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MOTIVATION

DD can be used in the framework of any discretization method for
PDEs (FEM, FV, FD, SEM) to make their algebraic solution more
efficient on parallel computer platforms

DDM allow the reformulation of a boundary-value problem on a
partition of the computational domain into subdomains
⇒ very convenient framework for the solution of heterogeneous or
multiphysics problems, i.e. those that are governed by differential
equations of different kinds in different subregions of the
computational domain.
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THE IDEA

By DDM methods the computational domain Ω where the bvp is set is
subdivided into two or more subdomains on which discretized problems of
smaller dimension are to be solved.

Parallel solution algorithms may be used.

There are two ways of subdividing the computational domain:

with disjoint subdomains

with overlapping subdomains

Correspondingly, different DD algorithms will be set up.
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EXAMPLES OF SUBDIVISIONS IN APPLICATIONS
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CLASSICAL ITERATIVE DD METHODS
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MODEL PROBLEM

Consider the model problem:

find u : Ω → R s.t. {

Lu = f in Ω
u = 0 on ∂Ω

L is a generic second order elliptic operator.

The weak formulation reads:

find u ∈ V = H1
0 (Ω) : a(u, v) = (f , v) ∀v ∈ V ,

where a(·, ·) is the bilinear form associated with L.
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SCHWARZ METHODS

Consider a decomposition of Ω with overlap:

The iterative method: given u
(0)
2 on Γ1, for k ≥ 1:

solve









Lu
(k)
1 = f in Ω1

u
(k)
1 = u

(k−1)
2 on Γ1

u
(k)
1 = 0 on ∂Ω1 \ Γ1

solve













Lu
(k)
2 = f in Ω2

u
(k)
2 =

{

u
(k)
1

u
(k−1)
1

on Γ2

u
(k)
2 = 0 on ∂Ω2 \ Γ2 .
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Choice of the trace on Γ2:

if u
(k)
1 ⇒ multiplicative Schwarz method

if u
(k−1)
1 ⇒ additive Schwarz method

We have two elliptic bvp with Dirichlet conditions in Ω1 and Ω2, and we

wish the two sequences {u(k)
1 } and {u(k)

2 } to converge to the restrictions
of the solution u of the original problem:

lim
k→∞

u
(k)
1 = u|Ω1

and lim
k→∞

u
(k)
2 = u|Ω2

.

The Schwarz method applied to the model problem always converges,
with a rate that increases as the measure |Γ12| of the overlapping region
Γ12 increases.
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Example. Consider the model problem

{

−u′′(x) = 0 a < x < b,
u(a) = u(b) = 0,

where

Ω1

Ω2

a bγ1γ2

The solution is u = 0. We show a few iterations of the method:

a bγ1γ2

u
(0)
2

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

Clearly, the method converges with a rate that reduces as the length of
the interval (γ2, γ1) gets smaller.



10

NON-OVERLAPPING DECOMPOSITION
We partition now the domain Ω in two disjoint subdomains:

The following equivalence result holds.

Theorem
The solution u of the model problem is such that u|Ωi

= ui for i = 1, 2,
where ui is the solution to the problem

{

Lui = f in Ωi

ui = 0 on ∂Ωi \ Γ

with interface conditions

u1 = u2 and
∂u1

∂n
=

∂u2

∂n
on Γ.
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DIRICHLET-NEUMANN METHOD

Given u
(0)
2 on Γ, for k ≥ 1 solve the problems:









Lu
(k)
1 = f in Ω1

u
(k)
1 = u

(k−1)
2 on Γ

u
(k)
1 = 0 on ∂Ω1 \ Γ ,











Lu
(k)
2 = f in Ω2

∂u
(k)
2

∂n
=

∂u
(k)
1

∂n
on Γ

u
(k)
2 = 0 on ∂Ω2 \ Γ .

The equivalence theorem guarantees that when the two sequences {u(k)
1 }

and {u(k)
2 } converge, then their limit will be necessarily the solution to

the exact problem.
The DN algorithm is therefore consistent.
Its convergence however is not always guaranteed.



12

Example. Let Ω = (a, b), γ ∈ (a, b), L = −d2/dx2 and f = 0. At every
k ≥ 1 the DN algorithm generates the two subproblems:









−(u(k)
1 )′′ = 0 a < x < γ

u
(k)
1 = u

(k−1)
2 x = γ

u
(k)
1 = 0 x = a









−(u(k)
2 )′′ = 0 γ < x < b

(u(k)
2 )′ = (u(k)

1 )′ x = γ

u
(k)
2 = 0 x = b.

The two sequences converge only if γ > (a + b)/2:

a bγ

u
(0)
2

u
(1)
2

a+b
2

u
(2)
2 a bγ

u
(0)
2

u
(1)
2

a+b
2
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A variant of the DN algorithm can be set up by replacing the Dirichlet
condition in the first subdomain by

u
(k)
1 = θu(k−1)

2 + (1 − θ)u(k−1)
1 on Γ ,

that is by introducing a relaxation which depends on a positive parameter
θ.
In such a way it is always possible to reduce the error between two
subsequent iterates.

In the previous example, we can easily verify that, by choosing

θopt = −
u

(k−1)
1

u
(k−1)
2 − u

(k−1)
1

,

the algorithm converges to the exact solution in a single iteration.

More in general, there exists a suitable value θmax < 1 such that the DN
algorithm converges for any possible choice of the relaxation parameter θ
in the interval (0, θmax).
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NEUMANN-NEUMANN ALGORITHM

Consider again a partition of Ω into two disjoint subdomains and denote
by λ the (unknown) value of the solution u at their interface Γ.

Consider the following iterative algorithm: for any given λ(0) on Γ, for
k ≥ 0 and i = 1, 2, solve the following problems:









−'u
(k+1)
i = f in Ωi

u
(k+1)
i = λ(k) on Γ

u
(k+1)
i = 0 on ∂Ωi \ Γ ,











−'ψ(k+1)
i = 0 in Ωi

∂ψ(k+1)
i

∂n
=

∂u
(k+1)
1

∂n
−

∂u
(k+1)
2

∂n
on Γ

ψ(k+1)
i = 0 on ∂Ωi \ Γ ,

with
λ(k+1) = λ(k) − θ

(

σ1ψ
(k+1)
1|Γ − σ2ψ

(k+1)
2|Γ

)

,

where θ is a positive acceleration parameter, while σ1 and σ2 are two
positive coefficients.
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ROBIN-ROBIN ALGORITHM

For every k ≥ 0 solve the following problems:











−'u
(k+1)
1 = f in Ω1

u
(k+1)
1 = 0 on ∂Ω1 \ Γ,

∂u
(k+1)
1

∂n
+ γ1u

(k+1)
1 =

∂u
(k)
2

∂n
+ γ1u

(k)
2 on Γ,

then










−'u
(k+1)
2 = f in Ω2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ,

∂u
(k+1)
2

∂n
+ γ2u

(k+1)
2 =

∂u
(k+1)
1

∂n
+ γ2u

(k+1)
1 on Γ,

where u
(0)
2 is assigned and γ1, γ2 are non-negative acceleration

parameters that satisfy γ1 + γ2 > 0.

Aiming at parallelization, we could use u
(k)
1 instead of u

(k+1)
1 .
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THE STEKLOV-POINCARÉ INTERFACE

EQUATION
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MULTI-DOMAIN FORMULATION OF POISSON

PROBLEM AND INTERFACE CONDITIONS

We consider now the model problem:

{

−'u = f in Ω
u = 0 on ∂Ω.

For a domain partitioned into two disjoint subdomains, we can write the
equivalent multidomain formulation (ui = u|Ωi

, i = 1, 2):





















−'u1 = f in Ω1

u1 = 0 on ∂Ω1 \ Γ
−'u2 = f in Ω2

u2 = 0 on ∂Ω2 \ Γ
u1 = u2 on Γ
∂u1

∂n
=

∂u2

∂n
on Γ .
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THE STEKLOV-POINCARÉ OPERATOR

Let λ be the unknown value of the solution u on the interface Γ: λ = u|Γ .

Should we know a priori the value λ on Γ, we could solve the following
two independent boundary-value problems with Dirichlet condition on Γ
(i = 1, 2):







−'wi = f in Ωi ,
wi = 0 on ∂Ωi \ Γ,
wi = λ on Γ.
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With the aim of obtaining the value λ on Γ, let us split wi as follows

wi = w∗
i + u0

i ,

where w∗
i and u0

i represent the solutions of the following problems
(i = 1, 2):







−'w∗
i = f in Ωi ,

w∗
i = 0 on ∂Ωi ∩ ∂Ω,

w∗
i = 0 on Γ,

and 





−'u0
i = 0 in Ωi ,

u0
i = 0 on ∂Ωi ∩ ∂Ω,

u0
i = λ on Γ.
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The functions w∗
i depend solely on the source data f ⇒ w∗

i = Gi f
where Gi is a linear continuous operator

u0
i depend solely on the value λ on Γ ⇒ u0

i = Hiλ, where Hi is the
so-called harmonic extension operator of λ on the domain Ωi .

We have that

ui = w∗
i + u0

i , (i = 1, 2, ) ⇔
∂w1

∂n
=

∂w2

∂n
on Γ.

Using the previously introduced notations:

∂

∂n
(G1f + H1λ) =

∂

∂n
(G2f + H2λ) ,

and therefore
(

∂H1

∂n
−

∂H2

∂n

)

λ =

(
∂G2

∂n
−

∂G1

∂n

)

f on Γ.



21

We have obtained the Steklov-Poincaré equation for the unknown λ on
the interface Γ:

Sλ = χ on Γ

S is the Steklov-Poincaré pseudo-differential operator:

Sµ =
∂

∂n
H1µ −

∂

∂n
H2µ =

2
∑

i=1

∂

∂ni
Hiµ

χ is a linear functional which depends on f :

χ =
∂

∂n
G2f −

∂

∂n
G1f = −

2
∑

i=1

∂

∂ni
Gi f .

The operator

Si : µ → Siµ =
∂

∂ni
(Hiµ)

∣
∣
∣
∣
Γ

, i = 1, 2,

is called local Steklov-Poincaré operator which operates between the
trace space

Λ = {µ : ∃v ∈ V s.t. µ = v|Γ} = H
1/2
00 (Γ)

and its dual Λ′.
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EQUIVALENCE BETWEEN THE DD SCHEMES

AND CLASSICAL ITERATIVE METHODS
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The DN method can be reinterpreted as a preconditioned Richardson
method for the solution of the Steklov-Poincaré interface equation:

PDN(λ(k) − λ(k−1)) = θ(χ − Sλ(k−1))

The preconditioning operator is PDN = S2 = ∂(H2µ)/∂n2.

The NN method can also be interpreted as a preconditioned
Richardson algorithm

PNN(λ(k) − λ(k−1)) = θ(χ − Sλ(k−1))

with PNN = (σ1S
−1
1 + σ2S

−1
2 )−1.
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The Robin-Robin algorithm is equivalent to the following alternating
direction (ADI) algorithm:

(γ1IΛ + S1)µ
(k)
1 = χ + (γ1IΛ + S2)µ

(k−1)
2 ,

(γ2IΛ + S2)µ
(k)
2 = χ + (γ2IΛ + S1)µ

(k−1)
1 ,

where IΛ : Λ → Λ′ here denotes the Riesz isomorphism between the
Hilbert space Λ and its dual Λ′.

At convergence (for a convenient choice of γ1 and γ2), we have
µ1 = µ2 = λ.
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FINITE ELEMENT APPROXIMATION:

MULTIDOMAIN FORMULATION
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The Galerkin finite element approximation of the Poisson problem on a
triangulation Th of Ω reads

find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh,

where
Vh = {vh ∈ C 0(Ω) : vh|K ∈ Pr r ≥ 1, ∀K ∈ Th, vh = 0 on ∂Ω}

is the space of finite element functions of degree r with basis {ϕj}
Nh

j=1.

We partition the nodes of the triangulation as follows:

{x (1)
j , 1 ≤ j ≤ N1} nodes in subdomain Ω1

{x (2)
j , 1 ≤ j ≤ N2} nodes in subdomain Ω2

{x (Γ)
j , 1 ≤ j ≤ NΓ} nodes on on the interface Γ
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Example:
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We split the basis functions accordingly:

ϕ(1)
j functions associated to the nodes x

(1)
j

ϕ(2)
j functions associated to the nodes x

(2)
j

ϕ(Γ)
j functions associated to the nodes x

(Γ)
j on the interface

Then, we can write:

uh(x) =
N1∑

j=1

uh(x
(1)
j )ϕ(1)

j (x) +
N2∑

j=1

uh(x
(2)
j )ϕ(2)

j (x)

+
NΓ∑

j=1

uh(x
(Γ)
j )ϕ(Γ)

j (x).
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Substituing in the Galerkin formulation, after some algebra, we end up
with the linear system

Au = f, that is





A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ









u1

u2

λ



 =





f1
f2
fΓ





where AΓΓ =
(

A
(1)
ΓΓ + A

(2)
ΓΓ

)

and fΓ = fΓ
1 + fΓ

2 .

Moreover,

u1 =
(

uh(x
(1)
j )

)

, u2 =
(

uh(x
(2)
j )

)

and λ =
(

uh(x
(Γ)
j )

)

.



30

THE SCHUR COMPLEMENT SYSTEM
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Since λ represents the unknown value of u on Γ, its finite element
correspondent is the vector λ of the values of uh at the interface nodes.

By Gaussian elimination, we can obtain a new reduced system on the sole
unknown λ:

Matrices A11 and A22 are invertible since they are associated with
two homogeneous Dirichlet boundary-value problems for the Laplace
operator:

u1 = A−1
11 (f1 − A1Γλ) and u2 = A−1

22 (f2 − A2Γλ) .

From the third equation we obtain:

[(

A
(1)
ΓΓ − AΓ1A

−1
11 A1Γ

)

+
(

A
(2)
ΓΓ − AΓ2A

−1
22 A2Γ

)]

λ =

fΓ − AΓ1A
−1
11 f1 − AΓ2A

−1
22 f2.
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Setting

Σ = Σ1 + Σ2 with Σi = A
(i)
ΓΓ − AΓiA

−1
ii AiΓ (i = 1, 2)

and
χΓ = fΓ − AΓ1A

−1
11 f1 − AΓ2A

−1
22 f2

we obtain the Schur complement system

Σλ = χΓ

Σ and χΓ approximate S and χ.

Σ is the so-called Schur complement of A with respect to u1 and u2.

Σi are the Schur complements related to the subdomains Ωi

(i = 1, 2).
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Example:

Γ1

Γ2 Γ3

Γ4

Γc

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 597

Γ1

Γ2

Γ3

Γ4

Γc

On the left, decomposition of Ω = (0, 1) × (0, 1) into four square subdomains.

On the right, sparsity pattern of the Schur complement matrix arising from the

decomposition depicted on the left.
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PROPERTIES OF THE SCHUR COMPLEMENT Σ

The Schur complement Σ inherits some of the properties of A:

if A is singular, so is Σ;

if A (respectively, Aii ) is symmetric, then Σ (respectively, Σi ) is
symmetric too;

if A is positive definite, so is Σ.

Moreover, concerning the condition number, we have

K2(A) , Ch−2

K2(Σ) , Ch−1
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EQUIVALENCE BETWEEN THE DN METHOD

AND PRECONDITIONER RICHARDSON IN THE

DISCRETE CASE
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In the discrete case it is easy to prove that the DN method is equivalent
to a preconditioned Richardson algorithm.

First, we write the algebraic DN method:

Dirichlet problem:

A11u
(k)
1 = f1 − A1Γλ

(k−1),

Neumann problem

[
A22 A2Γ

AΓ2 A
(2)
ΓΓ

]
[

u
(k)
2

λ(k−1/2)

]

=

[
f2

fΓ − AΓ1u
(k)
1 − A

(1)
ΓΓ λ(k−1)

]

.

Relaxation:
λ(k) = θλ(k−1/2) + (1 − θ)λ(k−1).
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By eliminating u
(k)
2 we obtain:

(

A
(2)
ΓΓ − AΓ2A

−1
22 A2Γ

)

λ(k−1/2) = fΓ − AΓ1u
(k)
1 − A

(1)
ΓΓ λ(k−1) − AΓ2A

−1
22 f2 .

and using the definition of Σ2 we have

Σ2λ
(k−1/2) = fΓ − AΓ1A

−1
11 f1 − AΓ2A

−1
22 f2 −

(

A
(1)
ΓΓ − AΓ1A

−1
11 A1Γ

)

λ(k−1) ,

that is, owing to the definition of Σ1 and χΓ:

λ(k−1/2) = Σ−1
2

(

χΓ − Σ1λ
(k−1)

)

.

Then,

λ(k) = θΣ−1
2

(

χΓ − Σ1λ
(k−1)

)

+ (1 − θ)λ(k−1)

= θΣ−1
2

(

χΓ − Σλ(k−1) + Σ2λ
(k−1)

)

+ (1 − θ)λ(k−1)

whence

Σ2(λ
(k) − λ(k−1)) = θ(χΓ − Σλ(k−1))
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Similarly, we can prove that the other iterative methods that we have
illustrated are equivalent to preconditioned Richiardson methods for the
Schur complement system with preconditioners:

for the DN algorithm: Ph = Σ2

for the ND algorithm: Ph = Σ1

for the NN algorithm: Ph = (σ1Σ
−1
1 + σ2Σ

−1
2 )−1

for the RR algorithm: Ph = (γ1 + γ2)−1(γ1I + Σ1)(γ2I + Σ2)

All these preconditioners are optimal.
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This is not true in the case of more subdomains, where the condition
number of the Schur complement matrix Σ is

κ2(Σ) ≤ C
H

hH2
min

where H and Hmin are the maximal and minimal diameters of the
subdomains, respectively.

κ(Σ) H = 1/2 H = 1/4 H = 1/8
h=1/8 9.77 14.83 25.27
h=1/16 21.49 35.25 58.60
h=1/32 44.09 75.10 137.73
h=1/64 91.98 155.19 290.43

Condition number of the Schur complement matrix.
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NON-OVERLAPPING METHODS IN THE CASE

OF MORE THAN TWO SUBDOMAINS
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SCALABILITY

Definition A preconditioner Ph of Σ is said to be scalable if the
condition number of the preconditioned matrix P−1

h Σ is independent of
the number of subdomains.

Iterative methods using scalable preconditioners allow henceforth to
achieve convergence rates independent of the subdomain number.
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RESTRICTION AND EXTENSION OPERATORS

We introduce a restriction operator Ri that, to any vector vh of nodal
values on the global domain Ω, associates its restriction to the
subdomain Ωi :

Ri : vh|Ω → vi
h|Ωi∪Γi

.

Moreover RT
i

RT
i : vi

h|Ωi∪Γi
→ vh|Ω

is the prolongation (or extension-by-zero) operator.

In algebraic form Ri can be represented by a matrix that coincides with
the identity matrix in correspondence with the subdomain Ωi :

Ri =






0 . . . 0 1 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 1 0 . . . 0




 .

︸ ︷︷ ︸

Ωi
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Similarly we can define the restriction and prolongation operators RΓi
and

RT
Γi

that act on the vector of the interface nodal values.

A possible preconditioner for Σ is

Ph =
M

∑

i=1

RT
Γi

ΣiRΓi

More in general, we combine contributions of local subdmain
preconditioners with that of a global contribution referring to a coarse
grid whose elements are the subdomains themselves:

(Ph)
−1 =

M
∑

i=1

RT
Γi

P−1
i,h RΓi

+ RT
Γ P−1

H RΓ
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NEUMANN-NEUMANN PRECONDITIONER
The Neumann-Neumann preconditioner for more subdomains reads:

(PNN
h )−1 =

M
∑

i=1

RT
Γi

Di Σ∗
i DiRΓi

where Σ∗
i is either Σ−1

i or an approximation of Σ−1
i .

Di is a diagonal matrix of positive weights

Di =






d1

. . .
dn






dj is the number of subdomains that share the j-th node.

We have the following estimate:

κ
(

(PNN
h )−1Σ

)

≤ CH−2

(

1 + log
H

h

)2
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Example

κ((PNN
h )−1Σ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 2.55 15.20 47.60 -
h = 1/32 3.45 20.67 76.46 194.65
h = 1/64 4.53 26.25 105.38 316.54
h = 1/128 5.79 31.95 134.02 438.02

Condition number of (PNN
h )−1Σ.
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BALANCED NEUMANN-NEUMANN PRECONDITIONER

The Neumann-Neumann preconditioner of the Schur complement
system is not scalable.

A substantial improvement can be achieved by adding a coarse grid
correction:

(PBNN
h )−1 = Σ−1

H + (I − Σ−1
H Σ)(PNN

h )−1(I − ΣΣ−1
H )

where Σ−1
H = RT

Γ A−1
H RΓ.

This is called balanced Neumann-Neumann preconditioner.

We can prove that

κ2

(

(PBNN
h )−1Σ

)

≤ C

(

1 + log
H

h

)2
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Example:

κ((PBNN
h )−1Σ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 1.67 1.48 1.27 -
h = 1/32 2.17 2.03 1.47 1.29
h = 1/64 2.78 2.76 2.08 1.55
h = 1/128 3.51 3.67 2.81 2.07



48

ALGEBRAIC FORM OF SCHWARZ ITERATIVE

METHODS
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ALGEBRAIC FORM OF SCHWARZ METHODS FOR FE

DISCRETIZATION
Let Au = f be the system associated to the finite element
approximation of the Poisson problem.
We still assume that Ω is decomposed in two overlapping
subdomains Ω1 and Ω2.
We denote by Nh the total number of interior nodes of Ω, and by n1

and n2 the interior nodes of Ω1 and Ω2: Nh ≤ n1 + n2

The stiffness matrix A contains two submatrices, say A1 and A2,
which correspond to the local stiffness matrices associated to the
Dirichlet problems in Ω1 and Ω2:

A

A1

A2

Nh

n1

n2
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We have:
Ai = RiART

i ∈ R
ni×ni

with

RT
1 =












1 . . . 0
...

. . .
...

0 . . . 1

0












∈ R
Nh×n1 and RT

2 =












0

1 . . . 0
...

. . .
...

0 . . . 1












∈ R
Nh×n2 .
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THE MULTIPLICATIVE SCHWARZ METHOD
Using these definitions, one iteration of the multiplicative Schwarz
method for the system Au = f can be represented as:

uk+1/2 = uk + RT
1 A−1

1 R1(f − Auk)

uk+1 = uk+1/2 + RT
2 A−1

2 R2(f − Auk+1/2).

Setting
Pi = RT

i A−1
i RiA

this corresponds to

uk+1/2 = (I − P1)u
k + P1u

uk+1 = (I −P2)u
k+1/2 + P2u = (I −P2)(I −P1)u

k + (P1 + P2 −P2P1)u.

If we define, for i = 1, 2

Qi := RT
i A−1

i Ri = PiA
−1

then we obtain

uk+1 = uk + Q1(f − Auk) + Q2[f − A(uk + Q1(f − Auk))]

= uk + (Q1 + Q2 − Q2Q1)(f − Auk)
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THE ADDITIVE SCHWARZ METHOD

One iteration of the additive Schwarz method becomes:

u(k+1) = u(k) + (RT
1 A−1

1 R1 + RT
2 A−1

2 R2)(f − Au(k))

and therefore

u(k+1) = (I − P1 − P2)u
(k) + (P1 + P2)u .

Using again
Qi := RT

i A−1
i Ri = PiA

−1

we obtain

uk+1 = uk + (Q1 + Q2)(f − Auk).

In the case of a decomposition of Ω into M ≥ 2 overlapping subdomains
{Ωi} we have:

uk+1 = uk +

(

M
∑

i=1

Qi

)

(f − Auk)
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THE SCHWARZ METHOD AS A PRECONDITIONER

By defining

Pas =

(

M
∑

i=1

Qi

)−1

it follows that one iteration of the additive Schwarz method
corresponds to a preconditioned Richardson iteration for system
Au = f with preconditioner Pas (additive Schwarz preconditioner).

Pas is not optimal as the condition number blows up if the size of
the subdomains reduces:

κ2(P
−1
as A) ≤ C

1

δH

where C is a constant independent of h, H, δ.
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Example

κ(P−1
as A) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 15.95 27.09 52.08 -
h = 1/32 31.69 54.52 104.85 207.67
h = 1/64 63.98 109.22 210.07 416.09
h = 1/128 127.99 218.48 420.04 832.57

This is due to the fact that the exchange of information occurs only
between neighboring subdomains, since only local solves are involved by
the application of (Pas)−1.

−→ We have to introduce a “coarse” global problem over the whole
domain to guarantee a mechanism of global communication among all
subdomains.
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TWO-LEVEL SCHWARZ PRECONDITIONERS

As for the Neumann-Neumann method, we can introduce a
coarse-grid mechanism that allows for a sudden information diffusion
on the whole domain Ω:

consider the subdomains as macro-elements of a new coarse grid TH

build a corresponding stiffness matrix AH

The matrix
Q0 = R

T
H A

−1
H RH

represents the coarse level correction for the two-level preconditioner,
with RH the restriction operator from the fine to the coarse grid.

The two-level preconditioner Pcas is defined as:

P−1
cas =

M
∑

i=0

Qi
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We can prove that there exists a constant C > 0, independent of both h
and H such that

κ2(P
−1
cas A) ≤ C

H

δ

If δ is a fraction of H, the preconditioner Pcas is scalable.

Iterations on the original finite element system using Pcas converges
with a rate independent of h and H (and therefore of the number of
subdomains)

Thanks to the additive structure of the preconditioner, the
preconditioning step is fully parallel as it involves the solution of
independent systems, one per each local matrix Ai .
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Example

κ(P−1
cas A) H = 1/4 H = 1/8 H = 1/16

h = 1/32 7.03 4.94 -
h = 1/64 12.73 7.59 4.98
h = 1/128 23.62 13.17 7.66
h = 1/256 45.33 24.34 13.28

If H/δ = constant, this two-level preconditioner is either optimal and
scalable.
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Practical indications:

for decompositions with a small number of subdomains, the single
level Schwarz preconditioner Pas is very efficient;

when the number M of subdomains gets large, using two-level
preconditioners becomes crucial.

In those cases in which the generation of a coarse grid is difficult,
other algebraic techniques, like aggregation, can be adopted:

κ2(P
−1
aggreA) ≤ C

(

1 +
H

δ

)

.

P−1
aggreA H = 1/4 H = 1/8 H = 1/16

h = 1/16 13.37 8.87 -
h = 1/32 26.93 17.71 9.82
h = 1/64 54.33 35.21 19.70
h = 1/128 109.39 70.22 39.07
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