corollary 8.7. Let V be a graded vector space and (C, Δ) a locally nilpotent cocommutative coalgebra. Then for every coalgebra morphism $\theta: C \rightarrow \overline{S(V)}$ and every integer n, the composition with the projection $\mathcal{P}: \overline{S(V)} \rightarrow V$ gives a bijective map

$$
\operatorname{Coder}^{n}(C, \overline{S(V)} ; \theta) \rightarrow \operatorname{Hom}^{n}(C, V), \quad Q \mapsto \mathcal{P} Q
$$

with inverse

$$
q \mapsto \sum_{n=1}^{+\infty} \frac{\pi}{n!}\left(q \otimes\left(\theta^{1}\right)^{\otimes n}\right) \Delta^{n}
$$

Proof. Immediate consequence of Propositions 3.6 and the same computation made in the proof of Proposition 8.6.

Corollary 8.8. Let V be a graded vector space, $\overline{S(V)}$ its reduced symmetric coalgebra. The application $Q \mapsto\left\{Q_{k}^{1}\right\}$ gives an isomorphism of vector spaces

$$
\operatorname{Coder}^{n}(\overline{S(V)}, \overline{S(V)}) \rightarrow \prod_{k=1}^{+\infty} \operatorname{Hom}^{n}\left(V^{\odot k}, V\right)
$$

whose inverse D is given by the formula

$$
D\left(q_{i}\right)\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{k=1}^{n} \sum_{\sigma \in S(k, n-k)} \epsilon(\sigma) q_{k}\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(k)}\right) \odot v_{\sigma(k+1)} \odot \cdots \odot v_{\sigma(n)}
$$

In particular for every coderivation Q we have $Q_{j}^{i}=0$ for every $i>j$ and then the subcoalgebras $\bigoplus_{i=1}^{r} \bigodot^{i} V$ are preserved by Q.

Proof. As above we only need to prove that $D\left(q_{i}\right)$ is a coderivation. By linearity it is not restrictive to assume that $q_{i}=0$ for every $i \neq l$. Let $r \in \operatorname{Hom}^{n}\left(\bigotimes^{l} V, V\right)$ such that $r N={ }_{l}$ and let $R \in \operatorname{Coder}^{n}(\overline{T(V)}, \overline{T(V)})$ the coderivation such that $R^{1}=r$; we will show that $R \circ N=N \circ D\left(q_{i}\right)$. According to Corollary 3.7

$$
\begin{aligned}
& R\left(a_{1} \otimes \cdots \otimes a_{n}\right)= \\
& =\sum_{i, l}(-1)^{k\left(\overline{a_{1}}+\cdots+\overline{a_{i}}\right)} a_{1} \otimes \cdots \otimes a_{i} \otimes r\left(a_{i+1} \otimes \cdots \otimes a_{i+l}\right) \otimes \cdots \otimes a_{n} .
\end{aligned}
$$

and then, by Lemma 6.6

$$
\begin{aligned}
& R N\left(a_{1} \odot \cdots \odot a_{n}\right)= \\
& \qquad \begin{array}{l}
\left.=N\left(\sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) r N\left(a_{\sigma(1)} \odot \cdots \odot a_{\sigma(l)}\right) \odot a_{\sigma(l+1)}\right) \odot \cdots \odot a_{\sigma(n)}\right) \\
\\
\quad=N\left(\sum_{\sigma \in S(l, n-l)} \epsilon(\sigma) Q_{a}^{1}\left(a_{\sigma(1)} \odot \cdots \odot a_{\sigma(l)}\right) \odot a_{\sigma(l+1)} \odot \cdots \odot a_{\sigma(n)}\right)
\end{array}
\end{aligned}
$$

9. Q-MANIFOLDS

Definition 9.1 ([5, 4.3]). A formal graded pointed Q-manifold is the data (V, q_{1}, q_{2}, \ldots) of a graded vector space V and a sequence of maps

$$
q_{n} \in \operatorname{Hom}^{1}\left(V^{\odot n}, V\right), \quad n \geq 1
$$

such that the coderivation $D\left(q_{n}\right)$ (defined in Corollary 8.8) is a codifferential of the reduced symmetric coalgebra $\overline{S(V)}$.

For notational simplicity, from now we shall simply say Q-manifolds, omitting the adjectives formal, graded and pointed.

Lemma 9.2. Let V be a graded vector space and $q_{n} \in \operatorname{Hom}^{1}\left(V^{\odot n}, V\right)$, for $n \geq 1$, be a sequence of maps. Then $D\left(q_{n}\right)$ is a codifferential, i.e. $D\left(q_{n}\right) \circ D\left(q_{n}\right)=0$, if and only if for every $n>0$ and every $v_{1}, \ldots, v_{n} \in V$

$$
\sum_{k+l=n+1} \sum_{\sigma \in S(k, n-k)} \epsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right) q_{l}\left(q_{k}\left(v_{\sigma(1)} \odot \cdots \odot v_{\sigma(k)}\right) \odot v_{\sigma(k+1)} \odot \cdots \odot v_{\sigma(n)}\right)=0
$$

Proof. Denote $P=D\left(q_{n}\right) \circ D\left(q_{n}\right)=\frac{1}{2}\left[D\left(q_{n}\right), D\left(q_{n}\right)\right]$: since P is a coderivation we have that $P=0$ if and only if $P^{1}=D\left(q_{n}\right)^{1} \circ D\left(q_{n}\right)=0$. According to Corollary 8.8

$$
D\left(q_{n}\right)\left(v_{1} \odot \cdots \odot v_{n}\right)=\sum_{k=1}^{n} \sum_{\sigma \in S(k, n-k)} \epsilon(\sigma) q_{k}\left(v_{\sigma(1)} \odot \ldots \odot v_{\sigma(k)}\right) \odot v_{\sigma(k+1)} \odot \cdots \odot v_{\sigma(n)}
$$

and then $P^{1}\left(v_{1} \odot \cdots \odot v_{n}\right)$ is equal to the expression in the statement.
In particular, if $\left(V, q_{1}, q_{2}, \ldots\right)$ is an Q-manifold, then $\left(V, q_{1}\right)$ is a differential graded vector space.

Definition 9.3. A morphism $f_{\infty}:\left(V, q_{i}\right) \rightarrow\left(W, r_{i}\right)$ of Q-manifolds is a linear map

$$
f_{\infty} \in \operatorname{Hom}^{0}(\overline{S(V)}, W)
$$

such that the morphism $\mathcal{P}^{*} f_{\infty}: \overline{S(V)} \rightarrow \overline{S(W)}$ (defined in Proposition 8.4) is a morphism of differential graded coalgebras, i.e. $D\left(r_{i}\right) \mathcal{P}^{*} f_{\infty}=\mathcal{P}^{*} f_{\infty} D\left(q_{i}\right)$.

The composition of two morphisms $f_{\infty} \in \operatorname{Hom}^{0}(\overline{S(V)}, W), g_{\infty} \in \operatorname{Hom}^{0}(\overline{S(U)}, V)$ is defined as

$$
f_{\infty} \circ g_{\infty}=f_{\infty}\left(\mathcal{P}^{*} g_{\infty}\right) \in \operatorname{Hom}^{0}(\overline{S(U)}, W)
$$

The category of Q-manifolds is equivalent to the full subcategory of DGC (differential graded coalgebras). If C is a differential graded coalgebra and $\mathfrak{g}=\left(V, q_{i}\right)$ is a Q-manifold we denote by

$$
\operatorname{Mor}_{\mathbf{D G C}}(C, \mathfrak{g})=\operatorname{Mor}_{\mathbf{D G C}}\left(C,\left(\overline{S(V)}, D\left(q_{i}\right)\right)\right)
$$

Remark 9.4. In Definition 9.3 it is sufficient to require $\left(\sum r_{i}\right) \mathcal{P}^{*} f_{\infty}=f_{\infty} D\left(q_{n}\right)$. In fact $D\left(r_{i}\right) \mathcal{P}^{*} f_{\infty}$ and $\mathcal{P}^{*} f_{\infty} D\left(q_{i}\right)$ are both $\mathcal{P}^{*} f_{\infty}$-coderivations and then $\left(\sum r_{i}\right) \mathcal{P}^{*} f_{\infty}=$ $f_{\infty} D\left(q_{n}\right)$ if and only if $D\left(r_{i}\right)\left(\mathcal{P}^{*} f_{\infty}\right)=\left(\mathcal{P}^{*} f_{\infty}\right) D\left(q_{i}\right)$.

Given two Q-manifolds $\mathfrak{g}_{1}=\left(V, q_{1}, q_{2}, \ldots\right), \mathfrak{g}_{2}=\left(W, r_{1}, r_{2}, \ldots\right)$ we denote

$$
\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}=\left(V \oplus W, q_{1} \oplus r_{1}, q_{2} \oplus r_{2}, \ldots\right)
$$

where

$$
q_{n} \oplus r_{n}(x)= \begin{cases}q_{n}(x) & \text { if } x \in V^{\odot n} \\ r_{n}(x) & \text { if } x \in W^{\odot n} \\ 0 & \text { if } x \in V^{\odot i} \otimes W^{\odot n-i} \text { and } 0<i<n\end{cases}
$$

It is immediate from Lemma 9.2 that $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ is a Q-manifold.
The next sections will be devoted to the proof of the following important result.
Theorem 9.5. Let $\left(V, q_{1}, q_{2}, \ldots\right)$ be a Q-manifold and let $i:(H, d) \rightarrow\left(V, q_{1}\right)$ be an injective quasiisomorphism of complexes. Then there exist a Q-manifold structure $\left(H, r_{1}, r_{2}, \ldots\right)$ and two morphisms of Q-manifolds

$$
\imath_{\infty}:\left(H, r_{1}, r_{2}, \ldots\right) \rightarrow\left(V, q_{1}, q_{2}, \ldots\right), \quad \pi_{\infty}:\left(V, q_{1}, q_{2}, \ldots\right) \rightarrow\left(H, r_{1}, r_{2}, \ldots\right)
$$

such that $r_{1}=d, \imath_{1}=\imath$ and $\pi_{\infty} \circ \imath_{\infty}=\mathrm{Id}$.

Remark 9.6. In the situation of Theorem 9.5 The Q-manifold structure $\left(H, r_{1}, r_{2}, \ldots\right)$ is unique up to (non canonical) isomorphism. In fact if $\left(H, s_{1}, s_{2}, \ldots\right), j_{\infty}$ and p_{∞} is another triple, then

$$
p_{\infty} \circ \imath_{\infty}:\left(H, r_{1}, r_{2}, \ldots\right) \rightarrow\left(H, s_{1}, s_{2}, \ldots\right)
$$

is an isomorphism.
The proof will goes as follows: since \imath is an injective quasiisomorphism there exists $h \in \operatorname{Hom}^{-1}(V, V)$ such that $\mathrm{Id}_{V}+\left[q_{1}, h\right]$ is a projection onto the image of \imath. Then we give an explicit construction, in terms of q_{i}, \imath and h, of the maps r_{n}, \imath_{n} : this is done by using rooted tree formalism. Lastly we prove the existence of π_{∞} and the unicity properties using an analog of the decomposition theorem of Q-manifolds.

10. Contractions

Definition 10.1 (Eilenberg and Mac Lane [1, p. 81]). A contraction is the data

$$
(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)
$$

where M, N are differential graded vector spaces, $h \in \operatorname{Hom}^{-1}(N, N)$ and \imath, π are cochain maps such that:
(1) (deformation retraction) $\pi \imath=\operatorname{Id}_{M}, \imath \pi-\operatorname{Id}_{N}=d_{N} h+h d_{N}$,
(2) (annihilation properties) $\pi h=h \imath=h^{2}=0$.

The maps \imath, π and h are referred as the inclusion, projection and homotopy of the contraction.
Definition 10.2. A morphism of contractions

$$
f:(M \underset{\pi}{\stackrel{i}{\rightleftarrows}} N, h) \rightarrow(A \underset{p}{\stackrel{i}{\rightleftarrows}} B, k)
$$

is a morphism of differential graded vector spaces $f: N \rightarrow B$ such that $f h=k f$.
It is an easy exercise to prove that if

$$
f:(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h) \rightarrow(A \underset{p}{\stackrel{i}{\leftarrow}} B, k)
$$

is a morphism of contractions then there exists an unique morphism of complexes $f^{\prime}: M \rightarrow B$ such that $f^{\prime} \pi=p f$ and $i f^{\prime}=f \imath$.

Remark 10.3. If ($M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h$) is a contraction, then $h^{2}=h+h d_{N} h=0$. Conversely, every $h \in \operatorname{Hom}^{-1}(N, N)$ satisfying $h^{2}=h+h d_{N} h=0$ gives a contraction $(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)$ where $M=\operatorname{ker}\left(d_{N} h+h d_{N}\right), \imath: M \rightarrow N$ is the inclusion and $\pi=\imath^{-1}\left(\operatorname{Id}_{N}+d_{N} h+h d_{N}\right)$.

Example 10.4.

$$
\left(\mathbb{K} \underset{e_{0}}{\stackrel{\imath}{\rightleftarrows}} \mathbb{K}[t, d t],-\int_{0}\right)
$$

is a contraction, where e_{0} is the evaluation at 0 and \imath is the inclusion.

Example 10.5.

is a contraction, where

$$
\pi(q(t)+p(t) d t)=t q(1)+(1-t) q(0)+\left(\int_{0}^{1} p(s) d s\right) d t
$$

and \imath is the inclusion.
Lemma 10.6. Let $\imath: M \hookrightarrow N$ be an injective morphism of differential graded vector spaces. Then \imath is the inclusion of a contraction if and only if $\imath: H^{*}(M) \rightarrow H^{*}(N)$ is an isomorphism.

Proof. One implication is clear: if $(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)$ is a contraction, then h is a homotopy between $\imath \pi$ and the identity on N.

Conversely, it is not restrictive to assume M a subcomplex of N and \imath the inclusion; assume $H^{*}(M)=H^{*}(N)$ and denote by d the differential of N. Since $H^{*}(M) \rightarrow H^{*}(N)$ is injective we have

$$
M \cap d N=Z(M) \cap d N=d M
$$

and we can find a direct sum decomposition

$$
d N=d M \oplus B, \quad B \cap M=\emptyset
$$

Moreover $H^{*}(M) \rightarrow H^{*}(N)$ is surjective and then

$$
Z(N)=Z(M)+d N=Z(M) \oplus B
$$

Choosing a direct sum decomposition

$$
d^{-1}(B)=Z(N) \oplus C
$$

we have $(M \oplus B) \cap C=0$. In fact, if $c=m+b$ with $c \in C, m \in M$ and $b \in B$, then $d c=d m \in B \cap M=0$ and therefore $c \in Z(N) \cap C=0$. Let now $n \in N$, there exist $m \in M$ such that $d n-d m \in B$ and then $n-m \in d^{-1}(B)$. We can write $n-m=a+c$, with $a \in Z(N) \subset M \oplus B$ and $c \in C$. Therefore $N=M+B+C$ and we have proved

$$
N=M \oplus B \oplus C, \quad d: C \xrightarrow{\simeq} B
$$

Define therefore $\pi: N \rightarrow M$ as the projection with kernel $C \oplus B$ and

$$
h(m+b+c)=d^{-1}(b) \in C
$$

Definition 10.7. Given two contractions $(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)$ and ($N \underset{p}{\stackrel{i}{\rightleftarrows}} P, k$), their composition is the contraction defined as

$$
(M \underset{\pi p}{\stackrel{i l}{\rightleftarrows}} P, k+i h p) .
$$

Example 10.8. Given two contractions $(M \underset{\pi}{\stackrel{i}{\rightleftarrows}} N, h)$ and $(A \underset{p}{\stackrel{i}{\rightleftarrows}} B, k)$ we define their tensor product as

$$
(M \otimes A \underset{\pi \otimes p}{\stackrel{\imath \otimes i}{\gtrless}} N \otimes B, h * k), \quad h * k=\imath \pi \otimes k+h \otimes \operatorname{Id}_{B} .
$$

Denoting by $\hat{d}=d \otimes \operatorname{Id}_{B}+\operatorname{Id}_{N} \otimes d$ the differential on $N \otimes B$, we have

$$
\begin{aligned}
& (h * k \circ \hat{d}+\hat{d} \circ h * k)(x \otimes y)= \\
& \quad=h * k\left(d x \otimes y+(-1)^{\bar{x}} x \otimes d y\right)+\hat{d}\left(h x \otimes y+(-1)^{\bar{x}} \imath \pi(x) \otimes k y\right) \\
& =h d x \otimes y-(-1)^{\bar{x}} d \imath \pi(x) \otimes k y+(-1)^{\bar{x}} h x \otimes d y+\imath \pi(x) \otimes k d y+ \\
& \quad+d h x \otimes y-(-1)^{\bar{x}} h x \otimes d y+(-1)^{\bar{x}} d \imath \pi(x) \otimes k y+\imath \pi(x) \otimes d k y \\
& \quad=(h d+d h) x \otimes y+\imath \pi(x) \otimes(k d+d k) y \\
& =\imath \pi x \otimes y-x \otimes y+\imath \pi(x) \otimes i p(y)-\imath \pi(x) \otimes y=\left(\imath \pi \otimes i p-\operatorname{Id}_{N} \otimes \operatorname{Id}_{A}\right) x \otimes y .
\end{aligned}
$$

It is straightforward to verify the annihilation properties of $h * k$ and the associativity of such tensor product.

Example 10.9. Given a contraction $(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)$, its tensor nth power is

$$
\bigotimes_{R}^{n}(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h)=\left(M^{\otimes n} \stackrel{i^{\otimes n}}{\stackrel{i^{\otimes n}}{\rightleftarrows}} N^{\otimes n}, T^{n} h\right),
$$

where

$$
T^{n} h=\sum_{i=1}^{n}(\imath \pi)^{\otimes i-1} \otimes h \otimes \operatorname{Id}_{N}^{\otimes n-i}
$$

Since the differential on $N^{\otimes n}$ commutes with the twist action of the symmetric group Σ_{n}, we can take the simmetrization of $T^{n} h$

$$
S^{n} h=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \sigma_{\mathbf{t w}} \circ T^{n} h \circ \sigma_{\mathbf{t w}}^{-1}
$$

In order to prove that $\left(M^{\otimes n} \stackrel{\pi^{\otimes n}}{\stackrel{Q^{\otimes n}}{\leftrightarrows}} N^{\otimes n}, S^{n} h\right)$ is a contraction, the only non trivial condition to verify is $\left(S^{n} h\right)^{2}=0$. More generally we have that $T^{n} h \circ \sigma_{\mathbf{t w}} \circ T^{n} h \circ \sigma_{\mathbf{t w}}^{-1}=0$ for every permutation σ : this is an exercise about Koszul rule of signs and it is left to the reader.

Exercise 10.10. Prove that if N contracts to M, then $\bigodot^{n} N$ contracts to $\bigodot^{n} M$.
11. Contracting Q-manifolds: RECURSIVE Formulas

In this section $\left(V, q_{1}, q_{2}, \ldots\right)$ is a fixed Q-manifold and denote by

$$
Q=D\left(q_{n}\right): \overline{S(V)} \rightarrow \overline{S(V)}
$$

the induced codifferential of degree 1. Denote also

$$
q_{+}=\sum_{i \geq 2} q_{i}: \overline{S(V)} \rightarrow V
$$

so that $Q^{1}=q_{1}+q_{+}$.
Assume to have a graded vector space W and a coderivation $\hat{Q}: \overline{S(W)} \rightarrow \overline{S(W)}$ of degree 1 such that $\left(W, \hat{Q}_{1}^{1}\right)$ is a differential graded vector space. Assume moreover to have two morphisms of differential graded vector spaces

$$
\varphi_{1}^{1}: W \rightarrow V, \quad \pi: V \rightarrow W
$$

and a homotopy $K \in \operatorname{Hom}^{-1}(V, V)$ between $\varphi_{1}^{1} \circ \pi$ and Id_{V}, i.e.

$$
q_{1} \varphi_{1}^{1}=\varphi_{1}^{1} \hat{Q}_{1}^{1}, \quad \pi q_{1}=\hat{Q}_{1}^{1} \pi, \quad q_{1} K+K q_{1}=\varphi_{1}^{1} \pi-\operatorname{Id}_{V}
$$

Theorem 11.1. In the above set-up, assume that $\varphi: \overline{S(W)} \rightarrow \overline{S(V)}$ is a morphism of graded coalgebras lifting φ_{1}^{1}. If

$$
\begin{equation*}
\varphi^{1}=\varphi_{1}^{1}+K q_{+} \varphi, \quad \hat{Q}^{1}=\hat{Q}_{1}^{1}+\pi q_{+} \varphi \tag{1}
\end{equation*}
$$

then, denoting by \hat{Q} the coderivation indeuced by \hat{Q}^{1}, we have

$$
Q \varphi=\varphi \hat{Q}, \quad \hat{Q} \hat{Q}=0
$$

Remark 11.2. Using the projection operators \mathcal{P} we have $\varphi_{1}^{1}=\varphi \mathcal{P}, \varphi^{1}=\mathcal{P} \varphi$ and then the equations 1 may be written as

$$
\mathcal{P} \varphi=\varphi \mathcal{P}+K(\mathcal{P} Q-Q \mathcal{P}) \varphi, \quad \mathcal{P} \hat{Q}=\hat{Q} \mathcal{P}+\pi(\mathcal{P} Q-Q \mathcal{P}) \varphi
$$

or, in a more compact form,

$$
[\mathcal{P}, \varphi]=K[\mathcal{P}, Q] \varphi, \quad[\mathcal{P}, \hat{Q}]=\pi[\mathcal{P}, Q] \varphi
$$

Proof. (D. Fiorenza [2]) We first prove that

$$
(Q \varphi-\varphi \hat{Q})^{1}=K q_{+}(Q \varphi-\varphi \hat{Q})
$$

We have

$$
\begin{aligned}
(Q \varphi-\varphi \hat{Q})^{1} & =Q^{1} \varphi-\varphi^{1} \hat{Q}=q_{1} \varphi^{1}+q_{+} \varphi-\varphi^{1} \hat{Q} \\
& =q_{1} \varphi_{1}^{1}+q_{1} K q_{+} \varphi+q_{+} \varphi-\varphi_{1}^{1} \hat{Q}^{1}-K q_{+} \varphi \hat{Q} \\
& =q_{1} \varphi_{1}^{1}+\left(\varphi_{1}^{1} \pi-\operatorname{Id}_{V}-K q_{1}\right) q_{+} \varphi+q_{+} \varphi-\varphi_{1}^{1} \hat{Q}^{1}-K q_{+} \varphi \hat{Q} \\
& =q_{1} \varphi_{1}^{1}+\varphi_{1}^{1} \pi q_{+} \varphi-K q_{1} q_{+} \varphi-\varphi_{1}^{1} \hat{Q}^{1}-K q_{+} \varphi \hat{Q} \\
& =q_{1} \varphi_{1}^{1}+\varphi_{1}^{1} \pi q_{+} \varphi-K q_{1} q_{+} \varphi-\varphi_{1}^{1} \hat{Q}_{1}^{1}-\varphi_{1}^{1} \pi q_{+} \varphi-K q_{+} \varphi \hat{Q} \\
& =\left(q_{1} \varphi_{1}^{1}-\varphi_{1}^{1} \hat{Q}_{1}^{1}\right)-K q_{1} q_{+} \varphi-K q_{+} \varphi \hat{Q} \\
& =-K q_{1} q_{+} \varphi-K q_{+} \varphi \hat{Q}
\end{aligned}
$$

Since $0=Q^{1} Q=q_{1} Q^{1}+q_{+} Q=q_{1} q_{+}+q_{+} Q$ we have $q_{1} q_{+}=-q_{+} Q$ and therefore

$$
(Q \varphi)^{1}-(\varphi \hat{Q})^{1}=-K q_{1} q_{+} \varphi-K q_{+} \varphi \hat{Q}=K q_{+}(Q \varphi-\varphi \hat{Q})
$$

The map

$$
\delta=Q \varphi-\varphi \hat{Q}: \overline{S(W)} \rightarrow \overline{S(V)}
$$

is a φ-derivation and then, in order to prove that $\delta=0$, it is sufficient to show that $\delta^{1}=0$. We shall prove by induction on n that δ^{1} vanishes on $\odot^{n} W$; for $n=0$ there is nothing to prove. Let's assume $n>0$ and $\delta^{1}\left(\bigodot^{i} W\right)=0$ for every $i<n$, then by coLeibniz rule, for every $w \in \bigodot^{n} W$ we have $\delta(w)=\delta^{1}(w) \in V$ and therefore

$$
\delta^{1}(w)=K q_{+} \delta(w)=K q_{+} \delta^{1}(w)=0 .
$$

We also have

$$
\begin{gathered}
(\hat{Q} \hat{Q})^{1}=\hat{Q}^{1} \hat{Q}=\hat{Q}_{1}^{1} \hat{Q}+\pi q_{+} \varphi \hat{Q}= \\
=\hat{Q}_{1}^{1} \hat{Q}^{1}+\pi q_{+} Q \varphi=\hat{Q}_{1}^{1} \pi q_{+} \varphi+\pi q_{+} Q \varphi=\pi\left(q_{1} q_{+}+q_{+} Q\right) \varphi .
\end{gathered}
$$

We have already noticed that $q_{1} q_{+}=-q_{+} Q$ and then $(\hat{Q} \hat{Q})^{1}=0$.
Remark 11.3. For later use, we point out that, since $\left(q_{+} \varphi\right)_{1}^{1}=0$, the equalities $\varphi^{1}=$ $\varphi_{1}^{1}+K q_{+} \varphi$ and $\hat{Q}^{1}=\hat{Q}_{1}^{1}+\pi q_{+} \varphi$ of Theorem 11.1, are equivalent to

$$
\varphi_{n}^{1}=K \sum_{i=2}^{n} q_{i} \varphi_{n}^{i}, \quad \hat{Q}_{n}^{1}=\pi \sum_{i=2}^{n} q_{i} \varphi_{n}^{i}, \quad \forall n \geq 2 .
$$

According to Corollary 3.4, every φ_{n}^{i} depends only of $\varphi_{1}^{1}, \varphi_{2}^{1}, \ldots, \varphi_{n-i+1}^{1}$ and then the hypothesis of Theorem 11.1 implies that φ and \hat{Q} are recursively determined by φ_{1}^{1}, π, K and q_{n} for $n \geq 1$.
Corollary 11.4. Let $\left(V, q_{1}, q_{2}, \ldots\right)$ be a Q-manifold and let $\varphi_{1}^{1}:\left(W, r_{1}\right) \rightarrow\left(V, q_{1}\right)$ be an injective quasiisomorphism of differential graded vector spaces. Then (W, r_{1}) can be extended to a Q-manifold (W, r_{1}, r_{2}, \ldots) and φ_{1}^{1} can be lifted to a morphism of Q manifolds.
Proof. According to Lemma 10.6, we can find a morphism of complexes $\pi:\left(V, q_{1}\right) \rightarrow$ (W, r_{1}) and a homotopy $K \in \operatorname{Hom}^{-1}(V, V)$ such that

$$
q_{1} K+K q_{1}=\varphi_{1}^{1} \pi-\mathrm{Id}_{V}, \quad \pi \varphi_{1}^{1}=\operatorname{Id}_{W}
$$

It is sufficient to define recursively $\varphi_{n}^{1}=\sum_{i=2}^{n}\left(K q_{i}\right) \varphi_{n}^{i}$ as in Remark 11.3; then define $r_{n}=\sum_{i=2}^{n}\left(\pi q_{i}\right) \varphi_{n}^{i}$ and apply Theorem 11.1.
Remark 11.5. The formulas of Corollary 11.4 commutes with composition of contractions. Given two contractions $(M \underset{\pi}{\stackrel{\imath}{\rightleftarrows}} N, h),(N \underset{p}{\stackrel{i}{\rightleftarrows}} P, k)$, their composition $(M \underset{\pi p}{\stackrel{i \imath}{\rightleftarrows}} P, k+i h p)$ and a codifferential $Q: \overline{S(P)} \rightarrow \overline{S(P)}$ there exists two morphisms of graded coalgebras $\varphi: \overline{S(N)} \rightarrow \overline{S(P)}, \psi: \overline{S(M)} \rightarrow \overline{S(N)}$ and two codifferentials $\hat{Q}: \overline{S(N)} \rightarrow \overline{S(N)}, \tilde{Q}: \overline{S(M)} \rightarrow \overline{S(M)}$ uniquely defined by the system of equations

$$
\begin{array}{lll}
{[\mathcal{P}, \varphi]=k[\mathcal{P}, Q] \varphi,} & {[\mathcal{P}, \hat{Q}]=p[\mathcal{P}, Q] \varphi,} & \varphi \mathcal{P}=i, \\
{[\mathcal{P}, \psi]=h[\mathcal{P}, \hat{Q}] \psi,} & {[\mathcal{P}, \tilde{Q}]=\pi[\mathcal{P}, \hat{Q}] \psi,} & \psi \mathcal{P}=\imath .
\end{array}
$$

Then

$$
\begin{aligned}
{[\mathcal{P}, \varphi \psi]=} & {[\mathcal{P}, \varphi] \psi+\varphi[\mathcal{P}, \psi]=k[\mathcal{P}, Q] \varphi \psi+\varphi h[\mathcal{P}, \hat{Q}] \psi } \\
= & k[\mathcal{P}, Q] \varphi \psi+\varphi h p[\mathcal{P}, Q] \varphi \psi=k[\mathcal{P}, Q] \varphi \psi+i h p[\mathcal{P}, Q] \varphi \psi \\
= & (k+i h p)[\mathcal{P}, Q] \varphi \psi . \\
& \quad[\mathcal{P}, \tilde{Q}]=\pi[\mathcal{P}, \hat{Q}] \psi=\pi p[\mathcal{P}, Q] \varphi \psi .
\end{aligned}
$$

Corollary 11.6. Let $\left(V, q_{1}, q_{2}, q_{3}, \ldots\right)$ be an acyclic Q-manifold, where acyclic means that the complex $\left(V, q_{1}\right)$ is acyclic. Then $\left(V, q_{1}, q_{2}, q_{3}, \ldots\right)$ is isomorphic to $\left(V, q_{1}, 0,0, \ldots\right)$.

Proof. Apply the theorem with $W=V, \varphi_{1}^{1}=\operatorname{Id}_{V}, \pi=0$ and K any homotopy between 0 and Id_{V}.

12. Contracting Q-manifolds: global formulas

In this section we will give a description of the morphism φ and the coderivation \hat{Q} of Theorem 11.1 as a sum over rooted trees. We first need the analog of Lemma 5.2 for reduced symmetric coalgebras. Notice that, since $\operatorname{Hom}^{0}\left(V^{\odot n}, V\right) \subseteq \operatorname{Hom}^{0}\left(V^{\otimes n}, V\right)$ (see Remark 7.1), it makes sense to consider the operators $Z_{\Gamma}\left(h_{i}\right) \in \operatorname{Hom}^{0}\left(V^{\otimes n}, V^{\otimes m}\right)$ for every oriented rooted forest Γ and every sequence $h_{n} \in \operatorname{Hom}^{0}\left(V^{\odot n}, V\right)$.
Lemma 12.1. Let V, W be graded vector spaces. Given $\imath \in \operatorname{Hom}^{0}(W, V)$ and a sequence of maps $h_{n} \in \operatorname{Hom}^{0}\left(V^{\odot n}, V\right), n \geq 2$.
Then, for every $n, m \geq 1$ there exists $f_{n}^{m} \in \operatorname{Hom}^{0}\left(W^{\odot n}, V^{\odot m}\right)$ such that

$$
N \circ f_{n}^{m}=\sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(h_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N: W^{\odot n} \rightarrow V^{\otimes m}
$$

Moreover

$$
\sum_{n, m \geq 1} f_{n}^{m}: \overline{S(V)} \rightarrow \overline{S(V)}
$$

is a morphism of graded coalgebras and, for every $n \geq 1$

$$
f_{n}^{1}=\sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(h_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N=\sum_{a=2}^{n} h_{a} \circ f_{n}^{a}
$$

Proof. For every $n \geq 2$ let $g_{n} \in \operatorname{Hom}^{0}\left(V^{\otimes n}, V\right)$ be such that $h_{n}=g_{n} N$ (e.g. $g_{n}=h_{n} / n!$). By Lemma 5.2 the morphism

$$
\sum F_{n}^{m}: \overline{T(W)} \rightarrow \overline{T(V)}, \quad F_{n}^{m}=\sum_{\Gamma \in F(n, m)} Z_{\Gamma}\left(g_{i}\right) \circ\left(\otimes^{n} \imath\right)
$$

is a morphism of graded coalgebras. According to Lemma 6.7

$$
\begin{aligned}
& F_{n}^{m} \circ N=\sum_{\Gamma \in F(n, m)} Z_{\Gamma}\left(g_{i}\right) \circ N \circ\left(\odot^{n} \imath\right)= \\
= & \sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} N \circ Z_{\Gamma}\left(g_{i} N\right) \circ N \circ\left(\odot^{n} \imath\right) \\
= & N \circ \sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(h_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N .
\end{aligned}
$$

Therefore there exists f_{n}^{m} such that

$$
N \circ f_{n}^{m}=F_{n}^{m} \circ N
$$

and then the f_{n}^{m} are the components of a morphism of graded symmetric coalgebras. By Lemma 5.3 we have

$$
F_{n}^{1}=\sum_{a=2}^{n} g_{a} \circ F_{n}^{a}
$$

and then

$$
f_{n}^{1}=F_{n}^{1} \circ N=\sum_{a=2}^{n} g_{a} \circ F_{n}^{a} \circ N=\sum_{a=2}^{n} g_{a} \circ N \circ f_{n}^{a}=\sum_{a=2}^{n} h_{a} \circ f_{n}^{a}
$$

It is now convenient to introduce a new formalism. Assume there are given $K \in$ $\operatorname{Hom}^{-1}(V, V)$ and a sequence of maps $q_{n} \in \operatorname{Hom}^{1}\left(V^{\odot n}, V\right), n \geq 2$.
For every oriented tree $\Gamma \in F(n, 1)$, denote by

$$
Z_{\Gamma}\left(K, q_{i}\right) \in \operatorname{Hom}^{1}\left(V^{\otimes n}, V\right)
$$

the composite operator described by the tree Γ, where every internal vertex of arity k is decorated by q_{k} and every internal edge is decorated by K.
The relation between $Z_{\Gamma}\left(K, q_{i}\right)$ and $Z_{\Gamma}\left(K q_{i}\right)$ is easy to describe: in fact if $n>1$ then $Z_{\Gamma}\left(K q_{i}\right)=K \circ Z_{\Gamma}\left(K, q_{i}\right)$, while if $\Gamma=\mathbb{T}_{k} \circ \Omega$ with $\Omega \in F(n, k)$, then $Z_{\Gamma}\left(K, q_{i}\right)=$ $q_{k} \circ Z_{\Gamma}\left(K q_{i}\right)$.

It is now easy to prove the following theorem.
Theorem 12.2. Let $\left(V, q_{1}, q_{2}, \ldots\right)$ be a Q-manifold and let

$$
\pi:\left(V, q_{1}\right) \rightarrow\left(H, r_{1}\right), \quad \imath:\left(H, r_{1}\right) \rightarrow\left(V, q_{1}\right)
$$

be two morphism of complexes such that $\pi \imath=\mathrm{Id}_{H}$.
Assume that there exists $K \in \operatorname{Hom}^{-1}(V, V)$ such that

$$
\operatorname{Id}_{V}+q_{1} K+K q_{1}=\imath \pi
$$

Then $\left(H, r_{1}, r_{2}, \ldots\right)$ is a Q-manifold, where for every $n \geq 2$

$$
r_{n}\left(a_{1} \odot \cdots \odot a_{n}\right)=\sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\sigma \in \Sigma_{n}} \epsilon(\sigma) \pi Z_{\Gamma}\left(K, q_{i}\right)\left(\imath\left(a_{\sigma(1)}\right) \otimes \cdots \otimes \imath\left(a_{\sigma}(n)\right)\right),
$$

and $\imath_{\infty}:\left(H, r_{1}, r_{2}, \ldots\right) \rightarrow\left(V, q_{1}, q_{2}, \ldots\right)$ is a morphism of Q-manifold, where $\imath_{1}=\imath$ and, for $n \geq 2$

$$
\imath_{n}\left(a_{1} \odot \cdots \odot a_{n}\right)=\sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\sigma \in \Sigma_{n}} \epsilon(\sigma) K Z_{\Gamma}\left(K, q_{i}\right)\left(\imath\left(a_{\sigma(1)}\right) \otimes \cdots \otimes \imath\left(a_{\sigma}(n)\right)\right)
$$

Proof. We define i_{n} and r_{n} as in Corollary 11.4 and then we only need to prove the explicit formulas. According to Lemma 12.1 we have for every $n \geq 2$

$$
\imath_{n}=\sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K q_{i}\right) \circ N \circ S(\imath)=K \circ \sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K, q_{i}\right) \circ N \circ S(\imath) .
$$

Again by Lemma 12.1 we have

$$
N \circ \imath_{n}^{m}=N \circ \sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K q_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N .
$$

Therefore

$$
\begin{gathered}
r_{n}=\sum_{m=2}^{n}\left(\pi q_{m}\right) \imath_{n}^{m}=\sum_{m=2}^{n} \pi \frac{q_{m}}{m!} \circ N \circ \imath_{n}^{m}= \\
\sum_{m=2}^{n} \pi \frac{q_{m}}{m!} \circ N \circ \sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K q_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N \\
=\sum_{m=2}^{n} \pi q_{m} \circ \sum_{\Gamma \in \frac{F(n, m)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K q_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N
\end{gathered}
$$

$$
=\pi \sum_{\Gamma \in \frac{F(n, 1)}{\sim}} \frac{1}{|\operatorname{Aut}(\Gamma)|} Z_{\Gamma}\left(K, q_{i}\right) \circ\left(\otimes^{n} \imath\right) \circ N
$$

Exercise 12.3. Use Exercise 8.3, inversion formula 5.4 and symmetrization to prove the tree formula for reversion of power series of [9] (if you haven't full text article it is sufficient to consult Math. Reviews).

13. Homotopy classification of Q-manifolds

Definition 13.1. A morphism $\left\{f_{n}\right\}:\left(V, q_{1}, q_{2}, \ldots\right) \rightarrow\left(W, r_{1}, r_{2}, \ldots\right)$ of Q-manifolds is called:
(1) linear (sometimes strict) if $f_{n}=0$ for every $n>1$.
(2) quasiisomorphism if $f_{1}:\left(V, q_{1}\right) \rightarrow\left(W, r_{1}\right)$ is a quasiisomorphism of complexes.

Given two Q-manifolds $\mathfrak{g}_{1}=\left(V, q_{1}, q_{2}, \ldots\right), \mathfrak{g}_{2}=\left(W, r_{1}, r_{2}, \ldots\right)$ we denote

$$
\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}=\left(V \oplus W, q_{1} \oplus r_{1}, q_{2} \oplus r_{2}, \ldots\right)
$$

where

$$
q_{n} \oplus r_{n}(x)= \begin{cases}q_{n}(x) & \text { if } x \in V^{\odot n} \\ r_{n}(x) & \text { if } x \in W^{\odot n} \\ 0 & \text { if } x \in V^{\odot i} \otimes W^{\odot n-i} \text { and } 0<i<n\end{cases}
$$

It is immediate from Lemma 9.2 that $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ is a Q-manifold. The natural inclusions

$$
i_{1}: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}, \quad i_{2}: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2} \oplus \mathfrak{g}_{2}
$$

and the natural projections

$$
p_{1}: \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \rightarrow \mathfrak{g}_{1}, \quad p_{2}: \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \rightarrow \mathfrak{g}_{2}
$$

are linear morphisms.

Proposition 13.2. In the notation above, the diagram

is a product in the category of locally nilpotent cocommutative differential graded coalgebras.

Proof. Assume that C is a locally nilpotent cocommutative differential graded coalgebra and let

$$
F: C \rightarrow \mathfrak{g}_{1}, \quad G: C \rightarrow \mathfrak{g}_{2}
$$

be two morphisms of differential graded coalgebras. According to Proposition 8.4 there exists an unique morphism of graded coalgebras

$$
H: C \rightarrow \overline{S(V \oplus W)}
$$

such that

$$
H^{1}=F^{1} \oplus G^{1}: C \rightarrow V \oplus W
$$

and then $p_{1} H=F, p_{2} H=G$. Denoting by d the codifferential of C we have

$$
H^{1} \circ d=\left(F^{1} \circ d\right) \oplus\left(G^{1} \circ d\right)=D\left(q_{i}\right)^{1} \circ F \oplus D\left(r_{i}\right)^{1} \circ G=D\left(q_{i} \times r_{i}\right)^{1} \circ H
$$

and then $H d=D\left(q_{i} \times r_{i}\right) H$.

Proposition 13.3. Let (C, Δ, d) be a differential graded cocommutative coalgebra and $B \subset C$ a differential graded subcoalgebra such that $\Delta(C) \subset B \otimes B$ and the complex C / B is acyclic. Then for every Q-manifold \mathfrak{g} the restriction map

$$
\operatorname{Mor}_{\mathbf{D G C}}(C, \mathfrak{g}) \rightarrow \operatorname{Mor}_{\mathbf{D G C}}(B, \mathfrak{g})
$$

is surjective.
Proof. Assume $\mathfrak{g}=\left(V, q_{1}, q_{2}, \ldots\right)$ and let $f:(B, d) \rightarrow\left(\overline{S(V)}, D\left(q_{i}\right)\right)$ be a morphism of differential graded coalgebras. Choosing any lifting of $f^{1}: B \rightarrow V$ to a morphism $g^{1}: C \rightarrow V$, we get a morphism of graded coalgebras $g: C \rightarrow \overline{S(V)}$ extending f.
The morphism

$$
\psi:=D\left(q_{i}\right) g-g d: C \rightarrow \overline{S(V)}
$$

is a g-coderivation. Since $\psi(B)=0$ and $\Delta(C) \subset B$, by Corollary 8.7 we have $\psi(C) \subset V$ and then we have a factorization

$$
\psi: \frac{C}{B} \rightarrow V
$$

Since

$$
0=D\left(q_{i}\right) \psi+\psi d=q_{1} \psi+\psi d
$$

and C / B is acyclic, there exists $\phi: C \rightarrow V$ such that $\phi(B)=0$ and $q_{1} \phi-\phi d=\psi$. Denote by $h: C \rightarrow \overline{S(V)}$ the coalgebra such that $h^{1}=g^{1}-\phi$. It is now straightforward to check that $h=g-\phi$ and h is a morphism of differential graded coalgebras.
Definition 13.4. An Q-manifold $\left(V, q_{1}, q_{2}, \ldots\right)$ is called linear contractible if $\left(V, q_{1}\right)$ is an acyclic complex and $q_{j}=0$ for every $j>1$.
Lemma 13.5. Let $\mathfrak{u}=(U, d, 0, \ldots)$ be a linear contractible Q-manifold and

$$
f_{\infty}: \mathfrak{g} \rightarrow \mathfrak{h}=\left(W, r_{1}, r_{2}, \ldots\right)
$$

be a morphism of Q-manifolds. Then for every morphism of complexes $j:(U, d) \rightarrow$ $\left(W, r_{1}\right)$ there exists a morphism of Q-manifolds

$$
g_{\infty}: \mathfrak{g} \oplus \mathfrak{u} \rightarrow \mathfrak{h}
$$

such that $g_{\infty \mid \mathfrak{g}}=f_{\infty}$ and $g_{1}(u)=j(u)$ for every $u \in U$.
Proof. Suppose $\mathfrak{g}=\left(V, q_{1}, q_{2}, \ldots\right)$ and consider the filtration of differential subcoalgebras

$$
C_{n}=\overline{S(V)} \oplus \oplus_{i=1}^{n}(V \oplus U)^{\odot i} \subset \overline{S(V \oplus U)}
$$

We have $\Delta\left(C_{n}\right) \subset C_{n-1} \times C_{n-1}$; the quotient C_{n} / C_{n-1} is isomorphic to $\oplus_{i=1}^{n} U^{\odot i} \otimes V^{\odot n-i}$ and then it is acyclic by Künneth formula. We can apply Proposition 13.3.

Theorem 13.6. Let

$$
f_{\infty}:\left(H, r_{1}, r_{2}, \ldots\right) \rightarrow\left(V, q_{1}, q_{2}, \ldots\right)
$$

be a morphism of Q-manifolds such that $f_{1}:\left(H, r_{1}\right) \rightarrow\left(V, q_{1}\right)$ is an injective quasiisomorphism of complexes. Then there exist a morphism

$$
p_{\infty}:\left(V, q_{1}, q_{2}, \ldots\right) \rightarrow\left(H, r_{1}, r_{2}, \ldots\right)
$$

such that $p_{\infty} \circ f_{\infty}=\mathrm{Id}$.
Proof. By Lemma 10.6 we have a direct sum decomposition $V=f_{1}(H) \oplus U$, with U acyclic subcomplex of $\left(V, q_{1}\right)$. According to Lemma 13.5 the morphism f_{∞} extents to an isomorphism

$$
g_{\infty}:\left(H, r_{1}, r_{2}, \ldots\right) \oplus\left(U, q_{1}, 0, \ldots\right) \rightarrow\left(V, q_{1}, q_{2}, \ldots\right)
$$

We can take p_{∞} the composition of the inverse of g_{∞} with the projection onto the first factor.

References

[1] S. Eilenberg and S. Mac Lane: On the groups $\mathrm{H}(\pi, n)$, I. Ann. of Math. 58 (1953), 55-106.
[2] D. Fiorenza: Personal communication. September 22, 2006.
[3] J. Huebschmann, T. Kadeishvili: Small models for chain algebras. Math. Z. 207 (1991) 245-280.
[4] J. Huebschmann, J Stasheff: Formal solution of the master equation via HPT and deformation theory. Forum Math. 14 (2002) 847-868; arXiv:math.AG/9906036v2.
[5] M. Kontsevich: Deformation quantization of Poisson manifolds, I. Letters in Mathematical Physics 66 (2003) 157-216; arXiv:q-alg/9709040.
[6] S. Mac Lane: Categories for the working mathematician. Springer-Verlag (1971).
[7] M. Markl: Transferring A_{∞} (strongly homotopy associative) structures. arXiv:math.AT/0401007v2 (2004)
[8] D. Quillen: Rational homotopy theory. Ann. of Math. 90 (1969) 205-295.
[9] D. Wright: The tree formulas for reversion of power series. J. Pure Appl. Algebra 57 (1989) 191-211.

[^0]: ${ }^{1}$ Here unreduced means not necessarily reduced.

