Minimal surfaces, Plateau's problem, and related questions

by Stefan Hildebrandt (Bonn University)

Outlines of the lectures ¹

Lecture I

Minimal surfaces as conformally parametrized mappings. Branch points. Plateau boundary conditions and the class $\mathcal{C}(\Gamma)$ of admissible mappings. The Courant-Lebesgue lemma. Plateau's problem. The problem of area minimization. Dirichlet's integral D and area A. Solution of "D \rightarrow min in $\mathcal{C}(\Gamma)$ ". The relation $\inf_{\mathcal{C}(\Gamma)} A = \inf_{\mathcal{C}(\Gamma)}(D)$ and the simultaneous problem "A \rightarrow min & D \rightarrow min in $\mathcal{C}(\Gamma)$ ". Basic regularity results: boundary regularity; absence of branch points for minimizers. Uniqueness and non-uniqueness. Open problems.

Lecture II

Free boundary problems. Plateau problem for surfaces of prescribed mean curvature H(x) (H-surfaces). Proof of the boundary regularity. Asymptotic expansion about boundary branch points. Gauss-Bonnet theorem for branched surfaces. Enclosure theorems. The "thread problem". Miscellaneous results for minimal surfaces with free boundaries. Isoperimetric inequalities. Open problems.

Lecture III

Construction of unstable minimal surfaces via the mountain pass lemma: the Courant-Shiffman approach, and Heinz's theory of quasi-minimal surfaces. Stable minimal surfaces. Field embedding. Tomi's finiteness theorem, and Nitsche's 6π -theorem. The global Korn-Lichtenstein theorem as a generalization of Riemann's mappings theorem. Open problems.

Lecture IV

The "Douglas problem" for configurations of several boundary curves. Cases of nonsolvability. Condition of cohesiveness. Solution of the simultaneous Douglas problem " $A \rightarrow \min$ & $D \rightarrow \min$ " if Douglas sufficient condition is satisfied. Examples. Open problems.

¹The topics written in Italics will be presented with proofs