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Abstract. We present some partial results concerning two conjectures of Schützenberger on evacua-

tions of Young tableaux.

1 Introduction

In [8] M.-P. Schützenberger defined a construction on Young tableaux, the so-called

evacuation of a tableau, which associates to any Young tableau T a new one, namely

ev(T), by means of successive applications of slides of cells, (see also [2, 9, 11]).

This algorithm has remarkable properties in relation to the Robinson–Schensted–

Knuth correspondence (see [10]). In this paper we consider two conjectures made by

Schützenberger, one of which was left unpublished.

Conjecture 1 ([10]) Let T and T ′ be two Young tableaux that differ only by a trans-

position of consecutive integers. Then the evacuations of T and T ′ will differ by a cycle

of even length.

Conjecture 2 Let T and T ′ be two Young tableaux of rectangular shape that differ

only by a transposition of consecutive integers. Then if we iterate the full promotion k

times, the corresponding tableaux will differ by a hook cycle for any k.

After presenting some basic terminology and notation, we present a counterex-

ample to Conjecture 2 as stated. A plausible alternative is suggested (Conjecture 3).

We offer some counterexamples to various possible strengthenings of Conjecture 1.

We then prove that Conjecture 1 holds in various special cases. In Theorem 3.1, we

prove that it holds in the case of rectangular tableaux; in Theorem 3.2 we prove that if

the evacuations differ by a cycle, then it must be of even length, and in Corollary 3.5

we verify the conjecture when the transposition exchanges “small” integers. We shall

also prove that the conjecture holds when the transposition is (n − 1 n), a result

already known to Foata [1], but we present a simpler and more explicit proof (The-

orem 3.9). Furthermore we prove that the evacuations actually differ by a hook cycle
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in this case. Finally, we show that after one full promotion of tableaux that differ by

a transposition of consecutive integers, the resulting tableaux differ by a hook cycle

(Theorem 4.1).

2 Preliminaries

We refer the reader to Sagan’s monograph [7] for all basic facts concerning tableaux.

As usual Sn shall denote the symmetric group on [n] = {1, . . . , n}.

A partition λ of k parts of a positive integer n is a decreasing sequence λ =

(λ1, . . . , λk) of positive integers such that
∑k

i=1 λi = n. To say that λ is a parti-

tion of n we will use one of the following notations: |λ| = n or λ ⊢ n . The Ferrers

diagram or shape of a partition λ is an array of n cells (or boxes) into k left justified

rows, where row i contains λi boxes. More precisely, the diagram is the subset of

N × N defined by

diag(λ) := {(i, j) ∈ N × N : 1 ≤ i ≤ k, 1 ≤ j ≤ λi}.

A standard Young tableau of shape λ is a filling of the Ferrers diagram of λ with entries

in [n] in such a way that the entries are strictly increasing from left to right on the

rows and from bottom up on the columns.

In what follows we will deal exclusively with standard Young tableaux, and hence

tableau will always be understood to mean standard Young tableau. Let T be a tableau

with n entries. We define the trace of T, denoted by tr(T), as the following sequence

of cells: start from the cell containing 1 and choose the neighboring cell containing

the smallest value as the next cell. For each 1 ≤ k ≤ n we define the promotion ∂k

as the following operation, a map which sends the tableaux T of shape λ to another

tableau of the same shape.

(i) Delete 1 from T.

(ii) For every element less than or equal to k in tr(T), slide the value onto the pre-

ceding cell in the trace.

(iii) Subtract 1 from every element in the tableau less than or equal to k.

(iv) Place k in the empty cell created by sliding the trace.

For a tableau of size n, we call ∂n(T) the full promotion of T. We define the evacuation

of a tableau T as ∂1∂2 . . . ∂n−1∂n(T) and denote it by ev(T).

We shall also use the following notation. If T is a tableau of size n and σ is a

permutation in Sn, then σT shall denote the tableau obtained from T by replacing

each entry j by σ( j). If S = σT we say that tableaux S and T differ by σ. We shall

also use the following operators on Young tableaux, introduced by Haiman in [3]:

for every 1 ≤ i ≤ n − 1, let si denote the transposition (i i + 1) and define

ri(T) =

{

siT, if siT is a standard Young tableau;

T, otherwise.

For example,

T =

6
4 5
1 2 3

, r5T =

5
4 6
1 2 3

, r2T =

6
4 5
1 2 3

.
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The following result is from [3] and [5].

Lemma 2.1 Let T be a tableau of size n. For any 1 ≤ k ≤ n we have ∂k(T) =

rk−1 · · · r2r1(T).

A permutation is a hook cycle if, in cycle notation, it is of the form (a1a2 · · · at ),

with a1 < a2 < · · · < a j > a j+1 > · · · > at for some j ≤ t , where a1 is the smallest

element of the cycle.

We shall also require some results of Knuth and Schützenberger; the reader can

refer to [7] for the proofs that are omitted here.

The Robinson–Schensted–Knuth (RSK) correspondence establishes a bijection

between pairs (P, Q) of standard Young tableaux of the same shape and of size n and

the permutations of Sn. Given a permutation π, we denote the associated tableaux

P(π) and Q(π) respectively; P is called the insertion tableau, and Q is the recording

tableau.

It will often be convenient to use the two-line notation for permutations:

π =

(

1 2 · · · n

b1 b2 · · · bn

)

denotes the permutation that satisfies π(i) = bi for all 1 ≤ i ≤ n.

We define the row word of a tableau, word(T), to be the permutation obtained

from reading the entries of the tableau from left to right, starting from the top row,

and inserting these entries in the second line of the two-line notation of π. We ob-

serve that P(word(T)) = T.

For example, if

T =

10
6 8 11
3 4 7
1 2 5 9

,

then

word(T) =

(

1 2 3 4 5 6 7 8 9 10 11

10 6 8 11 3 4 7 1 2 5 9

)

.

Lemma 2.2 If π ∈ Sn, then P(π−1) = Q(π) and Q(π−1) = P(π).

If π =

(

1 ··· n
x1 ··· xn

)

, we define the reversal of π by πr
=

(

1 ··· n
xn ··· x1

)

and call w0 =

(

1 ... n
n ... 1

)

the longest permutation (reversal of the identity permutation). The trans-

pose of a tableau T, denoted by Tt , is the tableau satisfying the following: its value in

cell ( j, i) is the value of T at cell (i, j).

Lemma 2.3 If π ∈ Sn, then P(πr) = P(π)t and Q(πr) = ev(Q(π))t .

From these results it follows that for any π we have

(2.1) ev(P(π)) = P((((π−1)r)−1)r).

As it is easy to go from a tableau T to its row word π and then to calculate σ =

(((π−1)r)−1)r, we only have to produce P(σ) to obtain the evacuated tableau. We

use Knuth’s algorithm, as presented in [4] to do so (see Section 5.1.4 “Algorithm S”).

First, we build a table using the following rules:
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(i) If σ =

(

1 ··· n
x1 ··· xn

)

, then line 1 consists of the entries from x1 to xn.

(ii) For k ≥ 1, the line k + 1 is created from line k in the following fashion.

(a) Let p ← ∞.

(b) Let the column j be the leftmost column such that the line k contains an

integer strictly less than p and the line k + 1 is empty. If this column does

not exist, and if p = ∞, the line k + 1 is complete; if it does not exist and

p < ∞, return to step (a).

(c) Insert p in column j, line k + 1; let p have the value found on column j of

line k and return to step (b).

To construct P(σ) from this table, it suffices to let the elements of row k of P(σ)

be those present in line k of the table but not in line k + 1.

3 Results

3.1 Rectangular Tableaux

We now proceed to prove Conjecture 1 in the case where the tableaux have rectangu-

lar shape.

Theorem 3.1 Let T and T ′ be two Young tableaux of rectangular shape differing

only by the transposition (i i + 1). Then ev(T) and ev(T ′) differ by the transposi-

tion (n − i n + 1 − i).

Proof Let T = ai, j , 1 ≤ i ≤ l, 1 ≤ j ≤ m, n = l · m. Then

word(T) =

(

1 · · · m m + 1 · · · n − m + 1 · · · n

al,1 · · · al,m al−1,1 · · · a1,1 · · · a1,m

)

so

((word(T)−1)r)−1
=

(

1 . . . m m + 1 · · · n

n + 1 − al,1 · · · n + 1 − al,m n + 1 − al−1,1 · · · n + 1 − a1,m

)

.

During the construction of ev(T)t using Knuth’s algorithm, when creating the

table’s second line, we observe that since T is a standard Young tableau, we have for

all 1 ≤ i ≤ m that

n + 1 − ai,1 > · · · > n + 1 − ai, j > · · · > n + 1 − ai,m

and n + 1 − ai,m < n + 1 − ak, j for all 1 ≤ k ≤ i, 1 ≤ j ≤ m. Hence the first row

of ev(T)t will have as entries {n + 1 − ai,m}, for 1 ≤ i ≤ l. Since these entries do

not appear on the table’s second line, it is easy to see that the second row of ev(T)t

will contain the entries {n + 1 − ai,m−1}, 1 ≤ i ≤ l, since for all 1 ≤ i ≤ m − 1

we have n + 1 − ai,1 < · · · < n + 1 − ai,m−1 and n + 1 − ai,m−1 < n + 1 − ak, j for

all 1 ≤ k ≤ i, 1 ≤ j ≤ m − 1. In general, row k of ev(T)t will contain the entries

{n + 1 − ai,m+1−k}, 1 ≤ i ≤ l.
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We therefore have ev(T)t
= n + 1 − al+1−i,m+1− j .

It is now clear that if T and T ′ are two standard Young tableaux of rectangular

shape differing only by the transposition (i i + 1), their evacuated tableaux will

differ by the transposition (n − i n + 1 − i).

3.2 Cycles of Even Length

We now show that if two tableaux T and T ′ differ by a transposition of consecutive

integers, and ev(T) and ev(T ′) differ by a cycle, then this cycle must be of even length.

We say that a pair of entries (i, j) of a tableau T is an inversion if i < j and i lies on

a row strictly below the row of j in the tableau; let inv(T) denote the number of

inversions in T. We define the sign of a tableau T as follows: sign(T) = (−1)inv(T).

Theorem 3.2 Let T and T ′ be two standard Young tableaux that differ by a transpo-

sition of consecutive integers. If ev(T) and ev(T ′) differ by a cycle, then this cycle is of

even length.

Proof Let T and T ′ be two tableaux differing by a transposition of consecutive inte-

gers. Let π be the permutation whose insertion and recording tableaux are T and T ′

respectively, so that P = P(π) = T and Q = Q(π) = T ′.

Then by Lemmas 2.2 and 2.3 and equation (2.1) we have that the permutation

(((π−1)r)−1)r has ev(P) and ev(Q) as insertion and recording tableaux respectively.

It is easy to see that

(((π−1)r)−1)r
=

(

1 · · · n − 1 n

n + 1 − π(n) · · · n + 1 − π(2) n + 1 − π(1)

)

or equivalently (((π−1)r)−1)r
= w0πw0 where

w0 =

(

1 · · · n − 1 n

n · · · 2 1

)

.

In [6, Theorem 4.3], it is shown that for any permutation π with associated

tableaux P and Q we have that

(3.1) sign(π) = sign(P) ∗ sign(Q) ∗ (−1)e

where e is the total length of all even-indexed rows of P (or Q). Since P, Q, ev(P), and

ev(Q) all have the same shape and multiplying π on both sides by w0 does not change

the parity, we obtain from equation (3.1) applied to π and (((π−1)r)−1)r that

sign(P) ∗ sign(Q) = sign(π) ∗ (−1)e

= sign(w0πw0) ∗ (−1)e

= sign(ev(P)) ∗ sign(ev(Q)).

By hypothesis, the difference in the number of inversions in P = T and Q = T ′ is

odd. It follows that the same must hold for ev(P) and ev(Q), hence the two evacuated

tableaux differ by the product of an odd number of transpositions.
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3.3 Special Transpositions

We now prove Conjecture 1 for specific transpositions.

Let α and β be permutations in Sn. We say that α and β differ by a Knuth relation

if for some i there exist x, y, z with x < y < z such that we have one of the following

two cases:

α =

(

· · · i i + 1 i + 2 · · ·
· · · y x z · · ·

)

and β =

(

· · · i i + 1 i + 2 · · ·
· · · y z x · · ·

)

or

α =

(

· · · i i + 1 i + 2 · · ·
· · · x z y · · ·

)

and β =

(

· · · i i + 1 i + 2 · · ·
· · · z x y · · ·

)

It is immediate to verify that α−1 and β−1 differ by a Knuth relation if and only

if, for some x < y < z there exists some k such that one of the two following cases

occurs:

α =

(

· · · x · · · y · · · z · · ·
· · · k + 2 · · · k · · · k + 1 · · ·

)

and

β =

(

· · · x · · · y · · · z · · ·
· · · k + 1 · · · k · · · k + 2 · · ·

)

or

α =

(

· · · x · · · y · · · z · · ·
· · · k · · · k + 2 · · · k + 1 · · ·

)

and

β =

(

· · · x · · · y · · · z · · ·
· · · k + 1 · · · k + 2 · · · k · · ·

)

.

If this occurs we say that α and β differ by a dual Knuth relation.

The next lemma follows immediately from the proof of Lemma 4.1 in [6] and

Lemma 2.2.

Lemma 3.3 Let π and σ be two permutations differing by a dual Knuth relation. Then

P(σ) can be obtained from P(π) by exchanging two consecutive entries. More precisely,

if π and σ differ by a dual Knuth relation applied on the triple {i, i + 1, i + 2}, then P(π)

and P(σ) differ by the position of either i and i + 1 or i + 1 and i + 2.

We can now prove the following.

Lemma 3.4 Let T and T ′ be two tableaux whose row words differ by a dual Knuth

relation. Then ev(T) and ev(T ′) differ by a transposition of consecutive integers.

Proof Let α and β be the row words of T and T ′ respectively, and suppose that

they differ by a dual Knuth relation. Then it is clear that the permutations α ′
=

(((α−1)r)−1)r and β ′
= (((β−1)r)−1)r also differ by a dual Knuth relation. Since

we have P(α ′) = ev(T) and P(β ′) = ev(T ′) by equation (2.1), we are done by

Lemma 3.3.
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Corollary 3.5 Let T and T ′ be two Young tableaux differing only by the transposition

(2 3) or (3 4). Then ev(T) and ev(T ′) differ by a transposition of consecutive integers.

Proof It suffices to prove that if T and T ′ differ only by the transposition (2 3) or

(3 4) then they satisfy the conditions of Lemma 3.4. If the two tableaux differ by

(2 3), the only possible configuration when restricting to the entries 1, 2, 3 is

T =

3
1 2

and T ′
=

2
1 3

.

In this case

word(T) =

(

· · · x · · · y z · · ·
· · · 3 · · · 1 2 · · ·

)

and

word(T ′) =

(

· · · x · · · y z · · ·
· · · 2 · · · 1 3 · · ·

)

and therefore word(T) and word(T ′) differ by a dual Knuth relation.

Up to transposition, the only configuration for (3 4) where 3 and 4 can be swapped

is

T =

4
1 2 3

and T ′
=

3
1 2 4

.

Once again, word(T) and word(T ′) differ by a dual Knuth relation.

For our next results, we shall use the description given in Lemma 2.1 of ev(T) as a

sequence of successive promotions. We shall first need a few auxiliary lemmas. Given

a permutation α of the set [n], let Fix(α) := {i ∈ [n] : α(i) = i} be the subset

of [n] consisting of the points fixed by α. The support of α is the subset Supp(α) of

[n] complementary to the fixed points subset of α, that is Supp(α) := {i ∈ [n] :

α(i) 6= i}.

Lemma 3.6 Let k ≥ 1. Let S and T be two Young tableaux of size n of the same

shape λ, and suppose that S and T differ by a hook cycle permutation α with support

contained in {n − k + 1, . . . , n}. Then rn−kS and rn−kT differ by a hook cycle γ with

support contained in {n − k, . . . , n}.

Proof We want to compare rn−kS and rn−kT where S and T differ by α.

Case 1 If rn−k acts in the same way on both tableaux S and T, then we have two

subcases:

(i) If rn−k acts as the identity on both S and T, then γ = α, a hook cycle;

(ii) If rn−k = (n − k n − k + 1) acts as the adjacent transposition sn−k on both S

and T, then γ = (n − k n − k + 1) ◦ α ◦ (n − k n − k + 1) is the conjugate

of α by sn−k. Since n − k does not appear in α, we get γ = α when n − k + 1

does not appear in α (hence α is a hook cycle) or γ = α ′, where α ′ is the cycle

obtained by α by replacing n − k + 1 by n − k. Since n − k + 1 was the smallest

element of the hook cycle α, α ′ is also a hook cycle.
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Case 2 If rn−k does not act in the same way on both tableaux S and T, (i.e., acts on

one side as the identity, on the other tableau as sn−k), then n − k + 1 must appear in

α, and γ = (n − k n − k + 1) ◦ α or γ = α ◦ (n − k n − k + 1). Either way, γ is a

cycle obtained from α by inserting n − k next to n − k + 1 (on one side or the other).

Since n − k + 1 was the smallest element in α, γ is still a hook cycle.

Lemma 3.7 Let j ≥ 1. Let S and T be two Young tableaux of size n of the same shape

λ, and suppose that S and T differ by a hook cycle permutation α with support contained

in {1, . . . , j}. Then r jS and r jT differ by a hook cycle γ with support contained in

{1, . . . , j + 1}.

Proof The proof is completely analogous to the proof of Lemma 3.6.

Lemma 3.8 Suppose that in a tableau T the entries i and i + 1 are neither in the same

row nor in the same column (i.e., ri(T) = si(T)). Then one of the following holds:

(a) ri−1riri−1(T) = riri−1ri(T).

(b) ri−1riri−1(T) = ri(T) and riri−1ri(T) = id(T).

Proof The proof consists of a simple case-by-case analysis of the relative positions

of entries i − 1, i and i + 1. It is easy to see that, up to transposes of tableaux and

reordering of the three values, there are only 4 cases to consider:

(i) All three entries are in different rows and columns. It is then obvious that case (a)

holds.

(ii) i − 1 and i are in the same row; i − 1 and i + 1 are in the same column. It is easy

to see that this is case (b).

(iii) i − 1 and i are in the same row; i − 1 and i + 1 are not in the same column. An

easy computation shows that this is case (a).

(iv) i − 1 and i + 1 are in the same row, and i is not in the same column as i − 1 or

i + 1. Once again a simple computation shows that (a) holds.

Theorem 3.9 Let S and T be two Young tableaux differing by sn−1 = (n − 1 n).

Then ev(S) and ev(T) differ by a hook cycle of even length.

Proof By Theorem 3.2 it suffices to prove the evacuated tableaux differ by a hook

cycle. Let (S, T) be a pair of Young tableaux which constitute a counterexample of

minimal size, that is, |S| = |T| = n is minimal among all pairs of tableaux which

are counterexamples of the statement. Apply the first promotion ∂n to S and T. By

Lemma 2.1 and since ri and r j commute when |i − j| 6= 1, we have that

∂n(S) = ∂n(rn−1(T)) = rn−1 · · · r1(rn−1(T)) = rn−1rn−2rn−1rn−3 · · · r1(T).

Applying Lemma 3.8 to tableau W = rn−3 · · · r1(T), only two cases occur.

Case 1 We have that rn−1rn−2rn−1 = rn−2rn−1rn−2 and thus ∂n(rn−1(T)) =

rn−2∂n(T); in other words, the tableaux ∂n(S) and ∂n(T) differ only by the adjacent

transposition (n− 2 n− 1). This is impossible. Otherwise consider the tableaux S ′

and T ′ of size n − 1, obtained from ∂n(S) and ∂n(T) by removing the cell containing

n. They differ by (n − 2 n − 1), and the successive application of the promotions
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∂n−1, . . . , ∂1 will yield ev(S ′) and ev(T ′), which are exactly the tableaux obtained

from ev(S) and ev(T) by removing the cell containing n. Hence S ′ and T ′ would be a

counterexample of smaller size.

Case 2 Otherwise rn−2rn−1rn−2 = rn−1 and we obtain

rn−1∂n(T) = rn−1rn−2rn−2∂n(T) = rn−1rn−2rn−2rn−1rn−2W

= rn−1rn−2rn−1W = ∂n(S).

Hence the tableaux ∂n(S) and ∂n(T) differ only by the adjacent transposition

(n − 1 n). In this case, simply apply Lemma 3.6 to ∂n(S) and ∂n(T) with k = 2 and

α = (n − 1 n); then ∂n−1∂n(S) = rk−2 · · · r1∂n(S) and ∂n−1∂n(T) = rk−2 · · · r1∂n(T)

will differ by a hook cycle permutation with support contained in {n − 2, n − 1, n}.

Inductively, we can again apply the same lemma for the successive applications of

promotions, up to ev(S) and ev(T), thus proving the claim.

4 Some Counterexamples

4.1 Counterexamples to Conjecture 2

It turns out that Conjecture 2 is false, as the following counterexample shows.

If we take T to be the tableau below and T ′
=(8 9)T, after 4 full promotions, the

tableaux will differ by (5 6 9 8 10 7), which is not a hook cycle.

T =

7 10 13 16
4 9 12 15
3 5 8 14
1 2 6 11

and T ′
=

7 10 13 16
4 8 12 15
3 5 9 14
1 2 6 11

∂4
16T =

6 12 13 16
5 9 11 15
3 4 8 14
1 2 7 10

and ∂4
16T ′

=

9 12 13 16
6 8 11 15
3 4 10 14
1 2 5 7

However, we still cannot find a counterexample to the following weaker version of

Conjecture 2.

Conjecture 3 Let T and T ′ be two tableaux of rectangular shape which differ only by

a transposition of consecutive integers. Then if we iterate the full promotion k times, the

corresponding tableaux will differ by a cycle of even length, for any k.

4.2 A Result with Full Promotion and Hook Cycles

While Conjecture 2 is false, when applying the full promotion more than once to

rectangular shapes, we present here another partial result, this time valid for general

tableaux and for all transpositions of consecutive integers, but holding only for one

full promotion of the tableaux.
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Theorem 4.1 Let S and T differ by the adjacent transposition (i i + 1). Then ∂n(S)

and ∂n(T) will differ by a hook cycle permutation.

Proof First observe that, if we let U = ri−2 · · · r1(T), then

∂n(S) = ∂n(ri(T))

= rn−1 · · · r1(ri(T))

= rn−1 · · · riri−1ri(ri−2 · · · r1(T))

= rn−1 · · · riri−1ri(U )

and that

∂n(T) = rn−1 · · · r1(T) = rn−1 · · · riri−1(ri−2 · · · r1(T)) = rn−1 · · · riri−1(U ).

Clearly we may apply Lemma 3.8 to U .

(i) Suppose first that ri−1riri−1(U ) = riri−1ri(U ). Then we obtain (since ri−1 com-

mutes with r j for all j ≥ i + 1) that

∂n(S) = rn−1 · · · ri+1riri−1ri(U )

= rn−1 · · · ri+1ri−1riri−1(U )

= ri−1rn−1 · · · ri+1riri−1(U )

= ri−1∂n(T).

(ii) Otherwise we have that riri−1ri(U ) = id(U ) thus

∂n(S) = rn−1 · · · ri+1riri−1ri(U ) = rn−1 · · · ri+1(U )

and

∂n(T) = rn−1 · · · ri+1(riri−1(U ))

where obviously U and riri−1(U ) differ by a hook cycle with support in

{1, . . . , i +1}. Invoking Lemma 3.7 recursively, we obtain the desired result.

4.3 More about Conjecture 1

As far as Conjecture 1 is concerned, we have verified it by computer for tableaux

of all shapes up to size 15. Comparing both conjectures, it is tempting to try to

strengthen Conjecture 1 in various ways to obtain a more manageable problem, but

it turns out that all natural variants of the conjecture are false. First, we show that the

hypothesis that the original transposition exchanges consecutive integers is essential.

For instance, consider the following statement, which is a variation on Conjecture 1.

Let T and T ′ be two standard Young tableaux differing by a transposition of any

two integers (not necessarily consecutive). Then ev(T) and ev(T ′) will differ by a

cycle of even length.
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This is false. If T is the tableau below, and T ′
= (6 8)T, then their evacuations

will differ by the permutation (3 5)(4 6 7):

T =

9
6
4
3
2 7
1 5 8

and T ′
=

9
8
4
3
2 7
1 5 6

ev(T) =

9
8
7
5
2 6
1 3 4

and ev(T ′) =

9
8
4
3
2 7
1 5 6

.

Next variation: we might try to strengthen the conclusion to obtain a hook cycle:

Let T and T ′ be two tableaux which differ only by a transposition of consecutive

integers. Then the evacuations of T and T ′ will differ by a hook cycle.

This is false too. If we take T to be the tableau below and T ′
=(7 8)T, then their

evacuations differ by the permutation (5 7 10 8 9 6), which is not a hook cycle.

T =

10
6 8 11
3 4 7
1 2 5 9

and T ′
=

10
6 7
3 4 8
1 2 5 9

ev(T) =

7
5 10 11
3 4 8
1 2 6 9

and ev(T ′) =

10
7 8 11
3 4 9
1 2 5 6

.

A third variation: instead of hook cycles, we might ask that the tableaux differ by

a cycle of even length, but this after each successive promotion.

Let T and T ′ be two tableaux which differ only by a transposition of consecutive

integers. During their respective evacuations, the tableaux will differ by a cycle of

even length.

This in fact is still false even if we assume that the tableaux have rectangular shape.

If T is the tableau below and T ′ differs from T by (7 8), then after 7 promotions, the

resulting tableaux differ by a cycle of odd length:

T =

7 9 13 16
4 6 12 15
2 5 10 14
1 3 8 11

and T ′
=

8 9 13 16
4 6 12 15
2 5 10 14
1 3 7 11
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∂10∂11∂12∂13∂14∂15∂16T =

6 9 14 16
5 8 12 15
2 7 11 13
1 3 4 10

and ∂10∂11∂12∂13∂14∂15∂16T =

9 10 14 16
6 8 12 15
5 7 11 13
1 2 3 4

.

These differ by the cycle (2 5 6 9 10 4 3).

Another possible modification would be to ask that the tableaux differ by a hook

cycle after each successive promotion, instead of a cycle of even length.

Let T and T ′ be two tableaux of rectangular shape differing only by a transposi-

tion of consecutive integers. During their respective evacuations, the tableaux will

always differ by a hook cycle.

False again: if T is the tableau below, and T ′
= (7 8)T, then after 3 promotions

the resulting tableaux differ by the cycle (5 6 9 8 10 7):

T =

9 12 15 16
6 8 11 14
2 4 7 13
1 3 5 10

and T ′
=

9 12 15 16
6 7 11 14
2 4 8 13
1 3 5 10

∂14∂15∂16T =

6 12 14 16
5 9 11 15
3 4 8 13
1 2 7 10

and ∂14∂15∂16T =

9 12 14 16
6 8 11 15
3 4 10 13
1 2 5 7

.
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