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Abstract

We introduce a family of vertex-transitive graphs with specified subgroups of automorphisms
which generalise Kneser graphs, powers of complete graphs and Cayley graphs of permutations. We
compute the stability ratio for a wide class of these. Under certain conditions we characterise their
stable sets of maximal size.
© 2003 Elsevier Ltd. All rights reserved.

MSC (2000):05D05; 05C99

Keywords: Stable sets; Kneser graphs; Permutation graphs

1. Introduction

Consider the graphK m
n whose vertices are all tuples(x1, . . . , xm) with entries in

{1, 2, . . . , n} where two tuples are adjacent if they have no entry in common. In [9]
Greenwell and Lov´asz characterise the stable sets of maximal size in this graph: a set
of vertices is a maximal stable set if and only if it consists of all those tuples whosei th
entry is some fixed value 1≤ j ≤ n.

Let n, r be positive integers withn ≥ 2r . The Kneser graphK (r, n) is the graph whose
vertices are ther -element subsets of{1, 2, . . . , n}, two of them being adjacent if they are
disjoint. The Erd˝os–Ko–Rado Theorem [7] states that the stability ratio ofK (r, n) is r/n;
furthermore, it follows from the Hilton–Milner inequality [10] (see also [3] and [8] for
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simple proofs of this fact) that the stable sets of maximal size inK (r, n) are precisely
those families of sets that contain some fixed element.

One may restate this last result in a manner that underlines the resemblance with the
first example: indeed, one may viewr -subsets of{1, 2, . . . , n} (henceforth denoted by[n])
as n-tuples(x1, . . . , xn) with exactly r entries equal to 1 andn − r entries equal to 0,
two tuples being adjacent if they do not havea common entry equal to 1. Then a stable
set of maximal size consists of all tuples that have thei th coordinate equal to 1, for a
fixed i .

We introduce a class of graphs which generalise these two situations. The vertices
are tuples with a fixed distribution of occurrences of the symbols, and the adjacency
between two strings will indicate whether a symbol from a fixed subset of symbols
appears at different positions in the two strings. Let us rephrase this in a more precise
way.

Let b ≥ 1 be an integer (the number of symbols for the strings) and letd1 ≥
d2 ≥ · · · ≥ db ≥ 0 be integers (the distribution of the symbols), withn =∑

i di ≥ 1 (the length of the strings). Letm denote the largest indexi such that
di > 0. Let P be any subgroup of the symmetric groupSb, and let C be a non-
empty subset of[b] = {1, . . . , b}. We construct a graphG(P; C; d1, . . . , db) as follows:
its vertices are then-tuples (a1, . . . , an) ∈ [b]n such that there exists a permutation
σ ∈ P and a permutationτ ∈ Sn for which (a1, . . . , an) = (xτ (1), . . . , xτ (n)) where
(x1, . . . , xn) = (σ (1), . . . , σ (1), σ (2), . . . , σ (2), . . . , σ (m), . . . , σ (m)) andσ(i ) appears
exactly di times. Two such tuples(x1, . . . , xn) and (y1, . . . , yn) arenot adjacentif and
only if there exists a coordinatei suchthat xi = yi ∈ C (the two tuples coincide for a
symbol belonging toC).

Weshall keep the above notation and terminology throughout this paper. We also define
another useful parameter: given the graphG(P; C; d1, . . . , db) let

d = max{di : i ∈ C}.
The groupSn acts naturally on the graphG(P; C; d1, . . . , db) by permuting the entries

of the tuples. Furthermore it is easy to see that the correspondence

(x1, . . . , xn) �→ (σ (x1), . . . , σ (xn))

for eachσ ∈ P defines an action ofP on the graph as a group of automorphisms, provided
the permutations inP preserve the setC, i.e.σ(i ) ∈ C for all i ∈ C and allσ ∈ P. For
the remainder of the paper we shall assumethat this condition always holds.Assuming
this, one verifies atonce thatG(P; C; d1, . . . , db) is vertex-transitive, under the combined
actions ofSn andP.

Example 1. Let us choose the sequence ofdi to be3, 2, 2, 1, 0, 0 son = 8, b = 6 and
m = 4. Let P consist of the following group of permutations:

P = {id, (2 1), (3 4 5), (3 5 4), (2 1)(3 4 5), (2 1)(3 5 4)}.
Then the vertices of the graph are all possible permutations of the coordinates of the
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following tuples

(1, 1, 1, 2, 2, 3, 3, 4)

(2, 2, 2, 1, 1, 3, 3, 4)

(1, 1, 1, 2, 2, 4, 4, 5)

(1, 1, 1, 2, 2, 5, 5, 3)

(2, 2, 2, 1, 1, 4, 4, 5)

(2, 2, 2, 1, 1, 5, 5, 3).

Example 2. Let 1 ≤ r ≤ n be integers such that 2r ≤ n. ThenK (r, n), the Kneser graph
of r -subsets of[n], is isomorphic toG(P; C; d1, d2) whereb = 2, P is the trivial group,
C = {2}, d1 = n − r andd2 = r . The isomorphism is given by the correspondence which
sends everyr -subsetX of [n] to then-tuple(x1, . . . , xn) wherexi = 2 if i ∈ X andxi = 1
otherwise.

Example 3. Let di = 1 for everyi , hence n = b. Let P be the full symmetric group
andC = [b]. With this choice of parameters the vertices ofG(Sn; [n]; 1, 1, . . . , 1) are
the permutations of[n], two permutationsσ andτ being adjacent if there is no coordinate
i suchthat σ(i ) = τ (i ), i.e. στ−1 is a derangement. We will denote this graph simply
by G(Sn). Note that it is the Cayley graph of the groupSn with generating set the
derangements.

Example 4. Let G(Sb)
(n) denote the graphG(Sb; [b]; 1, 1, . . . , 1, 0, . . . , 0) where 1

appearsn times. The vertices of this graph are the injections of[n] into [b]; two of these
injectionsα andβ arenot adjacent ifα(i ) = β(i ) for some 1≤ i ≤ n.

LetO denote the orbit underP of any elementq ∈ C suchthatdq = d. We shallprove
the following inSection 3.

Theorem. The independence ratio of the graph G= G(P; C; d1, . . . , db) satisfies

α(G)

|G| ≥ 1

|O|
∑
i∈O

di

n
.

We shall prove that in various cases this bound is tight (Theorems 3.2and3.3). For
example ifP is trivial, as in the case of Kneser graphs, this ratio is equal tod/n; if P = Sb

the ratio is equal to 1/b, a result already obtained by Deza and Frankl [5] (see also [6]) in
the special case ofG(Sn).

We shall then be interested in the actual nature of the stable sets of maximal size of the
graphG(P; C; d1, . . . , db). Let 1 ≤ p ≤ n and 1≤ q ≤ b. Let I q

p denote the induced
subgraph ofG(P; C; d1, . . . , db) that consistsof all tuples(x1, . . . , xn) suchthatxp = q.
If q ∈ C this is an independent set. In fact (seeSection 3) it is of maximalsize precisely if
the above bound is tight.

Problem. For which parametersP, C, d1, . . . , db are all the stable sets of maximal size in
the graphG(P; C; d1, . . . , db) of the formI q

p?

We now outline the contents of the paper. In the next section we introduce the
terminology and basic results that we shall require in the sequel. InSection 3we prove
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the above-mentioned theorem. InSection 4we prove that the setsI q
p are indeed the only

stable sets of maximal size in the graphG(Sn) (Theorem 4.1).1 In Section 5we extend this
to the graphsG(Sb)

(n) (Theorem 5.1) and thenuse this to prove the following more general
result:

Theorem. Let b ≥ 5. If n/2 ≥ d1 and there are at least 3 non-zero di ’s, then the sets Iqp
are the only stable sets of maximal size in the graph G(Sb; C; d1, . . . , db).

Finally we conclude with some remarks on open questions and further results
(Section 6).

2. Preliminaries and terminology

In this paper all graphs are finite, undirected and without loops. We denote the vertex set
and the edge set of a graphG by V(G) andE(G) respectively. LetG be a graph. Recall
that a setI of vertices ofG is calledstable (or independent) if no two vertices in I are
adjacent. Thestability (independence) numberof G, denoted byα(G), is the maximum
cardinality of a stable set inG. The stability (independence) ratioof G is the ratio of
the stability number to the number of vertices. IfG and H are graphs, ahomomorphism
from G to H is an edge-preserving map fromV(G) to V(H ), i.e. a function f suchthat
{ f (g), f (g′)} ∈ E(H ) whenever{g, g′} ∈ E(G). A graphG is vertex-transitiveif the
automorphism group ofG acts transitively onV(G), i.e. for everyx andy in V(G) we can
find an automorphismf of G suchthat f (x) = y.

Forn ≥ 1 we shalldenote the complete graph onn vertices byKn.
One ofour main tools is the following result, often referred to as the ‘no-homomorphism

lemma’:

Lemma 2.1 ([2]).2 Let G and H be graphs such that H is vertex-transitive and there
exists ahomomorphismφ : G → H. Then

α(G)

|V(G)| ≥ α(H )

|V(H )| . (1)

Furthermore, if equality holds in(1), then for anystable set I of cardinalityα(H ) in H ,
φ−1(I ) is a stable set of cardinalityα(G) in G.

For 0 ≤ i , j ≤ n − 1, define the circular distance fromi to j , denoted by∂n(i , j ), as
the distance from the vertexi to the vertexj in the cycle of lengthn, that is the minimum
between the representative of(i − j ) modn and the representative of( j − 1) modn in
{0, 1, . . . , n − 1}.

Let r , s be positiveintegers such thatr < s/2. Thecircular graphCirc(r, s) is defined
as follows: its set of vertices isZs = {0, 1, . . . , s−1}, and two verticesu andv are adjacent
if ∂s(u, v) ≥ r . The neighborhood of a vertexu of Circ(r, s) is {u + r, . . . , u + s − r }.

1 At the moment of submitting this paper we learned that this was also obtained recently by Cameron and
Ku [4].

2 The second part of the lemma is not explicitly formulated in the paper by Albertson and Collins, but it is
implicit in the proof.
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The following result is from [13]:

Lemma 2.2. The stability ratio ofCirc(r, s) is r/s, and the only stable sets of maximal
size ofCirc(r, s) are the arcs

{k, k + 1, . . . , k + r − 1},
k ∈ V(Circ(r, s)).

3. The independence ratio of G(P ;C;d1, . . . , db)

Let q ∈ C be such thatdq ≥ di for all i ∈ C (i.e.dq = d) and letO denote the orbit of
q underP. We derive a bound for the stability ratio ofG:

Theorem 3.1. The independence ratio of the graph G= G(P; C; d1, . . . , db) satisfies

α(G)

|G| ≥ 1

|O|
∑
i∈O

di

n
.

Proof. Let I = I q
1 , the set of all tuples inG whose first coordinate is equal toq. Obviously

it is a stable set inG: we compute its cardinality. LetH denote the subgroup ofP that
consists of all permutationsσ that satisfy the conditiondi = dσ(i ) for all i ∈ [b]. For
everyσ ∈ P let Gσ denote the induced subgraph ofG whose vertices are then-tuples
(x1, . . . , xn) for which there existsτ ∈ Sn suchthat

(xτ (1), . . . , xτ (n)) = (σ (1), . . . , σ (1), σ (2), . . . , σ (2), . . . , σ (m), . . . , σ (m))

whereσ(i ) appears exactlydi times, 1 ≤ i ≤ m. The reader may easily verify the
following: the graphsGσ andGρ are either equal or disjoint, andGσ = Gρ if and only if
ρ−1σ ∈ H . In particular, a counting argument yields that for allσ ∈ P we have that

|G|
|Gσ | = |P|

|H | . (2)

We claim that

|I ∩ Gσ |
|Gσ | = dσ−1(q)

n
(3)

holds for allσ ∈ P. Indeed, the previous equality is obvious ifq /∈ {σ(1), . . . , σ (m)}.
Otherwise, letσ(i ) = q. A simple count yields that

|I ∩ Gσ |
|Gσ | =

(
n − 1

d1 d2 . . . di − 1 . . . db

)
(

n
d1 d2 . . . di . . . db

) = di

n
.

We count the elements inI : by using (3) and the fact that for eachσ there are exactly|H |
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permutationsρ suchthatGρ = Gσ , we getthat

|I | · |H | =
∑
σ∈P

dσ−1(q)

n
· |Gσ |. (4)

It is now easy to combine (2) and (4) to obtain

|I |
|G| = 1

|P|
∑
σ∈P

dσ−1(q)

n
(5)

whose right-hand term we may rewrite as

1

|P|
∑
σ∈P

dσ−1(q)

n
= 1

|P|
∑
i∈O

∑
σ(i )=q

di

n
= 1

|P|
∑
i∈O

|Stab(q)|di

n
= 1

|O|
∑
i∈O

di

n
. (6) �

Theorem 3.2. Let d ≤ n/2. If di = dj for all i , j ∈ O then the bound inTheorem3.1 is
tight, i.e. the independence ratio of the graph G= G(P; C; d1, . . . , db) is equal to

α(G)

|G| = d

n
.

In particular this holds when P is the trivial subgroup of Sb.

Proof. By Theorem 3.1we have that

α(G)

|G| ≥ 1

|O|
∑
i∈O

di

n
= d

n
.

Let L denote the following induced subgraph ofG: its vertices are the tuples(a1, . . . , an)

in V(G) that satisfy the following condition: there exists some 0≤ u ≤ n − 1 such that
ai+u = xi for all 1 ≤ i ≤ n, where

(x1, . . . , xn) = (1, . . . , 1, 2, . . . , 2, . . . , m, . . . , m)

is the tuple withd1 consecutive 1’s followed byd2 consecutive 2’s, and so on (sums are
understood modn, as usual). In other words,L consists of all cyclic permutations of the
tuple (x1, . . . , xn). In L, let Au denote the tuple(a1, . . . , an) suchthatai+u = xi for all
1 ≤ i ≤ n, where thexi are as above. It is easy to see that the mapu �→ Au from Circ(d, n)

to L is a graph isomorphism. It follows fromLemma 2.2that the stability ratio ofL is d/n.
Applying Lemma 2.1to the embeddingL ↪→ G we conclude that the stability ratio ofG
is at mostd/n. �
Theorem 3.3. If P = Sb, then the bound inTheorem3.1 is tight, i.e. the independence
ratio of the graph G= G(P; C; d1, . . . , db) is equal to

α(G)

|G| = 1

b
.

Proof. ClearlyO = [b] = C. It follows fromTheorem 3.1that

α(G)

|G| ≥ 1

|O|
∑
i∈O

di

n
= 1

b
.
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Consider the map from the complete graphKb to G defined by

i �→ (1 + i , . . . , 1 + i , 2 + i , . . . , 2 + i , . . . , m + i , . . . , m + i )

where it is understood thatj + i appears exactlydj times and sums are modulob. It is
clear that this is a graph homomorphism and hence it follows fromLemma 2.1that

1

b
= α(Kb)

|Kb| ≥ α(G)

|G| . �

4. The graph of permutations G(Sn)

The next theorem about the structure of stable sets in the graph of permutations appears
in the recent paper of Cameron and Ku [4]. However our proof is quite different: we shall
deduce it from a more general result on certain subgraphs ofG(Sn) (Theorem 4.2). In the
next section we shall then generalise this result in various ways, seeTheorems 5.1and5.7.

It will be convenient in what follows to denote the permutationτ that mapsai to bi for
1 ≤ i ≤ n by

τ =
(

a1 a2 a3 . . . an

b1 b2 b3 . . . bn

)
.

Whenai = i for all 1 ≤ i ≤ n, it will also be convenient todenote the permutationτ
simply with then-tuple(b1, . . . , bn).

Theorem 4.1. The sets Iqp are the only stable sets of maximal size in the graph G(Sn).

We shall deduceTheorem 4.1from the more generalTheorem 4.2. We extend our
definition to the following family of permutation graphs:

Definition. Let n ≥ 2. Let 1≤ r ≤ n, and let 1≤ b1, . . . , br ≤ n wherebi �= bj if i �= j .
Define thegraphG(Sn)(b1, . . . , br ) as the induced subgraph ofG(Sn) whose vertices are
those permutationsσ for which there exists a non-negative integeru, with 0 ≤ u ≤ n − 1,
suchthatσ(i + u) = bi for all 1 ≤ i ≤ r , where sums are understood modulon, that is the

permutations containing the pattern prescribed by
(

1 2 ... r
b1 b2 ... br

)
or by one of its shifts.

Example 5. G(S5)(3, 2, 1) consists of all permutations of the form

(3, 2, 1, x, y)

(y, 3, 2, 1, x)

(x, y, 3, 2, 1)

(1, x, y, 3, 2)

(2, 1, x, y, 3).

Notice also that ifr = 1 thenG(Sn)(b1) = G(Sn) for anyb1.

We shall prove the following:

Theorem 4.2. In G(Sn)(b1, . . . , br ) the stable sets of maximal size are of the form
I q
p ∩ G(Sn)(b1, . . . , br ).
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Lemma 4.3. Let 1 ≤ s ≤ r ≤ n and let1 ≤ j1 < · · · < js ≤ r . Then

(1) G(Sn)(bj1, . . . , bjs) ⊇ G(Sn)(b1, . . . , br );
(2) G(Sn)(b1, . . . , br ) contains a copy of Kn;
(3) G(Sn)(b1, . . . , br ) is vertex-transitive;
(4) the graphs G(Sn)(b1, . . . , br ) and G(Sn)(1, . . . , r ) are isomorphic, under an

isomorphism that preserves the stable sets of the form Iq
p ∩ G(Sn)(b1, . . . , br ).

Proof. The first assertion is clear. Let now consider the subgraphBu of the graph
G(Sn)(b1, . . . , br ) that consists of all permutationsσ for which σ(1 + u) = b1 (the five
tuples listed in thepreviousExample 5represent the subgraphsB0, . . . , B4 respectively).
Clearly the subgraphsBu’s partition G(Sn)(b1, . . . , br ). It is easy to see thatτ ∈ Bu+1 if
and only ifτγ ∈ Bu, whereγ is then-cycle(1 2 3 . . . n). In particular,G(Sn)(b1, . . . , br )

is closed under right translation byγ and hence contains at least one copy ofKn. If τ is a
permutation that fixes everybi thenτσ ∈ Bu wheneverσ ∈ Bu. Thesepermutations act
transitively on each blockBu, and it follows that the graph is vertex-transitive. To prove (4),
let ν ∈ Sn suchthatν(bi ) = i for all 1 ≤ i ≤ r , and considerthe mapσ �→ νσ : it is easy
to verify that it is the required isomorphism.�

Lemma 4.4. Let 1 ≤ s ≤ r ≤ n and let 1 ≤ j1 < · · · < js ≤ r . If I is a stable
set of G(Sn)(bj1, . . . , bjs) of maximal size then I∩ G(Sn)(b1, . . . , br ) is a stable set of
G(Sn)(b1, . . . , br ) of maximal size.

Proof. We apply Lemma 4.3 to the graphsG = G(Sn)(b1, . . . , br ) and H =
G(Sn)(bj1, . . . , bjs) to obtain the inclusions

Kn ↪→ G ↪→ H ↪→ G(Sn).

It follows from Lemmas 2.1and4.3that we have

1

n
≥ α(G)

|V(G)| ≥ α(H )

|V(H )| ≥ α(G(Sn))

|V(G(Sn))| = 1

n
.

Hence we have equality and the result follows from the second part ofLemma 2.1 �

The idea of the proof ofTheorem 4.2runs as follows: we use induction onk = n − r ,
the ‘degree of freedom’ of the graphG(Sn)(b1, . . . , br ). First we prove the casek = 3.
The second part of the argument is as follows: we take a stable setI of maximal size and
intersect it with the subgraphs of smaller ‘degree’. We obtain in this way sets of the right
shape (i.e. intersections withI q

p ’s), and the trick is then to show that we have ‘uniformity’
among these smaller sets. There are two cases to treat, depending on whetherI intersects
some subgraphH in a stable set that spreads across several blocksBu of H or I intersects
every subgraphH in a stable set equal to a block ofH .

Lemma 4.5. The statement ofTheorem4.2holds if n− 3 ≤ r ≤ n.

Proof. Let k = n − r . The result is trivial if k ≤ 2. Let k = 3. Let I be a stable set
of maximal size inG = G(Sn)(b1, . . . , br ), which we can take to be, without loss of
generality, equal toG(Sn)(1, . . . , (n − 3)). Then by the proof ofLemma 4.4we have that
|I | = 6. Letµ ∈ Bu andν ∈ Bv (notation as in the proof ofLemma 4.3). It is easy to see
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that, if µ andν are not adjacent, then|u − v| ∈ {0, 1, 2}(modn). Hence there exists some
u suchthat I is contained inBu ∪ · · · ∪ Bu+4, and consequently|I ∩ Bv| ≥ 2 for somev.
Let σ andτ denote distinct elements ofI ∩ Bv.

Suppose first thatσ(w) �= τ (w) for all w /∈ {1 + v, . . . , (n − 3) + v}. We mayassume
without loss of generality that we havev = 0 and the following situation:

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), (n − 1), n, (n − 2)).

If δ ∈ I ∩ B1, it is easy to see that

δ = (n, 1, 2, . . . , (n − 3), (n − 1), (n − 2)).

Similarly, we find that|I ∩ Bn−1| ≤ 1 and that|I ∩ Bu| = 0 for u /∈ {n − 1, 0, 1}.
Consequently, we must have at least two other vertices inI ∩ B0. In any case, we will
always find verticesσ andτ of I ∩ B0 that have exactlyn − 2 common values.

Case1. Suppose that then − 2 values whereσ andτ coincide are consecutive, i.e. without
loss of generality, the following verticesσ andτ are in I ∩ B0:

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), (n − 2), n, (n − 1)).

If I = B0 then I = I 1
1 ∩ G and we are done. So suppose that there existsµ ∈ I , µ /∈ B0.

Thenµ(w) /∈ σ(w) for all 1 ≤ w ≤ n − 3, and similarly for τ . It follows easily that
µ(n − 2) = n − 2 is forced. If |I ∩ B0| = 2 then every permutation inI fixes n − 2
and soI = I n−2

n−2 ∩ G. Otherwise letν ∈ I ∩ B0 distinct fromσ andτ . We shallderive a
contradiction. We have the following:

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), (n − 2), n, (n − 1))

ν = (1, 2, . . . , (n − 3), x, y, z)

wherex �= (n − 2). Suppose there existsµ ∈ I outsideB0; thenµ(n − 2) = n − 2, which
forcesthis:

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), (n − 2), n, (n − 1))

ν = (1, 2, . . . , (n − 3), x, y, z)
µ = (2, . . . , (n − 3), x, (n − 2), y, 1)

and we must havez = n − 2. Since|I | = 6 there must exist anotherν′ ∈ I ∩ B0. Then we
must have:

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), (n − 2), n, (n − 1))

ν = (1, 2, . . . , (n − 3), x, y, (n − 2))

µ = (2, . . . , (n − 3), x, (n − 2), y, 1)

ν′ = (1, 2, . . . , (n − 3), y, x, (n − 2)).

But thenµ andν′ are adjacent, a contradiction.
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Case2. Suppose now that the values for whichσ andτ coincide are not consecutive; then
we have that the following vertices are inI :

σ = (1, 2, . . . , (n − 3), (n − 2), (n − 1), n)

τ = (1, 2, . . . , (n − 3), n, (n − 1), (n − 2)).

It is easy to verify that every vertex inI outsideB0 must fixn − 1; it follows that either
I = I n−1

n−1 ∩ G, or otherwiseI ∩ B0 contains some other element, whence we are back in
Case 1. �

Proof of Theorem 4.2. Let k = n − r . We prove the result by induction onk. If k ≤ 3:
this is Lemma 4.5. Now let k ≥ 4 be an integer such that the result holds fork − 1. Let
I be a stable set of maximal size inG = G(Sn)(b1, . . . , br ), which we may take to be
G(Sn)(1, . . . , r ) by Lemma 4.3(4).

Case1. There existβ /∈ {1, . . . , r } suchthat

I ∩ G(Sn)(1, . . . , r, β) = I q
p ∩ G(Sn)(1, . . . , r, β)

for someq /∈ {1, . . . , r, β}.
Let σ ∈ I : it is clearly sufficient to prove thatσ(p) = q. There exists someu suchthat

σ looks like this:

σ =
(

. . . 1 + u 2 + u . . . r + u . . .

. . . 1 2 . . . r . . .

)
.

We build a permutationτ ∈ I as follows: (i) let τ (p) = q. (ii) Next, notice that
since n − r ≥ 4, there exist at least 3 distinct elementsv ∈ {1, 2, . . . , n} such that
p /∈ {1 + v, . . . , r + v, (r + 1) + v}. Choose one of thesev suchthat σ(1 + v) �= 1
andσ((r + 1) + c) �= β. Now defineτ (i + v) = i for 1 ≤ i ≤ r andτ ((r + 1) + v) = β.
(iii) There are at least 2 elements in{1, 2, . . . , n} whereτ is not yet defined: choose its
values sothat it has no value in common withσ . Now it is clear by construction that
τ ∈ I q

p ∩ G(Sn)(1, . . . , r, β) and henceτ ∈ I , and thatσ(x) �= τ (x) for all x �= p. Since
σ andτ are not adjacent it follows thatσ(p) = q.

By induction hypothesis andLemma 4.4, we are left with this:

Case2. For everyβ /∈ {1, . . . , r } there existsp and there existsq ∈ {1, . . . , r, β} suchthat

I ∩ G(Sn)(1, . . . , r, β) = I q
p ∩ G(Sn)(1, . . . , r, β).

By permuting and renaming entries we may assume without loss of generality that the
identity permutation

α = (1, 2, . . . , r, r + 1, . . . , n) ∈ I .

Thenα belongs to

I ∩ G(Sn)(1, . . . , r, r + 1) = I q
p ∩ G(Sn)(1, . . . , r, r + 1), (7)

and it is easy to see that in fact we may takep = q = 1. In particular,I contains all
permutations that fix every 1≤ i ≤ r + 1. We shall show that

I = I 1
1 ∩ G(Sn)(1, . . . , r ).
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Suppose for a contradiction that there existsσ ∈ I suchthat σ(1) �= 1; so there exists
u �= 0 such that σ(i + u) = i for all 1 ≤ i ≤ r . Notice that (7) implies that
σ((r + 1) + u) = β �= r + 1. Now

σ ∈ I ∩ G(Sn)(1, 2, . . . , r, β) = I q′
p′ ∩ G(Sn)(1, 2, . . . , r, β)

for someq′ ∈ {1, . . . , r, β} so asabove we conclude thatI contains every permutation
τ suchthat τ (i + u) = i for i = 1, . . . , r andτ ((r + 1) + u) = β. Sincethere are at
least 2 entries not in{1 + u, . . . , (r + 1) + u}, we can find such a permutationτ which
is fixed-point free, contradicting the fact thatα ∈ I , unlessβ = (r + 1) + u; but then
β /∈ {1, 2, . . . , r, r + 1}, so we may choose a permutationµ ∈ I that fixes 1≤ i ≤ r + 1
suchthatτ (x) �= µ(x) for all x ∈ [n] and we are done.�

5. The case P = Sb

Now we investigate the shape of the maximal stable sets in the case whereP = Sb:
notice that in this case we must haveC = [b]. First we restrict our attention to the case
whendi is equal to 0 or 1 for alli , with b ≥ n. More precisely, recall fromExample 4that
G(Sb)

(n) denotes the graphG(Sb; [b]; 1, 1, . . . , 1, 0, . . . , 0) (where 1 appearsn times).
The vertices of this graph are the injections of[n] into [b]. We shall require inthis section
the following generalisation ofTheorem 4.1:

Theorem 5.1. The sets Iqp are the only stable sets of maximal size in G(Sb)
(n).

Proof. This is an easy application of the no-homomorphism lemma. ByTheorem 3.3the
stability ratio ofG = G(Sb)

(n) is equal to 1/b. It is obvious thatthe following map is a
surjective graph homomorphism fromG(Sb) ontoG(Sb)

(n):

φ : σ (σ(1), . . . , σ (n)).

If b = 2 the resultis trivial, so assume from now on thatb ≥ 3. Let I be a stable set
of maximal size inG(Sb)

(n). By the second part ofLemma 2.1, we have thatφ−1(I ) is a
stable set of maximal size inG(Sb). By Theorem 4.1it mustbe of the formI q

p . Sinceb ≥ 3
we can findσ, τ ∈ I q

p suchthatσ(x) �= τ (x) for all x �= p. Sinceφ(σ) is not adjacent to
φ(τ), it follows thatp ≤ n. Sinceφ is onto it follows thatap = q for all (a1, . . . , an) ∈ I ,
and thusI = I q

p in G(Sb)
(n). �

Now we investigate the shape of the maximal stable sets in the case of a fixed graph
G = G(P; C; d1, . . . , db) still in the case whereP is the full symmetric group onb letters,
but for a more general sequence of the frequenciesdi ; as mentioned earlier we have that
C = [b].

• Notice that ifd1 > n/2 then there are stable sets of maximal size of the ‘wrong’
form: indeed, takeI to be the set that consists of all tuples that contain the entry 1d1
times.

• If the least non-zerodi is equal to n/2, then of course we haved1 = d2 = n/2
anddi = 0 for all i ≥ 3. Then there are also stable sets of maximal size of the
‘wrong’ shape: consider the setI of all tuples that haven/2 1’s appearing in the first
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n − 1 coordinates. Clearly this is a stable set, and it does not have the right form. A
simple count yields that it has maximal cardinality.

Hence, from now on, we assume that eachdi is at mostn/2 and thatthe number of
non-zerodi is at least 3. We shall also assume thatb ≥ 5 (see concluding remarks).

Let I be a stable set inG of maximal size. Recall thatm is the largest index such that
dm is non-zero. We shall proceed as follows: fix a ‘pattern’, i.e. a partitionθ of the index
set[n], with blocks of the required sized1, d2, . . . , dm, and letGθ denote the subgraph of
G that consistsof all tuples(a1, . . . , an) suchthat ai = aj if and only if i and j lie in
the same block ofθ . It is easy to see that this graph is isomorphic toG(Sb)

(m): indeed,
just reorder the indices to get tuples of the form(σ (1), . . . , σ (1), . . . , σ (m), . . . , σ (m))

and then identify equal coordinates. It follows fromLemma 2.1that the inverse image of
I under this isomorphism is a maximal stable set ofG(Sb)

(m), and weknow these have
the rightform by Theorem 5.1. In other words, for every partitionθ , there exists an index
p and a valueq suchthat Gθ ∩ I consists of all tuples whosepth coordinate is equal
to q. As usual, we shalldenote this set byI q

p ∩ Gθ . We shallprove thatthe values ofp
andq are independent ofθ . Here is the strategy. Letθ andθ ′ bepartitions of [n] with m
blocks B1, . . . , Bm and B′

1, . . . , B′
m respectively. We shall say that these partitionsdiffer

by a transposition if there exist distinct elementsi and j of [n] and distinct indicesu, v

suchthat B′
u = Bu ∪ {i }\{ j }, B′

v = Bv ∪ { j }\{i } and Bk = B′
k for all k distinct from u

andv (in other words, we obtain the partitionθ ′ from θ by choosing two blocks ofθ and
exchanging two elements, one from each). It is clear that for every pair of partitionsθ and
θ ′, thereexists a sequence of partitions

θ = θ0, . . . , θl = θ ′

suchthatθi andθi+1 differ by a transposition for everyi .
One way of seeing this is as follows: given a partitionθ , considerthen-tupleXθ whose

i th coordinate is the symbolBj if i is in blockBj of the partition. Then we may transform
the tuple for θ into the tuple forθ ′ simply by a series of transpositions of two symbols.
Notice that with this notation,Gθ is simply the set of alln-tuples obtained fromXθ by
assigning distinct values to the symbolsB1, . . . , Bm.

We shall first show the following:

Lemma 5.2. Let b ≥ 4. If θ and θ ′ are partitions that differ by a transposition, and

I ∩ Gθ = I q
p ∩ Gθ and I ∩ Gθ ′ = I q′

p′ ∩ Gθ , then q= q′.

Proof. Suppose by contradiction thatq �= q′. Without loss of generality suppose that
q = 1 andq′ = 2. A case-by-case analysis of the relative positions ofp and p′ shall
exhibit elements ofGθ ∩ I andGθ ′ ∩ I that are adjacent. We use the tuplesXθ and Xθ ′
for ease of discussion. Without loss of generality, suppose that the blocks in whichθ and
θ ′ differ areB1 andB2, so that tuplesXθ andXθ ′ look something like this:

(B1, B1, . . . , B1, B1, B2, B2, . . . , Bl )

(B1, B1, . . . , B1, B2, B1, B2, . . . , Bl )
.

Case1. Suppose that neitherp nor p′ are in blocksB1, B2.
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Subcase1. Suppose thatp and p′ are in the same block (ofθ and/orθ ′), sayB3. Then the
following assignment of values leads to a contradiction:

(2, . . . , . . . , 2, 3, . . . , . . . , 3, 1, . . . , 1, B4, . . .)

(4, . . . , 4, 1, 4, 1, . . . , 1, 2, . . . , 2, B4, . . .)

where thesymbolsB4, B5, . . . are filled as follows: if there is only one more block, put the
value 4 forXθ and the value 3 forXθ ′ ; if there is more than one block, simply assign any
values toB4, B5, . . . of Xθ and cycle them to give an assignment toB′

4, . . . of Xθ ′ so that
no two coordinates are equal.

Subcase2. Suppose thatp andp′ are in different blocks, sayB3 andB4. Then the following
assignment does the job:

(2, . . . , . . . , 2, 3, . . . , . . . , 3, 1, . . . , 1, 4, . . . , 4, B5, . . .)

(4, . . . , 4, 1, 4, 1, . . . , 1, 3, . . . , 3, 2, . . . , 2, B5, . . .)

where theblocksB5, . . . are filled as in Subcase 1. (Note that ifb = 5 and there are exactly
5 blocks, it is necessary to switch some values, say settingB4 to 5 instead of 4 in the first
tuple, etc. but this is easy.)

Case2. Suppose thatp is in B1 but p′ is not inblocksB1, B2. Assume thatp′ is in block
B3. Then the following tuples do the job:

(1, . . . , . . . , 1, 2, . . . , . . . , 2, 3, . . . , 3, B4, . . .)

(4, . . . , 4, 3, 4, 3, . . . , 3, 2, . . . , 2, B4, . . .)

where theblocksB4, . . . are filled as before.

Case3. By symmetry, it remains to check this case: bothp and p′ are inB1 or B2.

Subcase1. Both p and p′ are inB1. This iseasy, consider the tuples

(1, . . . , . . . , 1, 4, . . . , . . . , 4, B3, . . .)

(2, . . . , 2, 3, 2, 3, . . . , 3, B3, . . .)

where theblocksB3, . . . are easily filled.

Subcase2. p is in B1 andp′ is in B2. This is similar to Subcase 1. �

Remark. It follows from the lemma and the preceding remarks that we may assume
without loss of generality thatq = 1 for all partitions.

Lemma 5.3. Let b ≥ 5. If θ and θ ′ are partitions that differ by a transposition, and
I ∩ Gθ = I 1

p ∩ Gθ and I ∩ Gθ ′ = I 1
p′ ∩ Gθ , then the block ofθ that contains p and

the block ofθ ′ that contains p′ must intersect.

Proof. We follow a similar case-by-case procedure. Suppose by contradiction that the
blocks do not intersect.

Case1. Suppose thatp and p′ are neither inB1 nor B2 (as before we assume that the
partitions differ only in theseblocks). So assume without loss of generality thatp is in B3
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and p′ is in B4. Then the following tuples are adjacent:

(3, . . . , . . . , 3, 4, . . . , . . . , 4, 1, . . . , 1, 2, . . . , 2, B5, . . .)

(2, . . . , 2, 5, 2, 5, . . . , 5, 3, . . . , 3, 1, . . . , 1, B5, . . .)

where theblocksB5, . . . are filled as before.

Case2. Suppose thatp is in B1 and p′ is in B3. Then the following tuples do the job:

(1, . . . , . . . , 1, 4, . . . , . . . , 4, 2, . . . , 2, B4, . . .)

(2, . . . , 2, 3, 2, 3, . . . , 3, 1, . . . , 1, B4, . . .)

where theblocksB4, . . . are filled as before.

Case3. By symmetry, it would remain to check this case:p is in B1 and p′ is in B2. But
the blockB1 of θ and the blockB2 of θ ′ share a coordinate, so we are done.�

The preceding lemma has the following consequence: letθ be a partition such that
I ∩ Gθ = I 1

p ∩ Gθ , and letB denote the block ofθ that containsp. Let θ ′ bea partition
obtained fromθ bya transposition outsidethe blockB, i.e.θ andθ ′ differ by a transposition
andboth contain the blockB. Let I ∩ Gθ ′ = I 1

p′ ∩ Gθ ′ . By the lastlemma, the block ofθ ′
that containsp′ must intersectblock B, andhence it must be equal toB. Now, any partition
α that contains the blockB can be obtained fromθ via a sequence of transpositions; hence
we must haveI ∩ Gα = I 1

p ∩ Gα. So we have proved this:

Lemma 5.4. Let θ bea partition such that I∩ Gθ = I 1
p ∩ Gθ , and let B denote the block

of θ that contains p. Letα beanyother partition (with correct block sizes) which contains
block B. Then I∩ Gα = I 1

p ∩ Gα. �

Lemma 5.5. Let b ≥ 5. If θ and θ ′ are any partitions with I ∩ Gθ = I 1
p ∩ Gθ and

I ∩ Gθ ′ = I 1
p′ ∩ Gθ , then the block ofθ that contains p and the block ofθ ′ that contains

p′ must intersect.

Proof. Suppose for a contradiction that this is not the case. Letθ andθ ′ bepartitions that
witness this:I ∩ Gθ = I 1

p ∩ Gθ and I ∩ Gθ ′ = I 1
p′ ∩ Gθ , let B denote the block ofθ that

containsp and letB′ denote the block ofθ ′ that containsp′; suppose then thatB andB′
are disjoint.

Case1. Suppose that the blocksB and B′ have different cardinalities. Then we may
certainly find a partitionα which contains both these blocks and has the correct block
sizes. It is clear that the existence ofα contradictsLemma 5.4.

Case2. Suppose now that the blocksB andB′ havethe same cardinality. We will construct
n-tuplesX = (x1, . . . , xn) andY = (y1, . . . , yn), both in I but adjacent. LetX be any
tuple (with the correctblock sizes) such thatxi = 1 for all i ∈ B. Consider the tupleZ
obtained fromX by ‘swapping’ the entries in blocksB andB′ (the order of the entries is
immaterial). Now defineY simply by replacing every entryz of Z by z+1 if 2 ≤ z ≤ b−1
and by 2 if z = b. Clearly the tuplesX andY are adjacent. However, the partitionα such
that X ∈ Gα contains the blockB, hence byLemma 5.4we have thatX ∈ I . The same
argument using blockB′ shows thatY ∈ I , a contradiction. �



B. Larose, C. Malvenuto / European Journal of Combinatorics 25 (2004) 657–673 671

Lemma 5.6. Let m≥ 3, let d1 ≥ d2 ≥ · · · ≥ dm bepositive integers such that
m∑

i=1

di = n ≥ 1,

dm < n/2

and

d1 ≤ n/2.

Let F be a family of intersecting subsets of[n] such that both the following conditions
hold:

(i) each set in F is a block of some partitionθ of [n] with blocks of size d1, . . . , dm
(ii) each such partitionθ has one of its blocks in F.

Then there exists an i∈ [n] such that F consists of all subsets of[n] of one of the
prescribed sizes d1, . . . , dm that contain i .

Proof. Let P(n; d1, . . . , dm) denote the number of partitions of [n] into blocks of sizes
d1, . . . , dm. Let {di1 > · · · > dik } be thedistinct valuesthat thedi ’s take. We have a
recurrence:

P(n; d1, . . . , dm) =
k∑

j =1

(
n − 1

di j − 1

)
P(n − di j ; d1, . . . , di j −1, di j +1, . . . , dm). (8)

This is easy to obtain: to each partitionθ with the right block sizes, we associate its block
(say of sizedi j ) that contains the element 1; the rest of the partition is a partition of the
remaining n − di j elements in blocks of the remaining sizes.

Consider the map that assigns to every partitionθ of [n] with blocks of sized1, . . . , dm

the (obviously unique) blockfθ of θ which is in F . Let f ∈ F . Of course if f = fθ
then f is a block ofθ . Conversely, if f happens to be a block of some partitionθ then
we must havefθ = f since everypair of members ofF intersect. Hence the partitions
that map to f are precisely those that havef as a block: if f has sizedi then there are
P(n − di ; d1, d2, . . . , di−1, di+1, . . . , dm) of these.

Let Fj denote the set of members ofF with cardinalitydi j , and letα j denote the number
of elements inFj . Then the above argument shows that

P(n; d1, . . . , dm) =
k∑

j =1

α j P(n − di j ; d1, d2, . . . , di j −1, di j +1, . . . , dik). (9)

SinceFj is an intersecting family, the Erd˝os–Ko–Rado inequality [7] tells us that

α j ≤
(

n − 1

di j − 1

)

for every j . It follows from Eqs. (8) and (9) that

α j =
(

n − 1

di j − 1

)
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for every j . Fix j0 < n/2. By the Hilton–Milner inequality [10] we have thatFj0 consists
of all sets that contain some fixed values. Let X ∈ F . Since|X| + j0 ≤ n, it is clear that,
if X intersects every set inFj0, then it must contains. Hence for everyj , Fj consists only
of sets that contain the elements, and the computation ofα j above shows that in fact every
set of cardinalitydi j that containss must be inFj . �

Theorem 5.7. Let b ≥ 5, and let n/2 ≥ d1 ≥ d2 ≥ · · · db ≥ 0 be integers, with
n = ∑

i di ≥ 1. If there are at least 3 non-zero di ’s, then the sets Iqp are the only stable
sets of maximal size in thegraph G(Sb; C; d1, . . . , db).

Proof. Let I be a stable set of maximal size inG(Sb; C; d1, . . . , db). By Lemma 5.2there
exists auniqueq suchthat I ∩ Gθ = I q

p(θ) ∩ Gθ for all partitionsθ . For eachθ , let Bθ

denote the block ofθ which containsp(θ), and letF be the set that consists of all these
blocks. ByLemma 5.5F satisfies the hypotheses ofLemma 5.6, and thus there exists a
uniquep such that these blocks are precisely those that containp. �

6. Concluding remarks

The case P= Sb with b ≤ 4

Although we have verified a few small cases whenb ∈ {3, 4} it is apparent that the
method we used forb ≥ 5 fails in these cases and that a different approach is required.
Notice that the cases whereP = Sb or P is trivial are related, as for example in the case
whered1 = d2 = · · · = db and we obtain the same graph, providedC = [b].
The case P= 1

When the group P is trivial, we have the following result:

Theorem 6.1 ([12]). If P is trivial and d1 > d2 the I1p are the only stable sets of maximal
size in the graph G(P; [b]; d1, . . . , db).

From this one can easilydeduce (yet another) characterisation of the stable sets of
maximal size in Kneser graphs: let 1< r < n/2 and consider the graphG(1; [b]; r,
1, . . . , 1) where 1 appearsn − r times, and thehomomorphism

φ : G(1; [b]; r, 1, . . . , 1) → K (r, n)

which maps a tuple(x1, . . . , xn) to the set of indicesi suchthatxi = 1. Let I be a stable
set of maximal size inK (r, n): sincethese graphs have the same independence ratio, the
no-homomorphism lemma and the last result guarantee thatφ−1(I ) = I 1

p, which means
that all the members ofI containp. Recent results on stable sets of maximal size in powers
of regular graphs, including the case of Kneser graphs, may be found in [1].

Automorphisms of G

It is easy to verify that under mild conditions both the actions ofSn andP are faithful
on the graphG = G(P; C; d1, . . . , db): all that is required is thatm ≥ 2 and that the
union of the orbits of 1≤ i ≤ m underP is equal to[b] (which can always be assumed).
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Furthermore if somedi is not equal to 1 then in fact the group of automorphisms ofG will
contain a copy ofSn × P. If the I q

p are the only stable sets of maximal size inG, then under
what conditions is Aut(G) = Sn × P?

Chromaticnumber of G

If P is trivial, then the special case of Kneser graphs shows that the chromatic number
of G may be quite difficult to compute [11, 14]. On the other hand, whenP = Sb the graph
contains a copy ofKb, and the projection on a coordinate shows that its chromatic number
is b. What can be said for more general subgroupsP of Sb?

Acknowledgements

The authors wish to thank J´anos Körner for suggesting this problem and Claude Tardif
and Daniele A. Gewurz for helpful comments. This research was completed during the
first author’s stays at the Dipartimento di Informatica, Universit`a di Roma “LaSapienza”
in 2001 and 2003. The first author’s research is supported by a grant from NSERC.

References

[1] N. Alon, I. Dinur, E. Friedgut, B. Sudakov, Graph Products, Fourier Analysis and Spectral Techniques,
2003, p. 22 (preprint).

[2] M.O. Albertson, K.L. Collins, Homomorphisms of 3-chromatic graphs, Discrete Math. 54 (1985) 127–132.
[3] B. Bollobás, Combinatorics, Set Systems, Hypergraphs, Hamilies of Vectors and Combinatorial Probability,

Cambridge University Press, 1986.
[4] P.J. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003) 881–890.
[5] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance,

J.Combin. Theory Ser. A 22 (1977) 352–360.
[6] M. Deza, P. Frankl, Problem, in: Combinatorics, Coll. Math. Soc. J´anos. Bolyai, North-Holland, Amsterdam,

18 (1978) p. 1193.
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