SciVerse ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS
www.elsevier.com/locate/endm

Cyclic colliding permutations

Gérard Cohen ${ }^{1}$
Département Informatique et Réseaux, École Nationale Supérieure des Télécommunications CNRS Paris
Paris, France
Claudia Malvenuto ${ }^{2}$
Dipartimento di Matematica
Università di Roma "La Sapienza"
Roma, Italy

Abstract

We study lower and upper bounds for the maximum size of a set of pairwise cyclic colliding permutations.

Keywords: Extremal combinatorics of permutations

1 Preliminaries

We say that two permutations $x, y \in S_{n}$ are cyclic colliding if and only if there exists an index $1 \leq i \leq n$ such that the images of i according to x and y differ by 1 modulo n.

[^0]More generally we consider
$T_{m}(n)=\max \left\{|C|: C \subseteq S_{n}, \forall\{x, y\} \in\binom{C}{2} \exists i \in[n]:\left|x_{i}-y_{i}\right| \equiv 1(\bmod m)\right\}$.
We want to determine $T_{m}(n)$ and $T^{*}(n)=T_{n}(n)$ at least asymptotically. This is in analogy with a similar problem introduced by Körner and the second author in [3]: two permutations $x, y \in S_{n}$ are colliding if and only if there exists an index $1 \leq i \leq n$ such that the images of i by x and y differ by 1 . The best known lower bound for $T(n):=T_{n+1}(n)$, that is the maximum size of a set of pairwise colliding permutations, can be found in [1].

We say that two permutations in $T_{m}(n)$ are m-colliding. This incompasses both the definitions of cyclic colliding permutations (when $m=n$) and colliding permutations (when $m>n$).

The following is obvious.
Proposition 1.1 If m^{\prime} divides m, then $T_{m^{\prime}}(n) \geq T_{m}(n)$.
We define the parity pattern $(p p)$ of a permutation $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $p p(x)=\left(x_{1}[2], x_{2}[2], \ldots, x_{n}[2]\right)$. For example, if $x=\mathbf{1}:=(1,2, \ldots, n)$ is the identical permutation, then $p p(x)=(1,0,1,0, \ldots)$. Since the parity pattern of a permutation is balanced binary sequence, there are $\binom{n}{\lfloor n / 2\rfloor}$ possible parity patterns.

Setting $x R y$ if and only if $p p(x)=p p(y)$ defines an equivalence relation, with each class associated to a parity pattern. Clearly, if m is even, two m colliding permutations cannot have the same parity pattern, i.e. $x \rightarrow p p(x)$ restricted to a $m=2 m^{\prime}$-colliding code is injective. Thus
Proposition 1.2 $T_{2 m^{\prime}}(n) \leq\binom{ n}{\lfloor n / 2\rfloor}$.
When $m^{\prime}=1$, equality holds, since two permutations belonging to different classes will be 2-colliding:

Proposition $1.3 T_{2}(n)=\binom{n}{\lfloor n / 2\rfloor}$.
We now focus on the case of cyclic collision $(m=n)$.

2 Lower bounds

It is immediate to see that if two permutations are colliding, then they are cyclic colliding, that is, $T^{*}(n) \geq T(n)$. This can be improved:

Proposition $2.1 T^{*}(n) \geq 2 T(n-1)$.

Proof. Let $C \subseteq S_{2, \ldots, n}$ and $D \subseteq S_{1, \ldots, n-1}$ two sets of permutations of length $n-1$ pairwise colliding of maximum cardinality $T(n-1)$. The set of permutations of [n]

$$
E:=1 \cdot C \cup n \cdot D
$$

obtained by prefixing every permutation in C by 1 and every permutation in D by n is clearly pairwise cyclic colliding, and $|E|=2 T(n-1)$.

3 Upper bounds

We distinguish two cases, depending on the parity of n; the even case $n=$ $m=2 m^{\prime}$ follows from Proposition 1.2.
Proposition 3.1 $T^{*}(2 m) \leq\binom{ 2 m}{m}$.
Now we analyze the case when n is odd.
Proposition 3.2 $T^{*}(2 m+1) \leq 3\binom{2 m+1}{m}$.
Proof. Let σ be a permutation of $S_{n}, n=2 m+1$. The Hamming weight (i.e. the number of 1 's) of $p p(\sigma)$ is $m+1$, thus there are $\binom{2 m+1}{m}$ parity patterns. Let now C be a cyclic colliding code; observe that in this case the map $p p$ is no longer injective as in the case of n even: however we want to prove that $p p$ is at most 3 -to- 1 when restricted on C. Without loss of generality, let $z:=(1,1, \ldots, 1,0,0, \ldots, 0)$ be the parity pattern of some codeword, say: $c^{1}=(1,3,5, \ldots, 2 m+1,2,4, \ldots, 2 m)$. Let $D:=p p^{-1}(z)=\left\{c^{1}, c^{2}, \ldots\right\}$ be the pre-image of z in C : we want to show that $|D| \leq 3$. Obviously the property of being cyclic colliding is inherited to subsets of a any cyclic colliding code (it is a pairwise condition holding for all pairs of the code); hence for D to be cyclic colliding, we must have: for $i \neq j, c^{i}$ and c^{j} have the pair $\{1,2 m+1\}$ in some position (it is indeed the only way to be cyclic colliding and have the same parity pattern). Thus they never have a 1 nor a $2 m+1$ in the same position.

Thus, without loss of generality, either:

$$
\begin{gathered}
c^{1}=\left(\begin{array}{cccccc}
1, & 2 m+1, & * & *, & \ldots, & *
\end{array}\right) \\
c^{2}
\end{gathered}=\left(\begin{array}{cccc}
2 m+1, & 1, & *, & *, \\
2 m, & *
\end{array}\right)
$$

and $|D|=2$; or
and $|D|=3$.

Proposition 3.3

$$
T^{*}(n) \leq n T(n-1) .
$$

Proof. We partition the permutations of a "code" C (that is, a family of permutations of n with the maximum cardinality with respect to the property of being pairwise cyclic colliding), according to the positions of the digit 1 : let $C_{j}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in C: x_{j}=1\right\}$, so that $C=C_{1} \cup \ldots \cup C_{n}$, with the C_{j} 's all disjont (possibly empty). Each C_{j} contains permutations that are pairwise colliding, where the digits $\{2, \ldots, n\}$ are responsible for the collisions in C_{j} (since the cyclic collisions due to the digits 1 and n cannot appear in the C_{j}), so that $\left|C_{j}\right| \leq T(n-1)$.

Corollary 3.4

$$
2 T(n-1) \leq T^{*}(n) \leq n T(n-1)
$$

Remarks and questions

(i) In the case of cyclic collision, there is no proof of supermultiplicativity as for $T(n)$, namely : $T(n+m) \geq T(n) T(m)$; thus the determination of $T^{*}(n)$ cannot be seen as a "capacity" problem [1,3]. Setting $R_{n}:=$ $(1 / n) \log _{2} T_{n}$, we have by Fekete's lemma that R_{n} tends to a limit R as n goes to infinity. Thanks to the previous corollary, we get directly the convergency of the analogous quantity in the cyclic case; furthermore, $R *=R$ holds.
(ii) Can we prove/disprove that $T^{*}(n) \leq T^{*}(n+1)$?
(iii) Can we prove/disprove that $T^{*}(n) \leq T(n+1)$?

We know the values of $T(n)$ up to $n=9$ (the cases of 8 and 9 were found independently by Adolfo Piperno and Brik [2], communicated by Adriano Garsia), and they are both of the form $\binom{n}{n / 2}$. For $n=10$, A. Garsia and E. Sergel found through computer search different sets of pairwise colliding permutations consisting of 251 elements (one less that the upper bound $\binom{10}{5}=$ 252).

We found a code $E \subseteq S_{5}$ of 20 pairwise cyclic colliding permutations of 5 elements, which improves on the lower bound of 12 given by Proposition 2.1. This construction is structured as follows. Let

$$
E^{\prime}=\left\{x=\left(x_{1}, \ldots, x_{5}\right): x \text { is a cyclic shift of }(1,3,2, *, *)\right\}
$$

that is

$$
E^{\prime}=\{(1,3,2, *, *),(*, 1,3,2, *),(*, *, 1,3,2),(2, *, *, 1,3),(3,2, *, *, 1)\}
$$

E^{\prime} consists of pairwise colliding permutations (as shown in Lemma 4.6 of [3]), hence cyclic colliding. One can "double" each partial permutation of E^{\prime} filling the joker symbols $*$ of E^{\prime} once with 4,5 , then with 5,4 in the order: call the corresponding sets of 5 permutations $E^{\prime}(4,5)$ and $E^{\prime}(5,4)$ respectively: putting them together, one obtains 10 pairwise colliding permutations (hence cyclic colliding). In a similar way, we build

$$
E^{\prime \prime}=\left\{x=\left(x_{1}, \ldots, x_{5}\right): x \text { is a cyclic shift of }(5,3,4, *, *)\right\}
$$

and "double" each of its elements filling the joker symbols $*$ of E^{\prime} once with 1,2 , then with 2,1 in this order, to obtain $E^{\prime \prime}(1,2), E^{\prime \prime}(2,1)$, whose union leads to 10 colliding permutations. While the resulting set

$$
F=E^{\prime}(4,5) \cup E^{\prime}(5,4) \cup E^{\prime \prime}(1,2) \cup E^{\prime \prime}(2,1)
$$

is not a colliding code, it is surprisingly a cyclic colliding code.
We summarize the known values (or bounds) of the different considered types of T 's up to 10 in the following table.

n	1	2	3	4	5	6	7	8	9	10
$T_{2}(n)=\binom{n}{\lfloor n / 2\rfloor}$	1	2	3	6	10	20	35	70	126	252
$T(n)$	1	2	3	6	10	20	35	70	126	$251 \leq ? \leq 252$
$T^{*}(n)$	1	2	6	6	$20 \leq ? \leq 30$	20	$40 \leq ? \leq 105$	70	$140 \leq ? \leq 378$	252

References

[1] Brightwell, G., G. Cohen, E. Fachini, M. Fairthorne, J. Körner, G. Simonyi, and A. Tóth, Permutation capacities of families of oriented infinite paths, SIAM J. Discrete Math. 24(2) (2010), 441-456.
[2] Ellis, D., Setwise intersecting families of permutations, J. Combin. Theory Ser. A 119(4) (2012), 825-849.
[3] Körner J., and C. Malvenuto, Pairwise colliding permutations and the capacity of infinite graphs, SIAM J. Discrete Math. 20(1) (2006), 203-212.

[^0]: 1 Email: cohen@enst.fr
 ${ }^{2}$ Email: claudia@mat.uniroma1.it

