
The cotangent complex in characteristic 0

Marco Manetti

We use the same notation and conventions of [8]; in particular K will be a fixed field of
characteristic 0.

1 Homotopy of differential graded algebras

Let A be a graded algebra, if A→ B is a morphism of graded algebras then B has a natural
structure of A-algebra. Given two A-algebras B,C it is defined their tensor product B ⊗A C
as the quotient of B ⊗K C = ⊕n,mBn ⊗K Cm by the ideal generated by ba ⊗ c − b ⊗ ac for
every a ∈ A, b ∈ B, c ∈ C. B ⊗A C has a natural structure of graded algebra with degrees
b⊗ c = b + c and multiplication (b ⊗ c)(β ⊗ γ) = (−1)c βbβ ⊗ cγ. Note in particular that
A[{xi}] = A⊗K K [{xi}].

Given a dg-algebra A and h ∈ K it is defined an evaluation morphism eh : A[t, dt] → A,
eh(a⊗ p(t)) = ap(h), eh(a⊗ q(t)dt) = 0.

Lemma 1.1. For every dg-algebra A the evaluation map eh : A[t, dt] → A induces an iso-
morphism H(A[t, dt]) → H(A) independent from h ∈ K .

Proof. Let ı : A → A[t, dt] be the inclusion, since ehı = IdA it is sufficient to prove that
ı : H(A) → H(A[t, dt]) is bijective. For every n > 0 denote Bn = Atn ⊕ Atn−1dt; since
d(Bn) ⊂ Bn and A[t, dt] = ı(A)

⊕
n>0Bn it is sufficient to prove that H(Bn) = 0 for every

n. Let z ∈ Zi(Bn), z = atn + nbtn−1dt, then 0 = dz = datn + ((−1)ia + db)ntn−1dt which
implies a = (−1)i−1db and then z = (−1)i−1d(btn).

Definition 1.2. Given two morphisms of dg-algebras f, g : A → B, a homotopy between f
and g is a morphism H : A → B[t, dt] such that H0 := e0 ◦ H = f , H1 := e1 ◦ H = g. We
denote by [A,B] the quotient of HomDGA(A,B) by the equivalence relation ∼ generated by
homotopy. If B → C is a morphism of dg-algebras with kernel J , a homotopy H : A→ B[t, dt]
is called constant on C if the image of H is contained in B ⊕j≥0 (Jtj+1 ⊕ Jtjdt). Two dg-
algebras A,B are said to be homotopically equivalent if there exist morphisms f : A → B,
g : B → A such that fg ∼ IdB, gf ∼ IdA.

According to Lemma 1.1 homotopic morphisms induce the same morphism in homology.

Lemma 1.3. Given morphisms of dg-algebras,

A

f
��

g
�� B

h ��

l

�� C ,

if f ∼ g and h ∼ l then hf ∼ lg.

Proof. It is obvious from the definitions that hg ∼ lg. For every a ∈ K there exists a
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commutative diagram

B ⊗ K [t, dt]
h⊗Id ��

ea

��

C ⊗ K [t, dt]

ea

��
B

h �� C

.

If F : A → B[t, dt] is a homotopy between f and g, then, considering the composition of F
with h⊗ Id, we get a homotopy between hf and hg.

Example 1.4. Let A be a dg-algebra, {xi} a set of indeterminates of integral degree and
consider the dg-algebra B = A[{xi, dxi}], where dxi is an indeterminate of degree dxi = xi+1
and the differential dB is the unique extension of dA such that dB(xi) = dxi, dB(dxi) = 0
for every i. The inclusion i : A → B and the projection π : B → A, π(xi) = π(dxi) = 0 give
a homotopy equivalence between A and B. In fact πi = IdA; consider now the homotopy
H : B → B[t, dt] given by

H(xi) = xit, H(dxi) = dH(xi) = dxit+ (−1)xixidt, H(a) = a, ∀a ∈ A.

Taking the evaluation at t = 0, 1 we get H0 = ip, H1 = IdB .

Exercise 1.5. Let f, g : A → C, h : B → C be morphisms of dg-algebras. If f ∼ g then
f ⊗ h ∼ g ⊗ h : A⊗K B → C. �

Remark 1.6. In view of future geometric applications, it seems reasonable to define the
spectrum of a unitary dg-algebra A as the usual spectrum of the commutative ring Z0(A).

If S ⊂ Z0(A) is a multiplicative part we can consider the localized dg-algebra S−1A with
differential d(a/s) = da/s. Since the localization is an exact functor in the category of Z0(A)
modules we have H(S−1A) = S−1H(A). If φ : A→ C is a morphism of dg-algebras and φ(s)
is invertible for every s ∈ S then there is a unique morphism ψ : S−1A → C extending φ.
Moreover if φ is a quasiisomorphism then also ψ is a quasiisomorphism (easy exercise).

If P ⊂ Z0(A) is a prime ideal, then we denote as usual AP = S−1A, where S = Z0(A)−P.
It is therefore natural to define Spec(A) as the ringed space (X, Ã), where X is the spectrum
of A and Ã is the (quasi coherent) sheaf of dg-algebras with stalks AP , P ∈ X.

2 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector space
(M, s) together two associative distributive multiplication maps A×M →M , M ×A→M
with the properties:

1. AiMj ⊂Mi+j , MiAj ⊂Mi+j .

2. am = (−1)amma, for homogeneous a ∈ A, m ∈M .

3. s(am) = s(a)m+ (−1)aas(m).

If A = A0 we recover the usual notion of complex of A-modules.
If M is an A-dg-module then M [n] = K [n]⊗K M has a natural structure of A-dg-module

with multiplication maps

(e⊗m)a = e⊗ma, a(e⊗m) = (−1)nae⊗ am, e ∈ K [n], m ∈M, a ∈ A.
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The tensor product N ⊗A M is defined as the quotient of N ⊗K M by the graded sub-
modules generated by all the elements na⊗m− n⊗ am.

Given two A-dg-modules (M,dM ), (N, dN ) we denote by

Homn
A(M,N) = {f ∈ Homn

K
(M,N) | f(ma) = f(m)a, m ∈M,a ∈ A}

Hom∗A(M,N) =
⊕

n∈Z

Homn
A(M,N).

The graded vector space Hom∗A(M,N) has a natural structure of A-dg-module with left
multiplication (af)(m) = af(m) and differential

d : Homn
A(M,N) → Homn+1

A (M,N), df = [d, f ] = dN ◦ f − (−1)nf ◦ dM .

Note that f ∈ Hom0
A(M,N) is a morphism of A-dg-modules if and only if df = 0.

A homotopy between two morphism of dg-modules f, g : M → N is a h ∈ Hom−1
A (M,N)

such that f − g = dh = dNh + hdM . Homotopically equivalent morphisms induce the same
morphism in homology.

Morphisms of A-dg-modules f : L → M , h : N → P induce, by composition, morphisms
f∗ : Hom∗A(M,N) → Hom∗A(L,N), h∗ : Hom∗A(M,N) → Hom∗A(M,P );

Lemma 2.1. In the above notation if f is homotopic to g and h is homotopic to l then f∗

is homotopic to g∗ and l∗ is homotopic to h∗.

Proof. Let p ∈ Hom−1
A (L,M) be a homotopy between f and g, It is a straightforward veri-

fication to see that the composition with p is a homotopy between f∗ and g∗. Similarly we
prove that h∗ is homotopic to l∗.

Lemma 2.2. Let A → B be a morphism of unitary dg-algebras, M an A-dg-module, N a
B-dg-modules. Then there exists a natural isomorphism of B-dg-modules

Hom∗A(M,N) � Hom∗B(M ⊗A B,N).

Proof. Consider the natural maps:

Hom∗A(M,N)
L �� Hom∗B(M ⊗A B,N)
R

�� ,

Lf(m⊗ b) = f(m)b, Rg(m) = g(m⊗ 1).

We left as exercise the easy verification that L,R = L−1 are isomorphism of B-dg-modules.

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

DernB(A,M) = {φ ∈ Homn
K

(A,M)|φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}

Der∗B(A,M) =
⊕

n∈Z

DernB(A,M).

As in the case of Hom∗, there exists a structure of A-dg-module on Der∗B(A,M) with product
(aφ)(b) = aφ(b) and differential

d : DernB(A,M) → Dern+1
B (A,M), dφ = [d, φ] = dMφ− (−1)nφdA.

Given φ ∈ DernB(A,M) and f ∈ Homm
A (M,N) their composition fφ belongs to Dern+m

B (A,N).
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Proposition 2.3. Let B → A be a morphisms of dg-algebras: there exists an A-dg-module
ΩA/B together a closed derivation δ : A→ ΩA/B of degree 0 such that, for every A-dg-module
M , the composition with δ gives an isomorphism

Hom∗A(ΩA/B ,M) = Der∗B(A,M).

Proof. Consider the graded vector space

FA =
⊕

Aδx, x ∈ A homogeneous, δx = x.

FA is an A-dg-module with multiplication a(bδx) = abδx and differential

d(aδx) = daδx+ (−1)aaδ(dx).

Note in particular that d(δx) = δ(dx). Let I ⊂ FA be the homogeneous submodule generated
by the elements

δ(x+ y) − δx− δy, δ(xy) − x(δy) − (−1)x yy(δx), δ(b), b ∈ B,

Since d(I) ⊂ I the quotient ΩA/B = FA/I is still an A-dg-module. By construction the map
δ : A→ ΩA/B is a derivation of degree 0 such that dδ = dΩδ−δdA = 0. Let ◦δ : Hom∗A(ΩA/B ,M) →
Der∗B(A,M) be the composition with δ:

a) L is a morphism of A-dg-modules. In fact (af) ◦ δ = a(f ◦ δ) for every a ∈ A and

d(f ◦ δ)(x) = dM (f(δx)) − (−1)ffδ(dx) =

= dM (f(δx)) − (−1)ff(d(δx)) = df ◦ δ.

b) ◦δ is surjective. Let φ ∈ DernB(A,M); define a morphism f ∈ Homn
A(FA,M) by the rule

f(aδx) = (−1)naaφ(x); an easy computation shows that f(I) = 0 and then f factors
to f ∈ Homn

A(ΩA/B ,M): by construction f ◦ δ = φ.

c) ◦δ is injective. In fact the image of δ generate ΩA/B .

When B=K we denote for notational simplicity Der∗(A,M)=Der∗
K

(A,M), ΩA = ΩA/K .
Note that if C → B is a morphism of dg-algebras, then the natural map ΩA/C → ΩA/B is
surjective and ΩA/C = ΩA/B whenever C → B is surjective.

Definition 2.4. The module ΩA/B is called the module of relative Kähler differentials of A
over B and δ the universal derivation.

By the universal property, the module of differential and the universal derivation are
unique up to isomorphism.

Example 2.5. If A� = K [{xi}] is a polynomial algebra then ΩA = ⊕iAδxi and δ : A → ΩA

is the unique derivation such that δ(xi) = δxi.

Proposition 2.6. Let B → A be a morphism of dg-algebras and S ⊂ Z0(A) a multiplicative
part. Then there exists a natural isomorphism S−1ΩA/B = ΩS−1A/B.

Proof. The closed derivation δ : A → ΩA/B extends naturally to δ : S−1A → S−1ΩA/B ,
δ(a/s) = δa/s, and by the universal property there exists a unique morphism of S−1A mod-
ules f : ΩS−1A/B → S−1ΩA/B and a unique morphism of A modules g : ΩA/B → ΩS−1A/B .
The morphism g extends to a morphism of S−1A modules g : S−1ΩA/B → ΩS−1A/B . Clearly
these morphisms commute with the universal closed derivations and then gf = Id. On the
other hand, by the universal property, the restriction of fg to ΩA/B must be the natural
inclusion ΩA/B → S−1ΩA/B and then also fg = Id.
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3 Projective modules

Definition 3.1. An A-dg-module P is called projective if for every surjective quasiisomor-
phism f : M → N and every g : P → N there exists h : P →M such that fh = g.

M

qisf
����

P g
�� N

⇒

⇒

M

qisf
����

P g
��

h

����������
N

.

Exercise 3.2. Prove that if A = A0 and P = P0 then P is projective in the sense of 3.1 if
and only if P0 is projective in the usual sense. �

Lemma 3.3. Let P be a projective A-dg-module, f : P → M a morphism of A-dg-modules
and φ : M → N a surjective quasiisomorphism. If φf is homotopic to 0 then also f is
homotopic to 0.

Proof. We first note that there exist natural isomorphisms Homi
A(P,M [j]) = Homi+j

A (P,M).
Let h : P → N [−1] be a homotopy between φf and 0 and consider the A-dg-modules M ⊕
N [−1], M ⊕M [−1] endowed with the differentials

d : Mn ⊕Nn−1 →Mn+1 ⊕Nn, d(m1, n2) = (dm1, f(m1) − dn2),

d : Mn ⊕Mn−1 →Mn+1 ⊕Mn, d(m1,m2) = (dm1,m1 − dm2).

The map IdM⊕f : M⊕M [−1] →M⊕N [−1] is a surjective quasiisomorphism and (φ, h) : P →
M⊕N [−1] is morphism of A-dg-modules. If (φ, l) : P →M⊕M [−1] is a lifting of (φ, h) then
l is a homotopy between φ and 0.

Lemma 3.4. Let f : M → N be a morphism of A-dg-modules, then there exist morphisms
of A-dg-modules π : L→M , g : L→ N such that g is surjective, π is a homotopy equivalence
and g is homotopically equivalent to fπ.

Proof. Consider L = M ⊕N ⊕N [−1] with differential

d : Mn ⊕Nn ⊕Nn−1 →Mn+1 ⊕Nn+1 ⊕Nn, d(m,n1, n2) = (dm, dn1, n1 − dn2).

We define g(m,n1, n2) = f(m) + n1, π(m,n1, n2) = m and s : M → L, s(m) = (m, 0, 0).
Since gs = f and πs = IdM it is sufficient to prove that sπ is homotopic to IdL. Take
h ∈ Hom−1

A (L,L), h(m,n1, n2) = (0, n2, 0); then

d(h(m,n1, n2)) + hd(m,n1, n2) = (0, n1, n2) = (IdL − sπ)(m,n1, n2).

Theorem 3.5. Let P be a projective A-dg-module: For every quasiisomorphism f : M → N
the induced map Hom∗A(P,M) → Hom∗A(P,N) is a quasiisomorphism.

Proof. By Lemma 3.4 it is not restrictive to assume f surjective. For a fixed integer i we
want to prove that Hi(Hom∗A(P,M)) = Hi(Hom∗A(P,N)). Replacing M and N with M [i]
and N [i] it is not restrictive to assume i = 0. Since Z0(Hom∗A(P,N)) is the set of morphisms
of A-dg-modules and P is projective, the map

Z0(Hom∗A(P,M)) → Z0(Hom∗A(P,N))

is surjective. If φ ∈ Z0(Hom∗A(P,M)) and fφ ∈ B0(Hom∗A(P,N)) then by Lemma 3.3 also φ
is a coboundary.
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A projective resolution of an A-dg-module M is a surjective quasiisomorphism P → M
with P projective. We will show in next section that projective resolutions always exist. This
allows to define for every pair of of A-dg-modules M,N

Exti(M,N) = Hi(Hom∗A(P,N)),

where P →M is a projective resolution.

Exercise 3.6. Prove that the definition of Ext’s is independent from the choice of the pro-
jective resolution. �

4 Semifree resolutions

From now on K is a fixed dg-algebra.

Definition 4.1. A K-dg-algebra (R, s) is called semifree if:

1. The underlying graded algebra R is a polynomial algebra over K K[{xi}], i ∈ I.

2. There exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . , ∪n∈NI(n) = I, such that s(xi) ∈ R(n)
for every i ∈ I(n+ 1), where by definition R(n) = K[{xi}], i ∈ I(n).

Note that R(0) = K, R(n) is a dg-subalgebra of R and R = ∪R(n).

Let R = K[{xi}] = ∪R(n) be a semifree K-dg-algebra, S a K-dg-algebra; to give a
morphism f : R → S is the same to give a sequence of morphisms fn : R(n) → S such
that fn+1 extends fn for every n. Given a morphism fn : R(n) → S, the set of extensions
fn+1 : R(n+ 1) → S is in bijection with the set of sequences {fn+1(xi)}, i ∈ I(n+ 1)− I(n),
such that s(fn+1(xi)) = fn(s(xi)), fn+1(xi) = xi.

Example 4.2. K [t, dt] is semifree with filtration K ⊕ K dt ⊂ K [t, dt]. For every dg-algebra
A and every a ∈ A0 there exists a unique morphism f : K [t, dt] → A such that f(t) = a.

Exercise 4.3. Let (V, s) be a complex of vector spaces, the differential s extends to a unique
differential s on the symmetric algebra

⊙
V such that s(

⊙n
V ) ⊂

⊙n
V for every n. Prove

that (
⊙

V, s) is semifree. �

Exercise 4.4. The tensor product (over K) of two semifree K-dg-algebras is semifree. �

Proposition 4.5. Let (R = K[{xi}], s), i ∈ ∪I(n), be a semifree K-dg-algebra: for every
surjective quasiisomorphism of K-dg-algebras f : A → B and every morphism g : R → B
there exists a lifting h : R → A such that fh = g. Moreover any two of such liftings are
homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism hn : R(n) → A such that
fhn equals the restriction of g to R(n) = K [{xi}], i ∈ I(n). Let i ∈ I(n + 1) − I(n), we
need to define hn+1(xi) with the properties fhn+1(xi) = g(xi), dhn+1(xi) = hn(dxi) and
hn+1(xi) = xi. Since dhn(dxi) = 0 and fhn(dxi) = g(dxi) = dg(xi) we have that hn(dxi) is
exact in A, say hn(dxi) = dai; moreover d(f(ai) − g(xi)) = f(dai) − g(dxi) = 0 and, since
Z(A) → Z(B) is surjective there exists bi ∈ A such that f(ai + bi) = g(xi) and then we may
define hn+1(xi) = ai + bi. The inverse limit of hn gives the required lifting.
Let h, l : R → A be liftings of g and denote by J ⊂ A the kernel of f ; by assumption J is
acyclic and consider the dg-subalgebra C ⊂ A[t, dt],

C = A⊕j≥0 (Jtj+1 ⊕ Jtjdt).
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We construct by induction on n a coherent sequence of morphisms Hn : R(n) → C giving a
homotopy between h and l. Denote by N ⊂ K [t, dt] the differential ideal generated by t(t−1);
there exists a direct sum decomposition K [t, dt] = K ⊕ K t⊕ K dt⊕N . We may write:

Hn(x) = h(x) + (l(x) − h(x))t+ an(x)dt+ bn(x, t),

with an(x) ∈ J and bn(x, t) ∈ J ⊗N . Since dHn(x) = Hn(dx) we have for every x ∈ R(n):

(−1)x(l(x) − h(x)) + d(an(x)) = an(dx), d(bn(x, t)) = bn(dx, t). (1)

Let i ∈ I(n+ 1) − I(n), we seek for an+1(xi) ∈ J and bn+1(xi, t) ∈ J ⊗N such that, setting

Hn+1(xi) = h(xi) + (l(xi) − h(xi))t+ an+1(xi)dt+ bn+1(xi, t),

we want to have

0 = dHn+1(xi) −Hn(dxi)

= ((−1)xi(l(xi) − h(xi)) + dan+1(xi) − an(dxi))dt+ dbn+1(xi, t) − bn(dxi, t).

Since both J and J ⊗ N are acyclic, such a choice of an+1(xi) and bn+1(xi, t) is possible if
and only if (−1)dxi(l(xi) − h(xi)) + an(dxi) and bn(dxi, t) are closed.
According to Equation 1 we have

d((−1)dxi(l(xi) − h(xi) + an(dxi)) = (−1)dxi(l(dxi) − h(dxi)) + d(an(dxi))

= an(d2xi) = 0,

dbn(dxi, t) = bn(d2xi, t) = 0.

Definition 4.6. A K-semifree resolution (also called resolvent) of a K-dg-algebra A is a
surjective quasiisomorphism R → A with R semifree K-dg-algebra.

By 4.5 if a semifree resolution exists then it is unique up to homotopy.

Theorem 4.7. Every K-dg-algebra admits a K-semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-algebras
K = R(0) ⊂ R(1) ⊂ . . . ⊂ R(n) ⊂ . . . and morphisms fn : R(n) → A such that:

1. R(n+ 1) = R(n)[{xi}], dxi ∈ R(n).

2. fn+1 extends fn.

3. f1 : Z(R(1)) → Z(A), f2 : R(2) → A are surjective.

4. f−1
n (B(A)) ∩ Z(R(n)) ⊂ B(R(n+ 1)) ∩R(n), for every n > 0.

It is then clear that R = ∪R(n) and f = lim
←

fn give a semifree resolution. Z(A) is a
graded algebra and therefore there exists a polynomial graded algebra R(1) = K[{xi}] and a
surjective morphism f1 : R(1) → Z(A); we set the trivial differential d = 0 on R(1). Let vi be
a set of homogeneous generators of the ideal f−1

1 (B(A)), if f1(vi) = dai it is not restrictive
to assume that the ai’s generate A. We then define R(2) = R(1)[{xi}], f2(xi) = ai and
dxi = vi. Assume now by induction that we have defined fn : R(n) → A and let {vj} be a
set of generators of f−1

n (B(A))∩Z(R(n)), considered as an ideal of Z(R(n)); If fn(vj) = daj
we define R(n+ 1) = R(n)[{xj}], dxj = vj and fn+1(xj) = aj .
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Remark 4.8. It follows from the above proof that if Ki = Ai = 0 for every i > 0 then there
exists a semifree resolution R → A with Ri = 0 for every i > 0.

Exercise 4.9. If, in the proof of Theorem 4.7 we choose at every step {vi} = f−1
n (B(A)) ∩

Z(R(n)) we get a semifree resolution called canonical. Show that every morphism of dg-
algebras has a natural lift to their canonical resolutions. �

Given two semifree resolutions R → A, S → A we can consider a semifree resolution
P → R×A S of the fibred product and we get a commutative diagram of semifree resolutions

P ��

�� ���
��

��
��

R

��
R �� A.

Definition 4.10. An A-dg-module F is called semifree if F = ⊕i∈IAmi, mi ∈ Z and there
exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . ⊂ I(n) ⊂ . . . such that

i ∈ I(n+ 1) ⇒ dmi ∈ F (n) = ⊕i∈I(n)Ami.

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism F → M with
F semifree.

The proof of the following two results is essentially the same of 4.5 and 4.7:

Proposition 4.11. Every semifree module is projective.

Theorem 4.12. Every A-dg-module admits a semifree resolution.

Exercise 4.13. An A-dg-module M is called flat if for every quasiisomorphism f : N → P
the morphism f ⊗ Id : N ⊗M → P ⊗M is a quasiisomorphism. Prove that every semifree
module is flat. �

Example 4.14. If R = K[{xi}] is a K-semifree algebra then ΩR/K = ⊕Rδxi is a semifree
R-dg-module.

5 The cotangent complex

Proposition 5.1. Assume it is given a commutative diagram of K-dg-algebras

R
f ��

p
		�

��
��

��
S

��

R
g��

p


��

��
��

�

A

If there exists a homotopy between f and g, constant on A, then the induced morphisms of
A-dg-modules

f, g : ΩR/K ⊗R A→ ΩS/K ⊗S A

are homotopic.
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Proof. Let J ⊂ S be the kernel of S → A and let H : R → S ⊕j≥0 (Jtj+1 ⊕ Jtjdt) be a
homotopy between f and g; the first terms of H are

H(x) = f(x) + t(g(x) − f(x)) + dt q(x) + . . . .

From dH(x) = H(dx) we get g(x) − f(x) = q(dx) + dq(x) and from H(xy) = H(x)H(y)
follows q(xy) = q(x)f(y) + (−1)xf(x)q(y). Since f(x) − g(x), q(x) ∈ J for every x, the map

q : ΩR/K ⊗R A→ ΩS/K ⊗S A, q(δx·r ⊗ a) = δ(q(x))f(r) ⊗ a,

is a well defined element of Hom−1
A (ΩR/K⊗RA,ΩS/K⊗SA). By definition f, g : ΩR/K⊗RA→

ΩS/K ⊗S A are defined by

f(δx·r ⊗ a) = δ(f(x))f(r) ⊗ a, g(δx·r ⊗ a) = δ(g(x))g(r) ⊗ a = δ(g(x))f(r) ⊗ a.

A straightforward verification shows that dq = f − g.

Definition 5.2. Let R → A be a K-semifree resolution, the A-dg-module LA/K = ΩR/K⊗RA
is called the relative cotangent complex of A over K. By 5.1 the homotopy class of LA/K is
independent from the choice of the resolution. For every A-dg-module M the vector spaces

T i(A/K,M) = Hi(Hom∗A(LA/K ,M)) = ExtiA(LA/K ,M),

Ti(A/K,M) = Hi(LA/K ⊗M)) = TorAi (LA/K ,M),

are called respectively the cotangent and tangent cohomolgy of the morphism K → A with
coefficient on M .

Lemma 5.3. Let p : R → S be a surjective quasiisomorphism of semifree dg-algebras: con-
sider on S the structure of R-dg-module induced by p. Then:

1. p∗ : Der∗(R,R) → Der∗(R,S), f → pf , is a surjective quasiisomorphism.

2. p∗ : Der∗(S, S) → Der∗(R,S), f → fp, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the values at its
generators, in particular p∗ is surjective and p∗ is injective. Since ΩR is semifree, by 3.5
the morphism p∗ : Hom∗R(ΩR, R) → Hom∗R(ΩR, S) is a quasiisomorphism. By base change
Der∗(R,S) = Hom∗S(ΩR ⊗R S, S) and, since p : ΩR ⊗R S → ΩS is a homotopy equivalence,
also p∗ is a quasiisomorphism.

Every morphism f : A→ B of dg-algebras induces a morphism of B modules LA⊗AB →
LB unique up to homotopy. In fact if R → A and P → B are semifree resolution, then there
exists a lifting of f , R → P , unique up to homotopy constant on B. The morphism ΩR → ΩP

induce a morphism ΩR ⊗R B = LA ⊗A B → ΩP ⊗P B = LB . If B is a localization of A we
have the following

Theorem 5.4. Let A be a dg-algebra, S ⊂ Z0(A) a multiplicative part: then the morphism

LA ⊗A S−1A→ LS−1A

is a quasiisomorphism of S−1A modules.
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Proof. (sketch) Denote by f : R → A, g : P → S−1A two semifree resolutions and by

H = {x ∈ Z0(R) | f(x) ∈ S}, K = {x ∈ Z0(P ) | g(x) is invertible }.

The natural morphisms H−1R → S−1A, K−1P → S−1A are both surjective quasiisomor-
phisms. By the lifting property of semifree algebras we have a chain of morphisms

R
α−→P

β−→H−1R
γ−→K−1P

with γ the localization of α. Since βα and γβ are homotopic to the natural inclusions R →
H−1R, P → K−1P , the composition of morphisms

ΩR ⊗R S−1A
α−→ΩP ⊗P S−1A

β−→ΩH−1R ⊗H−1R S−1A = ΩR ⊗R S−1A,

ΩP ⊗P S−1A
β−→ΩH−1R ⊗H−1R S−1A

γ−→ΩK−1P ⊗K−1P S−1A = ΩP ⊗P S−1A

are homotopic to the identity and hence quasiisomorphisms.

Example 5.5. Hypersurface singularities.
Let X = V (f) ⊂ A

n, f ∈K [x1, . . . , xn], be an affine hypersurface and denote by A = K [X] =
K [x1, . . . , xn]/(f) its structure ring. A DG-resolvent of A is given by R = K [x1, . . . , xn, y],
where y has degree −1 and the differential is given by s(y) = f . The R-module ΩR is
semifreely generated by dx1, . . . , dxn, dy, with the differential

s(dy) = d(s(y)) = df =
∑

i

∂f

∂xi
dxi.

The cotangent complex LA is therefore

0−→Ady
s−→

n⊕
i=1

Adxi−→0.

In particular T i(A/K , A) = Exti(LA, A) = 0 for every i �= 0, 1. The cokernel of s is isomorphic
to ΩA and then T 0(A/K , A) = Ext0(LA, A) = DerK (A,A). If f is reduced then s is injective,
LA is quasiisomorphic to ΩA and then T 1(A/K , A) = Ext1(ΩA, A).

Exercise 5.6. In the set-up of Example 5, prove that the A-module T 1(A/K , A) is finitely
generated and supported in the singular locus of X. �

6 The controlling differential graded Lie algebra

Let p : R → S be a surjective quasiisomorphism of semifree algebras and let I = ker p. By the
lifting property of S there exists a morphism of dg-algebras e : S → R such that pe = IdS .
Define

Lp = {f ∈ Der∗(R,R) | f(I) ⊂ I}.

It is immediate to verify that Lp is a dg-Lie subalgebra of Der∗(R,R). We may define a map

θp : Lp → Der∗(S, S), θp(f) = p ◦ f ◦ e.

Since pf(I) = 0 for every f ∈ Lp, the definition of θp is independent from the choice of e.

Lemma 6.1. θp is a morphism of DGLA.
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Proof. For every f, g ∈ Lp, s ∈ S, we have:

d(θpf)(s) = dpfe(s) − (−1)fpfe(ds) = pdfe(s) − (−1)fpfd(e(s)) = θp(df)(s).

Since pfep = pf and pgep = pg

[θpf, θpg] = pfepge− (−1)f gpgepfe = p(fg − (−1)f ggf)e = θp([f, g]).

Theorem 6.2. The following is a cartesian diagram of quasiisomorphisms of DGLA

Lp
� � ıp ��

θp

��

Der∗(R,R)

p∗

��
Der∗(S, S)

p∗
�� Der∗(R,S)

,

where ıp is the inclusion.

We recall that cartesian means that it is commutative and that Lp is isomorphic to the
fibred product of p∗ and p∗.

Proof. Since pfep = pf for every f ∈ Lp we have p∗θp(f) = pfep = pf = p∗f and the
diagram is commutative. Let

K = {(f, g) ∈ Der∗(R,R) × Der∗(S, S) | pf = gp}

be the fibred product; the map Lp → K, f → (f, θp(f)), is clearly injective. Conversely
take (f, g) ∈ K and x ∈ I, since pf(x) = gp(x) = 0 we have f(I) ⊂ I, f ∈ Lp. Since p is
surjective g is uniquely determined by f and then g = θp(f). This proves that the diagram
is cartesian. By 5.3 p∗ (resp.: p∗) is a surjective (resp.: injective) quasiisomorphism, by a
standard argument in homological algebra also θp (resp.: ıp) is a surjective (resp.: injective)
quasiisomorphism.

Corollary 6.3. Let P → A, Q→ A be semifree resolutions of a dg-algebra. Then Der∗(P, P )
and Der∗(Q,Q) are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution R → A and surjective quasiisomorphisms
p : R → P , q : R → Q. Then there exists a sequence of quasiisomorphisms of DGLA

Lp

θp

������������
ıp

������������ Lq

ıq

������������
θq

����������

Der∗(P, P ) Der∗(R,R) Der∗(Q,Q).

Remark 6.4. If R → A is a semifree resolution then

Hi(Der∗(R,R)) = Hi(HomR(ΩR, R)) = Hi(HomR(ΩR, A)) =

= Hi(HomA(ΩR ⊗R A,A)) = Exti(LA, A).
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Unfortunately, contrarily to what happens to the cotangent complex, the application
R → Der∗(R,R) is quite far from being a functor: it only earns some functorial properties
when composed with a suitable functor DGLA → D.

Let D be a category and F : DGLA → D be a functor which sends quasiisomor-
phisms into isomorphisms of D1. By 6.3, if P → A, Q → A are semifree resolutions then
F(Der∗(P, P )) � F(Der∗(Q,Q)); now we prove that the recipe of the proof of 6.3 gives a
NATURAL isomorphism independent from the choice of P, p, q. For notational simplicity de-
note F(P ) = F(Der∗(P, P )) and for every surjective quasiisomorphism p : R → P of semifree
dg-algebras, F(p) = F(θp)F(ıp)−1 : F(R) → F(P ).

Lemma 6.5. Let p : R → P , q : P → Q be surjective quasiisomorphisms of semifree dg-
algebras, then F(qp) = F(q)F(p).

Proof. Let I = ker p, J = ker q, H = ker qp = p−1(J), e : P → R, s : Q → P sections.
Note that e(J) ⊂ H. Let L = Lq ×Der∗(P,P ) Lp, if (f, g) ∈ L and x ∈ H then pg(x) =
pg(ep(x)) = f(x) ∈ J and then g(x) ∈ H, g ∈ Lqp; denoting α : L → Lqp, α(f, g) = g, we
have a commutative diagram of quasiisomorphisms of DGLA

Lqp

ıqp

��																																					

θqp

��











































L

α

������������� β ��

γ

��

Lp

θp

��

ıp
�� Der∗(R,R)

Lq ıq
��

θq

��

Der∗(P, P )

Der∗(Q,Q)

and then

F(qp) = F(θqp)F(ıqp)−1 = F(θq)F(γ)F(α)−1F(α)F(β)−1F(ıp)−1 =

= F(θq)F(ıq)−1F(θp)F(ıp)−1 = F(q)F(p).

Let P be a semifree dg-algebra Q = P [{xi, dxi}] = P ⊗K K [{xi, dxi}], i : P → Q the
natural inclusion and π : Q → P the projection π(xi) = π(dxi) = 0: note that i, π are
quasiisomorphisms. Since P,Q are semifree we can define a morphism of DGLA

i : Der∗(P, P ) −→ Der∗(Q,Q),
(if)(xi) = (if)(dxi) = 0,
(if)(p) = i(f(p)), p ∈ P.

Since π∗i = π∗ : Der∗(P, P ) → Der∗(Q,P ), according to 5.3 i is an injective quasiisomor-
phism.

Lemma 6.6. Let P,Q as above, let q : Q → R a surjective quasiisomorphism of semifree
algebras. If p = qi : P → R is surjective then F(p) = F(q)F(i).

1The examples that we have in mind are the associated deformation functor and the homotopy class of
the corresponding L∞-algebra
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Proof. Let L = Der∗(P, P ) ×Der∗(Q,Q) Lq be the fibred product of i and ıq; if (f, g) ∈ L
then g = if and for every x ∈ ker p, i(f(x)) = g(i(x)) ∈ ker q ∩ i(P ) = i(ker p). Denoting
α : L→ Lp, α(f, g) = f , we have a commutative diagram of quasiisomorphisms

Der∗(P, P ) i �� Der∗(Q,Q)

Lp

ıp
������������

θp ������������������������ L
α��

���������������

�� �� Lq

ıq
������������

θq������������������������

Der∗(R,R)

and then F(q)F(i) = F(θq)F(ıq)−1F(i) = F(θp)F(ıp)−1.

Lemma 6.7. Let p0, p1 : P → R be surjective quasiisomorphisms of semifree algebras. If p0

is homotopic to p1 then F(p0) = F(p1).

Proof. We prove first the case P = R[t, dt] and pi = ei, i = 0, 1, the evaluation maps. Denote
by

L = {f ∈ Der∗(P, P ) | f(R) ⊂ R, f(t) = f(dt) = 0}.

Then L ⊂ Leα
for every α = 0, 1, θeα

: L→ Der∗(P, P ) is an isomorphism not depending from
α and L ⊂ Leα

⊂ Der∗(R,R) are quasiisomorphic DGLA. This proves that F(e0) = F(e1).
In the general case we can find commutative diagrams, α = 0, 1,

P [{xj , dxj}]
q ��

qα

��������������
R[t, dt]

eα

��
P

i

��

pα

�� R

with q surjective quasiisomorphism. We then have F(p0) = F(q0)F(i)−1 = F(e0)F(q)F(i)−1 =
F(e1)F(q)F(i)−1 = F(q1)F(i)−1 = F(p1).

We are now able to prove the following

Theorem 6.8. Let

R
p ��

q

��

P

��
Q �� A

be a commutative diagram of surjective quasiisomorphisms of dg-algebras with P,Q,R semifree.
Then Ψ = F(p)F(q)−1 : F(Q) → F(P ) does not depend from R, p, q.

Proof. Consider two diagrams as above

R0
p0 ��

q0

��

P

��
Q �� A,

R1
p1 ��

q1

��

P

��
Q �� A.
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There exists a commutative diagram of surjective quasiisomorphisms of semifree algebras

T
t1 ��

t0

��

R1

q1

��
R0 q0

�� Q.

By Lemma 6.5 F(q0)F(t0) = F(q1)F(t1). According to 4.5 the morphisms p0t0, p1t1 : T →
P are homotopic and then F(p0)F(t0) = F(p1)F(t1). This implies that F(p0)F(q0)−1 =
F(p1)F(q1)−1.
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