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Abstract. A conjecture of Stanley states that if the generating function of a poset P is symmetric,
then in fact P belongs to the family of posets induced by some skew shape A/pu. In this paper we
show that if the set L(P) of the linear extensions of a poset P is plactic-closed, then P is a poset
induced by a skew shape.

Let P be an alphabet consisting of n letters, with a total order <. usually thought
of as [n], and let <, be a partial order on P. As usual P* indicates the free monoid
on the alphabet P. Let L(P) be the set of words of P* which are a linear refinement
(or linear extension) of P: that is, w € L(P) if
(1) wis a standard word of length n (i.e., in w all the letters of P occur without

repetition)

(11) whenever x <, y then x appears on the left of yinw = ...x...y...

Given a skew shape 4/u of weight |4/u| = n and a totally ordered alphabet P, a
family P,,, of posets can be defined by filling the skew shape 4/p with the letters of
P in increasing order (with respect to <) on the rows, and in decreasing order on
the columns, and then by rotating it 45° counterclockwise.

For example, if P = [8] with the natural total order, and 1/u = 443/21 then P,
contains the following posets:

3 6 3 7
/ \S/ \8 N \5/ \8
R NSNS
I 4 7 I 4 6
4 6 4 7
2/ \5/ \8 2/ \S/ \8
AT Z Nl N
1 3 74 I 3 6
For a standard word w on P define its composition %(w) as the composition
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(g, )

where w = u,...u, each u; is an increasing word and k is minimal. For a

composition ¢ = (cy,...,¢;) of n, define the function of infinitely many variables:
F.= Z NiXs X

'ttl <"(‘1*1 Syea S"‘(‘l‘(“,_('\-rlh'-,*ls S“.n

For example, if w = 312 thenu, = 3, u, = 12, 6(w) = (1,2) and F ;) = Z_‘ 2 vy XY2:
To any subset L of permutations, we can associate the function

F.= % Feu

wel

and to the poset P, the function

I'(P) = Fl,(l’) o Z F’(-(w)
we L(P)
Remark 1. This definition of 7°(P) is equivalent to that of the generating function
for the poset (P, <,) given via P-partitions, and is defined as follows [ 1]: denote by
A(P) the set of all P-partitions, i.c., the functions f: P — N such that, if i <, j then
J(i) < f(j),and if i <pjbuti> j(in the total order of P) then f(i) < f(j). Then
F'(P)= 3} Xpa)Xpzy-- - Xpom-

J e A(P)
In [6] Stanley conjectures that if I'(P) is a symmetric function, then there exist
A, pusuch that Pe P, .
Recall [4] that the plactic congruence ~ on the set of words in P* is defined by
Knuth’s relations [ 3]:

f x<y<z then yzx~ yxz
and zxy ~ xzy

f x<y then yxx ~ xyx
and yyx ~ yxy

That 1s, we interchange the order of two letters whenever they are preceeded or
followed by a letter that is in between.
The following facts motivate the consideration of the plactic congruence:

Fact 1. If P e P,,,, then L(P) is plactic-closed.

This may be seen directly from the definitions, and is proved in [2].

Fact 2. If L is a set of permutations which is plactic-closed, then F; is a symmetric
function.

This result may be obtained by a standard application of the Robinson-
Schensted correspondance.

Now, supposc that Stanley’s Conjecture is true. If L(P) is plactic closed, then
1'(P) is a symmetric function by Fact 2, and the Conjecture states that Pe P,,,. In
this paper we give a direct proof of this result:

Alpt
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Theorem 1. If L(P) is plactic-closed, then P e P;,. Jor some skew diagram i/u, i.e. it
is one of the orders induced by a skew diagram Al

To prove this theorem, we will study the Hasse diagram of the poset locally,
giving some restrictions to its subposets.

It is casy to see that cvery linecar refinement of a subset Q of P appears as a
subword of some linear refinement of P, but in general not as a factor.

Recall that a subposct Q of a poset P is convex if, whenever p € P 1s such that
41 =p P <p{,. lorsomegq,, q, € Q, then p € Q.

In this particular case we can state the following:

Lemma 1. If Q < P is a convex subposet of a poset P then, for each w e L(Q), there
exists w e L(P) such that w is a factor of w. That is, any linear extension of Q appears
as a factor of some linear extension of P.

Proof. By induction on |P\Q|. Let A, B, C be the following subsets of P\Q
A = {x € P\Q|3q € Q such that x <, q|
B = {x € P\Q|3q € Q such that x >, q}
C = {x e P\Q|x is not comparable to any element of Q|

Clearly AUBUC = P\Qand ANC = BNC = &.

Furthermore we have also AN B = g5: if not. let y € AN B, then there exist g € A,
q" € Bwith ¢’ <, y <, ¢q, and the convexity of Q implies y € Q, a contradiction. So
A, B, C form a partition of P\Q.

IfIP\Q| = 0, then Q = P and the statement is trivially true.

Now suppose |P\Q| > 0.

If C # @, let ce C. Now Q' = QU{c} is still convex in P: indeed there is no
clement p e P, g € Q such that ¢ SpP =pqOr q<pp<,pc otherwise ¢ would be
comparable with Q. We have cw e L(Q'); since |P\Q’| < |P\Q]|, by induction, there
exist u, v such that w = u(ew)p = (uc)wov € L(P).

IfC =@, and 4 # @, let a € A be maximal with respect to the partial order <,.
In this case Q" = QU {a} is convex in P: otherwise there exist p € P\Q, q € Q with
@ <p p <p 4, so that p would be in 4 and p >, q, contradicting the maximality of
a. Furthermore we cannot have g <, p <p a, because by definition of 4 there exists
q" € Q such that a <, q', 50 ¢ <pa <, ¢ and the convexity of Q says a € Q. Now
observe that aw e L(Q'): if not, there exists q€Q with g <, a, meaning that
a € AN B, impossible. Since |P\Q'| < |P\Q|, by induction there exist u, v such that
w = u(aw)o € L(P).

Finally suppose C = @5, A = &, and B # @, let b be a minimal element n B. A
similar argument as above shows that Q" = QU {b} is convex in P and wh € L(Q"),
so that wh is a factor of some word of L(P), and the lemma is proved. (]

Corollary 1. If Q is convex in P and L(P) is plactic-closed. then L(Q) is plactic-closed.
b : I

Proof. Denote by n: P* — Q* the canonical projection of the set of words on the
alphabet P onto the set of words on Q, which to any u € P* associates the word
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n(u) of Q* obtained by erasing in u the letters of P\Q. It is clear, by the definition
of a lincar refinement., that if u e L(P) then n(u) € L(Q). Let we L(Q)and w ~ w';
we want to show that w' € L(Q). By Lemma 1, we can find w = uwp e L(P). We have
W~ uw'v (as ~ is a congruence) and uw'v e L(P) since L(P) is plactic-closed: in
particular its projection m(uw'v) = w’ is in L(Q). []

Denote by <, the covering relation of the partial order <,, that is i <, j if
and only if i <, j and no clement k e P satisfies i <p k <pJ. Recall that the Hasse
diagram of a poset P is the graph whose vertices are the clements of P and whose
edges are the covering relations, such that if i <pJj then j is drawn above i. For
instance, if P is given by i <, j, j <p k, i <p k, then its Hasse diagram is

k k
J J
i i

and not

We adopt the following convention: if i <pJj we draw

J ili<j
i
i i
{

So the Hasse diagram of the first poset in the example will look like
3 6
\ \
VA VAN
- \ C
7N\ N\
I 4 7
From now on we suppose that L(P) is plactic-closed.

Lemma 2. None of the following confiqurations appear in the Hasse diagram of P:
. : q iyig [ )

Q,=\/ Qz=\/ Q3=/\, Q4=/\

Proof. First remark that all of the Q,’s are convex subposets of P, because we are

; : J | S
looking at the Hasse diagram. Now suppose that 0= J .\/ 1s in the Hasse
[
diagram of P.
This means i <, j with i <j and i <pk with i <k. If j <k [resp. k < j] we
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have i < j <k [resp. i <k <j] so ikj ~ kij [resp. ijk ~ jik] with ikje L(Q,), but
kij ¢ L(Q,) [resp. ijk € L(Q,), but jik ¢ L(Q,)], a contradiction, as L(Q,) is plactic
closed by Corollary 1. Similarly, one can prove that Q,, Q,, and Q, do not appear

in P. L]
Lemma 3. For any i € P, there can be at most two elements covering i and at most

iwo elements which are covered by i.

J k
Proof. Suppose that j, k >, i; then by Lemma 2 we must have \/
l

h J h k
Forany other h € P which covers i, we would have v orelse v
i i

-~

as subposct of P, against Lemma 2.
The same argument shows that i covers at most 2 elements. ]

Lemma 4. If the subposets

k k
Q= ¢ or Q= @
[ [
appear in the Hasse diagram of P, then they are not convex in P.

Proof. Suppose that Q 1s convex in P, then L(Q) is plactic-closed (Corollary 1). We
havei<j,j> k. Ifi < k,theni <k < jand ijk ~ jik e L(Q) [resp.i >k, k < i <,
ijk ~ ikj e L(Q)], a contradiction, because L(Q) = {ijk}. The case of Q" can be
proven in the same way, using Knuth's relations. Ol

Corollary 2. In the hypothesis of Lemma 4 there exists a unique h # jwithi <, h <, k
and in P we have the following configurations (corresponding respectively to Q and Q')

k k

[ i
Proof. Existence of h: if Q appears in P, by Lemma 4, there exists a chain
h=(i<ph=hyg<ph;<p:: <ph <ph =k

fromito k different thani <, j <p k. Observe that h, # j, becauscifi <, hy <p h, =
j then j does not cover i. Note also that by virtue of Lemma 2,i > h = h, since i < J.
We want to show that 1 = 0.

For any such chain h define I(h) to be the integer 0 < s <t such that h, >
he=">handh.< b
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This number is well defined because we have h, < h,,; = k. Indeed, since
j >k =h,,,,wecould not have also h, > h,,, = k, as this would lead to one of the
configurations forbidden by Lemma 2.

Let h be a chain such that /(h) = [ is minimal: we claim that [ = 0. If so, the
subposet i =2, h, <, h, satisfics the hypothesis of Lemma 4 and then it is not convex
in P:

So there exists j' # h, with i <, j' <p h; and by Lemma 3, j* = j. This implies
j <phy <pk, but k covers j: we deduce h; = k and t = 0, as we wanted.

Assume [ > 0. In this case the chain h,_, <, h, <p h;,;, by Lemma 4, is not convex
in P, because h,_, > h < h,,,: let h’ € P be such that h,_, <p h' <p ‘- h;,,. Again,
since h,_, > h,, we have, by Lemma 2, h,_, < h'.

Now define a new chain A’ by replacing in h the subchain b, <, h; <p h;,, by
hy_, <ph' - <phy,,. We have I(h’) = | — 1 < I(h), against minimality of /.

Uniqueness of h: any other element h' # h with i <, h" <, k, would lead to a
contradiction with Lemma 3. L]

Definition 1. A stair-like path is a sequence (p,,ps....,p,) of points of P, possibly
empty, connected in the Hasse diagram and such that
Pr <Py < - <p.

Note that a stair-like path has the form
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Lemma 5. If one of the three Jollowing configurations are subposets of the Hasse
diagram of P

r m m p’
NN AT
r 2 6 P r oy
then we cannot find in P a stair-like path joining r' and p, r and p'.r’ and p’
respectively.
Proof. It is easily scen that ' > p [resp.r > p', r' > p’]. If a stair-like path cxists,
then we would have r’ < plresp.r < p’,r' < p’'], a contradiction. ]
We are now ready to reconstruct the poset P in the discrete plane N x N with
its natural partial order
(x,9) < (x",y)ex < x’ and y<y.

Then the covering relation < in N x N is given by

X)) <" y)eex' =x,y=y+1 or x'=x+1. y' =y
Definition 2. We call a skew tableau of weight n any finite convex subposet T of
N x N, labelled with the elements of P, such that the labelling, with respect to the
total order on P, is row-increasing reading from left to right and column-decreasing
reading from the bottom to the top.
Definition 3. In N x N a path from (x, y) to (x', y’) is a sequence of points

(% 0) = (x5 1562, Y205 .5 (0 ) = (X7, ')

such that, fori = 1,... .k — 1 either (X5 Vi) < (%3415 Vi41) OF (Xie1, Vier) <(x;, ;).
Definition 4. Let 7 be a subposet of N x N. Two points (x. y) and (x',y’) are
connected in T if there exists a path joining them whose elements are all in T

Remark 2. In a skew tableau T two comparable points (x, y)and (x', y')are connected
in T: indeed any saturated chain between (x, y) and (x', y’) is a path whose points
are all in T, by convexity of T

Remark 3. In the discrete plane, “shifting” the connected components of a skew
tableau T does not change the partial order given by T.

t !

—

D

&

%
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So the Theorem will take the following form: if L(P ) is plactic-closed, then there
exists an embedding ¢: P — N x N which respects the order <, and such that ¢(P).
with the labelling « defined as m(e(p)) = p. is a skew tableau.

Proof of Theorem 1. By induction on |P|. If |P| < 2, then the statement is true as
we can have the following possibilitics for P

‘ I

which correspond respectively to the diagrams of shape (1), (2) and (11). Now
suppose [P| > 3, and let m be a maximal element of (P, <,). It is casily seen that
Q = P\{m}1s still a convex subposet of P, hence (by Corollary 1) plactic-closed.
Then by the induction hypothesis, there is an embedding ¢: Q - N x N and ¢(Q)
1s a skew tableau, with the labelling o defined by: w(e(q)) = g.

We wish to extend e “correctly™ to all of P, i.e., to glue m to the skew shape given
by ¢(Q) in a way such that the result is still a skew shape.

As shown in Lemma 3, m can cover at most two elements, so that there are three
possible cases in P:

m
m m
1) 2) 3) ,,/\r
p p

Case 1. Observe that there is nothing at the right of and on the same line as e(p) in
¢(Q), otherwise there exists r 5% m such that

m (g

N

p

is a subposet of P which contradicts Lemma 2. Hence we can extend ¢ to P by

e(m) = e(p) + (1,0) = (x, + L, y,)

cssmsssaneny

where we write (x,, y,) for the coordinates of ¢(p) in N x N. Note that e respects
the covering relations in P, hence e respects <,. Thus to show that ¢(P) is a skew
tableau, we need only to verify the convexity.

Claim. For any ¢ € Q such that e(¢) is in the same connected component as e(p), the
inequality y, > y, holds: if not, there exists an element e(q) = (x4, y,) wWith y, < y,,,
that is e(g) is below e(p). We can always choose ¢(g) = (x,,y, — 1), in which casc
the diagram
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m

p

q

1s a subposct of P, and by Corollary 2 there would be another point covered by m,

against assumption. Indeed. if e(q) is to the left of e(p), i.c., Xq < X,, then

e(q) < (x,,y, — 1) < e(p)

——
e ;.(I;)...
. eiq) efq’) T

and by convexity of e(Q) there exists q' € Q withe(q') = (x5, ¥, — 1). If e(q) is to the
right of e(p), ic. Xq > X,, and since e(p) and e(q) are in the same connected
component, there exists a path in e(Q)joining them, and in particular there is q'€Q
with ¢(q’') = (Xp ¥, — 1)

......................

Y

In fact, we can assume that the incquality y, > v, holds as well when e(g) is not
connected to e(p): we can define another embedding ¢’, shifting in the plane the
connected component of e(g) above that of e(p) (Remark 3), and the induction
hypothesis on ¢'(Q) will still apply.

Suppose now that ¢(P) is not convex: then there exists a point (x, y) ¢ e(P) and
q € Pwithe(q) < (x,y) < e(m)(the case e(m) < (x,y) < e(q) has not to be considered.
as it contradicts the maximality of m). Remark that (x, y) cannot be comparable with
e(p): indeced, if ¢(p) < (x, y), then

e(p) < (x,y) < e(m),
butin N x N, ¢(p) is covered by e(m); if (x, y) < e(p), then
e(q) < (x,y) < e(p)

against the convexity of ¢(Q), which was assumed by induction.

Now we have y, <y <y, = ¥, and also, by the claim, we have the inequality
Yq = Yy thisimplies y, = Vp = ¥, which means that (x, y) is comparable with (Xps ¥p),
a contradiction.

Case 2. Analoguous to case 1.
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Case 3. Two possibilities have to be considered:

(1) p and r are not connected in Q: by induction we have an embedding ¢: Q0 —
N x N such that ¢(Q) is a skew tableau. We aim to take another embedding ¢’
of Q, shifting in the plane the components containing e(p) and e(r) such that

e'(p)=(x,— Ly, + 1).

In order to be able to do so, we have to show that there is nothing to the left
and over e(r) in ¢(Q), ic., e(r) is in the upper left corner of its connected
component in ¢(Q). Symmetrically, we can show that there is nothing to the
rightand below e(p)in e(Q), i.e., e(p)is at the bottom right corner of its connected
component. Indeed, if there exists g € Q with ¢(g) to the left of e(r), then back in
P we would have the following

as a subposct of P, so p and r would be connected in Q, by Corollary 2. If there
is ¢ € Q with e(q) over e(r), then in P we would have the subposet

r

against Lemma 2. So we can extend ¢’ to P by e'(m) = (X.9.)

prmmmem—.

and ¢’(P) 1s again a skew tableau.
(i) p and r are connected in Q: as p and r are not comparable, in N x N we can
only have one of the following embeddings:

|
v

In the discrete plane, as e(p) and e(r) are contained in the same connected
component of a skew tableau, we can always choose a stair-like path (e(r), e(p,),
e(p,)s....,e(p)e(p)),t > 1, joining them.

The first situation is impossible: if the path starts with a horizontal step, i.c., if
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e(p;) = (x, + 1,y,), then in P we would have the first subposet of Lemma 5 with
the stair-like path (p,,...,p,) (possibly empty) joining p; to p, a contradiction.
Analogously, if the last step of the path is vertical., we would have the second
configuration of Lemma 5. So the only possible path joining e(r) to e(p) has to start
with ¢(p,) = (x,,y,_,) and end with e(p) = (x,-1,,) (with possibly p, = p,) but
this, back in P, leads to the third subposet of Lemma 5, with the stair-like path
(P25, p,-y) joining p, to p,: again a contradiction.

Let us analyze now the second situation. Ife(p;) = (x, + 1,p,), thenin P we have

contradicting Lemma 2. So the path starts with the vertica} step e(py) = (x,, yp-1)
and in P we have the subposet

In this case, by Corollary 2, there exists r’ p with p, <, r' <, m, then r' = r
(otherwise m covers three clements)and this means in particular that the path chosen
has length 1.

Hence we can extend e to all of P by e(m) = (x,,y,) and e(P) is still a skew
tablecau. ]
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