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GRAPH-DIFFERENT PERMUTATIONS∗
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Abstract. For a finite graph G whose vertices are different natural numbers we call two infinite
permutations of the natural numbers G-different if they have two adjacent vertices of G somewhere
in the same position. The maximum number of pairwise G-different permutations of the naturals is
always finite. We study this maximum as a graph invariant and relate it to a problem of the first two
authors on colliding permutations. An improvement on the lower bound for the maximum number
of pairwise colliding permutations is obtained.
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1. Introduction. In [1] the first two authors began to investigate the following
mathematical puzzle. Call two permutations of [n] := {1, . . . , n} colliding if, repre-
sented by linear orderings of [n], they put two consecutive elements of [n] somewhere
in the same position. For the maximum cardinality ρ(n) of a set of pairwise colliding
permutations of [n] the following conjecture was formulated.

Conjecture 1 (see [1]). For every n ∈ N

ρ(n) =

(
n⌊
n
2

⌋
)
.

It was observed in [1] that the right-hand-side expression above is actually an up-
per bound for ρ(n), while the best lower bound given there was a somewhat deceiving

(1) 35n/7−O(1) ≤ ρ(n).

The initial motivation for the present work was to improve on the above lower
bound. However, our main purpose in this paper is to study the new graph invariant
mentioned in the abstract. We will analyze its possible values for simple classes of
graphs and then apply some of the results to obtain a new lower bound for ρ(n).

For brevity’s sake let us call a graph natural if its vertex set is a finite subset of N,
the set of all positive integers, and if the graph is simple (without loops and multiple
edges). An infinite permutation of N is simply a linear ordering of all the elements of N.
(Instead of infinite permutations of N we will often say simply infinite permutations
in what follows.) For an arbitrary natural graph G = (V (G), E(G)) we will call the
infinite permutations π = (π(1), π(2), . . . , π(n), . . .) and σ = (σ(1), σ(2), . . . , σ(n), . . .)
G-different if there is at least one i ∈ N for which

{π(i), σ(i)} ∈ E(G).
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(We will use the same expression for a pair of finite sequences if at some coordinate
they contain the two endpoints of an edge of G.) Let κ(G) be the maximum cardinality
of a set of infinite permutations any two elements of which are G-different. (It is easy
to see that the finiteness of G implies that this number is finite as well; see Lemma 1
below.) Clearly, the value of κ is equal for isomorphic natural graphs. In this paper
we will analyze this quantity for some elementary graphs and will apply some of the
results to the problem of ρ(n). We have been able to determine the value of κ(G) only
for some very small or simply structured graphs G. Thus, to further simplify matters,
we ask questions about the extremal values of κ for graphs with a fixed number of
edges (and, eventually, vertices). We define

(2) K(�) = max{κ(G) ; |E(G)| = �}

and

(3) k(�) = min{κ(G) ; |E(G)| = �}

as well as

(4) K(v, �) = max{κ(G) ; |V (G)| = v, |E(G)| = �}.

We also conjecture the following.
Conjecture 2. For every � ∈ N

K(�) = 3�.

In fact, we will show that K(�) lies between 3� and 4� for every natural number
�. We will also see that k(�) is linear in �.

As we will explain, the values of κ(Pr), where Pr is the r-vertex path, are relevant
when investigating colliding permutations. Giving a lower bound on κ(P4), the lower
bound of (1) will be improved to 10n/4−O(1).

The concept of graph-different sequences from a fixed alphabet goes back to Shan-
non’s classical paper on zero-error capacity [3]. As explained in the survey [2], a large
body of problems in extremal combinatorics can be treated as zero-error problems
in information theory. For the relationship of the present problems to zero-error
information theory, we refer to [1].

2. Natural graphs and infinite permutations. Let G be a natural graph,
and let again κ(G) be the maximum cardinality of a set of infinite permutations any
two elements of which are G-different, provided that this number is finite. It is easy
to see that this is always the case. Let χ(G) denote the chromatic number of graph G.

Lemma 1. For every natural graph

κ(G) ≤ (χ(G))|V (G)|

holds.
Proof. Let us consider a proper coloring c : V (G) → {1, . . . , χ(G)} of G. Let

us write v = |V (G)| and denote by W = [χ(G)]N the set of infinite sequences over
the alphabet {1, . . . , χ(G)}. Let μ be the uniform probability measure on W . Let us
consider a set C of pairwise G-different permutations. We assign to any π ∈ C the
set W (π) of all those sequences of W that for all u ∈ V (G) have the element c(u) in
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GRAPH-DIFFERENT PERMUTATIONS 491

the position where π contains u. By our hypothesis on C, the sets W (π) are pairwise
disjoint for the different elements π ∈ C, whence

1 = μ(W ) ≥
∑
π∈C

μ(W (π)) =
∑
π∈C

χ(G)−v = |C|χ(G)−v.

In the rest of this section we first investigate K(�) and k(�). Subsequently our
new lower bound on ρ(n) will be proved.

Let us denote by S(G) the set of nonisolated vertices of the graph G. We introduce
a graph transformation that increases the value of κ.

Proposition 1. Let F and G be two graphs with G obtained from F upon deleting
an arbitrary edge in E(F ) followed by the addition of two new vertices to V (F ) so
that the latter form an additional edge in G. Then

κ(F ) ≤ κ(G).

Proof. Let us consider the m = κ(F ) pairwise F -different infinite permutations
of an arbitrary optimal configuration for F . Let t be large enough for the initial
prefixes of length t of these infinite sequences to be pairwise F -different, and let q
be the largest integer appearing in their coordinates. By the finiteness of κ(F ) such
t and q exist. Without restricting generality we can suppose that the new edge of
G is {c, d} with both c and d being strictly larger than q. We also suppose that
the edge that we will delete is {a, b} ∈ E(F ). Let us now suffix to each of our
length-t sequences a new sequence of the same length t, where the suffix to a sequence
x1x2 . . . xt is obtained from it by substituting every a with c and every b with d while
the remaining coordinates are defined in an arbitrary manner but in such a way that
the coordinates of the overall sequence of length 2t are all different. Clearly, the m
new sequences of length 2t are G-different. To conclude, we can complete these new
sequences to yield infinite permutations any way we like.

A straightforward consequence of the previous proposition is the following.
Corollary 1. K(�) = κ(�K2).
Thus we know that K(�) is achieved by � independent edges. It seems equally

interesting to determine which graphs achieve k(�). At first glance one might think
that S(F ) ⊆ S(G) implies κ(F ) ≤ κ(G), but this is false. In particular, complete
graphs do not have minimum κ among graphs with the same number of edges. Yet,
determining their κ value seems an interesting problem. As we will see, the right
answer for what graphs achieve k(�) turns out to be stars, at least for � not too small.
Below we will study the value of κ for complete graphs, stars, and paths. In particular,
path graphs will take us back to the original puzzle about colliding permutations.

Proposition 2. For the complete graph Kn on n vertices

(n + 1)!

2
≤ κ(Kn).

Proof. Consider the set of even permutations of [n+1], and suppose V (Kn) = [n].
One can observe that these permutations are Kn-different. Indeed, if two arbitrary
permutations of [n + 1] are not Kn-different, then they differ only in positions in
which for some fixed i ∈ [n] one has n+ 1 and the other has i. Thus any of these two
permutations can be obtained from the other by exchanging the positions of n + 1
and the corresponding i. But then the two permutations have different parity, and in
particular they cannot both be even. In particular, the undesired relation does not
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occur between even permutations, and this gives us (n+1)!
2 permutations of [n+1] that

are Kn-different. Next extend each of these permutations to infinite ones by suffixing
the remaining natural numbers in an arbitrary order.

Proposition 3. For the graph of � independent edges we have

3� ≤ κ(�K2) ≤ 4�.

Proof. Notice that the graph �K2 has chromatic number two, and its number of
vertices is 2�, whence our upper bound follows by Lemma 1.

To prove the lower bound, let us denote the edge set of our graph by E(�K2) =
{{1, 2}, {3, 4}, . . . , {2�− 1, 2�}}. Consider the set of cyclic permutations C1 = {(12�),
(2�1), (�12)} and for every 1 < i ≤ � the sets Ci obtained from C1 by replacing
1 with 2i − 1 and 2 with 2i. It is clear that for every i ∈ [�] any two of the three
ministrings in Ci “differ” in the edge {2i−1, 2i} of our graph �K2, meaning that they
have somewhere in the same position the two different endpoints of this edge. But
this means that the 3� strings in their Cartesian product

C = ×�
i=1 Ci

are pairwise �K2-different as requested. Replacing the symbol � in our strings in an
arbitrary order with the different numbers from [3�]−[2�], we obtain 3� permutations of
[3�] that continue to be pairwise �K2-different. The extension to infinite permutations
is as always.

The only infinite class of graphs for which we are able to determine κ are the
stars, i.e., the complete bipartite graphs K1,r. We have the following result.

Proposition 4. For every r

κ(K1,r) = 2r + 1.

Proof. By Lemma 1 we know that κ(K1,r) < ∞. Let us denote its value by
m. Let us consider the vertices of K1,r to be the elements of [r + 1], and let 1 be
the “central” vertex of degree r. It is obvious that in a set of m sequences (infinite
permutations) achieving the maximum we are looking for, all the sequences must have
the central vertex 1 in a different position. Let us consider our m sequences as vertices
of a directed graph T in which (a, b) ∈ E(T ) if the sequence corresponding to a has
a j ∈ {2, . . . , r + 1} in the same position where the 1 of the sequence corresponding
to b is placed. Then, by definition, the directed graph T must contain a tournament,
implying that

|E(T )| ≥
(
m

2

)
.

On the other hand, every a ∈ V (T ) has at most r outgoing edges. This means that

|E(T )| ≤ mr.

Comparing the last two inequalities, we get

m ≤ 2r + 1.

To prove a matching lower bound, consider the following set of permutations of
[2r + 1]. For every i ∈ [2r + 1] let us define the coordinates of the ith sequence
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x1(i)x2(i) . . . x2r+1(i) by xi(i) = 1 and, in general, xi+j(i) = j + 1 for any 0 ≤ j ≤ r,
where all the coordinate indices are considered modulo 2r + 1. The remaining co-
ordinates are defined in an arbitrary manner so that the resulting sequences define
permutations of [2r + 1]. It is easily seen that this is a valid construction. In fact,
observe that for any of our sequences the “useful” symbols, those of [r + 1], cor-
responding to the vertices of the star graph, occupy r + 1 “cyclically” consecutive
coordinates, forming cyclic intervals. Since 2(r + 1) > 2r + 1, these intervals are
pairwise intersecting, and thus for any two of them there must be a coordinate in the
intersection for which the “left end” of one of the intervals is contained in the other.
The resulting permutations can be considered as prefixes of infinite permutations in
the usual obvious way.

Now we are ready to return to the problem of determining k(�), at least for large
enough �. The following easy lemma will be needed.

Lemma 2. If a finite graph F contains vertex disjoint subgraphs F1, . . . , Fs, then

κ(F ) ≥
s∏

i=1

κ(Fi).

Proof. The proof is a straightforward generalization of the construction given in
the proof of Proposition 3. Let Ĉi be a set of κ(Fi) infinite sequences that are obtained
from κ(Fi) pairwise Fi-different permutations of N by substituting all natural numbers
i /∈ V (Fi) by a �. As the sequences in Ĉi contain only a finite number of elements
different from �, we can take some finite initial segment of all these sequences that
already contains all elements of V (Fi). Let Ci be the set of these finite sequences.
Now consider the set

C := ×s
i=1 Ci

of finite sequences that each contain all vertices in
⋃s

i=1 V (Fi) exactly once and finitely
many �’s. These sequences are also pairwise Fi-different for some Fi, and thus they
are pairwise F -different. By construction, their number is

∏s
i=1 κ(Fi). Extending

them to infinite permutations of N, the statement is proved.
It is straightforward from the previous lemma that if F + G denotes the vertex

disjoint union of graphs F and G, then κ(F + G) ≥ κ(F )κ(G). We do not know any
example for strict inequality here. If equality was always true, that would immediately
imply Conjecture 2.

Now we use Lemma 2 to prove our main result on k(�).
Proposition 5. Let G be a natural graph with n := |S(G)| > 20 and |E(G)| = �.

Then

κ(G) ≥ 2� + 1.

The value of k(�) is achieved by the graph K1,� whenever � > 150.
Proof. Let G be a graph as in the statement, and let ν = ν(G) denote the size of

a largest matching in G.
First assume that ν ≥ n/4. Then by Proposition 3 and the obvious monotonicity

of κ we have

κ(G) ≥ κ(νK2) ≥ 3ν .

Since G is simple, we have � ≤
(
n
2

)
, and thus k(�) ≤ κ

(
K1,(n2)

)
= n(n− 1) + 1. So in

this case (when ν ≥ n/4) it is enough to prove that

3�n/4� ≥ n(n− 1) + 1
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holds. This is true if n > 20.
Next assume that 3 ≤ ν < n/4. Consider a largest matching of G consisting of

edges {u2i−1, u2i} with i = 1, . . . , ν. The set U := {u1, . . . , u2ν} covers all edges of G,
and thus � ≤

(
2ν
2

)
+ 2ν(n− 2ν). So we have

k(�) ≤ κ(K1,�) ≤ 2

[(
2ν

2

)
+ 2ν(n− 2ν)

]
+ 1

in this case. On the other hand, for each vertex a ∈ S(G) \ U there is an edge
{a, ui} for some i. We also know that if a and b are two distinct vertices in S(G) \U
and one of them is connected to u2j−1 (resp., u2j) for some j, then the other one
cannot be connected to u2j (resp., u2j−1), since otherwise replacing the matching edge
{u2j−1, u2j} with the other two edges of the path formed by the vertices a, u2j−1, u2j , b
would result in a larger matching, a contradiction. Choosing an edge for each a ∈
S(G)\U that connects it to a vertex in U , we can form vertex disjoint star subgraphs
K1,�1 , . . . ,K1,�ν of G, where �i ≥ 1 for all i and

∑ν
i=1 �i = n− ν. Then by Lemma 2

and Proposition 4 we have κ(G) ≥
∏ν

i=1(2�i + 1). The latter product is minimal
(with respect to the conditions on the �i’s) if one �i, say �1, equals to n− 2ν + 1 and
�2 = · · · = �ν = 1. Thus it is enough to prove that

3ν−1(2(n− 2ν + 1) + 1) > 2

[(
2ν

2

)
+ 2ν(n− 2ν)

]
+ 1,

as the left-hand side is a lower bound on κ(G), while the right-hand side is an upper
bound on k(�). The latter inequality would be implied by

3ν−1(n− 2ν + 1) >

(
2ν

2

)
+ 2ν(n− 2ν) = ν(2n− 2ν − 1),

which, in turn, is equivalent to

3ν−1

ν
>

2n− 2ν − 1

n− 2ν + 1
.

The left-hand side of this last inequality is at least 3 if ν ≥ 3, while the right-hand
side is strictly less than 3 for ν ≤ n/4.

The only case not yet covered is that of ν < 3. For ν = 1 there is nothing to
prove, since then G itself is a star. If ν = 2, then let a largest matching be formed
by the two edges {u1, u2} and {u3, u4}, while once again let U denote the union of
their vertices. Let a1, . . . , an−4 be the rest of the nonisolated vertices of G, and note
that n − 4 > 16. Assume that some ai is connected to both u1 and u2, yielding a
triangle. Then no aj , j �= i, can be connected to either of u1 or u2; otherwise we
could form a larger matching. For similar reasons, if any aj is connected to u3, then
no as, s �= j, can be connected to u4. (If some ai forms a triangle with u1, u2 and
some aj with u3 and u4, then the remaining vertices as must be isolated, implying
n ≤ 6, a contradiction.) Thus if ai is connected to both u1 and u2, then the rest of the
aj ’s form a star centered at either u3 or u4. Thus in this case, using again Lemma 2,
Propositions 2 and 4 imply κ(G) ≥ 12[2(n − 4) + 1] = 24n − 84. The foregoing also
implies � ≤ n + 4, thus k(�) ≤ 2n + 9 < 24n − 84, whenever n ≥ 5. Clearly, the
situation is similar if we exchange the role of the two matching edges.

Assuming that no triangle is formed, we can again attach each vertex in S(G)\U
to one of the edges {u1, u2} and {u3, u4}, whichever it is connected to. Two ver-
tex disjoint stars can be formed this way, establishing the lower bound κ(G) ≥
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3(2(n−3)+1) = 6n−15. For the number of edges we now get � ≤ 6+2(n−4) = 2n−2
since the graph induces at most 6 edges on U . Thus we have k(�) ≤ 4n− 3, which is
less then 6n− 15 if n > 6. This completes the proof of the first statement.

If a simple graph has at most 20 vertices, then its number of edges is at most 190,
so the second statement immediately follows from the first one if � > 190. If the
graph contains a K6 subgraph, then by Proposition 2 we have κ(G) ≥ 7!/2 > 381 =
κ(K1,190) ≥ k(�) if � ≤ 190. Thus we may assume K6 � G, and this implies by
Turán’s theorem that � ≤ 160 if n ≤ 20. But κ(K1,160) = 321 ≤ 6!/2, so if the
conclusion is not true, we may also assume that G has no K5 subgraph. Applying
Turán’s theorem again, this gives � ≤ 150 for n ≤ 20. Thus the statement is true
whenever � > 150.

Remark 1. We believe that the statement of Proposition 5 holds without any
restriction on n or �. Some improvement on our threshold on � is easy to obtain.
It seems to us, however, that proving the statement in full generality either leads to
tedious case checkings or needs some new ideas.

The problem of determining κ seems interesting in itself; moreover, it helps to
obtain better bounds for the original question on colliding permutations. To explain
this, we introduce a notion connecting the two questions. Let κ(G,n) be the maximum
number of pairwise G-different permutations of [n]. Clearly,

(5) κ(G) = sup
n

κ(G,n).

Notice that by the finiteness of κ(G) the supremum above is always attained, so we
could write maximum instead. Further, for the graph Pr, the path on r vertices, we
have the following.

Lemma 3. For every n > m > r the function ρ satisfies the recursion

ρ(n) ≥ κ(Pr,m)ρ(n− r).

Proof. We will call two arbitrary sequences of integers colliding if they have the
same length and if somewhere in the same position they feature integers differing by 1.
By the definition of κ(Pr,m) we can construct this many sequences of length m such
that in each of them every vertex of Pr appears exactly once, the other positions are
occupied by the “dummy” symbol �, and moreover these sequences are pairwise Pr-
different. The latter implies that these sequences are pairwise colliding. Furthermore,
we have, also by definition, ρ(n−r) permutations of [n−r] that are pairwise colliding.
Let us “shift” these permutations by adding r to all of their coordinates. The new
set of permutations of the set r + [n− r] = [r + 1, n] maintains the property that its
elements are pairwise colliding. Next we execute our basic operation of “substituting”
the permutations of the second set into those coordinates of any sequence x from
the first set where the sequence x has a star. More precisely, consider any sequence
x = x1x2 . . . xm from our first set, and let S(x) ∈

(
[m]
m−r

)
be the set of those coordinates

which are occupied by stars. Let further y = y1y2 . . . yn−r be an arbitrary sequence
from our second set, i.e., a permutation of [r + 1, n]. The sequence z = y → x is
a sequence of length n in which the first m coordinates are defined in the following
manner. We have the equality zi = xi, if i ≤ m and i /∈ S(x). Suppose further that
S(x) = {j1, j2, . . . , jm−r}. In the jkth position we replace the symbol � by yk. (For
i > m we set zi = yi−r.) Clearly, the resulting sequence is a permutation of [n].
Further, the so obtained κ(Pr,m)ρ(n− r) permutations are pairwise colliding.

Observe next the following equality.
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Lemma 4.

κ(P4, 5) = 10.

Remark 2. The existence of 10 permutations of {1, . . . , 5} with the requested
properties is implicit in [1] since the construction of the 35 colliding permutations of
{1, . . . , 7} in that paper does contain such a set in some appropriate projection of its
coordinates.

Proof. Let us consider the 10 permutations of {1, . . . , 5} obtainable by considering
the cyclic configurations of (1, 2), (4, 3) and the single element 5. We indeed have
10 different permutations by “cutting” in all the five possible ways both of the two
cyclic configurations that three building blocks can define. (So these are 12435, 24351,
43512, 35124, 51243 and similarly the five cyclic shifts of the sequence 43125.) Let
us further consider the graph P4 (or, in fact, P4 + K1) with vertex set {1, . . . , 5}
and with edge set {{1, 2}, {2, 3}, {3, 4}}. In other words, consecutive numbers are
adjacent vertices, but 5 is isolated. It is easy to check that the 10 sequences above
are P4-different for the natural graph we defined.

To see that 10 is an upper bound it is enough to observe that the two even elements
of {1, . . . , 5} cannot be placed in the same two positions in two permutations belonging
to a set of P4-different permutations of {1, . . . , 5}.

The above construction gives the following improved lower bound for the expo-
nential asymptotics of ρ(n).

Proposition 6.

lim
n→∞

ρ
1
n (n) ≥ 10

1
4 .

Proof. A simple combination of our two preceding lemmas implies

ρ(n) ≥ 10ρ(n− 4).

An iterated application of this inequality gives the desired result.
To close this section, let us take another look at Lemma 4. We believe that, in

fact, κ(P4) = κ(P4, 5) = 10 and more generally,

κ(Pv) = κ(Pv, v + 1) =

(
v + 1⌊
v+1
2

⌋
)

for even values of v. The original conjecture (see Conjecture 1) for ρ(v) would be an
immediate consequence of this conjecture. To see this, suppose first that v is even.
Then ρ(v + 1) = κ(Pv+1, v + 1) ≥ κ(Pv, v + 1), and this would imply Conjecture 1 for
odd values of n right away. Now, since for even n

ρ(n) = κ(Pn, n) ≥ 2κ(Pn−2, n− 1)

and likewise,

(
n
n
2

)
= 2

(
n− 1⌊
n−1

2

⌋
)
,

the last two relations would lead us to settle the conjecture for n even. (The inequality
above follows by putting an n to the end of each sequence in an optimal construction
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for κ(Pn−2, n − 1) and then doubling each sequence by considering also its variant,
which one obtains by exchanging in it n− 1 and n.)

We also believe that

K(v, v − 1) = κ(Pv).

As a combination of the two conjectures above we would arrive at the next statement.
Conjecture 3. For every even v ∈ N

K(v, v − 1) =

(
v + 1⌊
v+1
2

⌋
)
.

3. Related problems.

3.1. A graph covering problem. We show that determining K(�) is equivalent
to a graph covering problem introduced below. The following standard definition is
needed.

Definition 1. The (undirected) line graph L(D) of the directed graph D = (V,A)
is defined by

V (L(D)) = A,

E(L(D)) = {{(a, b), (c, d)} : b = c or a = d}.

Let L denote the family of all finite simple graphs that are isomorphic to the line
graph of some directed graph with possibly multiple edges.

Let the minimum number of graphs in L, the edge sets of which together can
cover the edges of the complete graph Kn, be denoted by h(n).

Proposition 7. For any M ∈ N, the minimum number � for which K(�) ≥ M
is equal to h(M).

Proof. Consider a construction attaining K(�), that is, a graph G with � edges
and K(�) infinite permutations that are G-different. Let this set of permutations be
denoted by W , and let {a, b} be one of the edges of G. Define a graph Ta−b on W
as its vertex set where an edge is put between two permutations if and only if there
is a position where one of them has a while the other has b. In other words, the
two permutations are G-different by the edge {a, b}. Consider the graphs Ta−b for
all edges of G. These all have the same vertex set, while the union of their edge sets
clearly covers the complete graph KM , where M = K(�).

Next we show that all the graphs Ta−b belong to L. To this end fix an edge
{a, b} ∈ V (G) and consider a graph Da−b with its vertex set V (Da−b) consisting of
those positions where any of the permutations in W have a nonisolated vertex of G.
Since G and W are finite, so is V (Da−b). For each element of W we define an edge
of Da−b. For σ ∈ W , let i and j be the two positions where σ contains a and b,
respectively. Then let σ be represented by the directed edge (i, j) in Da−b. (If there
is another permutation in W with a and b being in the same positions as in σ, then we
have another arc (i, j) in Da−b for this other permutation. Thus Da−b is a directed
multigraph.) Now it follows directly from the definitions that Ta−b = L(Da−b), and
thus Ta−b is indeed the line graph of a digraph. Together with the previous paragraph
this proves h(K(�)) ≤ �.

For the reverse inequality consider a covering of KM with h(M) graphs belonging
to L. Let the line graphs in this covering be L1, . . . , Lh(M). We may assume that
V (Li) = [M ] for all i by extending the smaller vertex sets through the addition of
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isolated points. Let D1, . . . , Dh(M) be directed graphs satisfying Li = L(Di) for all
i. By E(Di) = V (Li) = [M ] we can consider the edges of all Di’s labeled by |E(Di)|
elements of 1, . . . ,M . (If Li had some isolated vertices, then the corresponding labels
are not used.) Using these digraphs, we define M permutations σ1, . . . , σM that are
G-different for the graph G = �K2 with � = h(M). For all i define ti = |V (Di)| and
identify V (Di) with [ti]. Consider D1. If D1 has an edge labeled r and this edge is
(i, j), then put a 1 in position i of σr and put a 2 in position j of σr. Do similarly for
all edges of D1. Then consider D2. If it has an edge labeled r which is (i′, j′), then
put a 3 in position t1 + i′ of σr and put a 4 in position t1 + j′ of σr. In general, if Ds

has an edge labeled r which is (a, b), then put a 2s− 1 in position (
∑s−1

k=1 tk) + a and

a 2s in position (
∑s−1

k=1 tk) + b of σr. When this is done for all edges of all Di’s, then
extend the obtained partial sequences to infinite permutations of N in an arbitrary
manner. This way one obtains M permutations that are pairwise G-different. To see
this consider two of these permutations, say, σq and σr. Look at the edge {q, r} of
our graph KM that was covered by line graphs. Let Li be the line graph that covered
the edge {q, r}. Then Di has an edge labeled q and another one labeled r in such a
way that the head of the one is the tail of the other. This common point of these two
edges defines a position of σq and σr where one of them has 2i − 1 while the other
has 2i, making them G-different.

3.2. Fixed suborders. Here we consider a variant of the problem of the deter-
mination of κ(G). We restrict attention to complete graphs.

Let κid(Kn) denote the maximum number of infinite permutations of N that are
Kn-different and contain the first n positive integers (the vertices of Kn) in their
natural order.

Proposition 8. For every n ∈ N

κid(Kn) ≥ Cn

holds, where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number.

Proof. For n = 1, 2 we have equality: κid(K1) = 1, κid(K2) = 2. Set a0 = 1 and
an := κid(Kn). It is enough to prove that the numbers an satisfy the inequality

an+1 ≥
n∑

i=0

aian−i

that has the well-known recursion of Catalan numbers on its right-hand side (cf. [4]).
We will look at our infinite permutations as infinite sequences consisting of infinitely
many �’s and one of each of the symbols 1, 2, . . . , n, where the �’s refer to all other
symbols. Clearly, only the positions of the elements of [n] are relevant with respect
to the Kn-difference relation. Thus we will define the positions of the elements of [n]
and then let the �’s be substituted by the other numbers in any way that will result
in infinite permutations of N.

Our construction is inductive. Assume that we already know that ak ≥ Ck holds
for k ≤ n and thus it suffices to prove it for n+ 1. Fix a position of our permutations
which is “far away,” meaning that it is far enough for having enough earlier positions
for the following construction. Call this position j. For each i = 0, . . . , n we construct
aian−i sequences having i + 1 at their position j. Any two of these sequences that
have a different symbol at position j are Kn-different. For those sequences that have
i + 1 at their position j do the following. Consider a construction of ai pairwise Ki-
different sequences consisting of symbols 1, . . . , i, �, where the symbols in [i] are all
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used somewhere in the first j−1 positions (this is possible if j is chosen large enough).
Take the first j − 1 coordinates of all these sequences, an−i times each, and continue
each of them with an i+1 at the jth position. So we have aian−i sequences of length
j with i + 1 at the jth position, each of these sequences are one of ai possible types,
and we have an−i copies from each type.

Now consider an−i sequences with the symbols 1, . . . , n − i, � that are pairwise
Kn−i-different, and shift each value in these sequences by i + 1. (The latter means
that we change each value k to k + i+ 1 in these sequences while �’s remain �’s.) For
each type of the previous sequences take its an−i copies and suffix to each of them
one of the current an−i different sequences. This way one gets aian−i Kn+1-different
sequences with symbol i+ 1 at position j. Doing this for all i = 1, . . . , n, one obtains∑n

i=0 aian−i Kn+1-different sequences, proving the desired inequality.

Note added in proof. We learned from Graham Brightwell and Marianne
Fairthorne that they have improved upon our lower bound in Proposition 6 using a
similar approach and independently discovered some of the results (including Lemma
2 and Propositions 2 and 4) presented here.
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