Available online at www.sciencedirect.com

SCIENCE@DIRECT® Europeanlournal
of Combinatorics

ELSEVIER European Journal of Combinatorics 25 (2004) 657-673
www.elsever.com/locate/ejc

Stable sets of maximal 2n Knesertype graphs

Benoit Laros® Claudia Malvenut8

@Department of Mathematics and Statistics, Conctdhiversity, 1455 De Maisonneuve West, Montreal, Qc,
Canada, H3G 1M8
bDipartimerto di Informatica, Universi'd Roma “La Sapienza”, Via Salaria, 113, 00198 Roma, Italy

Received 29 September 2003; accepted 23 October 2003

Abstract

We introduce a family of vertex-transitive graphs with specified subgroups of automorphisms
which generalise Kneser graphswers of complete graphs and Cayley graphs of permutations. We
compute the stability ratio for a wide class of thedader certain conditions we characterise their
stable sets of maximal size.
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1. Introduction

Consider the graptK" whose vertices are all tuple&y, ..., xm) with entries in
{1,2,...,n} where two tuples are adjacent if they have no entry in common9]in [
Greenwell and Loasz characterise the stable sets of maximal size in this graph: a set
of vertices is a maximal stable set if and only if it consists of all those tuples witllose
entry is some fied value 1< j <n.

Letn, r be positive inegers withn > 2r. The Knesgr graphK (r, n) is the gragah whose
vertices are the-element subsets 41, 2, .. ., n}, two of them being adjacent if they are
disjoint. The Erdé6$—Ko—Rado TheorenT] states that the stability ratio d&€ (r, n) isr/n;
furthermore, it follows from the Hilton—Milner inequality 0] (see also 3] and [8] for
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simple poofs of this fact) that the stable sets of maximal sizeKifr, n) are precisely
those families of sets that contain some fixed element.

One may restate this last result in a manner that underlines the resemblance with the
first example: indeed, one may viewsubsets of1, 2, . . ., n} (henceforth denoted by])
asn-tuples(xi, ..., Xn) with exactlyr entries equal to 1 and — r entries equal to O,
two tuples being adjacent if they do not hawv@mmon entry equal to 1. Then a stable
set of maxinal size consists of all tuples that have ttie coordinate equal to 1, for a
fixedi.

We introduce a class of graphs which generalise these two situations. The vertices
are tuples with a fixed distribution of ocgences of the symbols, and the adjacency
between two strings will indicate whether a symbol from a fixed subset of symbols
appears at different positions in the two strings. Let us rephrase this in a more precise
way.

Let b > 1 be an integer fte number of symbols for the strings) and tht >
d > --- > dy > 0 be integersthe distribution of the symbols), witm =
>idi > 1 (the length of the strings). Leim denote the largest index such that
di > 0. Let P be any subgroup of the symmetric grody, and letC be a non-
empty subset ofb] = {1, ..., b}. We @nstruct a grapl&(P; C; dy, ..., dp) as follows:
its vertices are then-tuples(az,...,an) € [b]" such that there exists a permutation
o € P and a permutation € §, for which (ag,...,an) = (X¢@), ..., X(n)) Where
X1, ..., X)) = (6 (D),...,01),02),...,0(2),...,0(m),...,o(m)) ando (i) appears
exadly d; times. Two such tuplegxy, ..., Xn) and(yi, ..., ¥n) arenot adjacentif and
only if there exists a coordinaiesuchthatx; = y; € C (the two tuples coincide for a
symbol belonging tcC).

We shall keep the above notation and terminology throughout this paper. We also define
another useful parameter: given the gr&piP; C; d1, ..., dp) let

d=maxd; :i € C}.

The groupS, acts naturally on the grap(P; C; dy, ..., dp) by permuting the entries
of the tuples. Furthermore it is easy to see that the correspondence

(X1, ..., Xn) = (0(X1),...,0(Xn))

for eacho € P defines an action d? on the graph as a group of automorphisms, provided
the permutations ifP preserve the se, i.e.o(i) € Cforalli € Candallo € P. For

the remainder of the paper we shall assuthat this condition always holdg\ssuming
this, one verifis atonce thaiG(P; C; d1, ..., dp) is vertex-transitive, under the combined
actions ofS, andP.

Example 1. Let us choose the sequencedpfto be3, 2, 2,1, 0, 0 sa» = 8,b = 6 and
m = 4. Let P consist of the following group of permutations:

P={id, (21),(345,(354,(21)(345H, (21)(35%}.

Then the vertices of the graph are all possible permutations of the coordinates of the
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following tuples

1,1,1,2,2,3,3,4)
(2,2,2,1,1,3,3,4)
(1,1,1,2,2,4,4,5)
1,1,1,2,2,5,5,3)
(2,2,2,1,1,4,4,5)
(2,2,2,1,1,5,5, 3).

Example2. Let1 <r < nbe integers such thatr2< n. ThenK (r, n), the Kneer graph

of r-subsets ofn], is isomaphic to G(P; C; di, d») whereb = 2, P is the trivial group,

C = {2},d1 = n—r anddy = r. The isomorphism is given by the correspondence which
sends every -subsetX of [n] to then-tuple (X, ..., Xn) wherex; = 2ifi € X andx; = 1
otherwise.

Example 3. Letd; = 1 for everyi, hercen = b. Let P be the full symmetric group
andC = [b]. With this choice of parameters the vertices®@fS;; [n]; 1,1, ..., 1) are
the permutations dfn], two pernutationss andt being adjacent if there is no coordinate
i suchthato(i) = 7(i), i.e.ot1 is a derangment. We will denote this graph simply
by G(S)). Note hat it is the Cayley graph of the grouf, with generating set the
derangements.

Example4. Let G(S,)™ denote the graptG(Sy; [b];1,1,...,1,0,...,0) where 1
appears) times. The vertices of this graph are the injectiongnifinto [b]; two of these
injectionsa andg arenotadjacent ifw(i) = (i) for some 1<i < n.

Let O denote the orbit undeP of any elemeng) € C suchthatdg = d. We shallprove
the following in Section 3

Theorem. The ndependence ratio of the graph& G(P; C; dy, ..., dp) satisfies
«©) _ 1 ¢d
|G [ o

We shall prove that in various cases this bound is tighh¢orems 3.2and 3.3). For
example ifP is trivial, as in the case of Kneser graphs, this ratio is equaftgif P = &
the ratio is equal to /b, a result aleady obtained by Deza and Fran§] (see also§]) in
the special case @(S,).

We shall then b intelested in the actual nature of the stable sets of maximal size of the
graphG(P; C;dp,...,dp). Letl < p<nandl1l< q < b. Let IS denote the induced
subgraph ofG(P; C; dy, ..., dy) that consist®f all tuples(xa, ..., xn) suchthatxp = q.

If g € C thisis an indpendent set. In fact (s&ection 3 it is of maximalsize pecisely if
the éove bound is tight.

Problem. For which parameter®, C, ds, ..., dp are all the stable sets of maximal size in
the graphG(P; C; dy, . . ., dp) of the formI3?

We now outline the contents of the paper. In the next section we introduce the
terminology and basic results that we shall require in the sequé&edtion 3we prove
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the above-mentined theorem. Ii5ection 4we prove that the sellqg‘ are indeed the only
stable sets of maxinhaize in he graphG(S,) (Theorem 4.11 In Section 5we extend this
to the graph&(S,)™ (Theorem 5.1and theruse this to prove the following more general
resut:

Theorem. Letb> 5. 1fn/2 > d; and there are at least 3 non-zergs then he sets §
are the only stable sets of maximal size in the gragl®fsC; d1, .. ., dp).

Finally we mnclude with some remarks on open questions and further results
(Section §.

2. Preliminaries and terminology

In this paper all graphs are finite, undirected and without loops. We denote the vertex set
and the edge set of a graghby V (G) and E(G) respectively. LeG be a graph. Recall
that a setl of vertices ofG is calledstable (or independentif no two vertices inl are
adjacent. Thestability (independence) numbef G, denoted by« (G), is the maimum
cardinality of a stable set if6. The stability (independence) ratiof G is the ratio of
the stability number to the number of vertices@fandH are graphs, Aaomomorphism
from G to H is an edge-peserving map fronV (G) to V(H), i.e. a unction f suchthat
{f(9), f(g)} € E(H) whenever{g, g’} € E(G). A graphG is vertex-transitivef the
automorphism group db acts transitively otV (G), i.e. for everyx andy in V (G) we can
find an aubmorphismf of G suchthat f (x) = y.

Forn > 1 we shalldenote the complete graph arvertices byKp,.

One ofour main tools is the following result, often referred to as the ‘no-homomorphism
lemma’;

Lemma2.1 ([2]).2 Let G and H be graphs such that H is vertex-transitive and there
exigs ahomomorphismp : G — H. Then
H
a(G) . alH) )

IV(G)] — IV(H)]

Furthermore, if equality holds iil), then for any stable set | of cardinalitg(H) in H,
#~1(1) is a stable set of cardinality(G) in G.

For0<i, ] < n—1, define the circular distance frointo j, denoted byady(i, j), as
the distance from the vertéxo the vertexj in the cycle of lengthn, that is the mhimum
between the representative @f— j) modn and the representative ¢f — 1) modn in
{0,1,...,n—1}.

Letr, s be positiveintegers such that < s/2. Thecircular graphCirc(r, s) is defined
as follows: its set of vertices s = {0, 1, ..., s—1}, and two \erticesu andv are adjacent
if 9s(u, v) > r. The neighborhood of a vertexof Circ(r,s)is{u+r,...,u+s—r}.

1 At the moment of submitting this paper we learned that this was also obtained recently by Cameron and
Ku [4].

2The scond part of the lemma is not explicitly formulated in the paper by Albertson and Collins, but it is
implicit in the proof.
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The following result is from 13]:

Lemma 2.2. The stability ratio ofCirc(r, s) is r/s, and the only stable sets of maximal
size ofCirc(r, s) are the arcs

kK, k+1,...,k+r —1},
k € V(Circ(r, s)).

3. Theindependenceratioof G(P; C;dy, ..., dp)

Letg € C be such thatly > d foralli € C (i.e.dyq = d) and letO denote the orbit of
g underP. We derive a bound for the stability ratio &:

Theorem 3.1. The ndependence ratio of the graph& G(P; C; dy, ..., dp) satisfies
«© _ 1 yd
|G| 1@ ion

Proof. Letl = If, the set of Htuples inG whose first coordinate is equaldoObviously
it is a stable set irG: we compute its cardinality. LetH denote the subgroup d¥ that
consists of all permutations that satisfy the conditiod; = d,) for all i < [b]. For
everyo € P let G, denote the induced subgraph @fwhose vertices are thetuples
(X1, ..., Xn) for which there exists € S, suchthat

Xeays -« s Xem) = (0 (D), ..., 0(D),02),...,02),...,o(m),...,c(m))

whereo (i) appears exactlg, times, 1 < i < m. The reader may easily verify the
following: the graphss, andG, are either equal or disjoint, ar@l, = G, if and only if
o~ Yo € H.In paticular, a countig agument yields that for alr € P we have that

G| |P|

= —. 2
IGs|  [H] @
We claim that
1 NGyl Gyt
_ @ (3)

IGo]  n

holds for allo € P. Indeed, the previous equality is obviousgf¢ {o(1),...,o(M)}.
Otherwise, let (i) = g. A simple count yields that

n—1
1NGy| dp d» ... d—1 ... dp d;

IGol n n’
d d ... d ... dp

We count the elements ih: by using @) and the fact that for eact there are exactljH |
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permutationg suchthatG, = G,, we getthat

d,-1
- 1HI = )0 =Gy, (4)
oeP

It is now easy to combin&?] and @) to obtain

1 ds-1(q)

J L 5

Gl [P 2;, n (5)
whose right-hand term we may rewrite as

1 -1 di 1 di

o = Z > o ——D tatg)— = — Y~ . (6 O

Pl epP |e(’) ()= O n 01 n

o q ie ieO

Theorem 3.2. Letd < n/2.1fdj = dj foralli, j € O then the bound imTheorenB.1is

tight, i.e. the independence ratio of the graph=GG(P; C; dy, ..., dp) isequal to
a(G) d
Gl n’
In particular this holds when P is the trivial subgroup of.S

Proof. By Theorem 3.1.e have that
(X(G) 1 d| d

|G| IOI on

Let L denote the followmg induced subgraph®f its vertices are the tuplesy, ..., an)
in V(G) that satisfy the following condition: there exists som&Q < n — 1 such that
a+y =X foralll <i < n,where

X1,..., %) =(,...,1,2,...,2,...,m,...,m)

is the tuple withd; consecutive 1's followed by, consecutive 2's, and so on (sums are
understood modh, as usudl In other wordsL consists of all cyclic permutations of the
tuple (X1, ..., Xn). In L, let Ay denote the tuplé€as, ..., a,) suchthata ., = x; for all

1 <i < n,where thex; are as above. Itis easy to see that the map A, from Circ(d, n)

to L is a graph isorarphism. It follows fromLemma 2.2Zhat the stability ratio of. isd/n.
Applying Lemma 2.1to the emleddingL — G we conclude that the stability ratio &
isat mosd/n. O

Theorem 3.3. If P = S, then the bound iTheorenB.1is tight, i.e the hdependence
ratio of the graph G= G(P; C; dy, ..., dp) isequal to
«(G) 1
IG| b’
Proof. Clearly©® = [b] = C. It follows from Theorem 3.%hat
@G _ 1 d. 1

|G IOI b
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Consider the map from the complete graphto G defined by
P> A+i0,...,14+0,240,...,240,....,m+i,...,m+i)
where it is understood thgt + i appears exactlg; times and sums are moduto It is
clear that this is a graph homonpttism and hence it follows frotniemma 2. 1that
1  a(Kp) - a(G)

b IKel T IGI’

4. Thegraph of permutations G(S,)

The next theorem about the structure of stable sets in the graph of permutations appears
in the recent paper of Cameron and K. However our proof is quite different: we shall
deduce it from a more general result on certain subgraps §f) (Theorem 4.2 In the
next section we shall then generalise this result in various way3 esmems 5.2nd5.7.

It will be convenient in what follows to denote the permutatiotihat mapsa; to b; for
1<i<nby

S a a a3 ... an
“\by by by ... by/)°
Wheng; =i forall1 < i < n, it will also be convenient talenote the permutation
simply with then-tuple (by, ..., bp).
Theorem 4.1. The setsg are the only stable sets of maximal size in the gragls®

We shall @educeTheorem 4.1from the more generalrheorem 4.2 We exend our
definition to the following family of permutation graphs:

Definition. Letn > 2. Letl1<r <n,andlet1<by,...,br < nwherebj # bjifi # j.
Define thegraphG(S,)(by, . .., by) as the induced subgraph Gf(S,) whose vertices are
those permutations for which there exists a non-negative integewith O <u < n — 1,
suchthato (i +u) = b; forall1 <i <r, where sums are understood modnJahat s the

permutations containing the pattern prescribe{ ﬂ'ly b22 N t;r ) or by one of its shifts.
Example5. G($)(3, 2, 1) consists of all permutations of the form
3,2,1,x,y)
(y,3,2,1,%x)
X,9,3,2,1)
(1,x,¥,3,2)
(2,1,x,y,3).
Notice also that if = 1thenG(S,)(b1) = G(&,) for anyby.
We shall pove the fdlowing:

Theorem4.2. In G(S)(by, ..., by) the stable setsfomaxinal size are of the form
1§ NG(S)(by, ..., br).
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Lemma4.3. Letl<s<r <nandletl <ji; <--- < js<r.Then

1) G(S)(bj,, ..., bj) 2 G(S)(by..... by);

(2) G(Sy)(by, ..., Dby) contains a copy of K

(3) G(SY)(by, ..., by) is vertex-transitive

(4) the gaphs Q) (b1, ..., b)) and G(S)(L,...,r) are isomorphic, under an
isormorphism that preserves the stable sets of the fogrﬁl G(S)(by, ..., b).

Proof. The first assertion is clear. Let now consider the subgrBphof the graph
G(S)(by, ..., by) that consists of all permutationsfor which o (1 + u) = b (the five
tuples listedm thepreviousExample 5represent the subgrapBs, . . ., B4 respectively).
Clearly the subgraphB,’s partition G(S,)(b1, ..., by). It is easy to see that € By if
and only ifty € By, wherey is then-cycle(123... n). In paticular,G(S,)(by, ..., by)
is closed under right translation hyand hence contains at least one copKaf If 7 is a
permutation that fixes evety thento € By wheneverw € By. Thesepermutations act
transitively on each blocBy,, and it fdlows that the graph is vertex-transitive. To prod (
letv € S, suchthatv(b;) =i forall1 <i <r, and onsiderthe maps — vo': it is easy
to verify that it is the required isomorphism[J

Lemmadd. Letl <s<r <nandletl < j; < --- < js < r.If | is a stable
set of 3S)(bj,, ..., bj,) of maxmal size then N G(§)(by, ..., by) is a stabé set of
G(S)(by, ..., b) of maximal size.

Proof. We aply Lemma4.3to the graphsG = G(S)(bg,...,b) and H =
G(&)(bj,, ..., bj,) to obtain the inclusions

Kh— G— H — G(%).

It follows from Lemmas 2.Jand4.3that we have
1> a(G) - a(H) - a(G(S)) 1

n T VG) T IV(H) T IVGES)T
Hence we have equality and the result follows from the second pagrama 2.1 [

The idea of the proof ofheorem 4.2uns as follows: we use induction én=n —r,
the ‘dggree of freedom’ of the grapB(S)(by, ..., br). First we pove the cas& = 3.
The second part of the argument is as follows: we take a stableadfehaximal size and
intersect it with the subgraphs of smaller ‘degree’. We obtain in this way sets of the right
shape (i.e. intersections Willﬂ 's), and the tick is then to show hat we have ‘uniformity’
among these smaller sets. There are two cases to treat, depending on Wliethesects
same subgraph in a stable set that spreads across several biBgks H or | intersects
every subgraptH in a stable setgual to a block ofH.

Lemma4.5. The statement dfheoremd.2holdsifn—3 <r <n.

Proof. Letk = n —r. The reslt is trivial if k < 2. Letk = 3. Let| be a stable set
of maximal size iInG = G(S)(b, ..., b), which we can take to be, without loss of
generdlity, equal toG(S))(1, ..., (n — 3)). Then by he proof ofLemma 4.4we have that
|[I| = 6. Letyu € By andv € B, (notation as in the proof diemma 4.3. It is easy to see



B. Larose, C. Malvenuto / Europeanurnal of Combinatorics 25 (2004) 657—673 665

that, if u andv are not adjacent, thegm — v| € {0, 1, 2}(modn). Herce there exists some
u suchthat| is contained inBy U - - - U Byt4, and @nsequentlyl N B,| > 2 for somev.
Leto andt denote distinct elements ofn B,.

Suppose first that (w) # t(w) forallw ¢ {1+ v, ..., (N — 3) + v}. We mayassume
without loss of generality that we have= 0 and the éllowing situation:

o= (1, 2, ..., n—=3), (n—2), (h—-1), n)
t= (1 2, ..., (n—3), (h—-1), n, (n—2)).

If 6 € | N By, itis easy to see that
§=(M,1,2,...,(n—3),(n—1), (n—2)).

Similarly, we find that|l N By_1| < 1 and that/l N By| = 0 foru ¢ {n— 1,0, 1}.
Consequently, we must have at least two other verticelsinBg. In any casewe will
always find vertices andt of | N By that have exactlp — 2 common values.

Casel. Suppose that the— 2 values wheres andr coincide are consecutive, i.e. without
loss of generality, the following verticesandz are inl N Bp:

o= (17 27 ey (n_3)1 (n_z)v (n_l)s n)
t= (1 2, ..., (n—3), (nh—2), n, (n—1)).
If | = Bpthenl = '11 N G and we are done. So suppose that there existsl, u ¢ Bo.

Thenpu(w) ¢ o(w) forall1 < w < n — 3, and sinilarly for <. It follows easily that
u(n—2) = n—2is forced. If || N Bg] = 2 then evey permutation inl fixesn — 2

and sol = Ir?:zz N G. Otherwse lety € | N Bg distinct fromo andz. We shallderive a
contradiction. We have the following:

o= (1, 2, ..., n=3, (n—-2), (-1, n)

= (1, 2, ..., (n=3), (-2, n, (n—1))

V= (17 27 RN (n_3)a X, ya Z)

wherex # (n — 2). Suppose there exists € | outsideBp; thenu(n — 2) = n — 2, which
forcesthis:

o= (1, 2, n—-3), (n—2), (n—121), n)
t= (1, 2, n—3), (n—2), n, (n—1)
v= (1, 2, R (n—3), X, Y, 2)
w= 2, ..., (n—3), X, (n—2), Y, 1)
and we must have = n — 2. Since|l | = 6 there must st anothern’ € | N Bg. Then we
must have:
o= (1, 2, n-=3), (n—2), (n—-1), n)
= (1, 2, n-=3), (n-—2), n, (n-1)
v= (1, 2, R (n-3), X, Y, (n—2))
w= 2, ..., (n=23), X, (n—2), Y, 1)
V= ({1, 2 e (n—3), Y, X, (n—2)).

But theny andv’ are adjacent, a contradiction.
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Case2. Suppose now that the values for whictandt coincide are not consecutive; then
we have that the following vertices arelin

o= (1, 2, ..., n—-3), (n—2), (h—1), n)
= (1 2, ..., (n=3), n, (n=1, (n—2).
It is easy to verify that every vertex inoutsideBg must fixn — 1; it follows that either

| = Ir?__ll N G, or otherwisel N By contains some other element, whence we are back in
Case l. I

Proof of Theorem 4.2. Letk = n —r. We prove the result by induction ok If k < 3:

this isLemma 4.5Now letk > 4 be an integer sih that the result holds fdc — 1. Let
| be a stable set of maximal size & = G(S,)(by, ..., by), which we mg take to be
G(S)(A,...,r)byLemma4.34).

Casel. There exisB ¢ {1, ..., r} suchthat
ING(SH(A, ..., = 1§ NG ....1,B)

forsomeq ¢ {1,...,r, 8}.
Leto € |:itis clearly sufficient to prove that(p) = q. There eists somau suchthat
o looks like this:

o[ 1+u 24u ... T4+u ...
o 1 2 ... r ’
We buld a permutationt € | as follows: (i) letz(p) = g. (i) Next, notice that
sincen —r > 4, there exist at least 3 distinct elementse {1, 2, ..., n} suchthat

pé¢ {1+wv,....,r +v, ( + 1) + v}. Choose one of these suchthato (1 + v) # 1
ando ((r +1) + ¢) # B. Now definer(i +v) =i forl<i <r andz((r +1) +v) = B.
(iii) There are at least 2 elements {i, 2, ..., n} wheret is not yet defined: choose its
values scathat it has no value in common witt. Now it is clear by consuction that
T € 1N G(S)H(A,....r, B) and hence € I, and thawo (x) # t(x) for all x # p. Since
o andrt are not adjacent it follows that(p) = g.

By induction hypothesis aridemma 4.4 we are I& with this:

Case2. Foreveng ¢ {1, ...,r} there existg and there existg € {1, ..., r, 8} suchthat
INGS)E,....1, B =g NG(SH(L,....T, B).

By permuting and renaming entries we maguane without loss of generality that the
identity permutation

a=@2,....,r,r+1,...,n) e l.
Thena belongs to
I NGS)A, ..., r+1) =1gNGSHA, ..., 1,1+ 1), (7)

and it is easy to see that in fact we may tgke= q = 1. In particular,| contains all
permutations that fix every 2 i <r + 1. We shall show that

I =11NG(SHA,....1).
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Suppose for a contradiction that there existss | suchthato (1) # 1; so there exists
u # 0suchhato(i +u) =i foralll < i < r. Notice that {) implies that
o((r+1)4+u)=p8%#r+1 Now

o el NGSHL2,....1,p) = |gfme($)(1,2,...,r,ﬁ)

for someq’ € {1,...,r, B8} so asabove we conclude thdt contains every permutation
7 suchthatz(i +u) =i fori = 1,...,r andz((r + 1) + u) = B. Sincethere are at
least 2 entries not ifil + u, ..., (r + 1) + u}, we can find such a permutatianwhich
is fixedpoint free, contradicting the fact that € 1, unlessg = (r + 1) + u; but then
B¢{1,2 ....r,r + 1}, 0 we may choose a permutatigne | that fixes 1<i <r +1
suchthatz (x) # w(x) for all x € [n] and we are done.[

5. Thecase P = S

Now we investigate the shape of the ximaal stable sets in the case whdte= S;:
notice that in this case we must ha@e= [b]. First we restrict our attention to the case
whend; is equal to 0 or 1 for alil, with b > n. More precisely, recall frorxample 4that
G(S)™ denotes the grapB(Sy; [b];1,1,...,1,0,...,0) (where 1 appears times).
The vertices of this graph are the injectiongmf into [b]. We shall rguire inthis section
the following generalisation dfFheorem 4.1

Theorem 5.1. The setsg are the only stable sets of maximal size i6Sp™.

Proof. This is an easy application of the no-homomorphism lemmaTBgorem 3.3he
stability ratio of G = G(S)™ is equal to I/b. It is obvious thatthe following map is a
surjective graph homomorphism fro®(S,) onto G(S,)™:

¢:0r—(0(1),...,0(Nn)).

If b = 2 the resultis trivial, so assume from now on thbt> 3. Let| be a stable set
of maximal size inG(S,)™. By the seond part ofLemma 2.1 we have thaty (1) is a
stable set of raximal size inG(S,). By Theorem 4.1t mustbe of the forml g. Sinceb > 3
we can findo, T € IS suchthato (x) # t(x) for all x £ p. Sinceg (o) is not adjacent to
¢ (1), it follows thatp < n. Sinceg¢ is onto it follows thata, = g for all (ag, ..., an) € I,
andthus = 17 in G($)™. O

Now we investigate the shape of the maximal stable sets in the case of a fixed graph
G = G(P; C;dy, ..., dp) stillin the case wher® is the full synmetric group otb letters,
but for a more general sequence of the frequendiess mentoned earlier we have that
C = [b].

e Notice that ifd; > n/2 then there are stable sets of maximal size of the ‘wrong’
form: indeed, také to be the set that consists of all tuples that contain the erdiy 1
times.

o If the least non-zerd is equal ton/2, then of course we hawy = do = n/2
andd, = O for alli > 3. Then there are also stable sets of maximal size of the
‘wrong’ shape: consider the seof all tuples that have/2 1's apgaring in the first
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n — 1 coordinates. Clearly this is a stable set, and it does not have the right form. A
simple count yields that it has maximal cardinality.

Hence, from now on, we assume that eaichs at mostn/2 and thatthe number of
non-zerad; is at least 3. We shall also assume that 5 (see oncluding remarks).

Let | be a stable set i of maximal size. Recall thah is the largestnidex such that
dm is non-zero. We shall proceed as folloviix a ‘pattern’, i.e. a partitior® of the index
set[n], with blocks of the required size, d, .. ., dm, and letGy denote the subgraph of

G that consist®f all tuples(ay, ..., a,) suchthata; = a; if andonly if i andj lie in
the same block of. It is easy to see that this graph is isomorphic@6S,)™: indeed,
just reoder the indices to get tuples of the form(1),...,0(2),...,0(m),...,o(m))

and then identify equal coordinates. It follows fraramma 2.1that the inverse image of
| under this isomorphism is a maximal stable seGg,)™, and weknow these have
the rightform by Theorem 5.11n ather words, for every partitio6i, there exits an index
p and a valugg suchthat Gy N | consists of all tuples whospth coordinate is equal
to g. As usual, we shaltlenote this set byg N Gy. We shallprove thatthe values ofp
andqg are independent d@f. Here is the sategy. Let? andd’ be patitions of [n] with m
blocksBy, ..., Bm andBy, ..., B}, respectively. We shall say that these partitiatifer
by a trangostion if there exist distinct elemenisand j of [n] and distinct indices, v
suchthat B, = By U {i}\{j}, B, = B, U {j}\{i} andBx = By for all k distinct fromu
andv (in other words, we obtain the partitigti from 6 by choosing two blocks of and
exchanging two elements, one from each). It is clear that for every pair of part#tiand
0’, there exists a sequence of partitions

0=06,....,0 =0

suchthatd; andé; ;1 differ by a transposition for every

One way of seeing this is as follows: given a partitigrtonsiderthe n-tuple Xy whose
ith coordinate is the symbds; if i is in block Bj of the partition. Then we may transform
the wple forg into the tuple for9’ simply by a series of tr@spositions of two symbols.
Notice that with this notationGy is simply the set of alh-tuples obtained fronXy by
assigning distinct values to the symb@s .. ., By.

We shall firg¢ show e following:

Lemmab.2. Let b > 4. If 6 and ¢’ are patrtitions that differ by a transposition, and
I NGy =1§NGyand NGy = I NGy, theng=1"

Proof. Suppose by contradiction that # g’. Without loss of generality suppose that
g = 1 andq’ = 2. A case-by-case analysis of the relative positionp@nd p’ shall
exhibit elements 0fGg N | andGy N | that are adjacent. We use the tupksand Xy
for ease of discussion. Without loss of generality, suppose that the blocks in @vhiuth
0’ differ are By and By, so tha tuplesXy and Xy look something like this:

(B, Bi, ..., Bi, Bi, Bz, Bz ..., B
(By, Bi, ..., Bi, B2, Bi, By, ..., B)’

Casel. Suppose that neithgrnor p’ are in blocksBs, Bs.
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Subcasd. Suppose thgp andp’ are in the same block (&f and/or¢’), sayBs. Then the
following assignment of values leads to a contradiction:

2, ...y ..y 203, ..., ..., 3 1 ... 1 B ..)
@4 ..., 4 1, 4 1, ..., 1 2 ..., 2 B ..)

where thesynmbols By, Bs, . .. are filled as follows: if there is only one more block, put the
value 4 forXy and the value 3 foKy; if there is mae than one block, simply assign any
values toBy, Bs, ... of Xy and cycle them to give an assignmen@f . .. of Xy so that
no two coordinates are equal.

Subcas®. Suppose that andp’ are in different blocks, saBz andB4. Then he following
assignment does the job:

@ ...y ., 023 ..., ..., 3 1 .., 1 4 .., 4 Bs ..)
@4 ..., 4 1, 4 1, ..., 1 3 ..., 3 2 .., 2 Bs ..

where theéblocksBs, . . . are filled as in Subcase 1. (Note thabif= 5 and there i@ exactly
5 blocks, it is necessary to switch some values, say seBinw 5 instead of 4 in the first
tuple, etc. but this is easy.)

Case2. Suppose thap is in B but p’ is not inblocks By, B>. Assume thap’ is in block
Bs. Then he following tuples do the job:

@a ..., ..., 2, ..., ..., 2 3 ..., 3 B ..)
@4, ..., 4, 3 4 3 ..., 3 2, ..., 2, Bs ..)

where theblocksBy, . . . are filled as before.
Case3. By symmety, it remans to check this case: bothand p’ are inB; or By.

Subcasd. Both pandp’ are inB;. This iseasy, consider the tuples

A ..., ..., 1, 4 ..., ..., 4 Bs ..)
2 ..., 2 3 2 3 .., 3 B ..

where theblocksBs, . . . are easily filled.
Subcas®. pisin By andp’ is in By. This is smilar to Subcase 1. [

Remark. It follows from the lemma and the preceding remarks that we may assume
without loss of generality that = 1 for all partitions.

Lemmab5.3. Let b > 5. If 6 and ¢’ are partitions that differ by a transposition, and
I NGy = IFl, NGy and I NGy = I;, N Gy, then he block ofg that contains p and

the block ob’ that contains pmust intersect.

Proof. We follow a similar case-by-case procedure. Suppose by contradiction that the
blocks do not intersect.

Casel. Suppose thap and p’ are neither inB; nor B, (as before we assume that the
partitions differ only in theeblocks). So assume without loss of generality thad in B3
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andp’ is in B4. Then the following tuples are adjacent:

B ey o 3,04, ., .4 1 ...,01 2 ... 2 Bs ..)
@ .., 2 5 2 5 .., 5 3 .., 3 1 .., 1 Bs ..)

where theblocksBs, . . . are filled as before.

Case2. Suppose thap is in B and p’ is in B3. Then he following tuples do the job:

A, .oy s 4 ..., ..., 4 2 ..., 2 B ..)
2 ..., 2 3 2 3 .., 3 1 ... 1 B ..)

where theblocksBg, . . . are filled as before.

Case3. By symmetry, it would remain to check this cageis in By and p’ is in Bp. But
the blockB; of # and the blockB; of ¢’ share a coordinate, so we are donél

The preceding lemma has the following consequence’ leé a partition such that
NGy = I,% N Gy, and letB denote the block of that containg. Letd’ bea partition
obtained fron® by a rangpostion outsidethe blockB, i.e.0 andd’ differ by a transposition
andboth contain the blocB. Let| NGy = Ié, N Ggr. By the lasiemma, the block of’
that containg’ must irtersecblock B, andhence it must be equal 8. Now, any partition
« that contains the blocB can be obtained from via a sequence of transpositions; hence
we must havd N G, = IF1, N G,. So we have pved this:

Lemma5.4. Let6d bea patrtition such that IN Gy = Iéﬂ Gy, and let B denote the block
of 6 that contains p. Let beanyother partition (with correct block sizes) which contains
block B. Then NG, = 15N G,. O

Lemmab.5. Let b > 5. If 9 and @’ are any partitions with 1| N Gy = Ig N Gy and
I NGy = Ié, N Gy, then he block o that contains p and the block 6f that contains
p’ must intersect.

Proof. Suppose for a contradiction that this is not the case JLandd’ be partitions that
witness this1 N Gy = 13N Gy andl N Gy = Ié, N Gy, let B denote the block of that
containsp and letB’ denote the block of’ that containg’; suppose then thaB and B’
are disjoint.

Casel. Suppose that the blockB and B’ have different cardinalities. Then we may
certainly find a partitiorn which contains both these blocks and has the correct block
sizes. It is clear that the existencemtontradictd. emma 5.4

Case2. Suppose now that the blocBsandB’ have the same cardinality. We will construct
n-tuplesX = (X1, ...,Xn) andY = (y1,..., Yn), both in1 but adjacent. LetX be any
tuple (with the correcblock sizes) such tha = 1 for alli € B. Consider the tupl&
obtained fromX by ‘swapping’ the entries in blockB andB’ (the order of the entries is
immaterial). Now defin& simply by replacing everyentrgof Zbyz+1if2 <z<b-1
and ty 2 if z = b. Clearly the tuples andY are adjacent. However, the partitiarsuch
that X € G, contains the blockB, herce byLemma 5.4we have thaiX € |. The same
argument using blocB’ shows thal € |, a @ntradiction. O
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Lemma5.6. Letm> 3,letd; > dp > --- > dy, bepostive integers such that

m
Zdi =n>1,
i=1

dm < n/2
and
di1 <n/2.

Let F be a family of intersecting subsets[of such hat both the following conditions
hold:

(i) each setin F is a block of some partiti6rof [n] with blocks of sized ..., dn
(i) each such partitio® has one of its blocks in F.

Then there exists an € [n] such hat F consists of all subsets @ifi] of one of the
prescribed sizesqd. . ., dy that containii.

Proof. Let P(n; dy, ..., dm) denote the number of partitions of [n] into bloks of sizes
di,...,dm. Let{di > --- > d;} be thedigtinct valuesthat thed;’s take. We have a
recurrence:

k

P(;dp.....0m) =) <dri‘_ _11)P(n —dijidp, .., dij—1, 041, ... dm). (8)
j=1 "

This is easy to obtain: to each partitiérwith the right bbck sizes, we associate its block
(say of sized;;) thet contains the element 1; the rest of the partition is a partition of the
remairing n — d;; elements in blocks of the remaining sizes.

Consider the map that assigns to every partitiari [n] with blocks of sizedy, . . ., dy
the (olviously unique) blockfg of & which isinF. Let f € F. Of course if f = fg
then f is a block of6. Conversely, iff happensto be a block of some partitiof then
we must havefy, = f since everypair of members of intersect. Hence the partitions
that map tof are precisely those that haeas a block: iff has sized; then there are
P(n—d;dg, do,...,di—1,dit1,...,dn) of these.

Let Fj denote the set of membersPfwith cardinalityd;;, and letr; denote the number
of elements irF;j. Then he above argument shows that

k
P(;di,....dm) =Y ajP(n—dij;d1, dp, ..., dij 1,011, ..., ). 9)
j=1

SinceF; is an intersecting family, the Eod~Ko-Rado inequality T] tells us that

for everyj. It follows from Eqgs. 8) and Q) that

o n—1
= dij—l
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for everyj. Fix jo < n/2. By the Hilton—Milner inequality 10] we haw thatFj, consists
of all sets that contain some fixed valsid_et X € F. Since|X| + jo < n, itis clear that,
if X intersects every set iRj,, then t must ontains. Herce for everyj, F;j consists only
of sets that contain the elemesyiand the omputation ofy; above shows that in fact every
set of cardinalityd;; that contains must be inFj. [

Theorem5.7. Letb > 5 and lety2 > diy > d > ---dp, > O be integers, with
n=>,d > 1 If there are at least 3 non-zerg’s, then he sets 3 are the only stable
sets of maximalize in thegraph G(S,; C; dy, ..., dp).

Proof. Let| be a stable set of maximal size®(S,; C; dg, ..., dp). By Lemma 5.2here
exids auniqueq suchthatl N Gy = Iq(e) N Gy for all partitions 6. For eachd, let By
denote the block of which containsp(f), and letF be the set that consists of all these
blocks. ByLemma 5.5F saisfies the hypotheses dfemma 5.6 and hus there exists a
uniquep such that these blocks are precisely those that conpain]]

6. Concluding remarks
The case P= §withb< 4

Although we have verified a few small cases whea {3, 4} it is apparent that the
method we used fdb > 5 fails in these cases and that a different approach is required.
Notice that the cases wheRe= §, or P is trivial are related, as for example in the case
whered; = dz = - - - = dp and we obtain the same graph, providee: [b].

The case P=1

When the group P is trivial, we have the following result:

Theorem 6.1 ([12]). If P is trivial and dy > do the IFl) are the only stable sets of maximal
size in the graph @P; [b]; d1, ..., dp).

From this one can easilgeduce (yet another) characterisation of the stable sets of
maximal size in Kneser graphs: let4 r < n/2 and onsider the grapl&(1; [b]; r,
1,...,1) where 1 appeans —r times, and thébomomorphism

¢: G [bl;r,1,...,1) — K(r,n)

which maps a tupléxi, . .., Xn) to the set of indices suchthatx; = 1. Let| be a stable
set of maxinal size inK (r, n): sincethese grphs have the same independence ratio, the
no-homomorphism lemma and the last result guaranteepthit ) = Ié, which means
that all the members df containp. Recent results on stable sets of maximal size in powers
of regular graphs, including the case of Kneser graphs, may be fout in [

Automophisms of G

It is easy to verify that under mild conditions both the action§pand P are faithful
on the graphG = G(P; C; dy, ..., dp): all that is requied is thatm > 2 and tlat the
union of the orbits of 1< i < munderP is equal to[b] (which can always be assumed).
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Furthemore if soma; is not equal to 1 then in fact égoup of automorphisms @& will
contain a copy of, x P. Ifthe | 8 are the only stable sets of maximal sizeédnthen under
what conditons is AutG) = §, x P?

Chromaticnumber of G

If P is trivial, then the special case of Kneser graphs shows that the chromatic number
of G may be quite difftult to compute11, 14]. On the other hand, whelA = S, the graph
contains a copy oKp, and the priection on a oordinate shows that its chromatic number
is b. What can be said for more general subgroBpsf S,?
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