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Abstract

We study lower and upper bounds for the maximum size of a set of pairwise cyclic
colliding permutations.

Keywords: Extremal combinatorics of permutations

1 Preliminaries

We say that two permutations x, y ∈ Sn are cyclic colliding if and only if there
exists an index 1 ≤ i ≤ n such that the images of i according to x and y differ
by 1 modulo n.
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More generally we consider

Tm(n) = max{|C| : C ⊆ Sn, ∀{x, y} ∈

(

C

2

)

∃i ∈ [n] : |xi − yi| ≡ 1(mod m)}.

We want to determine Tm(n) and T ∗(n) = Tn(n) at least asymptotically.
This is in analogy with a similar problem introduced by Körner and the second
author in [3]: two permutations x, y ∈ Sn are colliding if and only if there exists
an index 1 ≤ i ≤ n such that the images of i by x and y differ by 1. The best
known lower bound for T (n) := Tn+1(n) , that is the maximum size of a set
of pairwise colliding permutations, can be found in [1].

We say that two permutations in Tm(n) are m-colliding. This incompasses
both the definitions of cyclic colliding permutations (when m = n) and col-
liding permutations (when m > n).

The following is obvious.

Proposition 1.1 If m′ divides m, then Tm′(n) ≥ Tm(n).

We define the parity pattern (pp) of a permutation x = (x1, x2, . . . , xn) by
pp(x) = (x1[2], x2[2], . . . , xn[2]). For example, if x = 1 := (1, 2, . . . , n) is the
identical permutation, then pp(x) = (1, 0, 1, 0, . . .). Since the parity pattern
of a permutation is balanced binary sequence, there are

(

n
⌊n/2⌋

)

possible parity
patterns.

Setting xRy if and only if pp(x) = pp(y) defines an equivalence relation,
with each class associated to a parity pattern. Clearly, if m is even, two m-
colliding permutations cannot have the same parity pattern, i.e. x → pp(x)
restricted to a m = 2m′-colliding code is injective. Thus

Proposition 1.2 T2m′(n) ≤
(

n
⌊n/2⌋

)

.

Whenm′ = 1, equality holds, since two permutations belonging to different
classes will be 2-colliding:

Proposition 1.3 T2(n) =
(

n
⌊n/2⌋

)

.

We now focus on the case of cyclic collision (m = n).

2 Lower bounds

It is immediate to see that if two permutations are colliding, then they are
cyclic colliding, that is, T ∗(n) ≥ T (n). This can be improved:

Proposition 2.1 T ∗(n) ≥ 2T (n− 1).
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Proof. Let C ⊆ S2,...,n and D ⊆ S1,...,n−1 two sets of permutations of length
n− 1 pairwise colliding of maximum cardinality T (n− 1). The set of permu-
tations of [n]

E := 1 · C ∪ n ·D

obtained by prefixing every permutation in C by 1 and every permutation in
D by n is clearly pairwise cyclic colliding, and |E| = 2T (n− 1). ✷

3 Upper bounds

We distinguish two cases, depending on the parity of n; the even case n =
m = 2m′ follows from Proposition 1.2.

Proposition 3.1 T ∗(2m) ≤
(

2m
m

)

.

Now we analyze the case when n is odd.

Proposition 3.2 T ∗(2m+ 1) ≤ 3
(

2m+1

m

)

.

Proof. Let σ be a permutation of Sn, n = 2m+1. The Hamming weight (i.e.
the number of 1’s) of pp(σ) is m + 1, thus there are

(

2m+1

m

)

parity patterns.
Let now C be a cyclic colliding code; observe that in this case the map pp
is no longer injective as in the case of n even: however we want to prove
that pp is at most 3–to–1 when restricted on C. Without loss of generality,
let z := (1, 1, . . . , 1, 0, 0, . . . , 0) be the parity pattern of some codeword, say:
c1 = (1, 3, 5, . . . , 2m+ 1, 2, 4, . . . , 2m). Let D := pp−1(z) = {c1, c2, . . .} be the
pre-image of z in C: we want to show that |D| ≤ 3. Obviously the property
of being cyclic colliding is inherited to subsets of a any cyclic colliding code
(it is a pairwise condition holding for all pairs of the code); hence for D to be
cyclic colliding, we must have: for i 6= j, ci and cj have the pair {1, 2m+ 1}
in some position (it is indeed the only way to be cyclic colliding and have the
same parity pattern). Thus they never have a 1 nor a 2m + 1 in the same
position.

Thus, without loss of generality, either:

c1 = ( 1, 2m+ 1, ∗, ∗, . . . , ∗)

c2 = ( 2m+ 1, 1, ∗, ∗, . . . , ∗)

and |D| = 2; or

c1 = ( 1, ∗, 2m+ 1, ∗, ∗, . . . , ∗ )

c2 = ( 2m+ 1, 1, ∗, ∗, ∗, . . . , ∗ )

c3 = ( ∗, 2m+ 1, 1, ∗, ∗, . . . , ∗ )
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and |D| = 3. ✷

Proposition 3.3

T ∗(n) ≤ nT (n− 1).

Proof. We partition the permutations of a “code” C (that is, a family of
permutations of n with the maximum cardinality with respect to the property
of being pairwise cyclic colliding), according to the positions of the digit 1:
let Cj = {x = (x1, . . . , xn) ∈ C : xj = 1}, so that C = C1 ∪ . . . ∪ Cn, with
the Cj’s all disjont (possibly empty). Each Cj contains permutations that are
pairwise colliding, where the digits {2, . . . , n} are responsible for the collisions
in Cj (since the cyclic collisions due to the digits 1 and n cannot appear in
the Cj), so that |Cj| ≤ T (n− 1). ✷

Corollary 3.4

2T (n− 1) ≤ T ∗(n) ≤ nT (n− 1).

Remarks and questions

(i) In the case of cyclic collision, there is no proof of supermultiplicativity
as for T (n), namely : T (n + m) ≥ T (n)T (m); thus the determination
of T ∗(n) cannot be seen as a “capacity” problem [1,3]. Setting Rn :=
(1/n) log2 Tn, we have by Fekete’s lemma that Rn tends to a limit R as
n goes to infinity. Thanks to the previous corollary, we get directly the
convergency of the analogous quantity in the cyclic case; furthermore,
R∗ = R holds.

(ii) Can we prove/disprove that T ∗(n) ≤ T ∗(n + 1)?

(iii) Can we prove/disprove that T ∗(n) ≤ T (n+ 1)?

We know the values of T (n) up to n = 9 (the cases of 8 and 9 were found
independently by Adolfo Piperno and Brik [2], communicated by Adriano
Garsia), and they are both of the form

(

n
n/2

)

. For n = 10, A. Garsia and
E. Sergel found through computer search different sets of pairwise colliding
permutations consisting of 251 elements (one less that the upper bound

(

10

5

)

=
252).

We found a code E ⊆ S5 of 20 pairwise cyclic colliding permutations of 5
elements, which improves on the lower bound of 12 given by Proposition 2.1.
This construction is structured as follows. Let

E ′ = {x = (x1, . . . , x5) : x is a cyclic shift of (1, 3, 2, ∗, ∗)},
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that is

E ′ = {(1, 3, 2, ∗, ∗), (∗, 1, 3, 2, ∗), (∗, ∗, 1, 3, 2), (2, ∗, ∗, 1, 3), (3, 2, ∗, ∗, 1)}.

E′ consists of pairwise colliding permutations (as shown in Lemma 4.6 of [3]),
hence cyclic colliding. One can “double” each partial permutation of E ′ filling
the joker symbols ∗ of E ′ once with 4, 5, then with 5, 4 in the order: call
the corresponding sets of 5 permutations E ′(4, 5) and E ′(5, 4) respectively:
putting them together, one obtains 10 pairwise colliding permutations (hence
cyclic colliding). In a similar way, we build

E ′′ = {x = (x1, . . . , x5) : x is a cyclic shift of (5, 3, 4, ∗, ∗)},

and “double” each of its elements filling the joker symbols ∗ of E′ once with
1, 2, then with 2, 1 in this order, to obtain E ′′(1, 2), E ′′(2, 1), whose union leads
to 10 colliding permutations. While the resulting set

F = E ′(4, 5) ∪E ′(5, 4) ∪ E ′′(1, 2) ∪ E ′′(2, 1)

is not a colliding code, it is surprisingly a cyclic colliding code.

We summarize the known values (or bounds) of the different considered
types of T ’s up to 10 in the following table.

n 1 2 3 4 5 6 7 8 9 10

T2(n) =
(

n
⌊n/2⌋

)

1 2 3 6 10 20 35 70 126 252

T (n) 1 2 3 6 10 20 35 70 126 251 ≤? ≤ 252

T
∗(n) 1 2 6 6 20 ≤? ≤ 30 20 40 ≤? ≤ 105 70 140 ≤? ≤ 378 252
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