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Abstract

We consider the function m½k�ðqÞ that counts the number of cycle permutations of a finite

field Fq of fixed length k such that their permutation polynomial has the smallest possible

degree. We prove the upper-bound m½k�ðqÞpðk � 1Þ!ðqðq � 1ÞÞ=k for charðFqÞ4eðk�3Þ=e and

the lower-bound m½k�ðqÞXjðkÞðqðq � 1ÞÞ=k for q � 1 ðmod kÞ: This is done by establishing a

connection with the Fq-solutions of a system of equations Ak defined over Z: As example, we

give complete formulas for m½k�ðqÞ when k ¼ 4; 5 and partial formulas for k ¼ 6: Finally, we

analyze the Galois structure of the algebraic set Ak:
r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let q be a power of a prime and denote with Fq the finite field with q elements. If s
is a permutation of the elements of Fq; then one can associate to s the polynomial

in Fq½x�

fsðxÞ ¼
X
cAFq

sðcÞð1 � ðx � cÞq�1Þ: ð1Þ
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Such a polynomial has the property that

1. fsðbÞ ¼ sðbÞ for all bAFq;

2. The degree @ð fsÞpq � 2 (since the sum of all the elements of Fq is zero).

fs is the unique polynomial in Fq with these two properties and it is called the

permutation polynomial of s:
Permutation polynomials have increasingly attracted the attention of various

researchers in the past couple of decades. We suggest the inspiring survey papers by
Rudolf Lidl and Gary Mullen [11,5,6] for an introduction to the subject.

Various cryptographic applications, including a key exchange protocol for public
key cryptography based on permutation polynomials have been proposed (see [4,7]).

In their paper of 1988, Rudolf Lidl and Gary Mullen [5] discuss a number of open
problems regarding permutation polynomials. Among these, problem P6 asks to
determine the number NdðqÞ of permutation polynomials of degree d where
1pdpq � 2 and d[q � 1: This seems to be a difficult problem at the moment. Some
partial results were given by Wells [12]. We will state his results later. See also the
paper of Sergey Konyagin and the second author [3] and the results by Pinaki
Das [1].

For a given permutation s of Fq; let us denote by Ss the set of elements of Fq that

are moved by s: Note that if s and s0 are conjugated, then #Ss ¼ #Ss0 :
If s is not the identity we have that @ð fsÞXq �#Ss: To see this it is enough to

note that the polynomial fsðxÞ � x has as roots all the elements of Fq which are not in

Ss: Therefore, if not identically zero, fs has to have degree at least q �#Ss:
Let C be a conjugation class of permutations of a finite field Fq and cðCÞ the

number of elements of Fq moved by any permutation in C (that is: cðCÞ ¼ #Ss for

any sACÞ: As we just noticed, for any sAC;

q � 2X@ð fsÞXq � cðCÞ: ð2Þ

An immediate consequence is that all transpositions have polynomials with degree
q � 2 while the degree of a 3-cycle can be q � 2 or q � 3:

In the first paper of this series [9] we dealt with the problem of determining lCðFqÞ;
defined as the number of permutation polynomials associated to permutations in the
class C whose degree is strictly less then q � 2: There we obtained a number of
formulas and estimates. For classes of permutations that move up to 6 elements we
have computed closed formulas for lCðFqÞ: These results extend those of Wells.

In this paper we consider

MCðFqÞ ¼ fsAC j @ð fsÞ ¼ q �#Ssg

(i.e. the permutations in C for which the permutation polynomial has the minimum
possible degree q � cðCÞ) and set mCðqÞ ¼ #MCðFqÞ:

Let us also denote by ½k� the class consisting of all the k-cycle permutations of Fq:
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Theorem 1.1. Let j be the Euler totient function. If q � 1 ðmod kÞ then

m½k�ðqÞX
jðkÞ

k
qðq � 1Þ:

Next, we will show the upper bound:

Theorem 1.2. Suppose charðFqÞ4eðk�3Þ=e: Then

m½k�ðqÞp
ðk � 1Þ!

k
qðq � 1Þ:

The hypothesis charðFqÞ4eðk�3Þ=e in Theorem 1.2 rules out the interesting case

when k has approximately the same size as q: Our proof breaks down for these values
of k: However, we are convinced that the upper bound for m½k�ðqÞ holds for any value

of koq:
In general, if C is any conjugation class of permutations then an analogous upper

bound as the one in Theorem 1.2 can be proved for mCðqÞ: In some cases the bounds
are stronger. We have decided to restrict ourselves to the case of cycle permutations.

We will prove Theorem 1.2 in Section 3, Theorem 1.1 in Section 4. Section 5 is
dedicated to examples. We will consider k-cycles (k ¼ 3; 4; 5; 6) and give detailed
description of m½k�ðqÞ in these special cases.

2. Reduction to normalized permutations

A permutation s of Fq is said to be normalized1 if sð0Þ ¼ 1: We denote by NCðFqÞ
the set of normalized permutations of C that have (minimal) degree q � cðCÞ and we
set nCðqÞ ¼ #NCðFqÞ:

Proposition 2.1. With the above notations we have

mCðqÞ ¼
1

cðCÞ qðq � 1ÞnCðqÞ:

Hence if mCðqÞa0; then

mCðqÞX
1

cðCÞ qðq � 1Þ:

ARTICLE IN PRESS

1The definition of normalized permutation is different from the usual one where a permutation

polynomial f ðxÞAFq½x� is said normalized if it is monic, if f ð0Þ ¼ 0 and if the coefficient of xn�1 is 0 when

the degree n of f is not divisible by the characteristic p:

C. Malvenuto, F. Pappalardi / Finite Fields and Their Applications 10 (2004) 72–9674



Proof. Let A1ðFqÞ be the group of affine transformations of Fq; that is the group of

applications

La;b : Fq-Fq; x/ax þ b:

It is clear that #A1ðFqÞ ¼ qðq � 1Þ:
Consider the map

P :A1ðFqÞ � NCðFqÞ-MCðFqÞ;

ðLa;b; sÞ/ ðL�1
a;bsLa;bÞ:

Clearly P is well defined since

@ððL�1
a;b fsLa;bðxÞÞ ¼ @ða�1ð f ðax þ bÞ � bÞÞ ¼ @ð fsÞ:

Furthermore P is surjective. This follows from the fact that, given tAMCðFqÞ;
chosen bASt and set a ¼ tðbÞ � b; we have that L�1

a;btLa;b is normalized and therefore

t ¼ PðL�1
a;b;L�1

a;btLa;bÞ:

To complete the proof we need to show that for every tAMCðFqÞ; the fibre P�1ðtÞ
has exactly cðCÞ elements. Indeed, consider the map

S : St-P�1ðtÞ;

b/ ðL�1
a;b;L�1

a;btLa;bÞ;

where a ¼ tðbÞ � b: It is clear that S is well defined and injective. Furthermore, S is

also surjective since if ðLc;d ; sÞAP�1ðtÞ; then

tð�d=cÞ ¼ L�1
c;dsLc;dð�d=cÞ ¼ L�1

c;dsð0Þ ¼ ð1 � dÞ=c:

Therefore �d=cASt; 1=c ¼ tð�d=cÞ � ð�d=cÞ and

Sð�d=cÞ ¼ ðLc;d ; sÞ:

Finally #P�1ðtÞ ¼ #St ¼ cðCÞ and this concludes the proof. &

Remark. The previous proposition allows us to reduce the problem of computing
mCðFqÞ to the easier one of computing nCðFqÞ: Indeed since cð½k�Þ ¼ k; Theorem 1.2

is equivalent to n½k�ðFqÞpðk � 1Þ! and Theorem 1.1 is equivalent to n½k�ðFqÞXjðkÞ for

q � 1 ðmod kÞ:
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3. From normalized permutation polynomials to affine algebraic sets. Proof of

Theorem 1.2

Let us write

fsðxÞ ¼ Aq�1 þ Aq�2x þ?þ A1xq�2:

From definition (1) it follows that for every i ¼ 1;y; q � 2;

Ai ¼ AiðsÞ ¼ ð�1Þiþ1 q � 1

i

� �X
cAFq

sðcÞci:

It is well known (see for example [8, Exercise 7.1]) that for 0pip
q � 1; ð�1Þiþ1 q�1

i

� �
¼ �1 in Fq: Furthermore using the identity (see for example

[8, Lemma 6.3]), X
cAFq

ciþ1 ¼ 0

for ioq � 2; we deduce that

AiðsÞ ¼
X
cAFq

ciðc � sðcÞÞ ¼
X
cASs

ciðc � sðcÞÞ:

From these observations it follows that

mCðqÞ ¼ # sAC such that
X
cASs

ciðc � sðcÞÞ ¼ 0 for i ¼ 1;y; cðCÞ � 2

( )
:

Let us now specialize to the case when s is a normalized k-cycle:

s ¼ ð0; 1; a1; a2;y; ak�2Þ:

In this case

AiðsÞ ¼ ð1 � a1Þ þ ai
1ða1 � a2Þ þ?þ ai

k�3ðak�3 � ak�2Þ þ aiþ1
k�2:

For i ¼ 1;y; k � 2; define the polynomial with integer coefficients:

Giðx1;y; xk�2Þ ¼ 1 � x1 þ
Xk�3

j¼1

xi
jðxj � xjþ1Þ þ xiþ1

k�2AZ½x1;y; xk�2�: ð3Þ

The degree @ð fsÞ ¼ q �#Ss if and only if

A1ðsÞ ¼ ? ¼ Ak�2ðsÞ ¼ 0:
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Therefore

n½k�ðqÞ ¼ #
%
xAðFq\f0; 1gÞk�2 such that G1ð

%
xÞ ¼ ? ¼ Gk�2ð

%
xÞ ¼ 0

and all the components of
%
x are distinct

� 	
:

We are naturally lead to consider the affine algebraic set Ak in Ak�2 defined by the
equations:

Ak:

ð1 � x1Þ þ x1ðx1 � x2Þ þ?þ xk�3ðxk�3 � xk�2Þ þ x2
k�2 ¼ 0;

ð1 � x1Þ þ x2
1ðx1 � x2Þ þ?þ x2

k�3ðxk�3 � xk�2Þ þ x3
k�2 ¼ 0;

^

ð1 � x1Þ þ xk�2
1 ðx1 � x2Þ þ?þ xk�2

k�3ðxk�3 � xk�2Þ þ xk�1
k�2 ¼ 0:

8>>><
>>>:

ð4Þ

Clearly Ak is defined over Z and therefore over any field.
We can also write that

n½k�ðqÞ ¼ #f
%
xAAkðFqÞ with components not in f0; 1g and all distinctg: ð5Þ

Theorem 3.1. Let K be any algebraic closed field and kAN be an integer such that

either charðKÞ ¼ 0 or charðKÞ4eðk�3Þ=e: Then we have that the algebraic variety

dimension

dimKðAkÞ ¼ 0:

Remark. Note that the hypothesis charðKÞ4eðk�3Þ=e is not redundant. In fact it can
be seen that, if p ¼ charðKÞ is fixed, then

lim
k-N

dimKðAkÞ ¼ þN:

Corollary 3.1. Let K be any algebraic closed field and kAN be an integer such that

either charðKÞ ¼ 0 or charðKÞ4eðk�3Þ=e: Then

#AkðKÞ ¼ ðk � 1Þ!

where the points are counted with multiplicity.

Proof. We apply the Theorem of Bézout (see for example the book of Harris [2])

which states that if k � 2 hypersurfaces in Pk�2ð %KÞ do intersect in a zero-dimensional

subvariety of Pk�2ð %KÞ; then the number of points that they have in common is given
by the product of the degrees of the equations. In our case the product of the degrees
is 2 � 3?ðk � 1Þ and since none of the points is ‘‘at infinity’’ we have the claim. &
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In order to prove Theorem 3.1, we will need the following three auxiliary lemmas:

Lemma 3.1. Let K be any field and let X1;y;XnAK�: The linear system

X1U1 þ?þ XnUn ¼ 0;

X 2
1 U1 þ?þ X 2

n Un ¼ 0;

^

X n
1 U1 þ?þ X n

n Un ¼ 0;

U1 þ?þ Un ¼ X1

8>>>>>><
>>>>>>:

has no solutions ðU1;y;UnÞ in Kn:

Proof. The proof is done by induction on n: If n ¼ 1; then the conditions X1U1 ¼ 0
and U1 ¼ X1 imply that X1 ¼ 0: Therefore no solution exists. Assume nX2:

Let A be the matrix of the coefficients of the first n equations. Expanding the
Vandermonde determinant we obtain

detðAÞ ¼ X1?Xn

Y
i4j

ðXi � XjÞ:

If the system of equations admits a solution ðu1;y; unÞ; then not all the ui’s can
be equal to 0 otherwise the last equation cannot be satisfied. Therefore, the
homogeneous system given by the first n equations has to have a non-trivial solution.
This implies that detðAÞ ¼ 0 and therefore Xi ¼ Xj for some iaj: Let us assume,

without loss of generality, that Xn ¼ Xn�1: Now ðu1;y; ðun�1 þ unÞÞ is a solution of
the system

X1U1 þ?þ Xn�1Un�1 ¼ 0;

X 2
1 U1 þ?þ X 2

n�1Un�1 ¼ 0;

^

X n�1
1 U1 þ?þ X n�1

n�1 Un�1 ¼ 0;

U1 þ?þ Un�1 ¼ X1

8>>>>>><
>>>>>>:

which is a contradiction to the inductive hypothesis. &

Lemma 3.2. Let A ¼ ðaijÞ be a t � t matrix with integer entries such that the following

properties hold:

1. For all i; j ¼ 1;y; t; iaj; aii40; aijp0 (i.e. the elements in the diagonal of A are

strictly positive and those outside are negative).
2. For every i ¼ 1;y; t there exists jai such that aija0 (i.e. every row has at least a

non-zero entry outside the diagonal).

3. For every j ¼ 1;y; t;
Pt

i¼1aijX0 and there exists j with
Pt

i¼1aij40 (i.e. the sum of

the elements in every column is positive and for at least one column is strictly

positive).
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Then

0odetðAÞpa11?att:

Proof. We proceed by induction on t:

If t ¼ 2; then A ¼ a11

a21

a12

a22

� �
and detðAÞ ¼ a11a22 � a21a12: By the third hypothesis

we have that a11X� a21; a22X� a12 and one of the two inequalities is a strict one.
Therefore, since by property 1; � a21X0 and �a12X0; we have

a11a224a21a12:

Finally detðAÞ40: The inequality detðAÞpa11a22 follows from the first hypothesis.
Assume now that tX3 and also assume, without loss of generality, thatPt
i¼1ai1X1: If A1;A2;y;At are the rows of A; then consider that matrix:

A1

a11A2 � a21A1

^

a11At � at1A1

0
BBB@

1
CCCA ¼

a11 a12 ? a1t

0

^ B

0

0
BBB@

1
CCCA;

where B ¼ ðbijÞ; i; j ¼ 2;y; t and

bij ¼ a11aij � ai1a1j:

It is clear that at�1
11 detðAÞ ¼ a11 detðBÞ: We claim that B verifies the hypothesis of

the Lemma and therefore, as aj1a1jX0 for j ¼ 2;y; t; by induction

0odetðBÞpða11a22 � a21a12Þ?ða11att � at1a1tÞpat�1
11 a22?att

and this implies the claim.
Let us check that B verifies the hypothesis of the lemma:

1. Since
Pt

i¼1 ai1X1; for every i ¼ 2;y; t; a114� ai1: Furthermore aiiX� a1i;

therefore

bii ¼ a11aii � ai1a1i40:

Also bij ¼ a11aij � ai1a1jp0 (if iaj) since it is the sum of two negative numbers.

2. For every i ¼ 2;y; t; let jai be such that aija0: Then bijpa11aijo0 is also non-

zero.
3. Consider

Xt

i¼2

bij ¼ a11

Xt

i¼2

aij � a1j

Xt

i¼2

ai1X� a11a1j � a1jð1 � a11Þ ¼ �a1j:
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Therefore
Pt

i¼2bijX0 for all j ¼ 2;y; t and if j is such that a1ja0; thenPt
i¼2bij40:

This concludes the proof. &

The following lemma is a standard application of calculus.

Lemma 3.3. If TAN is given, then

maxfx1?xs j x1;y; xsANX2; x1 þ?þ xspTgpeT=e;

where e is the Napier constant.

Proof. Since the arithmetic mean always bounds the geometric mean, we have

x1?xsp
x1 þ?þ xs

s

� �s

p
T

s

� �s

:

The real variable function on the right-hand side above has a maximum for s ¼ T=e:
The result follows from the fact that for TX3;

max
T

½T=e�

� �½T=e�
;

T

½T=e� þ 1

� �½T=e�þ1
( )

peT=e: &

Proof of Theorem 3.1. The proof will proceed as follows: we denote by Vk the

projective variety in Pk�2 corresponding to Ak:

Vk:

X0ðX0 � X1Þ þ X1ðX1 � X2Þ þ?þ Xk�3ðXk�3 � Xk�2Þ þ X 2
k�2 ¼ 0;

X 2
0 ðX0 � X1Þ þ X 2

1 ðX1 � X2Þ þ?þ X 2
k�3ðXk�3 � Xk�2Þ þ X 3

k�2 ¼ 0;

^

X k�2
0 ðX0 � X1Þ þ X k�2

1 ðX1 � X2Þ þ?þ X k�2
k�3 ðXk�3 � Xk�2Þ þ X k�1

k�2 ¼ 0:

8>>><
>>>:

ð6Þ

To prove that Vkð %KÞ is zero-dimensional, we will show that it has no points of
intersection with the projective hyperplane ‘‘at infinity’’ X0 ¼ 0: Indeed, note that if

Vkð %KÞ contains a positive dimensional subvariety, then it has to have non-empty
intersection with any plane. In particular, if we substitute X0 ¼ 0 in (6) we should
obtain some non-trivial solutions. We will see that this is impossible and that the
only solution is ðX1;y;Xk�2Þ ¼ ð0;y; 0Þ:

Assume that k43; otherwise the statement can be verified directly and also follows
from the work of Wells [11] (see (9) below) and let n ¼ k � 2: If n ¼ 2; then we have
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the equation

X 2
1 � X1X2 þ X 2

2 ¼ 0;

X 3
1 � X 2

1 X2 þ X 3
2 ¼ 0

(

which is quickly seen to have as solutions only ðX1;X2Þ ¼ ð0; 0Þ over any field.
Assume nX3 and let ðX1;y;XnÞað0;y; 0Þ be a non-trivial solution. We can

assume that X1a0 otherwise we would have a non-trivial solution ðX2;y;XnÞ that
we rule out by induction. For the same reason we can assume that Xna0 and that
XiaXiþ1 for i ¼ 1;y; n � 1:

Let us rewrite the equations in the following way:

X1 X2 ? Xn

X 2
1 X 2

2 ? X 2
n

^ ? ^

X n
1 X n

2 ? X n
n

0
BBB@

1
CCCA

1 �1 0 ? 0

0 1 �1 ? 0

^ & ^ ^

0 0 ? 0 1

0
BBB@

1
CCCA

X1

X2

^

Xn

0
BBB@

1
CCCA ¼

0

0

^

0

0
BBB@

1
CCCA:

Note that the first matrix has determinant

X1?Xn �
Y
i4j

ðXi � XjÞ

while the second has determinant 1.
This immediately implies that the first matrix has to have determinant equal to 0

otherwise we would obtain the contradiction that ðX1;y;XnÞ ¼ ð0;y; 0Þ:
By setting Ui ¼ Xi � Xiþ1; if ion and Un ¼ Xn; and applying Lemma 3.1, we

obtain that at least one of the Xi ¼ 0:
Now let us relabel the set fX1;X2;y;XngDK as fy1; y2;y; yt; 0g in such a way

that

1. y1;y; yt are all distinct;
2. y1;y; yt are all not zero;
3. for every sAf1;y; ng there exists iAf1;y; tg such that Xs ¼ yi:

Let us also assume that y1 ¼ X1 and note that tpn � 1: Now consider the first t

equations of (6) and replace ðX1;y;XnÞ with ðy1;y; ytÞ; so that

y1L1ðy1;y; ytÞ þ?þ ytLtðy1;y; ytÞ ¼ 0;

^

yt
1L1ðy1;y; ytÞ þ?þ yt

tLtðy1;y; ytÞ ¼ 0;

8><
>: ð7Þ

where for i ¼ 1;y; t;

Liðy1;y; ytÞ ¼
Xt

j¼1

aijyj
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and

aij ¼
#fsAf1;y; ng j Xs ¼ yig if i ¼ j;

�#fsAf1;y; n � 1g j Xs ¼ yi;Xsþ1 ¼ yjg if iaj:

�
ð8Þ

Let A ¼ ðaijÞ be the t � t matrix with integer entries defined by (8) and Â be the

matrix obtained by A reducing the entries in K; where we assume that either

charðKÞ ¼ 0 or charðKÞ4eðk�3Þ=e:
Note that aiiX2 otherwise one row of A would contain only one 1 and possibly

one �1 and this would imply the contradiction that either two yi’s are equal or one
yi is zero.

Relations (7) can be written as

y1 ? yt

y2
1 ? y2

t

^ ? ^

yt
1 ? yt

t

0
BBB@

1
CCCAÂ

y1

y2

^

yt

0
BBB@

1
CCCA ¼

0

0

^

0

0
BBB@

1
CCCA:

Since the first matrix has determinant

y1?yt

Y
i4j

ðyi � yjÞa0;

we deduce that

Â

y1

y2

^

yt

0
BBB@

1
CCCA ¼

0

0

^

0

0
BBB@

1
CCCA:

We want to obtain a contradiction by showing that detðÂÞa0: We will do this by
applying Lemma 3.2 to A which will give

0odet Apa11?att

and since

Xt

i¼1

aii ¼ #fsAf1;y; ng j Xsa0gpn � 1 ¼ k � 3;

we have by Lemma 3.3 that

0odet Apeðk�3Þ=eocharðKÞ:

Therefore detðÂÞa0 which implies the claim.
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The only thing left to show is that A satisfies the hypothesis of Lemma 3.2: the first
hypothesis is immediately verified by the definition of the matrix A in (8). Similarly
the second hypothesis follows from the fact that if all the elements outside the
diagonal were 0 this would imply that aiiyi ¼ 0AK and since aiionocharðKÞ; aiia0
would give a contradiction.

Let us check that the third hypothesis holds. Indeed by (8),

Xt

i¼1

aij ¼ #fsA½2;y; n� j Xs ¼ yj;Xs�1 ¼ 0g þ ejX0;

where ej ¼ 1 if j ¼ 1 and 0 otherwise. It follows that the sum of the elements

in the first column is strictly positive. This concludes the proof of the
theorem. &

Proof of Theorem 1.2. Apply the corollary to Theorem 3.1 with K ¼ %Fq: For

charðFqÞ4eðk�3Þ=e; we have the bound

#AkðFqÞp#Akð %FqÞ ¼ ðk � 1Þ!

Finally, from (5) and from Proposition 2.1 we obtain

m½k�ðqÞ ¼
qðq � 1Þ

k
n½k�ðqÞp

qðq � 1Þ
k

#AkðFqÞp
ðk � 1Þ!

k
qðq � 1Þ:

and this concludes the proof of Theorem 1.2. &

4. Cyclotomic permutation polynomials. Proof of Theorem 1.1

We want to prove Theorem 1.1 by producing, in the case q � 1 ðmod kÞ; jðkÞ
distinct normalized k-cycles in N½k�ðFqÞ:

Let us start noticing that the condition q � 1 ðmod kÞ implies that Fq contains all

the kth roots of unity and that they are all distinct. Denote by z a primitive kth root
of unity in Fq: Consider the normalized k-cycle:

sz ¼ ð0; 1; ð1 þ zÞ;y; ð1 þ zþ?þ zk�2ÞÞ:

Clearly as z varies among the jðkÞ primitive kth roots of unity, we obtain
distinct normalized k-cycles. We want to check that @ð fszÞ ¼ q � k (i.e. szA
N½k�ðFqÞ).
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Let us compute, for i ¼ 1;y; k � 2;

AiðszÞ ¼Giðð1 þ zÞ;y; ð1 þ zþ?þ zk�2ÞÞ

¼ �
Xk�3

j¼0

z jþ1ð1 þ zþ?þ z jÞi

 !
þ ð1 þ zþ?þ zk�2Þiþ1

¼ �1

ðz� 1Þi

Xk�3

j¼0

z jþ1ðz jþ1 � 1Þi � ðzk�1 � 1Þiþ1

z� 1

 !

¼ �1

ðz� 1Þi

Xk�3

j¼0

z jþ1
Xi

t¼0

i

t

� �
ð�1Þi�tzð jþ1Þt � ðzk�1 � 1Þiþ1

z� 1

 !
:

Interchange the two sums of the last equation and observe that, since t þ 1pi þ
1pk � 1 and z is primitive, we have

Xk�3

j¼0

ðztþ1Þ j ¼ zðk�2Þðtþ1Þ � 1

ztþ1 � 1
:

Therefore

AiðszÞ ¼
�1

ðz� 1Þi

Xi

t¼0

i

t

� �
ð�1Þi�tztþ1 z

ðk�2Þðtþ1Þ � 1

ztþ1 � 1
� ðzk�1 � 1Þiþ1

z� 1

 !
:

Now use the fact that zk�1 ¼ z�1: The above becomes

AiðszÞ ¼
�1

ðz� 1Þi

Xi

t¼0

i

t

� �
ð�1Þi�tz1þt z

�2ðtþ1Þ � 1

ztþ1 � 1
� ðz�1 � 1Þiþ1

z� 1

 !

¼ �1

ðz� 1Þi
�
Xi

t¼0

i

t

� �
ð�1Þi�tz�t

 !
z�1 þ z�1ðz�1 � 1Þi

 !

¼ 1

zðz� 1Þi

Xi

t¼0

i

t

� �
ð�1Þi�tz�t � ðz�1 � 1Þi

 !

¼ 0:

Finally, recalling that @ð fsÞXq � cðCÞ; we have szAN½k�ðFqÞ for all primitive z:
Therefore n½k�ðqÞXjðkÞ and by Proposition 2.1, this concludes the proof of

Theorem 1.1. &

Remark. We will call the permutations sz cyclotomic permutations. In the case k ¼ 3;

Theorem 1.2 gives that N½3�ðFqÞp2
3

qðq � 1Þ while Theorem 1.1 gives that if q �
1 ðmod 3Þ; then N½3�ðFqÞX2

3
qðq � 1Þ: Therefore all normalized 3-cycles are cyclotomic

permutations if q � 1 ðmod 3Þ: On the other hand in 1969, Wells [12] proved the
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formula

N½3�ðFqÞ ¼

2
3

qðq � 1Þ if q � 1 ðmod 3Þ;
0 if q � 2 ðmod 3Þ;
1
3

qðq � 1Þ if q � 0 ðmod 3Þ:

8><
>: ð9Þ

Our results can be seen as generalizations of the above. Note that in [12, p. 50] there
is a misprint in the case q � 0 ðmod 3Þ where the claim that N½3�ð3nÞ ¼ 3nð3n � 1Þ
should be corrected into N½3�ð3nÞ ¼ 3n�1ð3n � 1Þ as all possible 3-cycles permutations

are

ða; a þ b; a � bÞ

which for all choices of a; bAF3n give rise to the above amount of permutations.

5. Numerical examples: the number of k-cycles with minimal degree for kp6

In this section we consider the specific examples of 4-, 5- and 6-cycles. The case
of 3-cycles has been analyzed with by Wells [12] (see the remark in the previous
section).

5.1. Computation of m½4�ðqÞ

We will prove the following:

Theorem 5.1. Let m½4�ðFqÞ be the number of 4-cycle permutations of Fq such that their

permutation polynomial has minimal degree q � 4: Then, if ðq; 10Þ ¼ 1;

m½4�ðFqÞ ¼ 1
4

qðq � 1ÞKq;

where

Kq ¼

6 if q � 1 ðmod 20Þ;
4 if q � 11 ðmod 20Þ;
2 if q � 9; 13; 17 ðmod 20Þ;
0 if q � 3; 7; 19 ðmod 20Þ

8>>><
>>>:

while

m½4�ðF5nÞ ¼ 1
2
5nð5n � 1Þ
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and

m½4�ðF2nÞ ¼
2nð2n � 1Þ if 4jn;
0 otherwise:

�

Remark. From (2) it follows that the degree of a 4-cycle permutation polynomial can
either be q � 2; q � 3 or q � 4: In [9] we proved that the number of 4-cycle
permutation polynomials over Fq with degree strictly less then q � 3 is

1

4
qðq � 1Þtq where tq ¼

q � 11 if q � 1 ðmod 12Þ;
q � 3 if q � 5 ðmod 12Þ;
q � 7 if q � 7 ðmod 12Þ;
q þ 11 if q � 11 ðmod 12Þ;
ðq � 4Þð1 þ ð�1ÞnÞ if q ¼ 2n;

q � 5 � 2ð�1Þn if q ¼ 3n:

8>>>>>>>><
>>>>>>>>:

This result together with Theorem 5.1 provides complete information of the
number of 4-cycles of each given degree.

Proof of Theorem 5.1. From Proposition 2.1, we have that

m½4�ðFqÞ ¼
qðq � 1Þ

4
n½4�ðFqÞ

and from (5) it follows that

n½4�ðFqÞ#fðx; yÞAðFq\f0; 1gÞ2 j xay; ðx; yÞAA4ðFqÞg;

where

A4:
ð1 � xÞ þ xðx � yÞ þ y2 ¼ 0;

ð1 � xÞ þ x2ðx � yÞ þ y3 ¼ 0:

�

The resultant R with respect to the variable y of the two equations defining A4 is

R ¼ 10x4 � 4x5 þ x6 þ 15x2 � 15x3 � 8x þ 2

¼ðx2 � 2x þ 2Þðx4 � 2x3 þ 4x2 � 3x þ 1Þ:

Now denote by h1ðxÞ the first factor and by h2ðxÞ the second. The resultant of h1

and h2 is equal to 5. Therefore, if ðq; 5Þ ¼ 1; h1 and h2 will never have common
roots.
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The number of roots of h1ðxÞ is

0 if q � 3 ðmod 4Þ;
2 if q � 1 ðmod 4Þ;
1 if q is even:

8><
>: ð10Þ

Furthermore, if q � 1 ðmod 4Þ and i ¼
ffiffiffiffiffiffiffi
�1

p
is a primitive fourth root of unity in F�q;

from the roots of h1 we can construct the two points of A4ðFqÞ

ðx1; y1Þ ¼ ð1 þ i; 1 þ iþ i2Þ; ðx2; y2Þ ¼ ð1 � i; 1 � iþ i2Þ: ð11Þ

These points give rise to the two distinct (normalized) cyclotomic permutations:

ð0; 1; ð1 þ iÞ; ð1 þ iþ i2ÞÞ; ð0; 1; ð1 � iÞ; ð1 � iþ i2ÞÞ:

If q is even, then the root x ¼ 0 of h1 gives the point ð0; 1ÞAF2n that leads to no
permutation polynomials.

Let us now deal with h2: We claim that the number of roots of h2 is

4 if q � 1 ðmod 5Þ;
1 if q � 0 ðmod 5Þ;
0 otherwise:

8><
>: ð12Þ

Indeed a calculation shows that if z is a primitive fifth root of unity in Fq; then

h2ðxÞ ¼
Y4
i¼1

ðx � 1 � zi � z2iÞ

while

h2ðxÞ � ðx þ 2Þ4 ðmod 5Þ:

Hence (12) follows.

If q � 1 ðmod 5Þ and xi is a root of h2 then a computation shows that yi ¼
1 � 2xi þ x2

i � x3
i is the only value for which ðxi; yiÞAA4ðFqÞ:

The conditions xi ¼ 0 or xi ¼ 1 are never satisfied since h2ð0Þ ¼ 1 and h2ð1Þ ¼ 1
and the other conditions

xi ¼ yi; yi ¼ 0; yi ¼ 1

are also never satisfied. This is easily checked by some computation. For example the
condition yi ¼ 0 can be checked by calculating the resultant between h2ðxÞ and

1 � 2x þ x2 � x3: This resultant is equal to 1.
Putting together (10) and (12), and working out the various congruence relations

modulo 20, we obtain the claim for characteristic different from 2 and 5.
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Let us now deal with the case when q ¼ 5n: The two roots of h1ðyÞ will provide the
two points of A4ðF5nÞ ð3; 2Þ and ð4; 3Þ; while

h2ðxÞ ¼ ðx þ 2Þ4

has only one root x1 ¼ 3 which gives y1 ¼ 2; but the point ð2; 3ÞAA4ðF5nÞ has
already been counted. Therefore #A4ðF5nÞ ¼ 2:

Finally let us deal with the case when q ¼ 2n: The root x ¼ 0 of h1ðxÞ has to be
excluded and h2ðxÞ provides 4 distinct points if 2n � 1 ðmod 5Þ (i.e. nj4).

This concludes the proof of the theorem. &

Remark. We want to summarize the process that we used to construct all the points
in A4ðFqÞ since we will adopt the same approach in the following examples:

1. We have decomposed

A4ðFqÞ ¼ A4ðFqð
ffiffiffiffiffiffiffi
�1

p
ÞÞ,A4ðFqðz5ÞÞ;

where the union is disjoint except in the case 5jq:
2. We have checked that the coordinates of each point of A4ðFqÞ were distinct and

different from 0 or 1. This has always been the case except when 2jq:
3. If ðq; 10Þ ¼ 1; then the number m½4�ðqÞ is qðq � 1Þ=4 times n1 þ n2 where n1 is

the number of points in A4ðFqð
ffiffiffiffiffiffiffi
�1

p
ÞÞ and n2 is the number of points in

A4ðFqðz5ÞÞ:

Note that for every prime pa2; 5; n1 is the number of prime ideals of Qð
ffiffiffiffiffiffiffi
�1

p
Þ

over p and n2 is the number of prime ideals of Qðz5Þ over p: This property suggests to

first look at A4ð %QÞ and then consider the reduction in the various finite fields. We
will follow this approach in the sequel.

5.2. Computation of m½5�ðqÞ

We will prove the following:

Theorem 5.2. Let q be a power of a prime p which is not in the set

f2; 13; 61; 3719; 3100067g:

Then

m½5�ðFqÞ ¼
qðq � 1Þ

5
sq;
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where

sq ¼ rq þ tq þ uq; tq ¼
4 if q � 1 ðmod 5Þ;
1 if q � 0 ðmod 5Þ;
0 otherwise;

8><
>: uq ¼

�1 if p ¼ 11; 41;

0 otherwise

�

and rq is the number of roots in Fq of the polynomial

g2ðxÞ ¼ 2x20 � 29x19 þ 229x18 � 1249x17 þ 5187x16

� 17222x15 þ 47040x14 � 107505x13 þ 207622x12

� 340496x11 þ 474638x10 � 560999x9 þ 559052x8

� 465487x7 þ 319628x6 � 177653x5 þ 77807x4 � 25797x3

þ 6074x2 � 904x þ 64:

Proof. Again we start from the formula:

m½5�ðFqÞ ¼
qðq � 1Þ

5
#fðx; y; zÞAA5ðFqÞ; x; y; zef0; 1g; xayazaxg;

where

A5:

H1 ¼ ð1 � xÞ þ xðx � yÞ þ yðy � zÞ þ z2 ¼ 0;

H2 ¼ ð1 � xÞ þ x2ðx � yÞ þ y2ðy � zÞ þ z3 ¼ 0;

H3 ¼ ð1 � xÞ þ x3ðx � yÞ þ y3ðy � zÞ þ z4 ¼ 0:

8><
>:

Let us first compute A5ð %QÞ:
From Theorem 3.1 we know that #A5ð %QÞ ¼ 24: Furthermore 4 points of A5ð %QÞ

are the cyclotomic ones

ð1 þ z j; 1 þ z j þ z2j; 1 þ z j þ z2j þ z3jÞ; z ¼ e2pi=5; j ¼ 1; 2; 3; 4: ð13Þ

We solve the system of equations defining A5 in the following way. Consider
H2 � ðz þ yÞH1 ¼ 0 and note that we can solve it for z obtaining

z ¼ x3 � 2x2y þ xy2 þ xy � x � y þ 1

x2 � xy þ y2 � x þ 1
: ð14Þ

Similarly, consider H3 � zH2 � y2H1 ¼ 0: Also here we can solve it for z obtaining:

z ¼ x4 � x3y � x2y2 þ xy3 þ xy2 � y2 � x þ 1

x3 � x2y þ y3 � x þ 1
: ð15Þ
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Now, subtracting H3 � z2H1 � yH2 ¼ 0; we can solve it for z2 obtaining:

z2 ¼ x4 � 2x3y þ x2y2 þ xy � x � y þ 1

x2 � xy þ y2 � x þ 1
: ð16Þ

Replacing z2 in H1 with the right-hand side of (16) and z with the right-hand side
of (14) we obtain (after simplification):

ðx4 � 2x3y þ x2y2 þ xy � x � y þ 1Þ

� yðx3 � 2x2y þ xy2 þ xy � x � y þ 1Þð1 � x þ xðx � yÞ þ y2Þ2 ¼ 0: ð17Þ

Finally, consider the equation obtained replacing z in (14) by the right-hand side
of (15)

ðx4 � x3y � x2y2 þ xy3 þ xy2 � y2 � x þ 1Þðx2 � xy þ y2 � x þ 1Þ

� ðx3 � x2y þ y3 � x þ 1Þðx3 � 2x2y þ xy2 þ xy � x � y þ 1Þ ¼ 0: ð18Þ

In this way we have eliminated the variable z: We might have introduced new
solutions but we will see later that this is not the case.

We have used Maple V [10] to compute the resultant R of (17) and (18) with
respect to y and we obtained:

R ¼ g1ðxÞ � g2ðxÞ;

where

g1ðxÞ ¼ x4 � 3x3 þ 4 x2 � 2x þ 1 ð19Þ

and

g2ðxÞ ¼ 2x20 � 29x19 þ 229x18 � 1249x17 þ 5187x16 � 17222x15

þ 47040x14 � 107505x13 þ 207622x12 � 340496x11

þ 474638x10 � 560999x9 þ 559052x8 � 465487x7

þ 319628x6 � 177653x5 þ 77807x4 � 25797x3

þ 6074x2 � 904x þ 64 ð20Þ

Now the splitting field of g1ðxÞ is Qðe2pi=5Þ: Furthermore, the roots of g1 are

xj ¼ ð1 þ ziÞ; j ¼ 1; 2; 3; 4:

We can also easily compute x and y for each of the above. Hence A5ðQðz5ÞÞ is
exactly the set described in (13).
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Let M5 be the splitting field of g2: For each root a of g2ðxÞ; one can compute
ða; yðaÞ; zðaÞÞAA5ðM5Þ where:

yðxÞ ¼ 1

23 � 13 � 61 � 3719 � 3100067 ð6245340990732510 � 74275247020348477x

þ 425897367479627411x2 � 1556772755104088477x3

þ 4068122356423765520x4 � 8092377944341897339x5

þ 12739155747072503154x6 � 16281608694400072277x7

þ 17191467892889878476x8 � 15176855331347725064x9

þ 11289210111615920188x10 � 7103742513094855073x11

þ 3782081407301444460x12 � 1696979431552752820x13

þ 635807089991226023x14 � 195705738631474759x15

þ 48121368022605621x16 � 9009616966592957x17

þ 1165803130533438x18 � 82558295396232x19Þ

and from (14) and some computation

zðxÞ ¼ x3 � 2x2yðxÞ þ xyðxÞ2 þ xyðxÞ � x � yðxÞ þ 1

ðxÞ2 � xyðxÞ þ yðxÞ2 � x þ 1

¼ 1

23 � 13 � 61 � 3719 � 3100067 ð�292290150269490x19 þ 3950333490943181x18

� 29484664428617801x17 þ 152268243151302965x16

� 599002775464475543x15 þ 1880438345917167218x14

� 4841135989461751552x13 þ 10378374551469856881x12

� 18679878403151115130x11 þ 28303942873286020848x10

� 36041151267474587782x9 þ 38336702176933085823x8

� 33711958096174593304x7 þ 24129466512539278343x6

� 13742359416000756136x5 þ 6020424561116746133x4

� 1925677501494324283x3 þ ð413273185040891961x2

� 51203861193252214x þ 2593061963570136Þ:
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Finally

A5ð %QÞ ¼ A5ðQðe2pi=5ÞÞ,A5ðM5Þ;

where the union is disjoint.
We are now ready to investigate A5ðFqÞ:
The roots of g1ðxÞ in A5ðFqÞ are 4 if q � 1 ðmod 5Þ and in this case the 4 points

give the cyclotomic permutation polynomials. If q ¼ 5n; then g1ðxÞ ¼ ðx þ 3Þ4 and
the root x0 ¼ 2 leads to the point ð2; 3; 4ÞAA5ðF5nÞ and therefore to the normalized
5-cycle ð0; 1; 2; 3; 4Þ:

Let us deal with the roots of g2ðxÞ: The characteristics

f2; 13; 61; 3719; 3100067g ð21Þ

appearing in the denominators of yðxÞ and zðxÞ will have to be treated separately and
we have not done it here.

For all other primes, note that g2ð0Þ ¼ 26; g2ð1Þ ¼ 2 and we have the following
resultants:

RðyðxÞ; g2ðxÞÞ ¼ 224; RðyðxÞ � 1; g2ðxÞÞ ¼ 224; RðyðxÞ � x; g2ðxÞÞ ¼ 219;

RðzðxÞ; g2ðxÞÞ ¼ 219; RðzðxÞ � 1; g2ðxÞÞ ¼ 224; RðzðxÞ � x; g2ðxÞÞ ¼ 224;

RðyðxÞ � zðxÞ; g2ðxÞÞ ¼ 219;

where Rða; bÞ is the resultant of the univariate polynomials a and b: Therefore, for
any finite field Fq (of characteristic distinct from those in (21)), if g2ðx0Þ ¼ 0; then

ðx0; yðx0Þ; zðx0ÞÞAAðFqÞ and s ¼ ð0; 1; x0; yðx0Þ; zðx0ÞÞ is a well-defined normalized

permutation in n½5�ðFqÞ:
The characteristics f11; 41; 160591g are those for which g1ðxÞ and g2ðxÞ

have roots in common. These can be determined by computing the resultant
Rðg1; g2Þ:

For p ¼ 11; the only common root is x ¼ 6 and the only point in A5ðF11nÞ
that has such a value as first coordinate is ð6; 9; 2Þ; for p ¼ 41; the only common
root is x ¼ 38 and the only point in A5ðF41nÞ that has such an x is ð38; 13; 31Þ:
Therefore in these two cases the number of normalized permutations should
be one less. Finally for p ¼ 160591 the only common root is x ¼ 93 but there
are two points in A5ðF160591nÞ with x ¼ 93 which are ð93; 8557; 144881Þ and
ð93; 36072; 14312Þ:

This concludes the proof. &
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5.3. Partial computation of m½6�ðqÞ

Let us consider the affine algebraic set A6:

A6:

H1 ¼ ð1 � xÞ þ xðx � yÞ þ yðy � zÞ þ zðz � tÞ þ t2 ¼ 0;

H2 ¼ ð1 � xÞ þ x2ðx � yÞ þ y2ðy � zÞ þ z2ðz � tÞ þ t3 ¼ 0;

H3 ¼ ð1 � xÞ þ x3ðx � yÞ þ y3ðy � zÞ þ z3ðz � tÞ þ t4 ¼ 0;

H4 ¼ ð1 � xÞ þ x4ðx � yÞ þ y4ðy � zÞ þ z4ðz � tÞ þ t5 ¼ 0:

8>>><
>>>:

We know from Theorem 3.1 that #A6ð %QÞ ¼ 120: The problem can be solved
along the same lines as in the last subsection. Here is the Maple V program that we
used:

restart:

H[1]:¼1-x+x�(x-y)+y�(y-z)+z�(z-t)+t42:
H[2]:¼1-x+x42�(x-y)+y42�(y-z)+z42�(z-t)+t43:
H[3]:¼1-x+x43�(x-y)+y43�(y-z)+z43�(z-t)+t44:
H[4]:¼1-x+x44�(x-y)+y44�(y-z)+z44�(z-t)+t45:
F[1]:¼solve(H[2]-(t+z)�H[1],t):
F[2]:¼solve(H[3]-t�H[2]-z42�H[1],t):
F[3]:¼solve(H[4]-t�H[3]-z43�H[1],t):
F[4]:¼solve(H[3]-z�H[2]-t42�H[1],t)½1�42:
G[1]:¼numer(F[1]-F[2]):
G[2]:¼numer(F[3]-F[1]):
G[3]:¼numer(F[4]-z�F[1]+1-x+x�(x-y)+y�(y-z)+z42):
A[1]:¼resultant(G[1],G[2],z):
A[2]:¼resultant(G[1],G[3],z):
A[3]:¼resultant(G[2],G[3],z):
B[1]:¼resultant(A[1],A[2],y):
B[2]:¼resultant(A[1],A[3],y):
B[3]:¼resultant(A[2],A[3],y):
factor(gcd(B[1],gcd(B[2],B[3])));

It produces as output:

f1ðxÞ � f2ðxÞ � f3ðxÞ � f4ðxÞ � g2ðxÞ2 � g1ðxÞ2;
where g1 and g2 are the same polynomials of the previous subsection and do not

yield any point in A6ð %QÞ;

f1ðxÞ ¼ x2 � 3x þ 3; f2ðxÞ ¼ x4 � 3x3 þ 9x2 � 9x þ 3;

f3ðxÞ ¼ x6 � 4x5 þ 12x4 � 22x3 þ 25x2 � 14x þ 3

and f4ðxÞ is a degree 108 polynomial, shown below. Very little can be done about it (e.g.
we cannot factor its discriminant). However, we know that given one of its 108 roots x;

there exist rational functions yðxÞ; zðxÞ; tðxÞ such that ðx; yðxÞ; zðxÞ; tðxÞÞAA6ð %QÞ:
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We have named the above polynomial: ‘‘Devil’s Hat’’. For every root z of the
polynomial f1; we have the cyclotomic points

ðz; 2z� 2; 2z� 3; z� 2ÞAA6ð %QÞ:

For every root t of the polynomial f2; we have the points in A6ð %QÞ

ðt; 1
5
ð11 � 19tþ 7t2 � 3t3Þ; 1

5
ð9 � 11tþ 3t2 � 2t3Þ; 1

5
ð�7 þ 13t� 4t2 þ t3ÞÞ:

Furthermore, for every root g of f3; we have the points of A6ðQÞ ðg; yg; zg; tgÞ where

yg ¼ 7 � 61
3
gþ 22g2 � 41

3
g3 þ 14

3
g4 � 4

3
g5;

zg ¼ 6 � 61
3
gþ 22g2 � 41

3
g3 þ 14

3
g4 � 4

3
g5;

tg ¼ 7 � 64
3
gþ 22g2 � 41

3
g3 þ 14

3
g4 � 4

3
g5:

Finally

A6ð %QÞ ¼ A6ðK1Þ,A6ðK2Þ,A6ðK3Þ,A6ðK4Þ;

where Ki is the splitting field of fi: Note however that the union is not disjoint this

time. Indeed K1 ¼ Qð
ffiffiffiffiffiffiffi
�3

p
ÞCK2 ¼ Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�18 þ 2

ffiffiffiffiffiffiffi
�3

pp
Þ:

Furthermore,

#A6ðKiÞ ¼

2 if i ¼ 1;

4 if i ¼ 2;

6 if i ¼ 3;

108 if i ¼ 4:

8>>><
>>>:

Numerically if can be verified that all the coordinates of each point of A6ð %QÞ are
distinct and never in f0; 1g: This allows us to conclude

Theorem 5.3. For all but finitely many characteristics

m½6�ðFqÞ ¼
qðq � 1Þ

4
ðs1 þ s2 þ s3 þ s4Þ;

where si is the number of roots of fi in Fq:
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6. Conclusion

The complete computations of A7 is out of our reach at the present.
It is natural to ask whether the construction of the present paper can be extended

to more general classes of permutations. The answer is yes. Indeed if C is any
partition with parts larger then 1, then one can define an algebraic set AC analogue
to Ak: The connection with normalized permutation polynomials with minimal
degree can be established also in this more general setting. However the extensions of
Theorems 1.2 and 1.1 are not straightforward. We expect in some cases stronger
estimates to hold. For example it can be shown that

m½2 3�ðFqÞp2qðq � 1Þ:

Numerical examples indicate interesting arithmetical properties. For these reasons
we have decided to dedicate a future paper to general classes of permutation.
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