PAIRWISE COLLIDING PERMUTATIONS AND THE CAPACITY
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ABSTRACT. We call two permutations of the first n naturals colliding if they
map at least one number to consecutive naturals. We give bounds for the ex-
ponential asymptotics of the largest cardinality of any set of pairwise colliding
permutations of [n]. We relate this problem to the determination of the Shan-
non capacity of an infinite graph and initiate the study of analogous problems
for infinite graphs with finite chromatic number.

1. INTRODUCTION

Let n be an arbitrary natural number and let [n] be the set of all natural numbers
from 1 to n. We will say that two permutations of [n] are colliding if they map at
least one element of [n] into two consecutive numbers, i.e. into numbers differing by
1. It is then natural to ask for the determination of the maximum cardinality p(n)

of a set of pairwise colliding permutations of [n]. One easily sees that this number
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grows exponentially with n and its asymptotic exponent lies between log, and
1. We will prove this and some better bounds later on.

Certain graphs having as vertex set the permutations of [n] have been introduced
before by Cameron and Ku [1] and Larose and Malvenuto [10], cf. also Ku and
Leader [9] for a generalization. These authors considered Kneser—type graphs in
which they studied the growth of stable sets describing sets of permutations that
are ”similar” in some sense, whereas our definition of adjacency corresponds to
being ”different” and distinguishable in some other, particular sense. In fact, the
above Kneser—type problems, unlike ours, have no immediate relation to capacity
in the Shannon sense.

In this paper we will generalize our introductory problem in several ways. We will
consider arbitrary infinite graphs over the natural numbers and introduce various
new concepts of capacity. As always, graph capacity measures the exponential
growth rate of the largest cliques induced on the Cartesian powers of the vertex
set of a graph. In case of an infinite vertex set such as the naturals this is not
always interesting, for the graph in itself might have infinite cliques. Then it is
reasonable to restrict our attention to particular subsets of the power sets, e. g.
those representing permutations. We will present some simple bounds for the value
of the so obtained new capacities.

2. PERMUTATION CAPACITY

Let G be an arbitrary graph with a countable set of vertices. Without loss of
generality we can suppose that the vertex set V(G) of G is the set N of natural
numbers. Further, let us denote by G[A] the subgraph of G induced by an arbitrary
subset A of the vertex set of G. As usual, we also consider, for every natural
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n € N, the power graph G™ whose vertex set is N”, the set of n—length sequences
of natural numbers. Two such sequences x € N and y € N” are adjacent in G™ if
X = T1T2...2, and Y = y1Y2 . .. Y, have at least one coordinate i € [n] for which
{zi,y;} € E(G), i.e. if the vertices z; and y; are adjacent in G. (This concept of
power graph is rooted in information theory. If we interpret adjacency of vertices
of a graph as a relation of distinguishability, it is very intuitive to extend such a
notion to strings of vertices in the above way, with the meaning that two strings
are distinguishable if we can distinguish them in at least one of their coordinates.)

Throughout this paper we write (¥ ) for the family of all n—element subsets of X.
For an arbitrary set A € (i‘) we write R(A) for the set of all the n—length sequences
without repetitions on the alphabet A. As usual, we can think of a sequence in
R(A) as a permutation of the set A. In particular, when A = [n], the sequence
X =21 ...2%, € R([n]) represents the permutation of [n] which maps i into z;.

We denote by G(A) the subgraph of the power G™ induced by R(A) and by
p(G, A) its clique number. We set p(G,n) for the largest cardinality of a clique
induced by G™ on the sequences corresponding to the permutations of an n—set in
V(G), ie.

p(G,n) = max p(G, A).
Ae(y)
Finally, we define
p(G) = limsup 1 log, p(G,n)
n—oo N
and call it the permutation capacity of the graph G.

In this paper we consider some infinite graphs and try to determine their per-
mutation capacity. Since our graphs have a countable set of vertices, the value of
their permutation capacity might well be infinite. The same is true for Shannon
capacity. In fact, to our knowledge Shannon capacity of infinite graphs has not
been considered so far, even though it makes perfect sense and will be discussed
below.

The problem of the asymptotic growth of cliques of particular induced subgraphs
of G™ as n goes to infinity, is a key ingredient in determining the Shannon capacity
of graph families in the sense of Cohen, Korner and Simonyi [2], where the sets
inducing the subgraphs are formed by all the sequences "of a given type”, in an
information theoretic sense (see Csiszar and Korner [3] for a definition and more
on this). All the sequences of a given ”type” form a minimal set that is invariant
under the action of all the permutations of the coordinates of the sequences. Our
present concepts are natural extensions to the case of infinite graphs of Shannon
capacity in a given type, in the sense of [3].

3. EXAMPLES

Let us start with an atypical and even somewhat trivial example, just to rephrase
the already cited results of [1] and [10] in our present terms.

Consider the graph G, where V(G) = N and E(G) = {{z, 2} : € N}, consisting
of loops on the natural numbers. When A = [n], its set R(A) is the set of permuta-
tions of [n] and two permutations x =z ...z, andy = y; ...y, are adjacent if and
only if there is a coordinate i € [n] such that z; = y;. We will denote by x~! the in-
verse of the permutation represented by the sequence x. With this notation, x and
y are adjacent if the product xy ! is not a derangement. This is the complement
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of the graph of permutations studied by Cameron-Ku [1] and Larose-Malvenuto
[10], that is the Cayley graph of permutations with generators the derangements.
It is obvious that p(G,n) = p(G, [n]) = (n—1)! and thus the clique number (n—1)!
is super—exponential in n. In fact, the above authors show far more than this; they
prove that the trivial construction, consisting of the set of all permutations that
map an arbitrary fixed natural [ into an arbitrary fixed natural m, is the unique
way to achieve the clique number. This graph is somewhat artificial in the present
context. If in a graph the only edges are loops, then adjacency corresponds to ”be-
ing similar”. In graph capacity problems one usually considers only graphs without
loops and interprets adjacency as some sort of distinguishability between vertices.
From now on we will restrict attention to these cases.

One of the simplest and perhaps most natural examples of our present problem is
furnished by the (semi-)infinite path L whose vertices z and y from N are adjacent if
they are consecutive in the natural order, that is |y—z| = 1. Clearly, w(L) = x(L) =
2 and thus the Shannon capacity loglim, . con Y/w(L™) equals 1 (cf. Shannon [13],
Lovész [11] and in particular Cohen, Korner and Simonyi [2], where the problem
is reformulated, geared towards the subsequent generalizations [6] and[7], in the
present terms ). We will show that
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For the infinite path L, denote simply by L(n) rather than L([n]) the subgraph
induced by the set A = [n] on the n—th power of L: its vertex set is the set of all
the permutations of the set [n] (the permutations of n elements) and two of such
permutations x = x1...2, and y = y; ...y, are adjacent in L(n) if and only if the
following condition holds:

log, <pL) <1l

(1) Jdien]: |y — x| =1

Note that, as observed in [5], every finite graph is an induced subgraph of L™ for
some value of n.

The two graphs above belong to a more general class of graphs G(D) depending
on a finite subset D of N of ”allowed differences” as follows: its vertices are, as
before, the natural numbers N and {x,y} € G(D) if and only if |z —y| € D. When
D = {0} we have the all-loops graph described above; when D = {1} we have
G(D) = L.

4. THE INFINITE PATH

In this section we will study the behavior of the cliques in the powers of the
(semi-)infinite path L. In particular, we will derive some recursive inequalities for
the value of p(L,n).

Observation. For any n—element subset A of the naturals the graph induced on
it by L is isomorphic to a subgraph of the path of n vertices induced by L on the
set [n]. Hence by an obvious monotonicity

p(L,n) = jn‘c(mgg) p(L,A) = p(L,[n]).

In other words, p(L,n) is the maximum number of permutations of [n] such that
for any two of them, there is an element of [n] mapped into two consecutive integers
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from [n]. Recall that this is the very same problem we introduced at the beginning
of this paper where we wrote p(n) for p(L,n).

The following recursive inequality will play a key role in our attempt to determine
the permutation capacity of the infinite path.

Proposition 4.1. The function p(L,n) is super—-multiplicative:
p(L,n+m) > p(L,n) - p(L,m).

Proof. Take a clique C in L(n) of maximal size p(L,n) and a clique D of maximal
size p(L,m) in L(m). Denote by D + n the set obtained from D by adding n to
each element of the sequences of D:

D+n={z14+n..2m+n:x1...2 € D} CR{n+1,...,n+m}).

Clearly the size of the clique D +n in G({n+1,...,n+m}) is the same as that of
D. Hence the product construction

Cx(D+4+n)={z1...Tngm :21...2n € C;Tpi1...Tpym € D +n} C R([n+ m)),

obtained by concatenating sequences from C to sequences from D+n, gives a clique
in G(n + m) of size p(L,n) - p(L,m).
O

By the well-known elementary inequality called Fekete’s lemma (see [14]), the
last proposition implies that the limit lim, o ¥/p(L,n) exists, and its logarithm
coincides with the permutation capacity p(L).

It is immediately obvious that the capacity p(L) is upper bounded by the log-
arithm of the chromatic number of L, and thus is at most 1. The following non—
asymptotic refinement might be interesting.

pLym) < <LnJ>

Proof. Call parity pattern of a permutation x = z1xs ...z, the binary sequence of
length n obtained when substituting every entry in x by its congruence class modulo
2. Now observe that if two permutations x and y are colliding, which means that
there is a coordinate ¢ such that x; and y; are consecutive integers, then in the
i—th coordinate of the corresponding parity patterns there is a difference in 0 and
1, implying that their parity patterns are different: so in a clique of L(n) there is
at most one permutation for any given parity pattern. Finally, the parity pattern
of a permutation of [n] has |5 ] 0’s and [5] 1's.

Proposition 4.2.

d

Proposition 4.3.

Proof. Take a clique C' of maximal size for L(n — 1) and a clique D of maximal
size for L(n — 2). Now set C = {z1...2p—1n : x1...2y—1 € C} and D =
{z1...xp_on(n—1): x1...2,_9 € D}. In this way any element from C will collide
with any element from D in the last coordinate because of the edge {n,n — 1}, so
that C'U D is a clique in L(n) of size p(L,n — 1) + p(L,n — 2).
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Corollary 4.4.
1+V56
logy(—512) < p(L) < 1.

Proof. Although the present upper bound to the permutation capacity of the
infinite path is obvious as observed before, for the sake of completeness we deduce
from Proposition 4.2 that + log, p(L,n) < L log, (ng) <1
For the lower bound, Proposition 4.3 shows, together with p(L,1) = 1 and
p(L,2) = 2, that the sequence p(L,n) grows at least as fast as the basic Fibonacci
sequence F'(n): since lim,, .o V/F(n) = 1+T\/57 we get logz(l%‘/g) < p(L).
1

A non-recursive way of constructing a clique of size F'(n) in L(n) is the following.
Consider the set S of permutations obtained from the identical permutation by
exchanging two consecutive integers, i.e. S = {s; : ¢ = 1,...,n — 1} where s; =
(7,4 1) is the adjacent transposition, in cyclic notation. For I = {i; < ... <y} C
[n—1] let s; =84, ...8;,. Let

Cn)={JC[n—1]:VYi,j€J sis; = sjs;}

be the family of subsets of [n — 1] whose corresponding adjacent transpositions are
pairwise commuting. Since for ¢ # j one has s;s; = s;s; if and only if | — j| > 2,
we can encode the elements of C(n) as zero—one sequences of length n — 1 with
the property that no consecutive 1’s appear in the sequence. Since the number of
zero—one sequences of length n without consecutive ”717’s is known to be F(n), and
since each of these is in bijection with some element of C(n), we see that in C(n)
there are exactly F'(n) sequences. Furthermore for I,.J € C(n) with I # J one has
{s1,85} € E(L(n)): let h = min IAJ, where A denotes the symmetric difference of
sets, and suppose that h € I; then clearly h & J, h+1 ¢ I because of the condition
on C(n) and h—1 ¢ J by the minimality of h: whence we deduce that s;(h) = h+1
and s;(h) = h, that is sy and s; are adjacent.

For n = 4, the set of binary sequences {000,100,010,001,101} represents C(4)
and the corresponding set of permutations is {id; (12); (23); (34); (12)(34)} in cycle
notation, i.e.

{1234;2134;1324; 1243; 2143}.

However, we will see very soon that the lower bound in the last Corollary can
be improved. The asymptotic improvement we obtain will be a direct consequence
of the following inequality that follows easily from Proposition 4.1.

Proposition 4.5. For every n € N we have:
p(L) = log i/ p(L,n).

Proof. By Proposition 4.1 we have "Y/p(L,nk) > {/p(L,n).
O

This justifies our interest in calculating p(L,n) for the first values of n. The
results are shown in the following table.
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n |[1]2[3[4]5]6 7
p(Lon) | 1]2]3[6]10]20]35

For n = 7 we built a clique of size 35 by putting together 7 cliques each of size
5, obtained as cyclic shifts of certain sequences of length 5. Before explaining this
construction in more detail, we prove a general result on cyclic shifts for any graph
G.

Let A C Nwith |A| = k. Let m = a; ... aj be an arrangement of A = {aq,...,ax}
on a cycle of length k: we say that 7 is a circular arrangement of A. We define the
circular distance Oy (a;,a;) of a; and a; with respect to 7 as follows:

0 ifi=j
Or(a;,aj) = ¢ min{j —i,k+i—j} ifi<y
Or(aj,a;) if i > j.

We say that a circular arrangement m = aj...ay is complete if for every d =
1,..., %] there exists an edge {a;,a;} € E(G) with 9, (a;,a;) = d.
Lemma 4.6. If 1 = ay...ax is a complete circular arrangement of A, then the
subset S(m) of R(A) consisting of all the cyclic shifts of m, i.e.
S(T() = {7Td = QdAad+1 - - - Ad4(k—1) * d= 1, ey k}
where
a, = as < r = s(mod k),

is a clique in G(A).
Proof. It is enough to show that for any ¢ = 2,...k one has {m, 7'} € E(G(4)).
First start with any ¢ such that ¢ < |£]: since 7 is complete, there exists {a;,a;} €
E(G) such that 0r(a;,a;) = t: we can fix ¢ < j. If the circular distance ¢ is
achieved as j — 4, then {m, 7'} € F(G(A)) since in coordinate i one has {m;, 7!} =
{a;,a;} € E(G), and also {m,7*~'"1} € E(G(A)) since in coordinate j one has
{wj,wf_tﬂ} = {aj,a;} € E(G); if the circular distance ¢ is achieved as k + ¢ — j,
then {m;, 7t} = {a;,a;} and {m;, 7F "'} = {a;,a;}. In any case both {r, 7'} and
{7, 7F=t1} are edges of G(A); consequently {m, 7'} € E(G(A)) for t =2,...k.

O

Proposition 4.7.

p(L,7) = 35.
Proof. Let I' be the set consisting of the following sequences:
oy = 23546
of = 32546
af = 23547
of = 54237
1 = 34651
7 = 65341
Bo = 14357.

Each sequence in I' is a complete circular arrangement of the corresponding set of
its entries. By Lemma 4.6 it follows that S(v) is a clique, for any v € T.
First we show that A; := S(a}) U S(af) is a clique in L({2,3,4,5,6}).
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X

Observe that any sequence of the form xy546 is already a complete circular arrange-
ment of {z,y,4,5,6} (we are not using the edges {2,3} and {3,4} to achieve the
adjacencies): the same argument as in Lemma 4.6 makes clear that (a})? is adja-
cent to any element of S(af) of the form (af)! with ¢ # d, while when ¢ = d then
()4 and (af)¢ will be colliding in coordinate d, because (a/f)? is obtained from
(o)) by interchanging 2 and 3.
Now we show that As := S(af) U S(af) is a clique in L({2,3,4,5,7}).
Notice that we have o) = ¢oah, with ¢ = (2,5) 0 (3,4), where (i, j) is the transpo-
sition of ¢ and j. Clearly {a}, a4} € E(L({2,3,4,5,7})): they collide in the second
coordinate through the edge {3,4}. Observe that we can find two 2-sets {a,b}
(precisely {3,5} and {2,4}) at circular distance respectively 1 and 2 in a4, such
that the corresponding 2-sets of the form {a, ¢(b)} (precisely {3,2} and {2,3}) are
edges of L: hence the same reasoning as in Lemma 4.6 can be applied to establish
that we also have {a}, (a4)?} € E(L({2,3,4,5,7})) for 1 < d <5.

As for By := S(B1) U S(8Y), we notice that the bijection

(2345 7
¢= ( 345 6 1 )
is an isomorphism of L({2,3,4,5,7}) into L({1,3,4,5,6}) such that 8] = ¢ o o}
and (] = ¢goal: so the argument used for the set Ay applies to By as well, showing
that the latter is a clique in L({1,3,4,5,6}).
Now let sX := {sx : x € X} (resp. Xs) be the set of sequences obtained from
those in X by prefixing (resp. postfixing) to each of them the symbol s and set

A=1A,7 U 1456,
B =2B;7 U 25(52)6.

The sets A and B are both cliques in L(7) since the adjacency between elements
of 1A;7 and 1456, or between those of 2B17 and 25(52)6, is guaranteed in the
last coordinate, where we use the edge {6,7}. Finally C = AU B is a clique in
L(T7), since the adjacency between elements of A and B is established in the first
coordinate, where we use the edge {1,2}. Obviously, C' has 35 elements.

|

Conjecture. Encouraged by the previous clique of size 35 we are tempted to
formulate the following conjecture:

PL,m) = <LnJ>
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Unfortunately, we do not have more serious reasons to believe in it.

Now we are ready to improve the lower bound p(L) > logz(l%‘/g) = 0.6942... of
Proposition 4.4.

Proposition 4.8.
p(L) >0.732....

Proof. Combining the statement of Proposition 4.5 with that of the last Proposi-
tion 4.7 we immediately see that p(L,n) > 357, and p(L) > +1log, 35 = 0.732.. ..
O

5. SURPRISE CAPACITY

Let G be once again an arbitrary graph with countable vertex set N and let G™
be the same power graph as before. We will say that the set C C N™ generates a
surprise clique in G™ if C generates a clique in G" with the property that for any
{x,y} € (N;) the ordered pairs of coordinates (x;,y;) are all different. We shall
denote by S(G,n) the maximum cardinality of a surprise clique in G™ and will call
the limit

lim sup 1 log, S(G, n)
n—oo N
the surprise capacity of G. Clearly, this quantity is lower bounded by the permu-
tation capacity of the same graph. (At the end of the paper we will comment on
the intuitive meaning of this definition.)

Proposition 5.1. The mazimum cardinality of a surprise clique in L™ is 2™, where
L is the infinite path.

Proof. We shall use the easy and well-known sub-multiplicativity of the chromatic
number, i.e. x(G™) < [x(G)]™. To verify this, let ¢ : V(G) — N be an optimal color-
ing of G. Then the map ¢" : [V(G)]™ — N" defined by ¢"(x1 ... 2,) = c¢(x1) ... c(zy)
is a proper coloring of G™. The chromatic number of the infinite path L is 2: so for
the power graph L™ one has x(L"™) = 2" and consequently w(L") < 2™. It follows
that if C' is a surprise clique in L™, then

] <2,

since any surprise clique is in particular a clique.
We now construct a clique of cardinality 2", showing that

S(L,n) > 2"

Our construction will consist of appropriately chosen sequences of length n, with
entries from [2n], where lack of repetition will be ensured by strict monotonicity.
For any binary sequence x of length n, define

n
a(x) := z1, 21 +x27...,Zazj,
j=1
that is

(2) a(x); == Zajj
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Apply this to binary strings on the alphabet {1,2} and set
C :={a(x):x € {1,2}"} C [2n]".

By construction one has a(x) # a(x’) if and only if x # x’. Hence C' has the same
cardinality as the set of all the binary sequences of length n. Now we show that C'
is a clique in the n—th power of L. Take x,x’ € {1,2}" with x # x’ and let s be the
first coordinate in which the two binary sequences differ: then for the corresponding
sequences in C' we have {a(x), a(x')} € E(L"), since |a(x)s —a(x')s| = | > 2j-, 2 —
Zj:1 2| = |zs — 25| = 1. Finally the condition for C to be a surprise clique holds,
since by the definition (2) its elements are strictly increasing sequences, hence there
are no repetitions of symbols.

O

The above proposition shows that the surprise capacity of the infinite path is 1.

6. UNIMODAL PERMUTATIONS

Let us return to L(n), the graph induced in the power graph L™ by the set of all
permutations of [n]. In order to see the wealth of relatively large cliques in L(n) it
might be interesting to understand the density of cliques in the relatively small set
of unimodal permutations.

We say that a permutation a of [n] is unimodal if there is an index h € [n] such
that a1 < ag < ... <ap > apt1 > ... > a,. We will introduce a new variant of our
introductory problem of determining the number p(n) of the maximum cardinality
of a set of pairwise colliding permutations of n (recall that this concept was at the
core of our permutation capacity problem).

Let us denote by U(n) the maximum cardinality of a set of pairwise colliding
unimodal permutations of n. We claim

Theorem 6.1.
1+V5

1
log, < limsup —log, U(n) < 1.
n

Proof. The upper bound is an obvious consequence of Proposition 4.2, since
Un) < p(L,n).

Fix o € (0,1) and 3 € (0,1) in a way to be specified later. Write I, = |an]
and k, = |fan]. Now we shall adapt the construction in the proof of Proposition
5.1 to define our unimodal permutations. To this purpose consider the set B,, of
all the sequences in {1,2}!» in which the symbol 2 appears k,, times. Thus by the
well-known asymptotics of the binomial coefficients (Lemma 2.3 p.30 of [4])

l 1
3 B,=(")> olnh(kn /1)
3) Bl = () 2 ,

where h(t) = —tlogyt — (1 — t)logy(1 — t) is the binary entropy function.

To every x € B, we shall associate as before the increasing sequence of nat-
ural numbers a(x) whose i—th element a;(x) is as in formula (2). Suffixing to
the sequence a(x) the naturals from [n] \ {a1(x),...a;,(x)} in decreasing order
we obtain the unimodal sequence X of integers from the set [l,, + kj], where
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ln + kn, = |an]| + |Ban]. Then in order for X to be a permutation of [n], we
must have a(1 4 5) < 1, i.e.

(4) a< m

Clearly the relation between x and X is bijective and therefore we have obtained |B,, |
unimodal permutations. As in Proposition 5.1, we have that if x # x’, then a(x)
and a(x’) are colliding: so the corresponding sequences X and x’ will be colliding
too.

We just saw that the set é; = {X : x € B,} has the same cardinality as B,, and
it is a clique of unimodal elements of L(n).

Recalling the definition of U(n) and (3), we deduce that

1
U > olnh(kn/ln)
(n) 2 n+1
whence
lim sup — - log2 U(n) > hmsup h( n/ln) = ah(B).

n—oo
Choosing the largest o with respect to the constraint in (4), i.e. a = and

maximizing in § we obtain:

1
5

h(3) 1+5
llﬂsolip - log, U(n) > ﬁr&%xl 110 = log, 7

In order to see that our last entropy expression has as its maximum the logarithm
of the golden ratio, as claimed, the reader is referred to [8].
O

It is tempting to believe the lower bound to be tight, even though we have no real
reason to do so.

7. CONCLUDING REMARKS

In this paper we have introduced several closely related concepts of capacity for
infinite graphs. It is not clear whether these can have the same interpretation in
terms of Shannon’s theory of information as do the concepts of Shannon capacity
[13] and Sperner capacity [6]. In particular, the Shannon capacity of a finite simple
graph is the highest rate at which one can transmit data over a discrete memoryless
(stationary) channel with zero probability of error. Recently Nayak and Rose [12]
showed that Sperner capacity is the key in determining the analogous transmission
rate for compound channels with an uninformed coder—decoder pair.

The common feature of our models is that for no codeword pairs can we transmit
the same symbol pair at different instants of time. This restriction might be of
relevance if one is to guarantee security of transmission; an intruder can never
experience the repetition of a symbol configuration and thereby learn how to adapt
to a hitherto unknown communication situation it creates.

Having a disposable symbol set does not necessarily mean that the channel has
an infinite input alphabet. In fact note that in all our code constructions every
symbol has at most seven different ”successors”.

Acknowledgements. We would like to thank Miki Simonovits for his friendly
interest.
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