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Abstract. The theory of pictures between posets is known to encode
much of the combinatorics of symmetric group representations and re-
lated topics such as Young diagrams and tableaux. Many reasons, com-
binatorial (e.g. since semi-standard tableaux can be viewed as double
quasi-posets) and topological (quasi-posets identify with �nite topolo-
gies) lead to extend the theory to quasi-posets. This is the object of the
present article.

Introduction

The theory of pictures between posets is known to encode much of the
combinatorics of symmetric group representations and related topics such
as preorder diagrams and tableaux. The theory captures for example the
Robinson-Schensted (RS) correspondence or the Littlewood-Richardson for-
mula, as already shown by Zelevinsky in the seminal article [20]. Recently,
the theory was extended to double posets (pairs of orders coexisting on a
given �nite set � hereafter, �order� means �partial order�; an order on X de-
�nes a poset structure on X) and developed from the point of view of com-
binatorial Hopf algebras which led to new advances in the �eld [16, 8, 9, 10].

In applications, a fundamental property that has not been featured enough,
is that often pictures carry themselves implicitly a double poset structure.
A typical example is given by standard Young tableaux, which can be put
in bijection with certain pictures (this is one of the nicest way in which their
appearance in the RS correspondence can be explained [20]) and carry si-
multaneously a poset structure (induced by their embeddings into N × N
equipped with the coordinate-wise partial order) and a total order (the one
induced by the integer labelling of the entries of the tableaux).

However, objects such as tableaux with repeated entries, such as semi-
standard tableaux, although essential, do not �t into this framework. They
should actually be thought of instead as double quasi-posets (pairs of pre-
orders on a given �nite set): the �rst preorder is the same than for standard
tableaux (it is an order), but the labelling by (possibly repeated) integers
is naturally captured by a preorder on the entries of the tableau (the one
for which two entries are equivalent if they have the same label and else are
ordered according to their labels).

Besides the fact that these ideas lead naturally to new results and struc-
tures on preorders, other observations and motivations have led us to develop
on systematic bases in the present article a theory of pictures for quasi-posets.
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Let us point out in particular recent developments (motivated by applications
to multiple zeta values, Rota-Baxter algebras, stochastic integrals... [4, 2, 3])
that extend to surjections [18, 17, 14, 13] the theory of combinatorial Hopf
algebra structures on permutations [15, 7]. New results on surjections will
be obtained in the last section of the article.

Lastly, let us mention our previous works on �nite topologies (equivalent
to quasi-posets) [11, 12] (see also [5, 6] for recent developments) which fea-
tured the two products de�ned on �nite topologies by disjoint union and the
topological join product. The same two products, used simultaneously, hap-
pen to be the ones that de�ne on double quasi-posets an algebra structure
(and actually self-dual Hopf algebra) structure extending the usual one on
double posets.

The article is organized as follows. Section 1 introduces double quasi-
posets. Sections 2 and 3 introduce and study Hopf algebra structures on
double quasi-posets. Section 4 de�nes pictures between double quasi-posets.
Due to the existence of equivalent elements for both preorders of a double
quasi-poset, the very notion of pictures is much more �exible than for double
posets. From Section 5 onwards, we focus on the algebraic structures under-
lying the theory of pictures for double quasi-posets. Section 5 investigates
duality phenomena and shows that pictures de�ne a symmetric Hopf pairing
on the Hopf algebra of double quasi-posets. Section 6 addresses the question
of internal products, generalizing the corresponding results on double posets.
Internal products (by which we mean the existence of an associative product
of double posets within a given cardinality) are a classical property of combi-
natorial Hopf algebras. Once again, the rich structure of double quasi-posets
allows for some �exibility in the de�nitions, and we introduce two internal
associative products extending the one on double posets and permutations.
Section 7 investigates the restriction of the internal products to surjections.
A product di�erent from the usual composition of surjections and of the one
on the Solomon-Tits algebra emerges naturally from the theory of pictures.

Notations. Recall that a packed word is a word over the integers (or any
isomorphic strictly ordered set) containing the letter 1 and such that, if the
letter i > 1 appears, then all the letters between 1 and i appear (e.g. 21313 is
packed but not 2358223). We write En for the set of packed words of length n;
the subset En(k) of packed words of length n with k distinct letters identi�es
with the set of surjections from [n] to [k] when the latter are represented as a
packed word (by writing down the sequence of their values on 1, . . . , n). Let
us write In for increasing packed words (such as 11123333455) (resp. In(k)
for packed words with k di�erent letters). Increasing packed words of length
n are in bijection with compositions n = (n1, . . . , nk), n1 + · · ·+ nk = n, of
n, by counting the number of 1s, 2s... (The previous increasing packed word
is associated to the composition (3, 1, 4, 1, 2)).

All the algebraic structures (algebras, vector spaces...) are de�ned over a
�xed arbitrary ground �eld k.
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1. Double quasi-posets

In the article, order means partial order. We say equivalently that an
order is strict or total. Preorders are de�ned by relaxing the antisymmetry
condition, making possible x ≤ y and y ≤ x for x 6= y. A set equipped with
a preorder is called a quasi-poset. Finite quasi-posets identify with �nite
topologies, a classical result due to Alexandro� [1] revisited from the point
of view of combinatorial Hopf algebras in [11, 12].
Notations. Let ≤1 be a preorder on a set A. We de�ne an equivalence

relation on A by:

∀i, j ∈ A, i ∼1 i if i ≤1 j and j ≤1 i.

We shall write i <1 j if i ≤1 j and not i ∼1 j.

De�nition 1. A double quasi-poset is a triple P = (V (P ),≤1,≤2) where
V (P ) is a �nite set, and ≤1, ≤2 are two preorders on V (P ). The set of (iso-
classes of) double quasi-posets is denoted by dqp. The vector space generated
by dqp is denoted by Hdqp.

In practice, one can always assume that V (P ) = [n] := {1, . . . , n}. We
denote by dqp(n) double quasi-posets with n elements (the same notation
will be used for other families of objects without further comments).

De�nition 2. Let P,Q ∈ dqp. A morphism between P and Q is a doubly
increasing bijection, i.e. a bijection f between V (P ) and V (Q) such that

i ≤1 j ⇒ f(i) ≤1 f(j),

i ≤2 j ⇒ f(i) ≤2 f(j).

The morphism f is an isomorphism (resp. an automorphism when P = Q)
if and only if

i ≤1 j ⇔ f(i) ≤1 f(j),

i ≤2 j ⇔ f(i) ≤2 f(j).

We write Aut(P ) for the group of automorphisms of P .

De�nition 3. A double quasi-poset P is special (resp. strict special) if
≤2 is a total preorder, that is to say:

∀i, j ∈ V (P ), i ≤2 j or j ≤2 i,

(resp. a total order). The set of (isoclasses) of special double quasi-posets is
denoted by sqp. The vector space generated by sqp is denoted by Hsqp.

Notice that a total preorder on [n] identi�es canonically with a surjection,
and conversely. This is best explained through an example indicating the
general rule: consider the surjection f from [5] to [3] de�ned by

f(2) = f(4) := 1, f(1) := 2, f(3) = f(5) := 3,

the corresponding total preorder ≤f (with a self-explaining notation) is

2 ∼f 4 ≤f 1 ≤f 3 ∼f 5.
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We will represent both f and ≤f by the packed word associated to the
sequence of values of f on 1, . . . , 5: f = 21313.

De�nition 4. A double quasi-poset P is trivial if ≤1 is the trivial pre-
order (i.e. two distinct elements are never comparable for ≤1). The set of
trivial double quasi-posets is denoted by tqp. It is in bijection with the set
of (isoclasses of) quasi-posets. The vector space generated by tqp is denoted
by Htqp.

De�nition 5. Let P ∈ dqp. If both ≤1 and ≤2 are orders (resp. if ≤2 is
strict), we shall say that P is a double poset (resp. special double poset). The
set of (isoclasses of) double posets is denoted by dp and the space generated
by dp is denoted by Hdp.

We graphically represent any special double quasi-poset P by the reduced
Hasse graph of ≤1 (reduced means that two equivalent vertices are identi-
�ed); the second, total, preorder is given by integer indices on the vertices of
this graph. For example, here are special double quasi-posets of cardinality
≤ 2:

1; q1 ; qq12 , qq21 , qq11 , q1 q2 , q1 q1 , q1, 2 , q1, 1.
Here, 1 denotes the empty graph, q1, 2 (resp. q1, 1) represents a two-

elements set {a, b} with a ∼1 b and a <2 b (resp. a ∼1 b and a ∼2 b). For
the �rst cardinalities, we have:

n 1 2 3 4
]dqp(n) 1 10 166 5965
]sqp(n) 1 7 74 1290

2. Algebra structures on double quasi-posets

Let P,Q ∈ dqp. We de�ne two preorders on V (P ) t V (Q):

∀i, j ∈ V (P ) t V (Q), i ≤1 j if (i, j ∈ V (P ) and i ≤1 j)

or (i, j ∈ V (Q) and i ≤1 j);

i ≤2 j if (i, j ∈ V (P ) and i ≤2 j)

or (i, j ∈ V (Q) and i ≤2 j)

or (i ∈ V (P ) and j ∈ V (Q)).

This de�nes a double quasi-poset denoted by PQ. Extending this product
by bilinearity, we make Hdqp an associative algebra, whose unit is the empty
double quasi-poset 1.

Lemma 6. If P and Q are special, then PQ is special: Hsqp is subalgebra
of Hdqp. If P and Q are trivial, then PQ is trivial: Htqp is subalgebra of
Htqp.
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From a topological point of view, the �rst operation (on≤1) corresponds to
the disjoint union of �nite topologies; the second, to the join product [11, 12].
It is often useful to transform �nite topologies by removing degeneracies
(points that can not be separated). The following de�nition provides a way
of doing so in the context of double preorders.

De�nition 7. Let P be a double quasi-poset. We call splitting of P and
denote by pos(P ) = (V (P ),�1,�2) the double poset de�ned by:

∀i, j ∈ V (P ), i �1 j if i <1 j or i = j, i �2 j if i <2 j or i = j.

For example, the splitting of qq12, 3 is q qq∨132
. It follows from the de�nitions

that

Lemma 8. The splitting map is an algebra map from Hdqp to its subal-
gebra Hdp.

3. Hopf algebra structures

De�nition 9. Let P be a double quasi-poset and let X ⊆ V (P ).

• X is also a double quasi-poset by restriction of ≤1 and ≤2: we denote
this double quasi-poset by P|X .
• We shall say that X is an open set of P if:

∀i, j ∈ V (P ), i ≤1 j and i ∈ X =⇒ j ∈ X.

The set of open sets of P is denoted by Top(P ).
• We shall say that X is a preopen set of P if:

∀i, j ∈ V (P ), i <1 j and i ∈ X =⇒ j ∈ X.

The set of preopen sets of P is denoted by Top<(P ).

Remark. The splitting map does not preserve homotopy types but is
well-�tted to the notion of preopen sets:

Top<(P ) = Top(pos(P )).

We de�ne two coproducts on Hdqp in the following way:

∀P ∈ dqp,∆(P ) =
∑

O∈Top(P )

P|V (P )\O ⊗ P|O,

∆<(P ) =
∑

O∈Top<(P )

P|V (P )\O ⊗ P|O.

Theorem 10. Both (Hdqp,m,∆) and (Hdqp,m,∆<) are graded, con-
nected Hopf algebras; moreover, Hsqp, Hdp and Htqp are Hopf subalgebra
for both coproducts. Finally, the splitting map pos is a Hopf algebra mor-
phism and a projection from (Hdqp,m,∆<) to (Hdp,m,∆).
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The coassociativity of ∆ was proven in [11], a similar proof holds for ∆<.
The fact that the two coproducts are algebra maps and the other statements
of the Theorem follow from the Lemma 8 and from the de�nitions by direct
inspection.

The Hopf algebra Htqp identi�es with (one of) the Hopf algebras de�ned
in [12] on isoclasses of �nite topological spaces and of quasi-posets.

Remark. If≤1 is an order, then ∆(P ) = ∆<(P ). In particular, (Hdp,m,∆) =
(Hdp,m,∆<).

Let us introduce now the notion of blow up. Let P = (V (P ),≤1,≤2) ∈
dqp and write, for i ∈ V (P ), Pi := {j ∈ V (P ), i ∼1 j}. If Pi 6= {i} let ≤i
be an arbitrary total preorder on Pi. We can de�ne a new double quasi-poset
P ′ = (V (P ),≤′1,≤2) (the blow up of P along ≤i) by:

∀j /∈ Pi, ∀k ∈ V (P ), (j ≤′1 k ⇔ j ≤1 k) and (j ≥′1 k ⇔ j ≥1 k)

∀(j, k) ∈ P 2
i , j ≤′1 k ⇔ j ≤i k.

De�nition 11. Any double quasi-poset P ′ obtained by this process is called
an elementary blow up of P . A double quasi-poset Q obtained from P by a
sequence of elementary blow ups is called a blow up of P . We write B(P )
for the set of blow ups of P .

For example, the blow ups of qq12, 3 are qq12, 3 , qqq123 and qqq132 .
Warning: by de�nition, blow ups of P have the same element sets than P

and their two preorders are de�ned on V (P ). Two isomorphic blow ups of
P are equal in dqp, but to keep track of multiplicities, we do not identify
them inside B(P ).

De�nition 12. Let P,Q ∈ dqp, we shall say that P ≤ Q if Q is isomor-
phic to P or to a blow up of P .

Equivalently: P ≤ Q if there exists a bijection f : V (P ) −→ V (Q) with
the following properties:

• For all i, j ∈ V (P ), i and j are comparable for ≤1 in P if, and only
if, f(i) and f(j) are comparable for ≤1 in Q.
• For all i, j ∈ V (P ), if i <1 j in P , then f(i) <1 f(j) in Q.
• For all i, j ∈ V (P ), if f(i) ∼1 f(j) in Q, then i ∼1 j in P .
• For all i, j ∈ V (P ), i ≤2 j in P if, and only if, f(i) ≤2 f(j) in Q.

Lemma 13. ≤ is an order on dqp.

Proof. Indeed, the blow up of a blow up of P is a blow up of P . Moreover, a
non trivial elementary blow up increases strictly the number of equivalence
classes for the relation ≤1. It follows that P ≤ Q and Q ≤ P imply P = Q
in dqp. �
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Example. Here is the subposet of double quasi-posets greater than q1, 2, 3:
qqq123 qqq132 qqq213 qqq231 qqq312 qqq321
qq12, 3

zzzzzzzzzz qq1, 23

DDDD

DDDD
xxxxxxxxxx qq21, 3

xxxxxxxxxx qq1, 32

RRRRR
RRR

RRR

RRRRR zzzzzzzzzz qq31, 2
zzzzzzzzzz qq2, 31

RRRR
RRR

RR

RRRRR

q1, 2, 3
TTTTTTTTTTTTTTTT

IIIIIIIII

uuuuuuuuu

jjjjjjjjjjjjjjjj

ggggggggggggggggggggggggg

Remark. Let us take P,Q ∈ dqp, such that P ≤ Q. Then:

P or Q is special⇐⇒ P and Q are special.

Lemma 14. Let us set b(P ) :=
∑

P ′∈B(P )

P ′. Then:

∆ ◦ b(P ) = (b⊗ b) ◦∆<(P ).

Proof. Indeed, ∆ ◦ b(P ) is a sum of terms P ′|Oc ⊗ P ′|O over open subsets

in Top(P ′). However, by de�nition of blow ups, open subsets O of P ′ are
preopen sets of P and there is a canonical embedding of the set of pairs
(P ′|Oc , P ′|O) in the expansion of ∆ ◦ b(P ) into the set of pairs∐

O∈Top<(P )

B(P|Oc)×B(P|O).

Conversely, any element in this last set de�nes uniquely a pair (U,P ′)
where U is an open set of a blow up P ′ of P . Indeed, let O ∈ Top<(P ), T
be a blow up of P|O and W a blow up of P|Oc . Set U := T and de�ne the
preorder ≤′1 on P ′ by

∀(i, j) ∈ (Oc ×Oc) ∪ (O ×O), i ≤′1 j ⇔ i ≤1 j in T or W,

∀(i, j) ∈ Oc ×O, i ≤′1 j ⇔ i ≤1 j in P when i 6∼1 j in P, i <1 j else.

�

Proposition 15. We consider the map:

Υ :

{
Hdqp −→ Hdqp

P −→ b(P ).

Then Υ is a Hopf algebra isomorphism from (Hdqp,m,∆<) to (Hdqp,m,∆).

Proof. The blow ups of a product PQ are in a straightforward bijection with
the products of blow ups of P and Q, the multiplicativity of Υ follows. That
Υ is an isomorphism follows then from its invertibility as a linear map (recall
that b(P ) is the sum of P with higher order terms for the order ≤ on dqp)
and from the previous Lemma. �
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4. Pictures and patterns

Due to the possible existence of equivalent elements for ≤1 or ≤2, the
theory of pictures for double quasi-posets (to be introduced in the present
section) allows for much more �exibility than the one of pictures for double
posets. In particular it allows for various approaches to encode pictorially
combinatorial objects such as surjections, tableaux with repeated entries, and
so on. It also provides a new framework (through the notion of patterns, also
to be introduced) to deal with quotients under Young (and more generally
parabolic) subgroups actions. Although the present article is mainly focused
on combinatorial Hopf algebra structures, we expect these ideas and the
associated algebraic structures to lead to new approaches to these classical
topics.

De�nition 16. Let P,Q ∈ dqp.

• A prepicture between P and Q is a bijection f : V (P ) −→ V (Q) such
that:

∀i, j ∈ V (P ), i <1 j =⇒ f(i) <2 f(j), f(i) <1 f(j) =⇒ i <2 j.

The set of prepictures between P and Q is denoted by Pic<(P,Q).
• A picture (or standard picture) between P and Q is a bijection f :
V (P ) −→ V (Q) such that:

∀i, j ∈ V (P ), i ≤1 j =⇒ f(i) ≤2 f(j), i <1 j =⇒ f(i) <2 f(j),

f(i) ≤1 f(j) =⇒ i ≤2 j, f(i) <1 f(j) =⇒ i <2 j.

The set of pictures between P and Q is denoted by Pic(P,Q).
• A semi-standard picture between P and Q is a bijection f : V (P ) −→
V (Q) such that:

∀i, j ∈ V (P ), i <1 j =⇒ f(i) ≤2 f(j), f(i) <1 f(j) =⇒ i ≤2 j.

The set of semi-standard pictures between P and Q is denoted by
Picss(P,Q).

Remarks.

(1) Obviously, Pic(P,Q) ⊆ Pic<(P,Q); moreover:

Pic<(P,Q) = Pic<(pos(P ), pos(Q)) = Pic(pos(P ), pos(Q)).

(2) If ≤2 are orders for both P and Q, then any bijection f : V (P ) −→
V (Q) is a picture between P and Q if, and only if:

∀i, j ∈ V (P ), i ≤1 j =⇒ f(i) ≤2 f(j), f(i) ≤1 f(j) =⇒ i ≤2 j.

Example. Let P,Q ∈ tqp(n). Then,

Pic(P,Q) = Pic<(P,Q) = Picss(P,Q) ∼= Sn.

This generalizes the correspondence between permutations and pictures of
trivial double posets, instrumental in the picture-theoretical reformulation of
the RS correspondence between permutations and pairs of standard tableaux.
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Example. Let λ be a Young diagram with n entries, embedded in N2. We
write Qλ (resp. Pλ, for later use) for the double quasi-poset with V (Qλ) = λ,
equipped with the order (x, y) ≤ (z, t) ⇔ x ≤ z and y ≤ t and an arbitrary
preorder ≤2, respectively the strict order ≤2 obtained by labelling the entries
of λ in the reading order: graphically, for

λ = , ≤2 is given by

1
2 3 4
5 6 7 .

(1) Let Q ∈ tqp with V (Q) = [n] and ≤2 the natural order. Then,
Pic(Qλ, Q) = Pic<(Qλ, Q) = Picss(Qλ, Q) is in bijection with stan-
dard tableaux of shape λ.

(2) Let Q ∈ tqp with V (Q) = [n] and ≤2 an arbitrary order. Then,
Pic(Qλ, Q) = Pic<(Qλ, Q) = Picss(Qλ, Q) is in bijection with tableaux
of shape λ such that the entries are increasing from bottom to top
and left to right for ≤2.

(3) Let Q ∈ tqp with V (Q) = [n] and ≤2 be an arbitrary preorder.
Then, Pic(Qλ, Q) = Pic<(Qλ, Q) is in bijection with tableaux of
shape λ such that the entries are strictly increasing from bottom to
top and left to right for ≤2. Instead, Picss(Qλ, Q) is in bijection
with tableaux of shape λ such that the entries are weakly increasing
from bottom to top and left to right for ≤2.

Lemma 17. Let P,Q ∈ dqp. The sets Pic(P,Q), P ic<(P,Q), P icss(P,Q)
are Aut(P )op (resp. Aut(Q))-sets by right (resp. left) composition, where
Aut(P )op is the opposite of the group of automorphisms of P .

De�nition 18. Let P,Q ∈ dqp, two bijections f, g from V (P ) to V (Q)
are called equivalent (written f ∼ g) if, and only if, there exists (φ, ψ) ∈
Aut(P ) × Aut(Q) such that f = ψ ◦ g ◦ φ. The quotient Pat(P,Q) :=
Aut(Q) \ Picss(P,Q)/Aut(P ) is called the set of patterns between P and Q.

Example. The notations are as in the previous example, we assume
furthermore that Qλ = Pλ and that, on Q, the preorder ≤2 is total and
increasing (e.g. 1 ∼2 2 <2 3 ∼2 4 ∼2 5 <2 6 ∼2 7 <2 8) and identi�es
therefore with a surjection (f(1) = f(2) = 1, f(3) = f(4) = f(5) = 2, f(6) =
f(7) = 3, f(8) = 4)), resp. an increasing packed word (11222334), resp. a
composition (n := (2, 3, 2, 1)). For later use, we also set Q(n) := Q. Then,
Aut(Pλ) = {1} (because the second order on Pλ is strict) and Aut(Q(n)) is,
up to a canonical isomorphism, a Young subgroup of Sn (e.g. Aut(Q(n)) ∼=
Sn := S2 × S3 × S2 × S1). Therefore, Pat(Pλ, Q(n)) is in bijection with
the set λ(n) of tableaux of shape λ decorated by the packed word 11222334
and such that the entries are row and column-wise weakly increasing: for
example,

for λ = , a tableau such as

2 4
2 2 3
1 1 3 .
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Lemma 19. For any composition n of n, Pat(Q(n), P[n]) is in bijection

with the set of surjections f from [n] to [k] such that |f−1(1)| = n1, . . . , |f−1(k)| =
nk.

When n = (1, . . . , 1), Q(n) = P[n], sets of patterns and pictures identify,
and we recover Pat(Q(n), P[n]) = Pic(Q(n), P[n]) ∼= Sn.

In general, Picss(Q(n), P[n]) ∼= Sn and Aut(Q(n)) ∼= Sn := Sn1×· · ·×Snk
.

The result follows from the usual bijection between the coset Sn/Sn and the
set of surjections from [n] to [k] such that |f−1(1)| = n1, . . . , |f−1(k)| = nk.

5. Pairings and self-duality

We depart from now on from diagrammatics and topics such as the RS
correspondence to focus on the algebraic structures underlying the theory
of pictures for double quasi-posets. The present section investigates duality
phenomena.

Lemma 20. For all P,Q,R ∈ dqp and f ∈ Pic<(PQ,R) (resp. f ∈
Pic(PQ,R)), we have f(V (Q)) ∈ Top<(R) (resp. Top(R)).

Proof. We put O = f(V (Q)). Let i′, j′ ∈ V (R), with i′ ∈ O and i′ <1 j
′. We

put i′ = f(i) and j′ = f(j). Then i ∈ V (Q) and f(i) <1 f(j), so i <2 j, with
j ∈ V (Q), and �nally j′ ∈ O: O ∈ Top<(R). The same argument applies
mutatis mutandis for pictures. �

Proposition 21. For all P,Q ∈ dqp, we put:

〈P,Q〉 = ]P ic(P,Q), 〈P,Q〉< = ]P ic<(P,Q).

〈−,−〉< and 〈−,−〉 are symmetric Hopf pairings on, respectively, (Hdqp,m,∆<)
and (Hdqp,m,∆). Moreover, for all x, y ∈ Hdqp:

〈x, y〉< = 〈pos(x), pos(y)〉< = 〈pos(x), pos(y)〉.

Proof. Let P,Q ∈ dqp. The map f 7→ f−1 is a bijection from Pic<(P,Q)
to Pic<(Q,P ) and from Pic(P,Q) to Pic(Q,P ). So 〈P,Q〉< = 〈Q,P 〉< and
〈P,Q〉 = 〈Q,P 〉.

Let P,Q,R ∈ dqp, we set Oc := V (R) \O and de�ne:

θ :

 Pic<(PQ,R) −→
⊔

O∈Top<(R)

Pic<(P,R|Oc)× Pic<(Q,R|O)

f −→ (f|P , f|Q).

By the previous Lemma, and since by restriction, for O := f(V (Q)), f|P ∈
Pic<(P,R|Oc) and f|Q ∈ Pic<(Q,R|O), θ is well-de�ned. By its very de�ni-
tion, it is injective. LetO ∈ Top<(R), (f1, f2) ∈ Pic<(P,R|Oc)×Pic<(Q,R|O).
We denote by f the unique bijection from V (PQ) to V (R) such that f|P = f1
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and f|Q = f2. We let the reader check that f ∈ Pic<(PQ,R); θ is bijective
and we obtain:

〈PQ,R〉< = ]P ic<(PQ,R)

=
∑

O∈Top<(R)

]P ic<(P,R|Oc)]P ic<(Q,R|O)

=
∑

O∈Top<(R)

〈P,R|Oc)〉<〈Q,R|O〉<

= 〈P ⊗Q,∆<(R)〉<.
So 〈−,−〉< is a Hopf pairing. By restriction, one gets:

θ(Pic(PQ,R)) =
⊔

O∈Top(R)

Pic(P,R|Oc)× Pic(Q,R|O);

that 〈−,−〉 is a Hopf pairing follows by similar arguments that we omit.
Moreover, for any P,Q ∈ dqp:

〈P,Q〉< = ]P ic<(P,Q) = ]P ic<(pos(P ), pos(Q)) = ]P ic(pos(P ), pos(Q))

= 〈pos(P ), pos(Q)〉.
�

De�nition 22. The map ι : Hdqp −→ Hdqp is de�ned by ι(P ) =
(V (P ),≤2,≤1) for any P = (V (P ),≤1,≤2) ∈ dqp.

Lemma 23. For any double quasi-poset P , we put:

XP = {(i, j) ∈ V (P ) | i ≤1 j}, xP = ]XP ,

YP = {(i, j) ∈ V (P ) | i ≤2 j}, yP = ]YP .

(1) Let P,Q ∈ dqp, such that 〈P,Q〉 6= 0. Then:
• xP ≤ yQ and xQ ≤ yP .
• If moreover xP = yQ and xQ = yP , then Q = ι(P ).

(2) For any P ∈ dqp, 〈P, ι(P )〉 6= 0.

Proof. 1. The set Pic(P,Q) is non-empty. Let f ∈ Pic(P,Q). We de�ne:

F :

{
V (P )2 −→ V (Q)2

(i, j) −→ (f(i), f(j)).

As f is bijective, F is bijective. By de�nition of a picture, F (XP ) ⊆ YQ
and F−1(XQ) ⊆ YP , so xP ≤ yQ and xQ ≤ yP . If moreover xP = yQ and
xQ = yP , then F (XP ) = YQ and F−1(XQ) = YP ; for any i, j ∈ V (P ):

i ≤1 j in P ⇐⇒ f(i) ≤2 f(j) in Q⇐⇒ f(i) ≤1 f(j) in ι(Q)

f(i) ≤2 f(j) in ι(Q)⇐⇒ f(i) ≤1 f(j) ∈ Q⇐⇒ i ≤2 j in P.

So f is an isomorphism from P to ι(Q): P = ι(Q) or, equivalently Q = ι(P ).

2. If P = ι(Q), then IdV (P ) ∈ Pic(P,Q), so 〈P,Q〉 6= 0. �
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Proposition 24. Let X ⊆ dqp such that:

• 1 ∈ X.
• x, y ∈ X =⇒ xy ∈ X.
• ∀P ∈ X, ∀B ⊆ V (P ), P|B ∈ X.

We denote by HX the subspace of Hdqp generated by X. Then HX is a Hopf
subalgebra of both (Hdqp,m,∆) and (Hdqp,m,∆<). If, moreover:

• x ∈ X =⇒ ι(x) ∈ X,

then 〈−,−〉|HX
is non-degenerate, so (HX,m,∆) is a graded self-dual Hopf

algebra.

Proof. Let us �x an integer n. We denote by dqp(n), respectively X(n), the
set of double quasi-posets of order n, respectively X ∩ dqp(n). We de�ne a
relation ≤ on dqp(n) by:

∀P,Q ∈ dqp(n), P ≺ Q if (P = Q)

or ((xP , yP ) 6= (xQ, yQ), xP ≤ xQ and yP ≥ yQ).

This is a preorder on dqp(n). Let us assume that P ≺ Q and Q ≺ P . Then
xP ≤ xQ ≤ xP and yP ≥ yQ ≥ yP , so (xP , yP ) = (xQ, yQ), which implies
that P = Q: we proved that ≺ is an order on dqp(n). We now consider a
linear extension ≤ of ≺. In other words, ≤ is a total order on dqp(n) such
that for any P,Q ∈ dqp(n):

((xP , yQ) 6= (xQ, yQ), xP ≤ xQ and yP ≥ yQ) =⇒ P ≤ Q.

Let us assume that 〈P,Q〉 6= 0. By the preceding lemma, xP ≤ yQ and
yP ≥ xQ, so xP ≤ xι(Q) and yP ≥ yι(Q). If (xP , yP ) 6= (yQ, xQ), then
P ≥ ι(Q); if (xP , yP ) = (yQ, xQ), by the preceding lemma P = ι(Q). Finally:

〈P,Q〉 6= 0 =⇒ P ≥ ι(Q).

We now writeX(n) = {P1, . . . , Pk} in such a way that ι(P1) ≤ . . . ≤ ι(Pk).
The matrix (〈ι(Pi), Pj〉)1≤i,j≤k is upper triangular, and its diagonal terms
are the elements 〈Pi, ι(Pi)〉, which are non-zero by the preceding lemma: this
matrix is invertible. Hence, 〈−,−〉|HX

is non-degenerate. �

This can be applied with X = dqp or X = dp.

Corollary 25. The pairings 〈−,−〉 and 〈−,−〉|Hdp
are non-degenerate.

The kernel of 〈−,−〉< is Ker(pos).

Proof. The families dqp and dp satisfy the hypotheses of proposition 24,
so 〈−,−〉 and 〈−,−〉|Hdp

are non-degenerate. As Im(pos) = Hdp and

〈−,−〉|Hdp
is non-degenerate, Ker(pos) = Ker(〈−,−〉<). �

Proposition 26. For all x, y ∈ Hsqp:

〈Υ(x),Υ(y)〉 = 〈x, y〉<.
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Proof. The identity 〈Υ(x),Υ(y)〉 = 〈x, y〉< is better understood as the con-
sequence of a bijection from pictures between the blow ups of special double
quasi-posets P and Q, to the prepictures between P and Q. We sketch the
proof. Let P ′ and Q′ be blow ups of P and Q. Since i <1 j in P implies
i <1 j in P ′, and similarly for Q and Q′, a picture between P ′ and Q′ is a
prepicture between P and Q. Let conversely f be a prepicture between P
and Q. Let {Pi}i=1...k be the set of all nontrivial equivalence class for ∼1

in P . The inverse image by f of the preorder ≤2 on each f(Pi) ⊂ V (Q) is
a preorder ≤i on Pi. Blowing up P successively along ≤1, . . . ,≤k de�nes a
blow up P ′ of P . By symmetry, a blow up Q′ of Q is de�ned by the same
process. By construction, f is a picture between P ′ and Q′. �

6. Internal products

This section addresses the question of internal products. The existence of
internal products (by which we mean the existence of an associative product
on double posets with a given cardinality) is a classical property of combi-
natorial Hopf algebras: in the representation theory of the symmetric group
(or equivalently in the algebra of symmetric functions) the internal prod-
uct is obtained from the tensor product of representations, and this product
extends naturally to various noncommutative versions, such as the descent
algebra or the Malvenuto-Reutenauer Hopf algebra [15].

The rich structure of double quasi-posets allows for the de�nition of two
internal associative products generalizing the corresponding structures on
double posets [16].

De�nition 27. Let P,Q ∈ dqp and f : V (P ) −→ V (Q) a bijection.
We de�ne a double quasi-poset, the product of P and Q over f , P ×f Q =

(V (P ),≤f1 ,≤2) by:

∀i, j ∈ V (P ), i ≤f1 j if f(i) ≤1 f(j),

where ≤2 is the second preorder on P .

De�nition 28. Let P,Q ∈ dqp and f : V (P ) −→ V (Q) a bijection.

(1) We shall say that f is a semi-prepicture between P and Q if:

∀i, j ∈ V (P ), i <1 j =⇒ f(i) <2 f(j).

The set of semi-prepictures between P and Q is denoted by I<(P,Q).
(2) We shall say that f a semi-picture between P and Q if:

∀i, j ∈ V (P ), i <1 j =⇒ f(i) <2 f(j), i ≤1 j =⇒ f(i) ≤2 f(j).

The set of semi-pictures between P and Q is denoted by I(P,Q).

Remark. For any P,Q ∈ dqp:

Pic<(P,Q) = I<(P,Q) ∩ I<(Q,P )−1, P ic(P,Q) = I(P,Q) ∩ I(Q,P )−1.
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Proposition 29. For any double quasi-posets P , Q, we put:

P EQ =
∑

f∈I(P,Q)

P ×f Q, P CQ =
∑

f∈I<(P,Q)

P ×f Q.

These products are bilinearly extended to Hdqp. Then both E and C are
associative and, for all x, y, z ∈ Hdqp:

〈xE y, z〉 = 〈x, y E z〉, 〈xC y, z〉< = 〈x, y C z〉<.

Proof. First step. Let us �rst prove the associativity of C. Let P,Q,R ∈
dqp. We consider:

X = {(f, g) | f ∈ I<(P,Q), g ∈ I<(P ×f Q,R)},
X ′ = {(f ′, g′) | f ′ ∈ I<(Q,R), g′ ∈ I<(P,Q×f ′ R)}.

We consider the maps:

φ :

{
X −→ X ′

(f, g) −→ (g ◦ f−1, f),
φ′ :

{
X ′ −→ X

(f ′, g′) −→ (g′, f ′ ◦ g′).
Let us prove that they are well-de�ned. Let us take (f, g) ∈ X; we put

(f ′, g′) = (g ◦ f−1, f). If i <1 j in Q, then f−1(i) <f1 f
−1(j) in P ×f Q, so

f ′(i) = g ◦ f−1(i) <2 g ◦ f−1(j) = f ′(j). If i <1 j in P , then g
′(i) = f(i) <2

f(j) = g′(j) in Q, or equivalently in Q×f ′ R. So φ is well-de�ned.
Let us take (f ′, g′) ∈ X ′; we put (f, g) = (g′, f ′ ◦ g′). If i <1 j in P , then

f(i) = g′(i) <2 g
′(j) = f(j) in Q ×f ′ R, so in Q. If i <f1 j in P ×f Q, then

g′(i) = f(i) <1 f(j) = g′(j) in Q, so g(i) = f ′ ◦ g′(i) <2 f
′ ◦ g′(j) in R. So

φ′ is well-de�ned.
It is immediate to prove that φ ◦ φ′ = IdX′ and φ′ ◦ φ = IdX . We get

�nally:

(P CQ)CR =
∑

(f,g)∈X

(P ×f Q)×g R

=
∑

(f ′,g′)∈X′
P ×f ′ (Q×f ′ R) = P C (QCR).

The associativity of E is proved in the same way: we consider

X ′′ = {(f, g) | f ∈ I(P,Q), g ∈ I(P ×f Q,R)} ⊆ X,
X ′′′ = {(f ′, g′) | f ′ ∈ I(Q,R), g′ ∈ I(P,Q×f ′ R} ⊆ X ′.

The same computations as before, replacing everywhere < by ≤, proving
that φ(X ′′) = X ′′′, allow to conclude similarly.

Second step. Let P,Q,R ∈ dqp. We consider:

Y = {(f, g) | f ∈ I<(P,Q), g ∈ Pic<(P ×f Q,R)} ⊆ X,
Y ′ = {(f ′, g′) | f ′ ∈ I<(Q,R), g′ ∈ Pic<(P,Q×f ′ R)} ⊆ X ′.

Let us prove that φ(Y ) = Y ′. Let us take (f, g) ∈ Y ; we put (f ′, g′) = φ(f, g).
If g′(i) <1 g

′(j) in Q×f ′ R, then f(i) <1 f(j) in Q×g◦f−1 R, so g(i) <1 g(j)
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in R. As g ∈ Pic<(P ×f Q,R), i <2 j in P ×f Q or equivalently in P . If
(f ′, g′) ∈ Y ′, we put φ′(f ′, g′) = (f, g). If g(i) <1 g(j) in R, then f ′ ◦g′(i) <1

f ′ ◦g′(j) in R, so g′(i) <f
′

1 g′(j) in Q×f ′R. As g′ ∈ Pic<(P,Q×f ′R), i <2 j
in P , or in P ×f Q.

Consequently:

〈P CQ,R〉< = ]Y = ]Y ′ = 〈P,QCR〉<.

Putting:

Y ′′ = {(f, g) | f ∈ I(P,Q), g ∈ Pic(P ×f Q,R)} ⊆ X ′′,
Y ′′′ = {(f ′, g′) | f ′ ∈ I(Q,R), g′ ∈ Pic(P,Q×f ′ R)} ⊆ X ′′′,

we prove in the same way, replacing everywhere < by ≤, that φ(Y ′′) = Y ′′′.
So 〈P EQ,R〉 = 〈P,QER〉. �

Remark. Hdp and Hsqp are stable under E and C.

Proposition 30. For all x, y ∈ Hsqp:

Υ(xC y) = Υ(x)EΥ(y).

Proof. The same argument as in the proof of proposition 26, used with semi-
pictures and semi-prepictures shows that P CQ = Υ(P )EQ. The identity
Υ(P CQ) = Υ(P )EΥ(Q) follows by noticing that Υ maps a double quasi-
posets to the sum of its blow ups and that, since for P ′EQ with P ′ ∈ B(P ),
≤1 is obtained as the inverse image along a semi-picture of the preorder ≤1

on Q, Υ(Υ(P )EQ) = Υ(P )EΥ(Q). �

7. Permutations and surjections

In this section, we study the restriction of the internal products on double
quasi-posets to the linear spans of surjections kEn. One product (E) identi�es
essentially with the naive composition product of surjections, but the other
one, C, that emerges naturally from the theory of pictures, is not induced by
the composition of surjections and di�ers from the product in the Solomon-
Tits algebra; recall that the latter is an algebra structure on ordered set
partitions of [n] � that can be identi�ed bijectively with surjections � it
emerges naturally from the theory of twisted Hopf algebras, also called Hopf
species [19].

Let w = w(1) . . . w(n) =: w1 . . . wn be a surjection from [n] to [k], or
equivalently a packed word of length n with k distinct letters. We de�ne a
special double poset Pw by:

(1) V (Pw) = {1, . . . , n}.
(2) ∀i, j ∈ {1, . . . , n}, i ≤1 j if wi ≤ wj .
(3) ≤2 is the usual order on {1, . . . , n}.

We obtain in this way an injection from the set of surjections En to sqp.
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De�nition 31. Let w be a packed word of length n and σ ∈ Sn. We shall
say that σ is w-compatible if:

∀i, j ∈ {1, . . . , n}, wi < wj =⇒ σ(i) < σ(j).

The set of w-compatible permutations is denoted by Comp(w).

Remark. If w is a permutation, Comp(w) = {w}. In general:

]Comp(w) =

max(w)∏
i=1

(]w−1(i))!.

Proposition 32. Let u, v be two packed words of the same length n. Then:

Pu C Pv =
∑

σ∈Comp(u)

Pv◦σ, Pu E Pv =

{
v ◦ u if u ∈ Sn,

0 otherwise.

Proof. Let σ ∈ Sn. Then σ ∈ I<(Pu, Pv) if, and only if, σ ∈ Comp(u).
Moreover, σ ∈ I(Pu, Pv) if, and only if, σ = u. Hence:

Pu C Pv =
∑

σ∈Comp(u)

Pu ×σ Pv, Pu E Pv =

{
Pu ×u Pv if u ∈ Sn,

0 otherwise.

Moreover, for all 1 ≤ i, j ≤ n:

i ≤σ1 j in Pu ×σ Pv ⇐⇒ σ(i) ≤1 σ(j) in Pv ⇐⇒ v ◦ σ(i) ≤ v ◦ σ(j).

So Pu ×σ Pv = Pv◦σ. �

Remark. In particular, if u, v ∈ Sn, Pu C Pv = Pu E Pv = Pv◦u.

Proposition 33. The following maps are algebra morphisms:

ζ :


(kEn,C) −→ (kSn, ◦)

Pw −→
∑

σ∈Comp(w)

σ−1, ζ ′ :

{
(kSn, ◦) −→ (kEn,C)

σ −→ Pσ−1 .

Moreover, the following diagram commutes:

kSn
ζ′ //

Id ##F
FF

FF
FF

F kEn
ζ
��

kSn

Proof. Let u, v be packed words of length n. For any σ, τ ∈ Sn:

τ ∈ Comp(v ◦ σ)⇐⇒ (∀ 1 ≤ i, j ≤ n, v ◦ σ(i) < v ◦ σ(j) =⇒ τ(i) < τ(j))

⇐⇒ (∀ 1 ≤ i, j ≤ n, v(i) < v(j) =⇒ τ ◦ σ−1(i) < τ ◦ σ−1(j))
⇐⇒ τ ◦ σ−1 ∈ Comp(v).
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Hence:

ζ(Pu C Pv) =
∑

σ∈Comp(u),τ∈Comp(v◦σ)

τ−1

=
∑

σ∈Comp(u),τ∈Comp(v)

(τ ◦ σ)−1

=
∑

σ∈Comp(u),τ∈Comp(v)

σ−1 ◦ τ−1

= ζ(Pu) ◦ ζ(Pv).

So ζ is an algebra morphism. �

We conclude by comparing the two products on kEn.

Proposition 34. The map Υ restricts to an algebra isomorphism

Υ : (kEn,C) −→ (kEn,E).

Proof. Recall that, on Hsqp,

Υ(xC y) = Υ(x)EΥ(y).

Let P = (V (P ),≤1,≤2) ∈ dqp. There exists a surjection or packed word
u such that P = Pu if, and only if, ≤2 is a total order and ≤1 is a total
preorder. The class of these double posets originating from surjections is
stable by blow ups, the Proposition follows. �
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