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Abstract

In this note, we extend Schiitzenberger’s evacuation of Young tableaux (Schitzenberger,
1963), and naturally labelled posets (Schiitzenberger, 1972), to labelled graphs. It is shown that
evacuation is an involution, and that in that in the dual evacuation, tracks and trajectories are
interchanged.

Let G=(V,E) be a simple undirected graph without loops; V is its set of vertices,
and E its set of edges, with E€2,(V). A labelling of G is a bijective map
V-1, n), with n=|V]|.

The (canonical) track P(®) of @ is the subset {1y, ....0,} of V with:

() vy=@ (1),

(i) for i=2, v;=® Y(min{P©)|(v,v;_,)eE and @(v) > @(v;-)}) if such a vector v,
CXIsts;

(t11) if such »; does not exist, then k=i—1.

The promotion of @ is the mapping 0: @ — 0@ defined by:

JP(0)=P(v)— | if v¢ P(d),
D) =D, )—1  fori=1,. . k-1, ()
0D {v,)=n.
Example. Consider (G, @) as in Fig. 1. The track is the set of circled vertices. The
promotion of @ is shown in Fig. 2.

With @ as above and se{l,...,n}, the s-promotion of @ is the mapping d,: @ — 0P
obtained by the previous construction restricted to the vertices labelled in {1,...,5}
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and by keeping untouched the vertices labelled in {s+1,...,n}. In other words, let
V'={veV|®()<s}, P=P(®)nV'={v,,...,v}. Then:

O Dy=2w) il o¢l,

and for v in V'
0, (v)=D(v)—1 if v¢ P,
0,P(0))=DP(v;,)—1 fori=1, .. . I—1,
0,@(v))=s.

Observe that 0=d, il n=|V] and that 0, =id|,. Observe also that ,® and J, _ @ differ
at most on the vertices v, _,, v, and the vertex labelled n.

For later use, we call P’ the s-track of @, denoted by P (@), it is simply the track
obtained by considering only the vertices whose label is <s.

Example (continued). (G, 0s®) is shown in Fig. 3.

Define @, =@, &,=0,0, ®3=0,_,0,P,,..., D,=0,...0,&,. We call evacuation
the mapping ¢—-d,,

Theorem 1. Evacuation is an involution.

This extends a result of Schiitzenberger: he introduced evacuation of Young
tablcaux in [4], and of naturally labelled posets in [5], and showed that this
construction is an involution. Note that his definition of promotion is slightly different
from ours, but the reader will easily convince himself of the equivalence of both
constructions. For example, his definition of ¢ is obtained from ours by adding | to
the right-hand sides of the two first equalities (1), and by omitting the third one (0@ is
thus defined on ¥'\1,); hence, a promotion is a “slide along the track”. Other variants
were formulated by Knuth (see [3, pp. 57-59 and Ex. 30, p. 72]), Greene and Edelman
[1, Section 5], Haiman [2, Section 4].
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The proof of the theorem becomes very simple once we use certain operators
which were introduced by Haiman in the case of naturally labelled posets
[2, proof of Lemma 2.7].

For 1 <i<n—1 let r; be the operator which exchanges the labels i and i+ 1 if and
only if the corresponding vertices are not adjacent, that is:

3 @ if (@7 Yi), @ i+ 1)ek,
rid = .
' (i,i+ 1)o@ otherwise,

where (i,i+ 1) 1s the usual transposition in the symmetric group.

Two easy but fundamental observations are that r? =id and that |i—j{ =2 implies

r; I'j = r‘jl‘,-.
The promotion can now be expressed simply as the product of the /s, as shows the

following lemma.
Lemma 1. 0, @=r, 0, P=vr, yr,_5 - r P.

Proof. We proceed by induction on n, the case n=1 being trivial. Let n>1,
P(®)=(vy,...,0,) and 5= '(n). We observed that 9, and d,_ ;® can differ only on
Ui, U~ and . Two cases have to be considered:

(i) e P(®) in this case i=u,, since the sequence of integers (@(vy), ..., P(vy) is
increasing. We have:

0P 1)=P(v) = 1=@(0)—1=n—1=0,_,P(v)-,),
0, (v )=n=0,_,P(vy).

Hence r, - is the identity on the labelling d,_ @, since (v, _y, v )€l and v, _, v, are
labelled respectively, n—1, n by 0,_@. Thus 0,&=0, @=r,_,0,_,P.
(i) v¢ P(@): following the definition of ¢ we have:

,@(0)=n—1, Op_1®(0)=n,
J, @, )=n, Op_1P(e)=n—1,

Gy @0 )= @)= 1=0, - (P04 q).
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As 0 is not in the canonical track, we must have (0, v, )¢ E; in this case r, _ operates as
the transposition (#— 1, n) on the labelling 0, @ and again r,_J,_, =7,. Recalling
that ¢, is in fact the identity, the second equality of the lemma follows
immediately. [

This Lemma was nspired by the proof of Lemma 2.7 in [2].
Now let ¢;=id and for j=2, let ¢;=r;_yr;_,---r;. Thus 0;@=c;@. We have

¢;j=rj-¢j- and the following commutations hold:

rnei=cir i k=j4+1. 2)

Proof of the Theorem 1. If ¥ =@, denotes the labelling obtained after evacuation of @,
then by Lemma 1, ¥ =¢,¢, - ¢, We want to show that

(71 ~~~(‘7"‘I’:(I)‘
that 1s
Crorep=cp e )

For n=1 the equality is trivial.
For n>1 we have:
€y Cu=Cr(re)(racz) - (rp—1Ca—1)
=(ry - rp_i)(cy - cy_y) (by the commutation laws (2))
-1 ,.-1 -1

=c, e, to-er ' (by induction) CJ

As for the promotion, we can express nicely the track of @ through the
operators {r;}.

lLemma 2.
P(@)={®7'(1),(ri®)"'(2), ...ty - r D) (n)}

=11 )7 (1), (c2@) 7 12), ..., (cu®) ™ ()}

Proof. We prove the lemma by induction on n, with the additional fact that, if
P(dy=1v,,....0) as in the definition, then v, =(c,®) '(n). The case n=1 is trivial.
Forn>1 let o=® Yn), and let G'=(", E’) be the graph obtained removing from
G the vertex © and the edges containing it, with the labelling @' = ®|,.: the induction
hypothesis will be applied below to @'. Observe that o=@ "(n)=(c, ®)” '(n), be-
cause ¢, =r,_, -+ ry does not affect the vertex labelled n. We have two cases:
(1) o¢ P(®), cf. Fig. 4. It 1s clear that P(®)=P(®') and by induction

P(@)={(c;®)" (1), ..., (ca—1P) " Hn— 1)},
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where v, =(¢, ;@) '(n—1). Note now that (v, )¢ £, hence r, _; exchanges the labels
nand n—1 of © and vy, so that (¢,®)” "(n)=(r,_ ¢, 1®)” '(n)=1v, and

P(@)={(c; D) (1), .. (e, @) ().

(1) vepP(@), cf Fig. 5. We have P(@)=P(@jyu{n}. Again by induction
(c, @)y "n—1)=(c,®) Yn—1=v,_, and r,_, is the identity on ¢, ;®, since
(0, 1. 0)EE, so that (r,— ¢ @) ') =(c, @) "(n)=7 as desired. [

Note that in this construction the track P(@) is a multiset consisting of n elements.
Recall the definition of @, ... @, above. We call gth track in the evacuation of @ the
(n—q+ 1-track of @,, that is, P,_,, (®,) with the previous notations. By Lemma 2,

9we have:
P, g @)= H('x(”q)v ‘(])~(()2(I)q)- 1(2), colCp—gi1Py)” n—q+ 1)

o= :(('j(])q)" I(’ )‘: l<j<n—qg+ 1

We now introduce the concept of trajectory. As in [S], the trajectory in @ of an
mteger i1s the set of vertices who have been labelled by that integer during the
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evacuation. But in our version of the promotion, we have to take into account that at
each new promotion j becomes j— 1, for j>2 (cf. the remark after Theorem 1). This
justifies the following definition.

The trajectory of ¢ in the evacuation @ is the multiset:

T, (@)={®](q), Dy Ng—1), ..., b, 1(”} = {(I)q_~lj+ 1(,/)}1<,s,,-
Let ¥ be the labeiling obtained after the evacuation of @: hence by Theorem 1, @ is

the labelling obtained after the evacuation of V.

Theorem 2. Forg=1,. ., n, the qth track in the evacuation of @ is equal to the trajectory
of n—q+1in the evacuation of ¥, and vice versa.

Proof. Let ¥, =¥ V,=0,¥,, V3=0,_10, ¥, ..., Y(=D)=0, ---0,¥,. We have o
show that
Pn—q+ l(d)q): 7‘n—q+1(l]/)

e, forj=1,....n—q+1, (c;®@,)~ I(j):((pn—q-j-i—l)_ ().
We have:

Wamqmit2=Cau i1 ¥ =(Cy - Cqujm1)2Cqij ¥ (bY (3)
=Cyoo Cgrjmr(Crore €y W)
=Cy - Cqyj—1P (by Theorem 1).
Observe that for a labelling o and k#j—1, j, one has
(@)~ ') =a~1(j). (4)
Since ¢+ ¢;_; is a product of r, with k<j—1, we deduce that
(€1 Cquejm 1PV D= (¢4 1 Cuujm 1 D) 1)

Furthermore, ci®,=c
I<j<n—g+1:

iCn—q+2 " Cn—1¢,®@. Thus, all we have to show is that for

(CjChagr2 @)~ l(.f)=(cj('j+ 177" Cquj— @) I () . (5)
By Lemma 3 below we have

(»j('n*q** 200 ('"zd(’j('}'+ 17 ()q+j>1'
where d is a product of r’s with k>j+ 1. Hence (4) implies (5). [
Lemma 3. Let n>1, g=>1, 1<j<n—g+1. Then

CiCnmgiaCngea Cp=dc;cip g - Ca+j-1>

where d is a product of r/’s with k=j+1.
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Proof. Induction on n+2—¢g—j=diflerence between the two first indices of the
left-hand side of the equality. If this number is 1, there is nothing to prove, because in
this case n—q+2=j+1 and q+j—1=n. Suppose now that n+2—¢g—j>2. Then,
since ¢;=r;_¢;i—; fori=2,

CiCn-g+2Cn—q+3 " Ca=Ci{Tn_gt1Cn—gs1) =" (Frn_1Ca—1)
=Ciln—q+1rn—q+2 """ Tn-1Cn—g+1Cn—gq+2 """ Cn—1
{by the commutation laws (2))
=rn—g+tln—q+2 " Th-1CjCh—g+1Cn—g+2° " Cn—y
(by (2) again, because n—g-+1>j+1)

=7

n—q+ 1Tn—g+2 " Tu=1d'€;C14 1 = Caij-1,

where d' is a product of #’s with j+ I <k, by induction. Hence the Lemma follows,
becausc n—g+1=j+1. 0O

Remark. It can be shown that a naturally labelled poset can be associated in a natural
way to each labetled graph, so that the results of [5] apply. However, the point of the
present note, is to give short proofs of these results, without using the previous paper.

Added in proof. The operators r; on Young tableaux are particular cases of operators
introduced by Bender-Knuth (Enumeration of plane partitions, J. Combin. Theory
Ser. A 13 (1972) 40-54) and studied by Gansner (Discrete Math 30 (1980) 121-132).
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