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1. Introduction

The notation “free-discontinuity problems” indicates those problems in the Calculus
of Variations where the unknown is a pair (u,K), with K a closed set and u a
(sufficiently) smooth function on Ω\K (Ω a fixed open set). The two main examples
of problems of this type are the Mumford-Shah functional in computer vision (see
[19], [17], [11], [2]), and models in fracture mechanics for brittle hyperelastic media
(see [16], [15], [20], [10]). We will focus on this second example, the first one leading
to a similar variational formulation.

If we consider a hyperelastic medium subject to brittle fracture, following Grif-
fith’s theory, it can be modeled by the introduction, besides the elastic volume energy,
of a surface term which accounts for crack initiation. In its simplest formulation, the
energy of a deformation u will be of the form

(1.1) E(u,K) =
∫

Ω\K
f(∇u) dx+ λHn−1(K),

where ∇u is the deformation gradient, Ω the reference configuration, K is the crack
surface, and Hn−1 is the (n − 1)-dimensional (Hausdorff) measure (n = 2, 3 in bi-
and three-dimensional elasticity problems, respectively). The bulk energy density f
accounts for elastic deformations outside the crack, while λ is a constant given by
Griffith’s criterion for fracture initiation. The existence of equilibria, under appro-
priate boundary conditions, can be deduced from the study of minimum pairs (u,K)
for the energy (1.1). Note that if E(u,K) < +∞ then the Lebesgue measure of K
is zero, u can be regarded as a measurable function defined on all Ω, and the set K
can be thought of as (a set containing) the set of discontinuity points for u. Note
moreover that in general K will not be the boundary of a set (in this special case
we talk of free boundary problems).

The presence of two unknowns, the surface K and the deformation u, can be
overcome by a weak formulation of the problem in spaces of discontinuous functions.
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The space of special functions of bounded variation SBV (Ω; IRm) has been introduced
by De Giorgi and Ambrosio in [12] as the subset of IRm-valued functions of bounded
variation on the open set Ω ⊂ IRn, whose measure first derivative can be written in
the form

Du = ∇uLn Ω + (u+ − u−)⊗ νuHn−1 S(u),

where
- ∇u is now the approximate gradient of u,
- S(u) is the complement of the set of Lebesgue points of u (jump set of u),
- νu is the unit normal to S(u),
- u+, u− are the approximate trace values of u on both sides of S(u),
- the measures Ln and Hn−1 are the n-dimensional Lebesgue measure and the

(n− 1)-dimensional Hausdorff measure, respectively.
The energy functional in (1.1) can be rewritten as

E(u) =
∫

Ω

f(∇u) dx+ λHn−1(S(u)),

which makes sense on SBV (Ω; IRm). If f is quasiconvex or polyconvex (see [9]) and
satisfies some standard growth conditions, then we can apply the direct methods
of the Calculus of Variations to obtain minimum points for problems involving E ,
using Ambrosio’s lower semicontinuity and compactness theorems (see [1], [3], [4]).
A complete regularity theory for minimum points u for E has not been developed yet,
but in some cases it is possible to prove that the jump set S(u) is Hn−1-equivalent to
its closure ([13]) or even more regular (see [8], [7]), and that u is smooth on Ω\S(u),
thus obtaining minimizing pairs (u,K) = (u, S(u)) for the functional E.

The viewpoint described above privileges the reference configuration, neglecting
the effects of crack deformation. Our aim is to define a sub-class of SBV functions
which allow the statement (and solution) of problems taking into account also the
deformation of S(u), i.e., the shape of the crack surface in the deformed configura-
tion.

As an example we can think of an elastic body in two dimensions subject to
fracture, so that a “hole” is formed bounded by two curves Γ+ and Γ− which are
the images of S(u) by u+ and u−, respectively. If the traces are sufficiently smooth
then the length of (the boundary of the hole) Γ+ ∪ Γ− is given by

E1(u) =
∫
S(u)

(∣∣∂u+

∂τ

∣∣+
∣∣∂u−
∂τ

∣∣) dH1,
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where τ is the tangent to S(u). Similarly, if u is bounded and we have an “opening
hole” (that is, Γ+ ∪ Γ− is compactly contained in u(Ω)) we can also consider the
“area of the hole”, given by

E2(u) =
∫

hole

dy1dy2 = −
∫

Γ+∪Γ−
y1dy2 = −

∫
S(u)

(
u+

1

∂u+
2

∂τ
− u−1

∂u−2
∂τ

)
dH1,

which again makes sense if the tangential derivatives of u± exist. An analogous
formulation for three dimensional elasticity is possible, taking into account the ori-
entation of the surface Γ+ ∪ Γ−.

It is clear that the crucial point in order to extend the definition of functional
as E1 and E2 to a class wide-enough to apply the direct methods of the Calculus of
Variations will be a weak definition of the tangential derivatives of u+ and u− on
S(u). Simple examples show that it is not possible to gain regularity of the traces
by imposing higher integrability of the bulk gradient ∇u; hence we will require the
definition of a new functional space. At first, we limit our analysis to the scalar case
m = 1.

The starting point is a characterization of the space SBV due to Ambrosio [5]:
a function u belongs to SBV (Ω) and Hn−1(S(u)) < +∞ if and only if there exist a
function a = (a1, . . . , an) and measures µi on Ω× IR (i = 1, . . . , n) such that

(1.2)
∫

Ω

(
∂ϕ

∂xi
(x, u(x)) +

∂ϕ

∂y
(x, u(x))ai(x)

)
dx =

∫
Ω×IR

ϕ(x, y) dµi

for all ϕ ∈ C1(Ω× IR) with compact support. In this case a = ∇u. This characteri-
zation is a consequence of the chain rule formula for function in BV .

We can interpret the formula (1.2) above as a property of the graph of u, which
is given for BV functions by

Γ = {(x, u(x)) : x ∈ Ω, ∃∇u(x)},

and is oriented by the unit co-vector

η(x, u(x)) =
1√

1 + |∇u|2
(e1,

∂u

∂x1
) ∧ . . . ∧ (en,

∂u

∂xn
) ,

where {e1, . . . , em} is the standard orthonormal basis of IRn (see [14]). We can define
the linear functional on n-forms (n-current) “integration on the graph”, by

Tu(ω) =
∫

Γ

〈ω, η〉dHn ,
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and the boundary of Tu as the (n− 1)-current given by

∂Tu(ω) = Tu(dω).

We can re-read formula (1.2) as a property of ∂Tu. In fact, using the area formula,
we have ∫

Ω

(
∂ϕ

∂xi
(x, u(x)) +

∂ϕ

∂y
(x, u(x))

∂u

∂xi

)
dx = ∂Tu(ϕdx̂i)

where
dx̂i = (−1)i+1dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn,

so that (1.2) states precisely that the boundary of Tu is a measure when computed on
“horizontal forms” (i.e., forms with no dy). An imprecise interpretation is that the
boundary of the graph admits an integral projection on the basis Ω, given precisely
by S(u).

2. The class SBV0

Intuitively, tangential derivatives of u± on S(u) provide information about the “ver-
tical part of the boundary of the graph of u”. Following this intuition we can define a
sub-class of SBV functions with Hn−1(S(u)) < +∞, called SBV0, simply requiring
that ∂Tu be a measure also when computed on (n − 1)-forms with a vertical part.
This is equivalent to asking that in addition to the integration by parts formulas
stated above, there exist measures µα (α multi-index of order n− 2) such that∫

Ω×IR

ϕ(x)ψ(y) dµα = ∂Tu(φ(x)ψ(y)dxα ∧ dy)

=
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)( ∂φ

∂xi1
νi2 −

∂φ

∂xi2
νi1

)
dHn−1

for any φ ∈ C1
0

(
Ω
)
, ψ ∈ C1

b

(
IR
)
, where i1, i2 are indices such that

dxi1 ∧ dxi2 ∧ dxα = dx1 ∧ . . . ∧ dxn.

The simplest case (n = 2) gives α = 0, and∫
Ω×IR

ϕ(x)ψ(y) dµα =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)∂φ
∂τ

dH1,

(τ the tangent to S(u)), which is somehow the “weak version” of

(2.1)
∫

Ω×IR

ϕ(x)ψ(y) dµα = −
∫
S(u)

(
ψ(u+)

∂u+

∂τ
− ψ(u−)

∂u−

∂τ

)
φ(x) dH1
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(this formula is correct if S(u) and u|Ω\S(u) are smooth enough). Roughly speaking,
this is equivalent to requiring that the traces u± be functions of bounded variation
on S(u) (this is not precisely so since S(u) may present a very complex structure).
Moreover if u ∈ SBV0(Ω) then it can be proved that the approximate differentials
∇u± exist Hn−1-a.e. on S(u), and∫

S(u)

|∇u±| dHn−1 < +∞.

We denote by ∂vTu the vector of the measures µα; i.e., the components of ∂Tu
corresponding to differential forms ϕdxα∧dy. The letter v refers to the fact that we
have in mind “vertical components”. Note that

E1(u) = ‖∂vTu‖

is a (lower semicontinuous) extension of the “length functional” E1.
The class SBV0(Ω) has the following compactness property (see [6]).

Theorem 2.1 Let (uh) be a sequence in SBV0(Ω) ∩ L∞(Ω), let p > 1 and assume
that

sup
h∈IN

{∫
Ω

|∇uh|p dx+Hn−1
(
S(uh)

)
+ ‖uh‖∞

}
< +∞.

and that the sequence ‖∂vTuh
‖(Ω × IR) be bounded; then there exists a subsequence

(uh(k)) converging in L1
loc(Ω) to u ∈ SBV0(Ω) such that ∂Tuh(k) weakly converges to

∂Tu as measures on Ω× IR.

3. SBV0-functions with Sobolev traces

As a subclass of SBV0(Ω) (that is, “SBV -functions with BV -traces on S(u)”) we
can consider the family of “SBV -functions with Sobolev traces on S(u)”, that is,
those SBV0 functions such that∫

S(u)

|∇u±|p dx < +∞

for some p ≥ 1, and such that the measure ∂vTu is determined by the analogue of
(2.1) in dimension n with∇u± in place of ∂u±/∂τ . Unfortunately, this subclass is not
compact: it is possible to give an example such that all hypotheses of the compactness
theorem are satisfied and in addition ∇u±h are equi-bounded; nevertheless the limit
u does not possess Sobolev traces on S(u). This phenomenon is due to the fact that
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S(uh) may converge only in a weak sense to S(u), while it does not occur if we have
strong convergence; i.e., Hn−1(S(uh))→ Hn−1(S(u)).

4.Vector-valued SBV0-functions

In the vector-valued case the definition of SBV0 is the same as in the scalar case,
requiring that ∂Tu be a vector measure. Notice however that now we must take into
account all differential forms

ϕdxα ∧ dyβ ,

where α and β are multi-indices with |α|+ |β| = n−1. This means that we will have
to take into account also non-linear quantities involving minors of the matrix ∇u.

As an example we illustrate the case n = m = 2. In this case, the orientation η
of the graph Γ of u is given by

η(x, y) =
1√

1 + |∇u|2 + |det∇u|2
(
e1 ∧ e2 −

∂u1

∂x1
e2 ∧ ε1 −

∂u2

∂x1
e2 ∧ ε2

+
∂u1

∂x2
e1 ∧ ε1 +

∂u2

∂x2
e1 ∧ ε2 + det∇u ε1 ∧ ε2

)
,

where (e1, e2) and (ε1, ε2) denote the canonical orthonormal bases on Ω and on the
target space, respectively, and H2(Γ) < +∞ if and only if ∇u ∈ L1 and det∇u ∈ L1.
The integration of the “vertical components” of the current ∂Tu can be expressed
then by

∂Tu(ϕdy1) =
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx

∂Tu(ϕdy2) =
∫

Ω

( ∂ϕ
∂x1

∂u2

∂x2
− ∂ϕ

∂x2

∂u2

∂x1
+
∂ϕ

∂y1
det∇u

)
dx.

We have that u ∈ SBV0 if and only if there exist two bounded measures µ1 and µ2

on Ω× IR2, such that∫
Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1

)
dx =

∫
Ω

∂ϕ

∂y2
det∇u dx+

∫
Ω×IR2

ϕdµ1,

∫
Ω

( ∂ϕ
∂x2

∂u2

∂x1
− ∂ϕ

∂x1

∂u2

∂x2

)
dx =

∫
Ω

∂ϕ

∂y1
det∇u dx+

∫
Ω×IR2

ϕdµ2.

for all ϕ ∈ C1
0 (Ω × IR2). In particular, if u is bounded, we get (choosing ϕ(x, y) =

y2φ(x) on the range of u)∫
Ω

u2

( ∂φ
∂x1

∂u1

∂x2
− ∂φ

∂x2

∂u1

∂x1

)
dx =

∫
Ω

φdet∇u dx+
∫

Ω×IR2
φy2dµ1,
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for all φ ∈ C1
0 (Ω), which can be summarized in the equality, which links the distri-

butional and the pointwise determinant,

Det∇u = det∇uL2 + π#(y2 µ1).

Note that the equality Det∇u = det∇uLn + λ may hold with non-trivial λ also
when u is a Sobolev function. In the case u : {x ∈ IR2 : |x| < 1} → IR2 given by
u(x) = x/|x|, for example, det∇u = 0, but

Det∇u = πδ0.

Some examples by Müller [18] show that λ may also be a Hausdorff measure of
fractional dimension restricted to a fractal set.

If S(u), the restriction of u to Ω \ S(u), and its traces on S(u) are smooth
enough to justify the application of the Gauss-Green formula, then the measures µi
are easily characterized. In fact, we get

0 =
∫

Ω

ϕ(x, u) div
(∂u1

∂x2
,−∂u1

∂x1

)
dx

=
∫
S(u)

(
ϕ(x, u+)

(∂u+
1

∂x1
ν2 −

∂u+
1

∂x2
ν1

)
− ϕ(x, u−)

(∂u−1
∂x1

ν2 −
∂u−1
∂x2

ν1

))
dH1

−
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx,

= −
∫
S(u)

(
ϕ(x, u+)

∂u+
1

∂τ
− ϕ(x, u−)

∂u−1
∂τ

)
dH1

−
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx,

so that ∫
Ω×IR2

ϕdµ1 = −
∫
S(u)

(
ϕ(x, u+)

∂u+
1

∂τ
− ϕ(x, u−)

∂u−1
∂τ

)
dH1 .

In the same way we obtain∫
Ω×IR2

ϕdµ2 = −
∫
S(u)

(
ϕ(x, u+)

∂u+
2

∂τ
− ϕ(x, u−)

∂u−2
∂τ

)
dH1 .

In particular, the total variation of µ represents the length of the images of S(u) by
u+ and u−:

|µ|
(
Ω× IR2

)
=
∫
S(u)

(
|∂u

+

∂τ
|+ |∂u

−

∂τ
|
)
dH1.
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In the physical case n = m = 3 the integration by parts formulas characterize
the distributional and Jacobian determinants of ∇u and its (2-dimensional) adjoint
matrices.

As in the scalar case, we denote by ∂vTu the vector of the measures µαβ related
to integration of “non-horizontal” forms ϕdxα ∧ dyβ , with |α| + |β| = n − 1 and
|α| < n− 1. We have then the following compactness result.
Theorem 4.1 Let (uh) be a sequence in SBV0 such that

sup
h∈IN

(
‖uh‖∞ +H1(S(uh)) +

∫
Ω

|∇u|q dx+ ‖∂vTuh
‖
)

is finite, where q ≥ min{n,m}, and let

det
∂(uh)β
∂xγ

be a equi-integrable sequence for every pair of multi-indices β, γ of order min{n,m}
(in the case n = m it means that (det∇uh) is equi-integrable). Then, there exists a
subsequence (uh(k)) converging in L1

loc(Ω, IRm) to u ∈ SBV0, such that

∇uh(k) → ∇u weakly in Lq(Ω, IRnm),

det
∂(uh(k))β
∂xγ

→ det
∂uβ
∂xγ

weakly in L1(Ω)

for every pair of multi-indices β, γ of equal order not greater than min{n,m}, and
∂Tuh(k) converges weakly to ∂Tu. In particular ∂vTuh(k) converges weakly to ∂vTu in
the sense of measures.

5. An existence result

As an application of the compactness results stated above we can give an existence
result for weak minima with smooth traces on S(u) for the Mumford and Shah
functional of computer vision (see [19]). The strong formulation for such a problem
takes into account the functional

F (u,K) =
∫

Ω\K
|∇u|2 dx+ λ

∫
K

(√
1 +

∣∣∂u+

∂τ

∣∣2 +

√
1 +

∣∣∂u−
∂τ

∣∣2)dH1 ,

where Ω ⊂ IR2, K is a piecewise C1 closed subset of Ω, and u ∈ C1(Ω \ K) has
tangential derivatives H1-a.e. on K. The last line integral is simply the length of
the graphs of u± in IR3. The weak formulation of F is given by

F(u) =
∫

Ω

|∇u|2 dx+ λ‖∂Tu‖, u ∈ SBV0(Ω).
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Example 5.1. Let g ∈ L∞(Ω). Then there exists a solution to the minimum problem

min
{
F(u) +

∫
Ω

|u− g|2 dx : u ∈ SBV0(Ω)
}
.

In fact, it suffices to notice that there is no restriction in supposing that ‖u‖∞ ≤
‖g‖∞, so that we can find a minimizing sequence (uh) satisfying the hypotheses
of Theorem 2.1. We obtain then, possibly passing to a subsequence, a minimizing
sequence, that we still call (uh), converging to a function u ∈ SBV0(Ω) strongly
in L2(Ω), such that ∇uh → ∇u weakly in L2(Ω; IRn), and ∂Tuh

→ ∂Tu weakly as
measures on Ω× IR. In particular we have∫

Ω

|∇u|2 dx ≤ lim inf
h

∫
Ω

|∇uh|2 dx, ‖∂Tu‖ ≤ lim inf
h
‖∂Tuh

‖,

so that
F(u) +

∫
Ω

|u− g|2 dx ≤ lim
h

(
F(uh) +

∫
Ω

|uh − g|2 dx
)
,

and u is a minimum point as required.
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