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Abstract. Let I be an open bounded interval of R and W a non-negative
continuous function vanishing only at α, β ∈ R. We investigate the asymptotic
behaviour in terms of Γ-convergence of the following functional

Gε(u) := εp−2

ZZ
I×I

˛̨̨̨
u(x)− u(y)

x− y

˛̨̨̨p

dxdy +
1

ε

Z
I

W (u)dx (p > 2),

as ε→ 0.
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1. Introduction

The classical variational model for phase transition is related to the so called
Cahn-Hilliard functional

Fε(u) = ε

∫
Ω

|∇u|2dx+
1
ε

∫
Ω

W (u) dx, (1.1)

where W is a two well potential vanishing in two point, α and β.
The study of the Γ-limit of this functional, due to Modica and Mortola [15]

(see also [14]), provided a connection between the singular perturbation of the two
well potential and the (classical) surface tension model. They indeed proved that
Fε Γ-converges to the functional defined in BV (Ω, {α, β}) given by

cWPer({u = α});

i.e., its value is proportional to the measure of the surface which separates the two
phases.
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After this result it has been proved that many other kinds of singular per-
turbation give the same type of limit. For the case of local singular perturbation
see for instance [6].

In the case of non local singular perturbation the first result is due to Al-
berti, Bouchitté and Seppecher. In [4] they consider the following 1-dimensional
functional

ε

∫∫
I×I

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣2dxdy + λε

∫
I

W (u) dx, (1.2)

where ε log λε → k ∈ (0,+∞). Again the limit is defined in BV (I, {α, β}) and is
given by

F (u) = 2k(β − α)2H0(Su), u ∈ BV (I, {α, β}),
where the jump set Su is the complement of the set of Lebesgue points of u and
H0 denotes the measure that counts points.

Other kinds of similar non local phase transition problems in the case of both
singular and regular kernels can be found in [2], [3], [5], [12] and [13].

The main difference between the non local energy with singular kernel (1.2)
and the classical Modica-Mortola functional (1.1) is the optimal profile problem
that approximately describes the shape of the optimal transitions. In fact, the
asymptotical behaviour of (1.1) is characterized by the equipartition of the energy
between the two terms in the functional and by a scaling property which provides
an optimal profile problem that determines the constant cW in the limit. Instead,
the logarithmic natural scaling for functional (1.2) produces no equipartition of
the energy, the limit comes only from the non local part of the energy, it does not
depend on W , and any profile is optimal as far as the transition occurs on a layer
of order ε.

In this paper, we study the following non local singularly perturbed energy

Gε(u) := εp−2

∫∫
I×I

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣pdxdy +
1
ε

∫
I

W (u) dx,

where W is the usual two well potential, with wells at α and β, and p > 2; εp−2

being the natural scaling.
In contrast with what happens in the case of energy (1.2) (with p = 2) here

the functional satisfies a useful scaling property and hence the limit is characterized
by an optimal profile problem; i.e., Gε Γ-converges to γpH0(Su), where γp is given
by

γp := inf
{∫∫

R×R

∣∣∣∣v(x)− v(y)
x− y

∣∣∣∣pdxdy +
∫

R
W (v) dx : v ∈W 1− 1

p ,p

loc (R),

lim
x→−∞

v(x) = α, lim
x→+∞

v(x) = β

}
. (1.3)

In this respect the case p = 2 represents the critical case in the context of this
type of non local singular perturbations.
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A similar dichotomy occurs in the case of Ginzburg-Landau problems (see
for instance Alberti, Baldo and Orlandi [1] for the case p = 2 and Desenzani and
Fragalà [10] for the case p > 2).

2. The Γ-Convergence Result

Let p > 2 be a real number and W a non-negative continuous function vanishing
only at α, β ∈ R (0 < α < β), with growth at least linear at infinity. By I we
denote an open bounded interval or R.

For every ε > 0 we consider the functionalGε defined in the fractional Sobolev
space W 1− 1

p ,p(I),

Gε(u) := εp−2

∫∫
I×I

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣pdxdy +
1
ε

∫
I

W (u) dx. (2.1)

Notice that the first term of Gε is the p-power of the semi-norm in W 1− 1
p ,p(I).

The asymptotic behaviour in term of Γ-convergence of Gε is described by the
functional

G(u) := γpH0(Su) (if u ∈ BV (I, {α, β}), (2.2)

where γp is given by the optimal profile problem (1.3). (For details about Γ-
convergence, introduced by De Giorgi and Franzoni in [9], see for instance [8]
and [7]).

The Γ-convergence result is precisely stated in the following theorem.

Theorem 2.1. Let Gε : W 1− 1
p ,p(I) → R and G : BV (I, {α, β}) → R defined by

(2.1) and (2.2).
Then

(i) [Compactness] Let (uε) ⊂ W 1− 1
p ,p(I) be a sequence such that Gε(uε) is

bounded. Then (uε) is pre-compact in L1(I) and every cluster point belongs
to BV (I, {α, β}).

(ii) [Lower Bound Inequality] For every u ∈ BV (I, {α, β}) and every se-
quence (uε) ⊂W 1− 1

p ,p(I) such that uε → u in L1(I),

lim inf
ε→0

Gε(uε) ≥ G(u).

(iii) [Upper Bound Inequality] For every u ∈ BV (I, {α, β}) there exists a
sequence (uε) ⊂W 1− 1

p ,p(I) such that uε → u in L1(I) and

lim sup
ε→0

Gε(uε) ≤ G(u).
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3. The Optimal Profile Problem

In this section we will study the main features of our functionals, namely the
scaling property and the optimal profile problem.

It is useful to introduce the localization of the functional Gε. For every open
set J ⊆ I and every function u ∈W 1− 1

p ,p(J) we will denote

Gε(u, J) := εp−2

∫∫
J×J

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣pdxdy +
1
ε

∫
J

W (u) dx.

Clearly, Gε(u) = Gε(u, I), for every u ∈W 1− 1
p ,p(I).

Given J ⊆ I and u ∈ W 1− 1
p ,p(J) we set u(ε)(x) := u(εx) and J/ε := {x :

εx ∈ J}. By scaling it is immediately seen that

Gε(u, J) = G1(u(ε), J/ε). (3.1)

In view of this scaling property it is now natural to consider the following optimal
profile problem

γp := inf
{
G1(v,R) : v ∈W 1− 1

p ,p

loc (R), lim
x→−∞

v(x) = α, lim
x→+∞

v(x) = β

}
. (3.2)

The constant γp represents the minimal cost in the term of the non-scaled energy
G1 for a transition from α to β on the whole real line. By (3.1) γp will also give
the cost of one jump from α to β.

Using a monotone rearrangement argument, we will prove that this minimum
problem is not trivial and is achieved.

For every u ∈W 1− 1
p ,p(J), with J = (a, b), the non-decreasing rearrangement

u∗ of u in J , defined by

u∗(a+ x) := sup {λ : |{t ∈ (a, b) : u(t) < λ}| ≤ x} , ∀x ∈ (0, b− a), (3.3)

satisfies ∫∫
J×J

∣∣∣∣u∗(x)− u∗(y)
x− y

∣∣∣∣pdxdy ≤ ∫∫
J×J

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣pdxdy (3.4)

(see for instance [11], Theorem I.1).

Note that, since
∫
J

W (u∗)dx =
∫
J

W (u)dx, from (3.4) we get

Gε(u∗, J) ≤ Gε(u, J).

This rearrangement result will be also used in the sequel to prove the compactness
and the lower bound.

We are now in a position to prove the following proposition.

Proposition 3.1. The constant γp is strictly positive.

Proof. Fix δ > 0 and fix v ∈W 1− 1
p ,p

loc (R) such that lim
x→−∞

v(x) = α, lim
x→+∞

v(x) = β

and G1(v,R) < +∞. Let us define

Iα := {x ∈ R : v(x) ≤ α+ δ} and Iβ := {x ∈ R : v(x) ≥ β − δ} ,
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Denote by Jδ := R\ (Iα∪Iβ); we notice that, by the asymptotic behaviour of
v, Iα, Iβ and Jδ are not empty and Jδ is bounded, for every fixed δ ∈ (0, (β−α)/2).

Now, let us consider the truncated function

vδ(x) := (v(x) ∨ (α+ δ)) ∧ (β − δ) for every x ∈ R.

It is easy to see that the non local energy decreases under truncation and then it
follows that

G1(v,R) ≥
∫∫

R×R

∣∣∣∣vδ(x)− vδ(y)
x− y

∣∣∣∣pdxdy +
∫

R
W (v) dx

(3.5)

≥
∫∫

R×R

∣∣∣∣vδ(x)− vδ(y)
x− y

∣∣∣∣pdxdy +mδ|Jδ|,

where
mδ := min

s∈[α+δ,β−δ]
W (s).

Let us define

xα := min {x : v(x) > α+ δ} and xβ := max {x : v(x) < β − δ} ;

since vδ(x) = α+ δ for every x < xα and vδ(x) = β − δ for every x > xβ , for any
interval J ⊃ [xα, xβ ] the non-decreasing rearrangement v∗δ of vδ in J defined by
(3.1) does not depend on J and by (3.4) we have∫∫

R×R

∣∣∣∣vδ(x)− vδ(y)
x− y

∣∣∣∣pdxdy ≥ ∫∫
J×J

∣∣∣∣v∗δ (x)− v∗δ (y)
x− y

∣∣∣∣pdxdy
and hence∫∫

R×R

∣∣∣∣vδ(x)− vδ(y)
x− y

∣∣∣∣pdxdy ≥
∫∫

R×R

∣∣∣∣v∗δ (x)− v∗δ (y)
x− y

∣∣∣∣pdxdy
(3.6)

≥
∫ x∗α

−∞

∫ +∞

x∗β

∣∣∣∣v∗δ (x)− v∗δ (y)
x− y

∣∣∣∣pdxdy,
where x∗α := sup{x : v∗δ (x) = α+ δ} and x∗β := inf{x : v∗δ (x) = β − δ}.

By (3.5) and (3.6), it follows that

G1(v,R) ≥ (β − α− 2δ)p
∫ x∗α

−∞

∫ +∞

x∗β

dxdy

|x− y|p
+mδ|Jδ|

=
(β − α− 2δ)p

(p− 1)(p− 2)|Jδ|p−2
+mδ|Jδ|.

Finally, minimizing with respect to |Jδ|, we obtain

G1(v,R) ≥ (p− 1)
p−2
p−1

(p− 2)
(β − α− 2δ)

p
p−1m

p−2
p−1
δ > 0
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and, by to the arbitrariness of v, the proof is complete. �

In order to prove the upper bound it is convenient to introduce an auxiliary
optimal profile problem. For every T > 0, we consider

γTp := inf
{
G1(v,R) : v ∈W 1− 1

p ,p

loc (R), v(x) = α ∀x ≤ −T, v(x) = β ∀x ≥ T

}
.

(3.7)
By the compactness of the embedding of W 1− 1

p ,p((−2T, 2T )) in Lp((−2T, 2T )),
it is easy to prove that the minimum in (3.7) is achieved. By truncation and
rearrangement it also follows that the minimum can be achieved by a function

ϕT ∈W 1− 1
p ,p

loc (R) which is non-decreasing and satisfies α ≤ ϕT ≤ β.

Proposition 3.2. The sequence γTp is non-increasing in T and lim
T→+∞

γTp = γp.

Proof. By the definition of γTp , it immediately follows that γTp is monotone and is
greater than or equal to γp. Hence, the limit exists and satisfies

lim
T→+∞

γTp ≥ γp.

It remains to prove the reverse inequality. For every µ > 0, let us fix ψ ∈
W

1− 1
p ,p

loc (R) such that

lim
x→−∞

ψ(x) = α, lim
x→+∞

ψ(x) = β and G1(ψ,R) ≤ γp + µ.

Moreover, by truncation we may always assume that α ≤ ψ ≤ β.

The idea is to modify ψ in order to construct a function ϕ which is a good
competitor for γTp . To this aim we consider

Ψ(x) :=
∫

R

∣∣∣∣ψ(x)− ψ(y)
x− y

∣∣∣∣pdy.
Since Ψ ∈ L1(R) we can choose a sequence {Tn}n∈N, with Tn → +∞, such that

Ψ(−Tn) → 0 and Ψ(Tn) → 0 as n→ +∞.

For every δ > 0, due to the asymptotic behaviour of ψ, we can find nδ ∈ N such
that

ψ(−Tn) ≤ α+ δ and ψ(Tn) ≥ β − δ, ∀n ≥ nδ. (3.8)

For every M > 0, we define a function ϕ which coincides with ψ in [−Tn, Tn],
satisfies ϕ(x) = α if x < −Tn −M and ϕ(x) = β if x > Tn +M and it is affine in
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(−Tn −M,−Tn) and (Tn, Tn +M). Namely,

ϕ(x) :=



α if x ∈ (−∞, Tn −M ],

ψ(−Tn)− α

M
(x+ Tn) + ψ(−Tn) if x ∈ (−Tn −M,−Tn),

ψ(x) if x ∈ [−Tn, Tn],

β − ψ(Tn)
M

(x− Tn) + ψ(Tn) if x ∈ (Tn, Tn +M),

β if x ∈ [Tn +M,+∞).

Clearly, ϕ is a good competitor for γTn+M
p . Let us compute its energy, denoting

Jn := (−Tn, Tn),

γTn+M
p ≤ G1(ϕ,R)

= G1(ψ, Jn) +G1(ϕ,R \ Jn) + 2
∫∫

(R\Jn)×Jn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy
≤ γp + µ+

∫∫
(R\Jn)×(R\Jn)

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy +
∫

R\Jn

W (ϕ) dx

+2
∫∫

(R\Jn)×Jn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy
= γp + µ+ I1 + I2 + I3. (3.9)

The first two integrals in the right hand side of (3.9) can be easily estimated as
follows

I1 :=
∫∫

(R\Jn)×(R\Jn)

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy ≤ (β − α)p
∫ −Tn

−∞

∫ +∞

Tn

dxdy

|x− y|p

=
(β − α)p

(p− 1)(p− 2)(2Tn)p−2

and

I2 :=
∫

R/Jn

W (ϕ) dx ≤Mωδ,

where

ωδ := max
s∈[α,α+δ]∪[β−δ,β]

W (s). (3.10)
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Instead, an upper bound for the last integral requires more attention in computa-
tion. Let us show it in details.

I3 := 2
∫ −Tn−M

−∞

∫ Tn

−Tn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy + 2
∫ −Tn

−Tn−M

∫ Tn

−Tn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy
+2

∫ +∞

Tn+M

∫ Tn

−Tn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy + 2
∫ Tn+M

Tn

∫ Tn

−Tn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy.
We have

2
∫ −Tn−M

−∞

∫ Tn

−Tn

∣∣∣∣ψ(y)− α

x− y

∣∣∣∣pdxdy ≤ 2(β − α)p
∫ −Tn−M

−∞

∫ Tn

−Tn

dxdy

|x− y|p

=
2(β − α)p

(p− 1)(p− 2)Mp−2
.

Moreover

2
∫ −Tn

−Tn−M

∫ Tn

−Tn

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy
= 2

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣∣∣ψ(y)− ψ(−Tn)− ψ(−Tn)−α
M (x+ Tn)

∣∣∣p
|x− y|p

dxdy

≤ 2p
∫ −Tn

−Tn−M
Ψ(−Tn)dx+ 2p

|ψ(−Tn)− α|p

Mp

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣∣∣∣x+ Tn
x− y

∣∣∣∣pdxdy
≤ 2pMΨ(−Tn) +

2p−1δp

(p− 1)Mp−2
, ∀n ≥ nδ ,

where we used that∫ −Tn

−Tn−M

∫ Tn

−Tn

|x+ Tn|p

|y − x|p
dxdy =

1
p− 1

∫ −Tn

−Tn−M

(
|x+ Tn| −

|x+ Tn|p

|Tn − x|p−2

)
dx

≤ M2

2(p− 1)
.

Similarly, we can estimate the third and the fourth integrals of I3 and we get

I3 ≤ 2pM(Ψ(−Tn) + Ψ(Tn)) +
2pδp

(p− 1)Mp−2
+

4(β − α)p

(p− 1)(p− 2)Mp−2
.

Finally, by (3.9), we obtain

γTn+M
p ≤ γp + µ+ rn + rδ +

4(β − α)p

(p− 1)(p− 2)Mp−2
, ∀n ≥ nδ, (3.11)
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where

rn :=
2(β − α)p

(p− 1)(p− 2)(2Tn)p−2
+ 2pM (Ψ(−Tn) + Ψ(Tn))

and
rδ :=

2p

(p− 1)Mp−2
δp +Mωδ.

Taking the limit as n→ +∞ and then δ → 0 and M → +∞, we get

lim
T→+∞

γTp = lim
n→+∞

γTn+M
p ≤ γp + µ,

which concludes the proof by the arbitrariness of µ. �

Let us conclude this section with the proof of the existence of an optimal
profile.

Proposition 3.3. The minimum for γp defined by (3.2) is achieved by a non-
decreasing function ϕ satisfying α ≤ ϕ ≤ β.

Proof. Let T > 0 and let ϕT be a non-decreasing minimizer for γTp . Since the
functions ϕT are monotone and bounded, by Helly’s theorem, there exist a sub-
sequence ϕTk of ϕT and a non-decreasing function ϕ, bounded by α and β, such
that ϕTk converges pointwise in R to ϕ. By Fatou’s lemma and Proposition 3.2 we
also have ∫∫

R×R

∣∣∣∣ϕ(x)− ϕ(y)
x− y

∣∣∣∣pdxdy +
∫

R
W (ϕ) dx ≤ lim

k→∞
γTk
p = γp .

This implies that ϕ is a minimizer for γp. �

4. Compactness

The proof of the compactness follows the lines of the proof of Alberti, Bouchitté
and Seppecher in [4] and uses the following lemma which gives a (non-optimal)
lower bound for Gε.

Lemma 4.1. Let (uε) ⊂W 1− 1
p ,p(I) and let J ⊂ I be an open interval. For every δ

such that 0 < δ < (β − α)/2, let us define

Aε := {x ∈ I : uε(x) ≤ α+ δ} and Bε := {x ∈ I : uε(x) ≥ β − δ}.
Let us set

aε :=
|Aε ∩ J |
|J |

and bε :=
|Bε ∩ J |
|J |

. (4.1)

Then

Gε(uε, J) ≥
(

2(β − α− 2δ)p

(p− 1)(p− 2)|J |p−2

(
1− 1

(1− aε)p−2
− 1

(1− bε)p−2

))
εp−2 + cδ,

(4.2)
where cδ does not depend on ε.
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Proof. Let x0, y0 ∈ R be such that J = (x0, y0); we obtain

Gε(uε, J)

≥ Gε(u∗ε, J)

≥ 2εp−2(β − α− 2δ)p
∫∫

[x0,x0+aε|J|]×[y0,y0−bε|J|]

dxdy

|y − x|p

+
1
ε
mδ|J |(1− aε − bε)

=
2εp−2(β − α− 2δ)p

(p− 1)(p− 2)|J |p−2

(
1− 1

(1− aε)p−2
− 1

(1− bε)p−2
+

1
(1− aε − bε)p−2

)
+

1
ε
mδ|J |(1− aε − bε),

where u∗ε denote the non-decreasing rearrangement of uε in (x0, y0) defined by
(3.3) and mδ := min{W (s) : α+ δ ≤ s ≤ β − δ}.

Minimizing with respect to |J |(1− aε − bε), we get

Gε(uε, J) ≥ εp−2

(
2(β − α− 2δ)p

(p− 1)(p− 2)|J |p−2

(
1− 1

(1− aε)p−2
− 1

(1− bε)p−2

))
+2

1
p−1

(p− 1)
p−2
p−1

p− 2
(β − α− 2δ)

p
p−1m

p−2
p−1
δ ,

for every 0 < δ < (β − α)/2, and hence (4.2) is proved. �

We are now in a position to prove the compactness result (i.e., Theorem 2.1,
(i)).

Let (uε) ⊂ W 1− 1
p ,p(I) be a sequence with equi-bounded energy; i.e., a se-

quence satisfying sup
ε>0

Gε(uε, I) ≤ C. In particular∫
I

W (uε) dx ≤ Cε

and this implies that
W (uε) → 0 in L1(I). (4.3)

Thanks to the growth assumption on W , (uε) is weakly relatively compact
in L1(I); i.e., there exists u ∈ L1(I) such that (up to a subsequences) uε ⇀ u
in L1(I). We have to prove that this convergence is strong in L1(I) and that
u ∈ BV (I, {α, β}). Let νx be the Young measure associated to (uε). Since W ≥ 0,
we have ∫

I

∫
R
W (t) dνx(t) ≤ lim inf

ε→0

∫
I

W (uε) dx
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(see for instance [16], Theorem 16). Hence, by (4.3), it follows that∫
R
W (t) dνx(t) = 0, a.e. x ∈ I,

which implies the existence of a function θ on [0, 1] such that

νx(dt) = θ(x)δα(dt) + (1− θ(x))δβ(dt) , x ∈ I
and

u(x) = θ(x)α+ (1− θ(x))β , x ∈ I.
It remains to prove that θ belongs to BV (I, {0, 1}). Let us consider the set

S of the points where the approximate limits of θ is neither 0 nor 1. For every
N ≤ H0(S) we can find N disjoint intervals {Jn}n=1,...,N such that Jn ∩ S 6= ∅
and such that the quantities anε and bnε , defined by (4.1) replacing J by Jn, satisfy

anε → an ∈ (0, 1) and bnε → bn ∈ (0, 1) as ε goes to zero.

We can now apply Lemma 4.1 in the interval Jn and, taking the limit as ε→ 0 in
the inequality (4.2), we obtain

lim inf
ε→0

Gε(uε, Jn) ≥ cδ.

Finally, we use the sub-additivity of Gε(u, ·) and we get

lim inf
ε→0

Gε(uε, I) ≥
N∑
n=1

lim inf Gε(uε, Jn) ≥ Ncδ. (4.4)

Since (uε) has equi-bounded energy, this implies that S is a finite set. Hence,
θ ∈ BV (I, {0, 1}) and the proof of the compactness for Gε is complete.

5. Lower Bound Inequality

In this section, we prove the Γ-liminf inequality. An optimal lower bound forGε(uε)
is a consequence of the following proposition.

Proposition 5.1. Let J be an open interval of R. Let (uε) be a non-decreasing
sequence in W 1− 1

p ,p(J) and assume that there exist ā, b̄ ∈ J , ā < b̄, such that for
every δ > 0 there exists εδ such that

uε(ā) ≤ α+ δ and uε(b̄) ≥ β − δ ∀ε ≤ εδ.

Then
lim inf
ε→0

Gε(uε, J) ≥ γp.

Proof. Let J = (a, b). It is clearly enough to consider the case

lim inf
ε→0

Gε(uε, (a, b)) < +∞.

By a truncation argument, without loss of generality, we may also assume that

α ≤ uε(x) ≤ β, ∀x ∈ (a, b).
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Let us define

Uε(x) :=
∫ b

a

∣∣∣∣uε(x)− uε(y)
x− y

∣∣∣∣pdy.
By the fact that

lim inf
ε→0

∫ b

a

Uε(x) dx

is finite, we get that there exist x̃ ∈ (a, ā) and ỹ ∈ (b̄, b) such that

lim inf
ε→0

Uε(x̃) ≤ C and lim inf
ε→0

Uε(ỹ) ≤ C for some C > 0. (5.1)

Fix M > 0. We now extend uε in the whole R as follows

ũε(x) :=



α if x ∈ (−∞, x̃−Mε),

uε(x̃)− α

Mε
(x− x̃) + uε(x̃) if x ∈ [x̃−Mε, x̃],

uε(x) if x ∈ (x̃, ỹ),

β − uε(ỹ)
Mε

(x− ỹ) + uε(ỹ) if x ∈ [ỹ, ỹ +Mε],

β if x ∈ (ỹ +Mε,+∞).

Denote J̃ := (x̃, ỹ) ⊆ (a, b). We have

Gε(uε, J̃) ≥ γp −Gε(ũε,R \ J̃)− 2εp−2

∫∫
(R\J̃)×J̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
= γp − εp−2

∫∫
(R\J̃)×(R\J̃)

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy − 1
ε

∫
R\J̃

W (ũε) dx

−2εp−2

∫∫
(R\J̃)×J̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
= γp − I1 − I2 − I3. (5.2)

Using the definition of ũε, we easily get

I1 := εp−2

∫∫
(R\J̃)×(R\J̃)

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
≤ εp−2(β − α)p

∫∫
(R\J̃)×(R\J̃)

dxdy

|x− y|p

=
(β − α)p

(p− 1)(p− 2)|J̃ |p−2
εp−2.
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Moreover, since uε is non-decreasing,

uε(x) ≤ α+ δ ∀ x ≤ ā and uε(x) ≥ β − δ ∀ x ≥ b̄

and, in particular,

I2 := ε−1

∫
R\J̃

W (ũε) dx ≤Mωδ,

where ωδ is defined in (3.10).
Finally, using the fact that uε(x̃) ≤ α+ δ and uε(ỹ) ≥ β− δ, we can estimate

the third integral

I3 := 2εp−2

∫∫
(R\J̃)×J̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy = 2εp−2

∫ x̃−Mε

−∞

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
+2εp−2

∫ x̃

x̃−Mε

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy + 2εp−2

∫ +∞

ỹ+Mε

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
+2εp−2

∫ ỹ+Mε

ỹ

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy. (5.3)

We have

2εp−2

∫∫ x̃−Mε

−∞

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy ≤ 2εp−2(β − α)p
∫ x̃−Mε

−∞

∫ ỹ

x̃

dxdy

|x− y|p

≤ 2(β − α)p

(p− 1)(p− 2)Mp−2
.

Moreover,

2εp−2

∫ x̃

x̃−Mε

∫ ỹ

x̃

∣∣∣∣ ũε(x)− ũε(y)
x− y

∣∣∣∣pdxdy
= 2εp−2

∫ x̃

x̃−Mε

∫ ỹ

x̃

|uε(y)− uε(x̃)− uε(x̃)−α
Mε (x− x̃)|p

|x− y|p
dxdy

≤ 2pεp−2

∫ x̃

x̃−Mε

Uε(x̃)dx+ 2p
|uε(x̃)− α|p

Mpε2

∫ x̃

x̃−Mε

∫ ỹ

x̃

|x̃− x|p

|x− y|p
dxdy

≤ 2pεp−1MUε(x̃) +
2p−1δp

(p− 1)Mp−2
,

where we used that∫ x̃

x̃−Mε

∫ ỹ

x̃

|x̃− x|p

|x− y|p
dxdy =

1
(p− 1)

∫ x̃

x̃−Mε

(
|x− x̃| − |x− x̃|p

|ỹ − x|p−1

)
dx ≤ (Mε)2

2(p− 1)
.

Similarly, we can estimate the third and the fourth integrals of I3 and we get
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I3 ≤ 2pM(Uε(x̃) + Uε(ỹ))εp−1 +
2pδp

(p− 1)Mp−2
+

4(β − α)p

(p− 1)(p− 2)Mp−2
.

Hence, by (5.2), we obtain

Gε(uε, J̃) ≥ γp −
(

(β − α)p

(p− 1)(p− 2)|J̃ |p−2
+ 2pM(Uε(x̃) + Uε(ỹ))ε

)
εp−2 − rδ

− 4(β − α)p

(p− 1)(p− 2)Mp−2
,

with

rδ :=
2pδp

(p− 1)Mp−2
δp +Mωδ

vanishing as δ → 0.Thus, by (5.1) and taking the liminf as ε → 0 and then as

δ → 0, we get

lim inf
ε→0

Gε(uε, J̃) ≥ γp −
4(β − α)p

(p− 1)(p− 2)Mp−2
,

which conclude the proof by the arbitrariness of M . �

Remark 5.2. Clearly an analogue proposition holds in the case of uε non-increasing
satisfying the hypotheses with ā > b̄.

In order to conclude, let us first observe that, thanks to the compactness
result for Gε, we may assume that the sequence (uε) converges in L1(I) to some
u ∈ BV (I, {α, β}). Hence, the jump set Su is finite and we can find N := H0(Su)
disjoint subintervals {Ii}i=1,...,N such that Su ∩ Ii 6= ∅, for every i = 1, ..., N .

Now, let us consider the monotone rearrangement u∗ε,i of uε in Ii. The re-
arrangement u∗ε,i is non-decreasing if u is non-decreasing in Ii and non-increasing
otherwise. With this choice clearly u∗ε,i converges to u in L1(Ii) and thus it satisfies
the assumptions of Proposition 5.1 (se also Remark 5.2) with J replaced by Ii.
Then, for every i = 1, ..., N , we may conclude that

lim inf
ε→0

Gε(uε, Ii) ≥ lim inf
ε→0

Gε(u∗ε,i, Ii) ≥ γp.

Finally, using the sub-additivity of Gε(uε, ·), we get

lim inf
ε→0

Gε(uε, I) ≥ lim inf
ε→0

N∑
i=1

Gε(uε, Ii) ≥ Nγp = γpH0(Su)

and hence the lower bound states by Theorem 2.1, (ii), is proved. �
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6. Upper Bound Inequality

In this section, we conclude the proof of the Theorem 2.1, proving the limsup
inequality. Let us first construct an optimal sequence for u of the form

u(x) =

{
α, if x ≤ x0,

β, if x > x0.

Let T > 0 be fixed and let ϕT ∈W 1− 1
p ,p

loc (R) be the minimizer for γTp defined
by (3.7); i.e.,

ϕT (x) = α ∀ x ≤ −T, ϕT (x) = β ∀ x ≥ T and G1(ϕ,R) = γTp .

Let us define, for every ε > 0, uε(x) := ϕT
(
x− x0

ε

)
, for every x ∈ I. We have

uε → u in L1(I)

and

Gε(uε) = εp−2

∫∫
I×I

∣∣∣∣∣ϕT (x−x0
ε )− ϕT (y−x0

ε )
x− y

∣∣∣∣∣
p

dxdy +
1
ε

∫
I

W

(
ϕT

(
x− x0

ε

))
dx

(6.1)

= G1(ϕT , (I − x0)/ε) ≤ G1(ϕT ,R) = γTp .

By Proposition 3.2 we get

lim
T→+∞

lim sup
ε→0

Gε(uε) ≤ γp.

Then by a diagonalization argument we can construct a sequence ũε converging to
u in L1(I), which satisfies

lim sup
ε→0

Gε(ũε) ≤ γp.

The optimal sequence for an arbitrary u ∈ BV (I, {α, β}) can be easily ob-
tained gluing the sequences constructed above for each single jump of u and taking
into account that, thanks to the scaling εp−2, the long range interactions between
two different recovery sequences decay as ε→ 0.
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