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Let D be the set of isomorphism types of finite double partially or-
dered sets, that is sets endowed with two partial orders. On ZD
we define a product and a coproduct, together with an internal
product, that is, degree-preserving. With these operations ZD is a
Hopf algebra. We define a symmetric bilinear form on this Hopf
algebra: it counts the number of pictures (in the sense of Zelevin-
sky) between two double posets. This form is a Hopf pairing, which
means that product and coproduct are adjoint each to another. The
product and coproduct correspond respectively to disjoint union of
posets and to a natural decomposition of a poset into order ideals.
Restricting to special double posets (meaning that the second or-
der is total), we obtain a notion equivalent to Stanley’s labelled
posets, and a Hopf subalgebra already considered by Blessenohl
and Schocker. The mapping which maps each double poset onto
the sum of the linear extensions of its first order, identified via its
second (total) order with permutations, is a Hopf algebra homo-
morphism, which is isometric and preserves the internal product,
onto the Hopf algebra of permutations, previously considered by
the two authors. Finally, the scalar product between any special
double poset and double posets naturally associated to integer par-
titions is described by an extension of the Littlewood–Richardson
rule.
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1. Introduction

We define a combinatorial Hopf algebra based on double posets, endowed with a symmetric bilin-
ear form based on pictures between double posets, in analogy to pictures of tableaux as defined by
Zelevinsky in [22]. Zelevinsky’s definition extends straightforwardly to double posets. This form is a
Hopf pairing on the previous Hopf algebra. Thus we obtain a link between two articles of Zelevinsky:
the one mentioned above and the contemporary article [23], where he studied self-dual Hopf algebras
arising from the character theory of classical finite groups. The results we prove show that pictures
are fundamentally linked to scalar products, a point of view already present in Zelevinsky’s work,
who proved that the scalar product of two skew Schur functions is equal to the number of pictures
between their shapes.

Note that pictures had been introduced previously by James and Peel in [12, pp. 351–352]. See
also [7] and [13] for the study of pictures between skew shapes.

We call double poset a set which is endowed with two partial orders <1 and <2. We consider
isomorphism classes of double posets: on the Z-module with basis the set of (isomorphism classes
of) double posets, we define combinatorially a product and a coproduct, which will make it a graded
Hopf algebra. We define a symmetric bilinear form 〈x, y〉 defined as the number of pictures from x
to y; this is proved to be a Hopf pairing: in other words, product and coproduct are adjoint each of
another, that is, one has the following formula:

〈xy, z〉 = 〈
x ⊗ y, δ(z)

〉
.

This formula means, roughly speaking, that computing with the product is equivalent to computing
with the coproduct. Recall that self-dual Hopf algebras (where the pairing is moreover nondegenerate)
play a great role in representation theory, see [9,23]. Here, the form is degenerate. An important
example of such a situation (a degenerate Hopf pairing) is the coplactic bialgebra of [5]; although
degenerate, the pairing is very useful; it is one of the main ingredient in the noncommutative theory
of the symmetric group of [5].

When the second order of a double poset is total, one obtains the notion which we call special
double poset; it is equivalent to that of labelled poset of Stanley [20], or that of shape of Blessenohl
and Schocker [5]. The corresponding submodule is then a sub-bialgebra; this bialgebra has already
been considered by Blessenohl and Laue, see [5, pp. 41–42]. We prove that there is a natural homo-
morphism into the bialgebra of permutations of [15]. This mapping is implicit in Stanley’s work (see
also [10]). The fact that one has a sub-bialgebra and a homomorphism is already due to [5] (see also
[18] and [11]). We give further properties of this homomorphism: it is an isometry, and preserves the
internal product (this product extends the product of permutations; it is defined in Section 2.3).

To each integer partition is naturally associated a special double poset; this construction is de-
scribed in [10]. In Theorem 3.4, we describe the pairing between such a double poset and any special
double poset by a rule which extends the Littlewood–Richardson rule.

As mentioned by the referee, related work may be found in [2]. There appears the notion of Hopf
monoid, which allows to construct in one shot many combinatorial Hopf algebras. This could have
been made here, avoiding some verifications of Hopf algebra axioms. We refer the reader specially to
Sections 13.1, 13.1.4, 17.4.1 of [2].

Note that all the bialgebras in this article are Z-algebras, are graded and connected (that is, the
0-component is Z), hence these bialgebras are Hopf algebras.

2. The bialgebra on double posets

2.1. The self-dual bialgebra on double posets

A double poset is a triple

(E,<1,<2),

where E is a finite set, and <1 and <2 are two partial orders on E . This notion was implicit in [16].
When no confusion arises, we denote (E,<1,<2) simply by E . We call <1 the first order of E and <2
the second order of E .
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As expected, we say that two double posets (E,<1,<2) and (F ,<1,<2) are isomorphic if there
exists a bijection φ : E → F which is an isomorphism from the partial order (E,<1) to (F ,<1) and
from (E,<2) to (F ,<2), i.e.

∀x, y ∈ E: x <i y in E ⇔ φ(x) <i φ(y) in F , for i = 1,2.

Rather than on double posets, we want to work on isomorphism classes of double posets: to avoid
too much notation, we simply say double poset, meaning its isomorphism class.

Let D denote the set of double posets. We define some combinatorial operations on this set, which
will serve to define the bialgebra structure on ZD, the set of Z-linear combinations of double posets.

If E and F are two double posets, their composition, denoted EF , is the double poset (E ∪ F ,<1,<2),
where the union is disjoint and where

• the first order <1 of EF is the extension to E ∪ F of the first orders <1 of E and F , and no
element of E is comparable to any element of F ;

• the second order <2 of EF is the extension to E ∪ F of the second orders <2 of E and F , together
with the new relations e <2 f for any e ∈ E, f ∈ F .

The product on ZD is obtained by extending linearly the composition on D.
Recall that an inferior ideal (also called simply order ideal) of a poset (E,<) is a subset I ⊆ E such

that if y ∈ I and x < y, then x ∈ I . A superior ideal (also called dual order ideal) of E is a subset S ⊆ E
such that if x ∈ J and x < y, then y ∈ S . Clearly, the complement of an inferior ideal is a superior ideal
and conversely. A decomposition of a poset (E,<) is a couple of posets (I, S) where I is an inferior
ideal and S its complement, with their induced order.

We call decomposition of a double poset (E,<1,<2) a pair(
(I,<1,<2), (S,<1,<2)

)
,

where (I, S) is a decomposition of the poset (E,<1), and where the first and second orders <1,<2
for I and S are obtained by restricting the orders <1,<2 of the double poset E .

Now let δ : ZD → ZD ⊗ ZD be the linear map defined on D by

δ
(
(E,<1,<2)

) =
∑

(I,<1,<2) ⊗ (S,<1,<2), (1)

where the sum is extended to all decompositions (I, S) of (E,<1,<2).
A picture between double posets (E,<1,<2) and (F ,<1,<2) is a bijection φ : E → F such that:

• e <1 e′ ⇒ φ(e) <2 φ(e′) and
• f <1 f ′ ⇒ φ−1( f ) <2 φ−1( f ′).

In other words, a picture is a bijection φ of E to F which is increasing from the first order of E to the
second order of F and such that its inverse φ−1 is increasing from the first order of F to the second
order of E . We define a pairing 〈 , 〉 : ZD × ZD → Z for any double posets E, F by:

〈E, F 〉 = ∣∣{α : E → F , α is a picture}∣∣,
and extend it bilinearly to obtain a symmetric bilinear form on ZD, which we call Zelevinsky pairing.

Theorem 2.1. ZD is a graded Hopf algebra and the form is a Hopf pairing.

Thus we have for any double posets E, F , G ,

〈EF, G〉 = 〈E ⊗ G, δG〉.

Proof of Theorem 2.1. We omit the easy verification of the associativity of the product and of the
coassociativity of the coproduct; similarly for the homogeneity of both, where the degree of a double
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poset is the number of its elements. In order to show that ZD is a bialgebra, we show that the
coproduct δ is a homomorphism for the product. It amounts to show that there is a bijection between
the set of decompositions of the double poset EF and the set of pairs (Ei Fi, Es Fs), where (Ei, Es) is
a decomposition of E and (Fi, Fs) is a decomposition of F . The bijection is the natural one: take a
decomposition (I, S) of EF; then I is an inferior ideal of (E ∪ F ,<1); hence, I ∩ E is an inferior ideal
of (E,<1), I ∩ F is an inferior ideal of (F ,<1) and I = (I ∩ E)(I ∩ F ). Similarly, S ∩ E is a superior ideal
of (E,<1), S ∩ F is a superior ideal of (F ,<1) and S = (S ∩ E)(S ∩ F ). Hence the required mapping is
the identity mapping (modulo double posets isomorphisms):

(I, S) �→ (
(I ∩ E)(I ∩ F ), (S ∩ E)(S ∩ F )

)
.

To see that it is a bijection, note that if (Ei, Es) is a decomposition of E and (Fi, Fs) is a decomposition
of F , then Ei ∪ Fi is an inferior ideal I , and Es ∪ Fs the complementary superior ideal S of (E ∪ F ,<1);
moreover, I = Ei Fi and S = Es Fs .

We prove now the Hopf pairing property. In view of the identity stated before the proof, this
amounts to give, for any double posets E, F , G , a bijection between pictures from EF to G and 4-tuples
(φ,ψ, I, S), where I is an inferior ideal of G , S the complementary superior ideal, φ a picture of E
onto I and ψ a picture of F onto S . So, let α be a picture from EF onto G . Define I = α(E), S = α(F )

and the bijections φ : E → I,ψ : F → S obtained by restriction of α to E and F . We verify first that
I is an inferior ideal of G; take g, g′ in G with g <1 g′ and g′ ∈ I , hence α−1(g′) ∈ E . Then, α being
a picture, we have α−1(g) <2 α−1(g′). Now, if we had g /∈ I , then g ∈ S , hence α−1(g) ∈ F , therefore
α−1(g′) <2 α−1(g), by definition of the second order of EF: contradiction. Similarly, S is a superior
ideal of G . Now, the restriction of a picture is a picture, so φ and ψ are pictures.

Conversely, given a 4-tuple as above, we glue together the two bijections φ and ψ to obtain a
bijection α : E → G . Since in EF elements of E and elements of F are <1-incomparable, the fact that
α is increasing from (EF,<1) onto (G,<2) follows from the similar property for φ and ψ . Now let
g, g′ ∈ G with g <1 g′; if they are both in I or both in S , then α−1(g) <2 α−1(g′), by the similar
property for φ and ψ ; otherwise, we have g ∈ I and g′ ∈ S , since I, S are ideals. Then α−1(g) ∈ E and
α−1(g′) ∈ F , and consequently, α−1(g) <2 α−1(g′), by the definition of the second order of EF . Thus
α is a picture.

The counity map ε : ZD → Z maps the empty double poset on 1, and all other doubles posets
onto 0. It is a morphism for the product. By a well-known fact, a graded connected bialgebra is a
Hopf algebra. �
Remark.

1. A bialgebra similar to ZD has been defined on posets (not double posets) by Schmitt in [19, Sec-
tion 16]; see also [1, Example 2.3]. Formally it means that the mapping of ZD into the bialgebra
of Schmitt, which sends a double poset onto the poset with only the first order <1, is a bialgebra
homomorphism.

2. A bialgebra constructed on posets has been considered in [6] and [4], together with a bialgebra
homomorphism into quasi-symmetric functions. As mentioned by the referee, the link between
their construction and ours can be made by means of the Birkhoff transform, see [1, Example 2.4],
[2, Section 13.9.1].

2.2. A homomorphism into quasi-symmetric functions

Let π = (E,<1,<2) be a double poset. Similarly to [20] and [10], we call π -partition, a function x
from E into a totally ordered set X , such that:

• e <1 e′ implies x(e) � x(e′);
• e <1 e′ and e �2 e′ implies x(e) < x(e′).

Note that if x is injective, the first condition suffices.
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Now suppose that X is an infinite totally ordered set of commuting variables. Then the generating
quasi-symmetric function of π is the sum, over all π -partitions, of the monomials

∏
e∈E x(e). We

denote it Γ (π). By extending linearly Γ to ZD, we obtain a linear mapping into the algebra of quasi-
symmetric functions. For quasi-symmetric functions, see [21, 7.19]. They form a bialgebra denoted
QSym, see e.g. [15].

Theorem 2.2. Γ : ZD → QSym is a homomorphism of bialgebras.

This result is implicit in [17, Proposition 4.6 and Théorème 4.16]. We therefore omit the proof; for
the definition of the coproduct of the bialgebra of quasi-symmetric functions, see [10, p. 300], [15,
Section 2], [2, Section 17.3].

2.3. An internal product

Let (E,<1,<2) and (F ,<1,<2) be two double posets. Let φ : (E,<1) → (F ,<2) be a bijection and
denote its graph by

E ×φ F = {
(e, f ): φ(e) = f

}
.

This set becomes a double poset by: (e, f ) <1 (e′, f ′) if and only if f <1 f ′; (e, f ) <2 (e′, f ′) if and
only if e <2 e′. In other words, denoting by p1, p2 the first and second projections, p1 is an order
isomorphism (E ×φ F ,<2) → (E,<2) and p2 is an order isomorphism (E ×φ F ,<1) → (F ,<1). Note
that the inverse isomorphisms are p−1

1 = (id, φ) and p−1
2 = (φ−1, id).

Define the internal product of (E,<1,<2) and (F ,<1,<2) as the sum of the double posets E ×φ F
for all increasing bijections φ : (E,<1) → (F ,<2). It is denoted E ◦ F .

Note that this product has been chosen, among several symmetrical ones, so that the following
holds: let σ be a permutation in Sn and denote by Pσ the double poset with underlying set {1, . . . ,n},
with first order <1 defined by σ(1) <1 σ(2) <1 · · · <1 σ(n), and with second order <2 as the natural
order of this set. Then given two permutations τ and σ , one has

Pσ ◦ Pτ = Pσ◦τ ,

as the reader may easily verify.
The internal product is compatible with the Zelevinsky pairing, as follows.

Proposition 2.1. Let E, F , G be double posets. Then 〈E ◦ F , G〉 = 〈E, F ◦ G〉.

The proposition immediately follows from the following lemma.

Lemma 2.1. Let (E,<1,<2), (F ,<1,<2), (G,<1,<2) be three double posets. There is a natural bijection
between

(i) the set of pairs (φ,α), where φ is an increasing bijection (E,<1) → (F ,<2) and α is a picture from
E ×φ F into G;

(ii) the set of pairs (ψ,β), where ψ is an increasing bijection (F ,<1) → (G,<2) and β a picture from E into
F ×ψ G.

Proof. We show that the bijection is defined by ψ = α ◦ (φ−1, id) and β = (id,ψ) ◦ φ, the inverse
bijection being defined by φ = p1 ◦ β , with p1 the projection F × G → F and α = ψ ◦ p2 with p2 the
projection E × F → F .

1. Let (φ,α) be as in (i) and define ψ = α ◦ (φ−1, id) and β = (id,ψ) ◦ φ. Now notice that
(φ−1, id) is a mapping F → E ×φ F and by definition of the first order of E ×φ F , it is increas-
ing for the first orders on F and E ×φ F . Since α is increasing (E ×φ F ,<1) → (G,<2), we see
that ψ is increasing (F ,<1) → (G,<2). Now β maps bijectively E into F ×φ G , as desired, and we
verify that it is a picture. Note that (id,ψ) : F → F ×ψ G is increasing for the second orders, by
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the definition of the latter on F ×ψ G . Hence β is increasing (E,<1) → (F ×ψ G,<2). Moreover,
let ( f , g), ( f ′, g′) ∈ F ×ψ G with ( f , g) <1 ( f ′, g′); then ψ( f ) = g , ψ( f ′) = g′ and g <1 g′ . Thus
ψ( f ) <1 ψ( f ′). We have for some e, e′ ∈ E , β(e) = ( f , g) and β(e′) = ( f ′, g′). Note that the definition
of ψ implies that α−1 ◦ ψ = (φ−1, id), thus α−1(ψ( f )) = (φ−1( f ), f ). Since α is a picture, α−1 is in-
creasing (G,<1) → (E ×φ F ,<2), so that α−1(ψ( f )) <2 α−1(ψ( f ′)) and therefore by definition of the
second order on E ×φ F , we have φ−1( f ) <2 φ−1( f ′); since β(e) = (φ(e),ψ(φ(e)), we obtain f = φ(e)
and e = φ−1( f ). Finally e <2 e′ showing that β is a picture.

Define now φ′ = p1 ◦β and α′ = ψ ◦ p2. We must show that φ′ = φ and α′ = α. We have φ′ = p1 ◦
(id,ψ) ◦φ, which is equal to φ since p1 ◦ (id,ψ) is the identity of F . Moreover, α′ = α ◦ (φ−1, id) ◦ p2,
and we are done, since (φ−1, id) ◦ p2 is the identity of E ×φ F .

2. Let (ψ,β) be as in (ii), and define φ = p1 ◦ β and α = ψ ◦ p2. Now, β is an increasing bijection
(E,<1) → (F ×ψ G,<2) and p1 is an increasing bijection (F ×ψ G,<2) → (F ,<2) by definition of
the second order on F ×ψ G . Thus φ is an increasing bijection (E,<1) → (F ,<2). Moreover, p2 is an
increasing bijection (E ×φ F ,<1) → (F ,<1) by definition of the first order of E ×φ F , and ψ is an
increasing bijection (F ,<1) → (G,<2). Thus α is an increasing bijection:

α : (E ×φ F ,<1) → (G,<2).

We show that α−1 is also increasing (G,<1) → (E ×φ F ,<2). Indeed, let g, g′ ∈ G with g <1 g′ . Then
g = α(e, f ), g′ = α(e′, f ′) with φ(e) = f , φ(e′) = f ′ and we must show that (e, f ) <2 (e′, f ′), that is,
e <2 e′. Since β is a picture, β−1 is increasing (F ×ψ G,<1) → (E,<2). We have g = α(e, f ) = ψ( f )
and similarly g′ = ψ( f ′). Hence ( f , g), ( f ′, g′) ∈ F ×ψ G and ( f , g) <1 ( f ′, g′) since g <1 g′ . Thus
β−1( f , g) <2 β−1( f ′, g′). Now f = φ(e) = p1(β(e)) ⇒ β(e) = ( f ,ψ( f )) = ( f , g) ⇒ e = β−1( f , g).
Similarly, e′ = β−1( f ′, g′). It follows that e <2 e′ .

Define now ψ ′ = α ◦ (φ−1, id) and β ′ = (id,ψ) ◦ φ. We need to show that ψ ′ = ψ and β ′ = β ′ . We
have ψ ′ = ψ ◦ p2 ◦ (φ−1, id) which is clearly equal to ψ . Moreover, β ′ = (id,ψ) ◦ p1 ◦ β and we are
done since (id,ψ) ◦ p1 is the identity of F ×ψ G . �
3. The sub-bialgebra of special double posets

3.1. Special double posets

We call a double poset special if its second order is total. Since we identify isomorphic double
posets, a special double poset is nothing else than a labelled poset in the sense of [20]. Given a
labelled poset, the labelling (which is a bijection of the poset into {1, . . . ,n}) defines a second order,
which is total, on the poset. We denote by ZDS the submodule of ZD spanned by the special double
posets.

A linear extension of a special double poset π = (E,<1,<2) is a total order on E which extends
the first order <1 of E . We may identify a total order on E with the word obtained by listing the
elements increasingly for this order: let e1e2 . . . en be this word, with |E| = n. Let moreover ω be the
labelling of π , that is the unique order isomorphism from (E,<2) onto {1, . . . ,n}. Then we identify
the linear extension with the permutation σ = ω(e1) . . .ω(en) in Sn; in other words σ(i) = ω(ei) and
the mapping σ−1 ◦ ω is an increasing bijection (E,<1) → {1, . . . ,n}, since σ−1 ◦ ω(ei) = i. In this
way, a linear extension of π is a permutation σ ∈ Sn such that σ−1 ◦ ω is an increasing bijection
(E,<1) → {1, . . . ,n}.

In [15] a bialgebra structure on ZS = ⊕
n∈N ZSn has been constructed. We recall it briefly. Recall

that, for any word w of length n on a totally ordered alphabet, the standard permutation of w , denoted
by st(w), is the permutation which is obtained by giving the numbers 1, . . . ,n to the positions of the
letters in w , starting with the smallest letter from left to right, then the second smallest, and so on.
For example, if w = 4 3 2 4 1 3 4 4 2 3 3, then st(w) = 8 4 2 9 1 5 10 11 3 6 7. The product σ ∗τ for
two permutations σ ∈ Sn and τ ∈ S p is defined as the sum of permutations in Sn+p which are in the
shifted shuffle product of the words σ and τ , that is the shuffle product of σ and τ̄ , where the latter
word is obtained from τ by replacing in it each digit j by j + n. The coproduct δ on ZS is defined
on a permutation σ ∈ Sn by: δ(σ ) is the sum, over all factorizations (as concatenation) σ = uv of the
word σ , of st(u) ⊗ st(v), where st denotes standardization of a word. See [15] for these definitions.
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On ZS put the Jöllenbeck scalar product, defined by

(σ , τ ) =
{

1 if σ = τ−1,

0 otherwise.

It turns ZS into an self-dual bialgebra, see [5, 5.14] (where actually an isomorphic algebra is consid-
ered, obtained by replacing each permutation by its inverse), which means that the scalar product
(nondegenerate) is a Hopf pairing.

Define the linear mapping L from ZDS into ZS by sending each special double poset on the
sum of its linear extensions. The following result is already in [5, see 4.18, 5.5 and 5.10]. Note that
what we call here special double poset is called shape by Blessenohl and Schocker. Also, what we
call composition is called semi-direct product by them. For sake of completeness, we give here an
alternative proof of the coalgebra property; we construct a bijection between the appropriate sets of
decompositions. The proof in [5] (different from ours) uses an argument, due to Gessel [10], which is
inductive on the number of edges in the Hasse diagram of the poset.

Theorem 3.1. ZDS is a sub-bialgebra of ZD and L : ZDS → ZS is homomorphism of bialgebras.

Proof. It is straightforward to see that the composition of two special double posets is special, and
that a decomposition of a special double poset is a pair of special double posets (the class of special
double posets is a hereditary family in the sense of Schmitt [19]: it is closed under taking disjoint
unions and ideals). Thus, ZDS is a sub-bialgebra of ZD. Moreover, the set of linear extensions of the
composition of π and π ′ is classically the shifted shuffle product of the set of linear extensions of π
by that of π ′ . Hence L is a homomorphism of algebras.

The fact that it is also a homomorphism of coalgebras is proved as follows. Let π = (E,<1,<2) be
a special double poset. Then

δ ◦ L(π) =
∑
σ ,u,v

st(u) ⊗ st(v),

where the summation is over all triples (σ , u, v), with σ a linear extension of (E,<1) and where σ is
the concatenation uv; moreover,

(L ⊗ L) ◦ δ(π) =
∑

I,S,α,β

α ⊗ β,

where the summation is over all quadruples (I, S,α,β) with I an inferior ideal of (E,<1) and S its
complementary superior ideal, and α,β are respectively linear extensions of I, S for the induced or-
der <1. We show that there is a bijection between the set of such triples and quadruples. To simplify,
take π = (E,<1,<2) with E = {1, . . . ,n} and <2 = < the natural total order on E . Then the labelling
ω of π is the identity mapping. We show that

(σ , u, v) �→ (
I, S, st(u), st(v)

)
,

with I the set of naturals appearing in u and S the set of naturals appearing in v , is the desired
bijection. Note first that, since σ is a linear extension of (E,<1) and σ = uv , then I and S as defined
are a lower and a superior ideal of (E,<1); moreover, st(u) and st(v) are linear extensions of (I,<1)

and (S,<1). This mapping is injective, since any permutation σ = uv is determined by st(u), st(v)

and the sets of digits in u and v . We show that it is also surjective: let (I, S,α,β) a quadruple as
above, and define uniquely σ = uv with st(u) = α, st(v) = σ and I, S the set of digits in u, v . All we
have to show is that σ is a linear extension of (E,<1). That is: if e = σ( j) and e′ = σ(k), with e <1 e′ ,
then j < k. Since σ is the concatenation of u and v , and since st(u), st(v) are linear extensions of
I, S for the order <1, this is clear if j,k are both digits in {1, . . . , i} or {i + 1, . . . , i + s}, with i, s the
cardinality of I, S; also, if j is in the first set and k in the second. Suppose by contradiction that j is
in the second set and k in the first; then e ∈ S and e′ ∈ I , contradicting the ideal property. �

The homomorphism L has two other properties.
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Theorem 3.2. The homomorphism L : ZDS → ZS preserves the Zelevinsky pairing and the internal product.

Recall that the internal product of ZS is simply the product which extends the product on per-
mutations. The next lemma extends known results on classical pictures between skew shapes, cf. [8],
[5, Remark 13.6].

Lemma 3.1. Let π,π ′ be special double posets. There is a natural bijection between pictures from π into π ′
and linear extensions of π whose inverse is a linear extension of π ′ .

Proof. Let φ be a picture from π to π ′ , and denote by ω,ω′ the respective labellings. Then, the first
condition on a picture means that ω′ ◦ φ is an increasing bijection of (P ,<1) into {1, . . . ,n}; hence
ω ◦φ−1 ◦ω′−1 is a linear extension of (P ,<1). Similarly, the second condition means that ω′ ◦φ ◦ω−1

is a linear extension of (P ′,<1). Thus the lemma follows. �
Proof of Theorem 3.2. The fact that L preserves the pairing is immediate from the lemma.

It remains to show that L is a homomorphism for the internal product. Let π,π ′ be two special
double posets with underlying sets E, F . We may assume that E = F = {1, . . . ,n}, and that their
second order <2 is the natural order on {1, . . . ,n}. Then, since the labellings of E and F are the
identity mappings, a linear extension of π (resp. π ′) is a permutation α (resp. β) in Sn such that α−1

(resp. β−1) is increasing from (E,<1) (resp. (F ,<1)) into {1, . . . ,n}.
Now, let φ be increasing (E,<1) → (F ,<2) = {1, . . . ,n}. We construct the double poset Π = E ×φ F

as in Section 2.2. Since we identify isomorphic double posets, we may take F as underlying set,
with the first order <1 of F as first order of Π , and with second order defined by the labelling
φ−1 : F → E = {1, . . . ,n}. Then a linear extension σ of Π is a permutation σ such that σ−1 ◦ φ−1

is increasing (F ,<1) → {1, . . . ,n}. Define α = φ−1 and β = φ ◦ σ . Then α−1 = φ (resp. β−1 = σ−1 ◦
φ−1) is increasing (E,<1) → {1, . . . ,n} (resp. (F ,<1) → {1, . . . ,n}), and therefore α and β are linear
extensions of π and π ′ with α ◦ β = σ .

Conversely let α and β be linear extensions of π and π ′ . Put σ = α ◦ β and φ = α−1. Then φ is
increasing (E,<1) → (F ,<2) = {1, . . . ,n} and σ−1 ◦ φ−1 = β−1 is increasing (F ,<1) → {1, . . . ,n}.
Hence σ is a linear extension of Π .

All this implies that L(π)L(π ′), which is the sum of all α ◦β ’s, is equal to L(π ◦π ′), which is equal
to the sum of all σ ’s, for all possible φ’s. �

It is easy to prove also that the submodule of ZDS spanned by the naturally labelled special double
posets, that is, those whose second order is a linear extension of the first order, is a sub-bialgebra of
ZDS (the class of naturally labelled posets is closed under taking disjoint unions and ideals). It may be
possible that one could compute the antipode of this subalgebra, and that of ZDS, by extending the
techniques of Aguiar and Sottile [3], who computed the antipode of ZS using the weak order on the
symmetric group, and a recursive method in posets, as [10, Proof of Theorem 1] and [5, Lemma 4.11].

Recall that for a permutation σ ∈ Sn , its descent composition C(σ ) is the composition of n equal
to (c1, . . . , ck), if σ viewed as a word has k consecutive ascending runs of length c1, . . . , ck and k is
minimum. For example C(51247836) = (1,5,2), the ascending runs being 5,12478,36. Recall from
[10, p. 291] the definition of the fundamental quasi-symmetric function FC , for any composition C
(see also [21, 7.19] where it is denoted Lα ). Then it follows from [15, Theorem 3.3] that the linear
function F : ZS → QSym defined by σ �→ FC(σ ) is a homomorphism of bialgebras. Recall that the
bialgebra homomorphism Γ : ZD → QSym has been defined in Section 3. Then the following result
is merely a reformulation of a result of Stanley (see [10, Theorem 1 and Eq. (1), p. 291], or [21,
Corollary 7.19.5]).

Corollary 3.3. The mapping F ◦ L is equal to Γ restricted to ZDS.
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3.2. Littlewood–Richardson rule

A lattice permutation (or Yamanouchi word) is a word on the symbols in P = {1,2,3, . . .} such that,
for any i, the number of i’s in each left factor is not less than the number of i + 1’s. For example,
11122132 is such a lattice permutation. Given a word w on the symbols 1,2,3, . . . , with k the great-
est symbol appearing in it, we call complement of w , the word obtained from w by exchanging 1 and
k in w , then 2 and k − 1, and so on. For the word of the above example, its complement is therefore
33322312. The weight of a word w is the partition ν = 1n1 2n2 . . . , where ni is the number of i’s in w .
For the word above, it is the partition 142331.

Given a special double poset π = (E,<1,<2) of cardinality n with labelling ω, and a word
a1a2 . . .an of length n over a totally ordered alphabet A, we say that w fits into π (we take the ter-
minology from [8]) if the function E → A defined by e �→ aω(e) is a π -partition. In other words, given
a function f : E → A, call reading word of f the word f (ω(1)) . . . f (ω(n)). Then f is a π -partition
if and only if its reading word fits into π . Note the case where the word is a permutation τ : we
have that τ fits into π if and only if the word τ (1) . . . τ (n) fits into π . This means that the mapping
e �→ τ (ω(e)) is a π -partition, that is, since it is a bijection, is increasing (E,<1) → {1, . . . ,n}.

Given a partition ν of n, we define (as in [10]) a special double poset πν = (Eν,<1,<2) where
Eν is the Ferrers diagram of ν , where <1 is the order induced on Eν by the natural partial order of
N × N, and where <2 is given on the elements of Eν by (x, y) <2 (x′, y′) if and only if either y > y′ ,
or y = y′ and x < x′ . Recall that there is a well-known bijection between standard Young tableaux
of shape ν and lattice permutations of weight ν , see [21, Proposition 7.10.3(d)]. In this bijection, the
shape of the tableau is equal to the weight of the lattice permutation.

If π is a special double poset, we denote by π̃ the special double poset obtained by replacing the
two orders of π by their opposite. Clearly, a permutation σ fits into π (assumed to be special) if and
only if w0 ◦ σ ◦ w0 fits into π̃ . Recall that w0 = n n − 1 . . . 2 1 denotes the longest element in the
group Sn .

Theorem 3.4. Let π be a special double poset and ν be some partition. Then, the pairing (π,πν), that is, the
number of pictures from π to πν , is equal to:

(i) the number of lattice permutations of weight ν whose complements fit into π ;
(ii) the number of lattice permutations of weight ν whose mirror images fit into π̃ .

Note that part (ii) of this is the classical formulation of the Littlewood–Richardson rule (see [14,
(9.2)] or [21, Theorem A1.3.3]), once one realizes that a skew Schur function indexed by a skew shape
is equal to the skew Schur function obtained by rotating by 180 degrees that shape (cf. [5, Chapter 11,
pp. 109–110]).

We first need the following:

Lemma 3.2. Let π be a special double poset. A permutation σ is a linear extension of π (with respect to <1)
if and only if its inverse fits into π .

Proof. We may assume that π = (E,<1,<2) with E = {1, . . . ,n} and <2 the natural order of E .
Then ω is the identity and therefore a permutation σ is a linear extension of π if and only if σ−1

is increasing (E,<1) → {1, . . . ,n}. On the other hand, τ fits into π if and only if it is increasing
(E,<1) → {1, . . . ,n}, as noted previously. �
Proposition 3.1. Let π be a special double poset. A word w = a1 . . .an fits into π if and only if its standard
permutation does.

This result is equivalent to a result of Stanley, see [10, Theorem 1] or [21, Theorem 7.19.14].
A standard Young tableau of shape ν is the same thing as a πν -partition which is a bijection from

the Ferrers diagram of ν onto {1, . . . ,n}. Thus we can speak of the reading word of a tableau, which
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is a classical notion. We denote it read(T ). We consider also the mirror reading word of T , which is
the mirror image of read(T ). The following result must be well known, but we give a proof for the
convenience of the reader. Part (i) is proved in [5, p. 109].

Proposition 3.2. Let T be a standard Young tableau and w the associated lattice permutation.

(i) Let u be the complement of w. Then the reading word of T is equal to the inverse of the standard permu-
tation of u.

(ii) Let v be the mirror image of w. Then the mirror reading word of T is equal to the complement of the
inverse of the standard permutation of v.

Consider for instance the Young tableau

T =
5
3 9
2 6 1011
1 4 7 8

Then its lattice permutation is w = 1 2 3 1 4 2 1 1 3 2 2. The complement of the lat-
ter is u = 4 3 2 4 1 3 4 4 2 3 3. Standardizing this latter word, we obtain the permutation
8 4 2 9 1 5 10 11 3 6 7, whose inverse is 5 3 9 2 6 10 11 1 4 6 7, which is indeed the reading
word of the given tableau, obtained by concatenating its rows, beginning with the last row. This illus-
trates (i). For (ii), the mirror image of w is v = 2 2 3 1 1 2 4 1 3 2 1. The standard permutation of v
is 5 6 9 1 2 7 11 3 10 8 4. The inverse of this permutation is 4 5 8 11 1 2 6 10 3 9 7. Finally, the
complement of this permutation is 8 7 4 1 11 10 6 2 9 3 5, which is indeed the mirror reading word
of T .

We need a lemma. For this, we use a variant of the reading word of a tableau. Call row word of a
standard Young tableau T the permutation, in word form, obtained by reading in increasing order the
first row of T , then the second, and so on. Denote it by row(T ). For example, the row word of the
previous example is

row(T ) = 1 4 7 8 2 6 10 11 3 9 5.

Lemma 3.3. Let w be a word on the alphabet P of weight equal to the partition ν = (ν1 � · · · � νk > 0) of n.
Let γ the longest element in the Young subgroup Sν1 × · · · × Sνk .

(i) Let u be the complement of w. Then st(u) = w0 ◦ γ ◦ st(w).
(ii) Let v be the mirror image of w. Then st(v) = γ ◦ st(w) ◦ w0 .

(iii) Suppose that w is a lattice permutation and let T be the tableau of shape ν corresponding to w. Then
st(w) is the inverse of row(T ).

Proof. (i) Note that γ as word is equal to

ν1 . . . 1 (ν1 + ν2) . . . (ν1 + 1) . . . n . . . (ν1 + · · · + νk−1 + 1).

Hence

w0 ◦ γ = (ν2 + · · · + νk + 1) . . .n (ν3 + · · · + νk + 1) . . . (ν2 + · · · + νk) . . . 1 . . . νk.

The proof of (i) then follows by inspection.
(ii) Likewise, one proves that st(v) ◦ w0 = γ ◦ st(w) by inspection.
(iii) Let I1, . . . , Ik denote the successive intervals of {1, . . . ,n} of cardinality ν1, . . . , νk . Let

L1, . . . , Lk be the set of elements in the successive rows of T . If I, L are two subsets of equal cardinal-
ity of P, we denote by I ↗ L the unique increasing bijection from I into L. We denote also f1 ∪· · ·∪ fk
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the function which restricts to f i on its domains, assuming the domains are disjoint. Then row(T ) is
the permutation

⋃
j=1,...,k I j ↗ L j , and its inverse is therefore

⋃
j=1,...,k L j ↗ I j . Moreover, the word

w is defined by the following condition: for each position p ∈ {1, . . . ,n} = ⋃
j=1,...,k L j , the p-th letter

of w is j if and only if p ∈ L j . Recall that st(w), viewed as word, is obtained by giving the numbers
1, . . . ,n to the positions of the letters in w , starting with the 1’s from left to right, then 2’s, and so
on. Therefore st(w) = ⋃

j=1,...,k L j ↗ I j . �
Proof of Proposition 3.2. (i) We have to prove that read(T ) = st(u)−1. We know by Lemma 3.3(i)
and (iii) that st(u) = w0 ◦ γ ◦ st(w) and st(w)−1 = row(T ). Clearly read(T ) = row(T ) ◦ δ, where δ is
the permutation

(ν1 + · · · + νk−1 + 1) . . .n (ν1 + · · · + νk−2 + 1) . . . (ν1 + · · · + νk−1) . . . 1 . . . ν1.

Now δ = γ ◦ w0. Therefore, read(T ) = row(T ) ◦ γ ◦ w0 = st(w)−1 ◦ γ ◦ w0 = st(u)−1, since w0 and γ
are involutions.

(ii) We have to show that read(T ) ◦ w0 = w0 ◦ st(v)−1. We know by Lemma 3.3(ii) that st(v) =
γ ◦ st(w) ◦ w0, hence st(w) = γ ◦ st(v) ◦ w0. Using what we have done in (i), we have therefore

read(T ) = st(w)−1 ◦ γ ◦ w0 = w0 ◦ st(v)−1 ◦ γ ◦ γ ◦ w0 = w0 ◦ st(v)−1 ◦ w0. �
Proof of Theorem 3.4. (i) By Lemma 3.1 and Lemma 3.2, the indicated scalar product is equal to the
number of permutations σ which fit into π and whose inverse fits into πν . Let H denote the set
of complements of lattice permutation of weight ν . By Proposition 3.2(i), the mapping H → RWSYTν ,
w �→ st(w)−1 is a bijection, where we denote by RWSYTν the set of reading words of standard Young
tableaux of shape ν . By Proposition 3.1, part (i) of the theorem follows.

(ii) Let K denote the set of mirror images of lattice permutations of weight ν . By Proposi-
tion 3.2(ii), the mapping K → RWSYTν , v �→ σ = w0 ◦ st(v)−1 ◦ w0 is a bijection. Moreover, σ−1 =
w0 ◦ st(v) ◦ w0 fits into π̃ if and only if st(v) fits into π , that is, by Proposition 3.1, if and only if v
fits into π . �
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