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Introduction

The notion of capacity associated with a possibly non-symmetric elliptic operator

Lu = −
n∑

i,j=1

Di(aijDju) ,

with bounded measurable coefficients, was introduced by Stampacchia in [9] in order to
study the behaviour of the Green’s function of L . In the symmetric case the L -capacity
capL(A,Ω) of a set A in a bounded open set Ω can be defined as the infimum of∫

Ω

( n∑
i,j=1

aijDjuDiu
)
dx

over the set of all functions u in the Sobolev space H1
0 (Ω) such that u ≥ 1 a.e. in a neigh-

bourhood of A . It follows easily from this definition that capL(A,Ω) is increasing with
respect to A and decreasing with respect to Ω. Moreover, using standard techniques,
it is not difficult to prove that the set function capL(·,Ω) is countably subadditive and
continuous along increasing sequences of subsets of Ω.

When the operator L is not symmetric, the definition of L-capacity is given in
terms of the solution of a variational inequality. In this case very little seems to be
known about the behaviour of capL(A,Ω) as a function of A and Ω. At our knowledge,
even the monotonicity properties have never been studied. Indeed Stampacchia proved
only that, if A ⊆ B ⊂⊂ Ω, then

capL(A,Ω) ≤ K capL(B,Ω) ,

where K ≥ 1 is a constant depending on L , and K > 1 when L is not symmetric (see
[9], Theorem 3.10). Since

capL1(A,Ω) ≤ β

α
capL2(A,Ω)

for two elliptic operators L1 and L2 with the same ellipticity constants α and β (see [9],
Theorem 3.11), the precise behaviour of the set function capL(·,Ω) is not important in
those applications where only a rough estimate of capL(·,Ω) is needed, like the estimates
for the Green’s function and the Wiener condition for the regularity of boundary points
(see [8] and [9]). Indeed in all these cases one can replace the non-symmetric operator
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L by a simpler symmetric operator with the same ellipticity constants, and the previous
estimate, together with the properties known in the symmetric case, are enough to obtain
the desired results.

However, there are some problems where one can not replace capL(·,Ω) by an equiv-
alent capacity. An example is given by the study of the asymptotic behaviour, as h→∞ ,
of the solutions uh of the Dirichlet problems

uh ∈ H1
0 (Ωh) , Luh = f in Ωh ,

where Ωh are open subsets of a given bounded domain Ω. When L is symmetric,
it is possible to determine the behaviour of the sequence uh by knowing the limit of
capL(A\Ωh,Ω) for a sufficiently large class of subsets A of Ω (see [1] and [3]). Of course,
in this problem capL(·,Ω) can not be replaced by an equivalent capacity, since the result
actually depends on L . In order to extend this analysis to the case of non-symmetric
operators, we need to know the properties of the set function capL(·,Ω) in the general
case.

With this motivation in mind, in this paper we study the properties of capL(A,Ω)
for an arbitrary elliptic operator L . In particular we prove that capL(A,Ω) is increasing
with respect to A (Theorem 3.2) and decreasing with respect to Ω (Theorem 3.3).
Moreover, we show that the set function capL(·,Ω) is strongly subadditive (Theorem 3.4)
and continuous along increasing sequences of subsets of Ω (Theorem 3.5). These results
together imply that capL(·,Ω) is countably subadditive (Theorem 3.6).

In view of the applications to the study of the asymptotic behaviour of the solutions
of Dirichlet problems in varying domains (see [5]), we need a more symmetric treatment
of the variables A and Ω in capL(A,Ω). Therefore, for every pair of bounded sets A

and B , with A ⊆ B , we define the L-capacity capL(A,B) of A in B by means of a
variational inequality, which reduces to that used by Stampacchia when A is closed and
B is open.

A crucial role in the proofs is played by the inner and outer L -capacitary distri-
butions λ and ν . These are positive measures, supported by ∂A and ∂B , such that
the L -capacitary potential u satisfies Lu = λ − ν (Theorem 2.6). Moreover we have
capL(A,B) = λ(∂A) = ν(∂B) (Proposition 2.9). With the aid of these properties we
prove that capL(A,B) = capL

∗
(A,B), where L∗ is the adjoint operator (Theorem 3.1).

This result is essential in our proof of the other properties of capL(·,Ω) mentioned above.

We conclude the paper with an Appendix which shows that, although λ − ν ∈
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H−1(Rn) when capL(A,B) < +∞ , the single measures λ and ν may not belong to
H−1(Rn) when A is not relatively compact in the interior of B .
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1. Preliminaries

In the sequel U is always an open (possibly unbounded) subset of Rn , n ≥ 2,
while Ω is always a bounded open subset of Rn . We denote by H1

0 (U) and H1(U) the
usual Sobolev spaces, and by H−1(U) the dual of H1

0 (U). By H1
loc(U) we denote the

space of all functions that belong to H1(V ) for every open set V ⊂⊂ U . For every set
E we denote by Ec the complement of E in Rn , i.e., Ec = Rn \E , and by 1E the
characteristic function of E , defined by 1E(x) = 1 for x ∈ E , and 1E(x) = 0 for x /∈ E .

If E ⊆ Ω, the (harmonic) capacity of E in Ω, denoted by cap(E,Ω), is defined as
the infimum of ∫

Ω

|Du|2 dx

over the set of all functions u ∈ H1
0 (Ω) such that u ≥ 1 a.e. in a neighbourhood of E .

We say that a set E ⊆ Rn has capacity zero if cap(E∩Ω,Ω) = 0 for every bounded
open set Ω ⊆ Rn . It is easy to prove that, if E is contained in a bounded open set Ω,
then E has capacity zero if and only if cap(E,Ω) = 0. We say that a property P(x)
holds quasi everywhere (abbreviated as q.e.) in a set E if it holds for all x ∈ E except
for a subset N of E of capacity zero. The expression almost everywhere (abbreviated
as a.e.) refers, as usual, to the analogous property for the Lebesgue measure. A function
u: Ω → R is said to be quasi continuous if for every ε > 0 there exists a set A ⊆ Ω,
with cap(A,Ω) < ε , such that the restriction of u to Ω\A is continuous. A function
u:U → R is said to be quasi continuous on U if its restriction to every bounded open
set Ω ⊆ U is quasi continuous on Ω.

It is well known that every u ∈ H1(U) has a quasi continuous representative, which
is uniquely defined up to a set of capacity zero. In the sequel we shall always identify
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u with its quasi continuous representative, so that the pointwise values of a function
u ∈ H1(U) are defined quasi everywhere in U . With this convention we have

cap(E,Ω) = min
{∫

Ω

|Du|2dx : u ∈ H1
0 (Ω) , u ≥ 1 q.e. in E

}
.

If u and v are two functions in H1(U) and u ≤ v a.e. in U , then u ≤ v q.e.
in U . It can be proved that a function u ∈ H1(Rn) belongs to H1

0 (U) if and only if
u = 0 q.e. in U c . Finally we recall that, if a sequence (uh) converges to u in H1

0 (U),
then a subsequence of (uh) converges to u q.e. in U . For all these properties of quasi
continuous representatives of Sobolev functions we refer to [10], Chapter 3.

A subset A of Ω is said to be quasi open in Ω if for every ε > 0 there exists an open
subset Aε of Ω, with cap(Aε,Ω) < ε , such that A∪Aε is open. It is easy to see that, if
A is quasi open in Ω, then A∩Ω′ is quasi open in Ω′ for every open set Ω′ ⊆ Ω. When
U is unbounded, a subset A of U is said to be quasi open in B if A ∩ Ω is quasi open
in Ω for every bounded open set Ω ⊆ U . It is easy to see that if a function u:U → R

is quasi continuous, then the set {u > c} = {x ∈ U : u(x) > c} is quasi open for every
c ∈ R .

Lemma 1.1. Let (uh) be a bounded sequence of H1
0 (U) that converges pointwise q.e. to

a function u . Then u is (the quasi continuous representative of) a function of H1
0 (U)

and (uh) converge to u weakly in H1
0 (U) .

Proof. Let ϕh = infk≥h uk and ψh = supk≥h uk . It is easy to see that ϕh ↗ u q.e. in
U and ψh ↘ u q.e. in U . Moreover ϕh ≤ uk ≤ ψh , for every h ≤ k . Now, for every h ,
the set Kh = {v ∈ H1

0 (U) : ϕh ≤ v ≤ ψh q.e. in U} is convex and closed, thus Kh is
weakly closed. Since (uh) is bounded in H1

0 (U), a subsequence of (uh) converges weakly
in H1

0 (U) to a function v . Then v ∈ Kh , so that ϕh ≤ v ≤ ψh q.e. for every h . This
implies u = v q.e. in U and concludes the proof of the lemma.

Lemma 1.2. For every quasi open subset A of U there exists an increasing sequence
(vh) of non-negative functions of H1

0 (U) , with 0 ≤ vh ≤ 1A , converging to 1A pointwise
q.e. in U .

Proof. See [2], Lemma 1.4, or [4], Lemma 2.1.
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We say that a Radon measure ν on U belongs to H−1(U) if there exists f ∈ H−1(U)
such that

(1.1) 〈f, ϕ〉U =
∫
U

ϕdν ∀ϕ ∈ C∞0 (U) ,

where 〈·, ·〉U denotes the duality pairing between H−1(U) and H1
0 (U). We shall always

identify f and ν . Note that, by the Riesz theorem, for every positive functional f ∈
H−1(U) there exists a positive Radon measure ν such that (1.1) holds.

Let L:H1(Rn)→ H−1(Rn) be an elliptic operator of the form

Lu = −
n∑

i,j=1

Di(aijDju) ,

where (aij) is an n×n matrix of functions of L∞(Rn) satisfying the ellipticity condition

(1.2)
n∑

i,j=1

aij(x)ξjξi ≥ |ξ|2

for a.e. x ∈ Rn and for every ξ ∈ Rn . Let L∗:H1(Rn) → H−1(Rn) be the adjoint
operator, defined by

L∗u = −
n∑

i,j=1

Di(ajiDju)

for every u ∈ H1(Rn). In the sequel we will denote by a(·, ·) the bilinear form on
H1(Rn)×H1(Rn) associated with the operator L defined by

a(u, v) =
∫
Rn

( n∑
i,j=1

aijDjuDiv
)
dx

for every u, v ∈ H1(Rn), and by a∗(·, ·) the bilinear form associated with the adjoint
operator L∗ . Clearly we have that a(u, v) = a∗(v, u) for every u, v ∈ H1(Rn).

For every open set U ⊆ Rn , we shall identify each function u ∈ H1
0 (U) with the

function of H1(Rn) obtained by extending u by zero on U c . Moreover we will denote
by aU(·, ·) the restriction of a(·, ·) to H1

0 (U)×H1
0 (U).
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2. The L-capacity and the L-capacitary distributions.

Let A and B be two bounded subsets of Rn , with A ⊆ B , and let U be an open
set containing B . Let us consider the convex sets KB

A (U) and HB
A (U) defined by

KB
A (U) = {v ∈ H1

0 (U) : v = 1 q.e. in A and v = 0 q.e. in U \B} ,

HB
A (U) = {v ∈ H1

0 (U) : v ≥ 1 q.e. in A and v ≤ 0 q.e. in U \B} .

Clearly KB
A (U) = KB

A (Rn) for every open set U containing B . We say that A is
compatible with B if the set KB

A (Rn) is non-empty. In this case we shall consider the
solution of the following variational inequality

(2.1)
{
u ∈ KB

A (Rn) ,
a(u, v − u) ≥ 0 ∀v ∈ KB

A (Rn) ,

and we shall prove that it coincides with the solution of the problem

(2.2)
{
u ∈ HB

A (Rn) ,
a(u, v − u) ≥ 0 ∀v ∈ HB

A (Rn) .

Theorem 2.1. Let A and B be two bounded sets, A compatible with B . Then problem
(2.1) has a unique solution u . Moreover u coincides with the unique solution of (2.2)
and 0 ≤ u ≤ 1 q.e. in Rn .

Proof. Let Ω be a bounded open set containing B . We have already seen that KB
A (Rn) =

KB
A (Ω). Then problem (2.1) is equivalent to the problem{

u ∈ KB
A (Ω) ,

aΩ(u, v − u) ≥ 0 ∀v ∈ KB
A (Ω) ,

that has a unique solution by Stampacchia’s theorem (see [7], Theorem 2.1). In order to
prove the second assertion, for every (possibly unbounded) open set U containing B we
consider the variational inequality

(2.3)
{
w ∈ HB

A (U) ,
aU(w, v − w) ≥ 0 ∀v ∈ HB

A (U) .

Let us prove that, if w is a solution of (2.3), then w coincides with the solution u of
problem (2.1). To this aim it is sufficient to prove that 0 ≤ w ≤ 1 q.e. in U . Let us
consider the function z = w ∧ 1. Since z ∈ HB

A (U), by (1.2) and (2.3) we obtain

0 ≤ aU(w, z − w) = −
∫
{w>1}

n∑
i,j=1

aijDjwDiw dx ≤ −
∫
{w>1}

|Dw|2dx .



Capacity theory for non-symmetric elliptic operators 7

Thus, either |{w > 1}| = 0, and hence w ≤ 1 q.e. in U , or Dw = 0 a.e. in {w > 1} . This
implies that D(w ∨ 1) = 0 a.e. in U , so w ∨ 1 is constant in each connected component
of U . Since w ∈ H1

0 (U) we have w ∨ 1 = 1 q.e. in U and hence w ≤ 1 q.e. in U . In
particular w = 1 q.e. in A .

Similarly, using z = w ∨ 0 as test function in (2.3), we can prove that w ≥ 0 q.e.
in U and in particular w = 0 q.e. in U \B . Therefore w ∈ KB

A (U) = KB
A (Rn). As

KB
A (Rn) ⊆ HB

A (U), w is a solution of problem (2.1), and thus, by uniqueness, w = u

q.e. in Rn .

It remains to prove the existence of a solution of problem (2.2). Let us fix a bounded
open set Ω such that B ⊂⊂ Ω. By Stampacchia’s theorem there exists a unique solution
of the problem (2.3) corresponding to U = Ω and, by the previous step, this solution
coincides with u . We are now in a position to prove that u is a solution of (2.2). Let
ϕ be a function in C∞0 (Ω) such that ϕ = 1 in B and ϕ ≥ 0 in Ω. Then for every
v ∈ HB

A (Rn) we have vϕ ∈ HB
A (Ω) and, since u = 0 q.e. in Bc , by (2.3) we obtain

a(u, v − u) =
∫
B

n∑
i,j=1

aijDjuDi(v − u) dx =
∫

Ω

n∑
i,j=1

aijDjuDi(ϕv − u) dx ≥ 0 .

Thus u is a solution of problem (2.2) and the proof is complete.

Definition 2.2. If A is compatible with B , the solution u of problem (2.1) is called
the L-capacitary potential of A in B and the L-capacity of A in B is defined by

capL(A,B) = a(u, u) .

If A is not compatible with B , we put capL(A,B) = +∞ .

When A is closed and B is open this definition coincides with the definition of
capacity given by Stampacchia (see [9]). If L is symmetric and B is open, then the
L-capacitary potential is the solution of the minimum problem

min{aB(v, v) : v ∈ H1
0 (B) , u ≥ 1 q.e. in A} .

In particular, when L is the Laplace operator −∆, the L -capacity coincides with the
harmonic capacity introduced in Section 1.
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Remark 2.3. It is clear that if u is the solution of problem (2.1), then it remains a
solution if we replace the set A with the set {u = 1} and the set B with the set {u > 0} .
So that

capL({u = 1}, {u > 0}) = capL(A,B) .

Since {u = 1} is quasi closed and {u > 0} is quasi open, in many applications it is not
restrictive to assume that B is quasi open and A is quasi closed.

For the capacitary potentials the following comparison principle holds.

Lemma 2.4. Let A1 ⊆ A2 and B1 ⊆ B2 be four bounded subsets of Rn such that
A1 (resp. A2 ) is compatible with B1 (resp. B2 ). Let u1 (resp. u2 ) be the L-capacitary
potential of A1 (resp. A2 ) in B1 (resp. B2 ). Then u1 ≤ u2 q.e. in Rn .

Proof. This result is a direct consequence of an elementary comparison principle for two-
obstacle problems ([7], Theorem 6.4, for the case of one obstacle, and [6], Lemma 2.1, in
the general case).

Remark 2.5. If A is compatible with B , and u is the capacitary potential of A in B ,
then

(2.4) a(u, ϕ) = 0 for every ϕ ∈ H1(Rn) with ϕ = 0 q.e. in A ∪Bc .

Indeed the set of all these functions ϕ is non-empty (for instance it contains the function
u(1−u)) and if we choose ϕ in this set we have that u+ϕ and u−ϕ belong to KB

A (Rn);
so that using u+ ϕ and u− ϕ as test functions in (2.1) we obtain (2.4).

Theorem 2.6. Let A and B be two bounded subsets of Rn , A compatible with B , and
let u be the L-capacitary potential of A in B . Then there exist two positive bounded
Radon measures ν and λ such that ν − λ ∈ H−1(Rn) and

(2.5) Lu = ν − λ

in the sense of distributions. Moreover, supp ν ⊆ ∂A , suppλ ⊆ ∂B , ν(E) = λ(E) = 0
for every Borel set E of capacity zero, and

(2.6) a(u, v) =
∫
Rn

v dν −
∫
Rn

v dλ ∀v ∈ H1(Rn) ∩ L∞(Rn) .

Finally, u = 1 ν -a.e. in Rn and u = 0 λ-a.e. in Rn .
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Proof. By Theorem 2.1 the function u coincides with the solution of problem (2.2). Let
ϕ ∈ C∞0 (Rn), with ϕ ≥ 0. Clearly uϕ+ u ∈ HB

A (Rn); so that, by (2.2), we have

a(u, uϕ) ≥ 0 ∀ϕ ∈ C∞0 (Rn), ϕ ≥ 0 .

Thus, by the Riesz representation theorem, there exists a positive Radon measure ν on
Rn such that

(2.7) a(u, uϕ) =
∫
Rn

ϕdν ∀ϕ ∈ C∞0 (Rn) .

Similarly, for every ϕ ∈ C∞0 (Rn), with ϕ ≥ 0, we have that a(u, (1− u)ϕ) ≤ 0. So that
there exists a positive Radon measure λ on Rn such that

(2.8) a(u, (1− u)ϕ) = −
∫
Rn

ϕdλ ∀ϕ ∈ C∞0 (Rn) .

Then, by (2.7) and (2.8), we obtain

(2.9) a(u, ϕ) = a(u, uϕ) + a(u, (1− u)ϕ) =
∫
Rn

ϕdν −
∫
Rn

ϕdλ

for every ϕ ∈ C∞0 (Rn). This implies that Lu = ν − λ in the sense of distributions and
that ν − λ ∈ H−1(Rn).

For every ϕ ∈ C∞0 (Rn) with ϕ = 0 in A , by (2.4) and (2.7), we have that∫
Rn ϕdν = 0, thus supp ν ⊆ A . In the same way, taking ϕ ∈ C∞0 (Rn) with ϕ = 0

in Bc , by (2.4) and (2.8) we obtain that suppλ ⊆
(
int(B)

)c , where int(B) denotes
the interior of B . Moreover, since supp ν ⊆ A ⊆ B and u = 0 q.e. in Bc , for every
ϕ ∈ C∞0 (Rn), with ϕ = 0 in B , by (2.9) we have∫

Rn

ϕdλ = −a(u, ϕ) = 0 ,

thus suppλ ⊆ ∂B . Similarly, since Du = 0 in int(A) and suppλ ⊆
(
int(A)

)c , for every
ϕ ∈ C∞0 (Rn), with ϕ = 0 in

(
int(A)

)c , by (2.9) we get∫
Rn

ϕdν = a(u, ϕ) = 0 ,

hence supp ν ⊆ ∂A . In particular λ and ν are finite measures. Let us prove now that
the measures ν and λ vanish on all sets of capacity zero. To this aim it is sufficient to
prove that ν(C) = 0 and λ(C) = 0 for every compact set C of capacity zero. Let us fix



10 G. DAL MASO and A. GARRONI

such a set C and let us consider a bounded open set Ω containing C . It is possible to
construct a sequence (ϕh) of functions in C∞0 (Ω) such that 0 ≤ ϕh ≤ 1 in Ω, ϕh = 1
in C , and (ϕh) converges to zero strongly in H1

0 (Ω). Then by (2.7), for every h ∈ N ,
we have

ν(C) ≤
∫
Rn

ϕh dν = a(u, uϕh) .

Taking the limit as h → ∞ we obtain ν(C) = 0. In the same way we can prove that
λ(C) = 0. Since λ and ν are finite, we have that every ϕ ∈ H1(Rn)∩L∞(Rn) belongs
to L1

λ(Rn) and to L1
ν(Rn), and thus, by an easy approximation argument, we obtain

(2.10)

a(u, uϕ) =
∫
Rn

ϕdν , a(u, (1− u)ϕ) = −
∫
Rn

ϕdλ ∀ϕ ∈ H1(Rn) ∩ L∞(Rn) ,

which implies (2.6).
Finally let us consider the quasi open set {u < 1} . By Lemma 1.2 there exists an

increasing sequence (vh) of functions of H1(Rn), with 0 ≤ vh ≤ 1{u<1} , converging to
1{u<1} q.e. in Rn . Since uvh = 0 q.e. in A ∪Bc , from (2.4) and (2.10) we obtain

0 = a(u, uvh) =
∫
Rn

vh dν .

Taking the limit as h→∞ we have ν({u < 1}) = 0 and thus u ≥ 1 ν -a.e. in Rn . Since
u ≤ 1 q.e. in Rn (Theorem 2.1), we have also u ≤ 1 ν -a.e. in Rn , and hence u = 1
ν -a.e. in Rn

Similarly, let (zh) be an increasing sequence of functions of H1(Rn), with 0 ≤ zh ≤
1{u>0} , converging to 1{u>0} q.e. in Rn . Then (1− u)zh = 0 in A∪Bc and from (2.4)
and (2.10) we obtain ∫

Rn

zh dλ = 0 .

Taking the limit as h→∞ we conclude that u = 0 λ -a.e. in Rn .

The measures ν and λ defined by (2.5) are called the inner and the outer L-ca-
pacitary distribution of A in B .

Remark 2.7. It is easy to see that if A is relatively compact in the interior of B , then
ν ∈ H−1(Rn) and λ ∈ H−1(Rn). We shall see in the Appendix, with an explicit coun-
terexample, that, given a bounded open set B , it is possible to construct an open set A
contained in B and compatible with B , such that the inner and the outer capacitary
distributions of A in B are not in H−1(Rn).
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Remark 2.8. Let V an open set such that V ∩A = Ø. Suppose that V ∩ ∂B is a C1

manifold and that V ∩B lies, locally, on one side of V ∩ ∂B . Then

λ(E) = −
∫
∂B∩E

∂u

∂nL
dσ for every Borel set E ⊆ V ,

where nL is the (outer) conormal vector on ∂B associated with the operator L , and σ

is the (n− 1)-dimensional measure on ∂B .

Proposition 2.9. Let A and B be two bounded subsets of Rn , A compatible with B ,
and let ν and λ be the inner and the outer capacitary distributions of A in B . Then

(2.11) capL(A,B) = ν(∂A) = ν(Rn) = λ(∂B) = λ(Rn) .

Proof. Let u be the capacitary potential of A in B . Since, by Theorem 2.6, u = 1
ν -a.e. in Rn and u = 0 λ -a.e. in Rn , by (2.6) we obtain

capL(A,B) = a(u, u) =
∫
Rn

u dν = ν(Rn) = ν(∂A) ,

where in the last equality we used the fact that supp ν ⊆ ∂A . In order to prove the other
equalities in (2.11) let us consider a function ϕ ∈ C∞0 (Rn) such that ϕ = 1 in B . Since
u = 0 q.e. in Bc , by (2.8) we have

capL(A,B) = a(u, u) = −a(u, (1− u)ϕ) =
∫
Rn

ϕdλ = λ(∂B) = λ(Rn) ,

where in the last two equalities we used the fact that suppλ ⊆ ∂B .

Proposition 2.10. Let u1 and u2 be two functions in H1
loc(R

n) . If u1 ≤ u2 q.e. in A ,
then u1 ≤ u2 ν -a.e. in Rn ; if u1 = u2 q.e. in A , then u1 = u2 ν -a.e. in Rn . Likewise,
if u1 ≤ u2 q.e. in Bc , then u1 ≤ u2 λ-a.e. in Rn ; if u1 = u2 q.e. in Bc , then u1 = u2

λ-a.e. in Rn .

Proof. Since ν and λ have compact support, it is not restrictive to suppose u1, u2 ∈
H1(Rn). It is clearly enough to prove only the statements concerning inequalities. Let
us prove the first assertion, assuming that u1 ≤ u2 q.e. in A . Let v = (u2−u1 +1)+∧1.
Then 0 ≤ v ≤ 1 q.e. in Rn and v = 1 q.e. in A . So that it is sufficient to prove
that v ≥ 1 ν -a.e. in Rn . Suppose that ν({v < 1}) > 0. Let u be the capacitary
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potential of A in B . We can use the function uv as test function in problem (2.1),
hence a(u, u) ≤ a(u, uv). By Proposition 2.9 and by (2.10), we obtain

ν(Rn) = capL(A,B) = a(u, u) ≤ a(u, uv) =
∫
Rn

v dν < ν(Rn) .

This contradiction implies that ν({v < 1}) = 0, hence v ≥ 1 ν -a.e. in Rn .
In order to prove the assertion concerning Bc , we assume that u1 ≤ u2 q.e. in Bc

and we consider, as above, the function v = (u2 − u1 + 1)+ ∧ 1. In this case we have
0 ≤ v ≤ 1 q.e. in Rn and v = 1 q.e. in Bc . Then, taking (u− 1)v + 1 as test function
in (2.1), by Proposition 2.9 and by (2.10) we have

λ(Rn) = a(u, u) ≤ a(u, (u− 1)v + 1) = a(u, (u− 1)v) =
∫
Rn

v dλ .

This implies that λ({v < 1}) = 0 and concludes the proof.

Remark 2.11. Proposition 2.10 and (2.6) imply that

a(u, ϕ) =
∫
Rn

ϕdν ∀ϕ ∈ H1
loc(R

n) ∩ L∞(Rn) , ϕ = 0 q.e. in Bc ,

and
a(u, ϕ) = −

∫
Rn

ϕdλ ∀ϕ ∈ H1
loc(R

n) ∩ L∞(Rn) , ϕ = 0 q.e. in A .

3. The main properties of the L-capacity

In this section we study the properties of capL(A,B), considered as a function of
the sets A and B . For the sake of simplicity, in the second part of the section, we keep
B fixed and we consider only the dependence on A . Dual statements could be proved
by exchanging the roles of A and B .

Theorem 3.1. Let A ⊆ B be two subsets of Rn . Then capL(A,B) = capL
∗
(A,B) .

Proof. We may assume that A is compatible with B , otherwise the conclusion is trivial.
Let u (resp. u∗ ) be the capacitary potential of A in B with respect to L (resp. L∗ ),
and let ν (resp. ν∗ ) the inner capacitary distribution of A in B relative to L (resp. L∗ ).
Since u and u∗ are equal to 1 q.e. in A and equal to 0 q.e. in Bc , by Proposition 2.10
and Remark 2.11 we obtain

ν(Rn) =
∫
Rn

u∗ dν = a(u, u∗) = a∗(u∗, u) =
∫
Rn

u dν∗ = ν∗(Rn) .

The conclusion follows from Proposition 2.9.
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We are now in a position to prove the main properties of the L -capacity. We begin
with the monotonicity with respect to A .

Theorem 3.2. Let A1 ⊆ A2 ⊆ B be three subsets of Rn . Then

capL(A1, B) ≤ capL(A2, B) .

Proof. We may assume that A2 (hence A1 ) is compatible with B . Let u1 (resp. u∗2 )
be the capacitary potential of A1 (resp. A2 ) in B with respect to L (resp. L∗ ) and let
ν1 (resp. ν∗2 ) be the corresponding inner capacitary distribution. Since u∗2 = 1 q.e. in
A2 ⊇ A1 and u1 ≤ 1 q.e. in Rn , while u∗2 = u1 = 0 q.e. in Bc , by Proposition 2.10 and
Remark 2.11 we have

ν1(Rn) =
∫
Rn

u∗2 dν1 = a(u1, u
∗
2) = a∗(u∗2, u1) =

∫
Rn

u1 dν
∗
2 ≤ ν∗2 (Rn) .

The conclusion follows from Proposition 2.9 and Theorem 3.1.

Theorem 3.3. Let A ⊆ B1 ⊆ B2 be three subsets of Rn . Then

capL(A,B2) ≤ capL(A,B1) .

Proof. Clearly it is not restrictive to suppose that A is compatible with B1 (hence
with B2 ). Let u1 (resp. u∗2 ) be the capacitary potential of A in B1 (resp. B2 ) with
respect to L (resp. L∗ ) and let λ1 (resp. λ∗2 ) be the corresponding outer capacitary
distribution. Since, by Proposition 2.10, u1 = 0 λ∗2 -q.e. in Rn , by Remark 2.11 we
obtain

λ∗2(Rn) =
∫
Rn

(1− u1) dλ∗2 = a∗(u∗2, u1 − 1) =

= a(u1, u
∗
2 − 1) =

∫
Rn

(1− u∗2) dλ1 ≤ λ1(Rn) ,

and we conclude by Proposition 2.9 and Theorem 3.1.

We prove now that capL is strongly subadditive with respect to A .
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Theorem 3.4. Let A1 and A2 be two subsets of B . Then

capL(A1 ∩A2, B) + capL(A1 ∪A2, B) ≤ capL(A1, B) + capL(A2, B) .

Proof. We may assume that A1 and A2 are compatible with B . In this case A1 ∩ A2

and A1∪A2 are compatible with B too. Let u∗1 (resp. u∗2 ) be the capacitary potential of
A1 (resp. A2 ) in B with respect to L∗ , and let ν∗1 (resp. ν∗2 ) be the corresponding inner
capacitary distribution. Moreover, let uA1∪A2

(resp. uA1∩A2
) be the capacitary potential

of A1 ∪ A2 (resp. A1 ∩ A2 ) in B with respect to L , and let νA1∪A2
(resp. νA1∩A2

) be
the corresponding inner capacitary distribution. Using the fact that u∗1 ∧ u∗2 + u∗1 ∨ u∗2 =
u∗1 + u∗2 , by Proposition 2.10 and Remark 2.11 we obtain

(3.1)

νA1∩A2
(Rn) + νA1∪A2

(Rn) =
∫
Rn

(u∗1 ∧ u∗2) dνA1∩A2
+

+
∫
Rn

(u∗1 ∨ u∗2) dνA1∪A2
= a(uA1∩A2

, u∗1 ∧ u∗2) + a(uA1∪A2
, u∗1 ∨ u∗2) =

= a(uA1∩A2
− uA1∪A2

, u∗1 ∧ u∗2) + a(uA1∪A2
, u∗1) + a(uA1∪A2

, u∗2) =

= a∗(u∗1 ∧ u∗2, uA1∩A2
− uA1∪A2

) +
∫
Rn

uA1∪A2
dν∗1 +

∫
Rn

uA1∪A2
dν∗2 =

= a∗(u∗1 ∧ u∗2, uA1∩A2
− uA1∪A2

) + ν∗1 (Rn) + ν∗2 (Rn) .

In order to conclude, let us prove that a∗(u∗1∧u∗2, uA1∩A2
−uA1∪A2

) ≤ 0. Let us fix a
bounded open set Ω ⊃⊃ B and let us consider the set HB

Ø (Ω) of all functions ϕ ∈ H1
0 (Ω)

with ϕ = 0 q.e. in Bc . Since u∗1 and u∗2 are solutions of variational inequalities of the
type (2.3) with U = Ω, it is easy to see that

aΩ(u∗1, ϕ) ≥ 0 and aΩ(u∗2, ϕ) ≥ 0

for every ϕ ∈ HB
Ø (Ω) with ϕ ≥ 0 q.e. in Ω. If B is open this means that L∗u∗1 ≥ 0 and

L∗u∗2 ≥ 0 in B in the sense of distributions, and this implies L∗(u∗1∧u∗2) ≥ 0 in B in the
sense of distributions (see [7], Theorem 6.6). If B is not open, we can repeat the proof
of Theorem 6.6 of [7], replacing H1

0 (B) with HB
Ø (Ω), and we still obtain that aΩ(u∗1 ∧

u∗2, ϕ) ≥ 0 for every ϕ ∈ HB
Ø (Ω) with ϕ ≥ 0 q.e. in Ω. Moreover, by the comparison

principle (Lemma 2.4) we have uA1∪A2
≥ uA1∩A2

, and hence a∗Ω(u∗1 ∧ u∗2, uA1∩A2
−

uA1∪A2
) ≤ 0. The conclusion of the theorem follows now from (3.1), Proposition 2.9,

and Theorem 3.1.

The following theorem proves that capL is continuous along increasing sequences.
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Theorem 3.5. Let (Ah) be an increasing sequence of subsets of B , and let A be their
union. Then

capL(A,B) = sup
h

capL(Ah, B) .

Proof. By monotonicity (Theorem 3.2) we have capL(Ah, B) ≤ capL(A,B). Therefore
it is enough to prove that

capL(A,B) ≤ sup
h

capL(Ah, B) .

We may assume that the right hand side is finite, so that each set Ah is compatible
with B . Let uh be the L -capacitary potential of Ah in B . By the comparison principle
(Lemma 2.4) the sequence (uh) is increasing. Therefore it converges pointwise q.e. in
Rn to some function u . Let Ω be any bounded open set such that B ⊂⊂ Ω. Since
aΩ(uh, uh) = capL(Ah, B), and sup

h
capL(Ah, B) < +∞ , the sequence (uh) is bounded

in H1
0 (Ω). By Lemma 1.1 u is (the quasi continuous representative of) a function of

H1
0 (Ω) and (uh) converges to u weakly in H1

0 (Ω). It is easy to see that u = 1 q.e. in A

and u = 0 q.e. in Ω\B . Thus u ∈ KB
A (Ω) = KB

A (Rn) and A is compatible with B .
As uh satisfies

(3.2) a(uh, v − uh) ≥ 0

for every v ∈ KB
Ah

(Rn), we have, in particular, that (3.2) holds for every h if v ∈
KB
A (Rn). Hence for any such v , taking the limit in (3.2) as h → +∞ , and using the

weak lower semicontinuity of w 7→ a(w,w) we obtain

(3.3) a(u, u) ≤ lim inf
h→∞

a(uh, uh) ≤ lim inf
h→∞

a(uh, v) = a(u, v) .

Thus u is the capacitary potential of A in B and by (3.3) we have

capL(A,B) = a(u, u) ≤ lim inf
h→∞

a(uh, uh) = sup
h

capL(Ah, B) .

This concludes the proof of the theorem.

Finally we establish the countable subadditivity of the capacity capL .

Theorem 3.6. Let (Ah) be a sequence of subset of B and A ⊆
⋃
hAh . Then

capL(A,B) ≤
∑
h

capL(Ah, B) .

Proof. The conclusion follows easily from Theorems 3.2, 3.4, 3.5.
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4. Appendix

In this section L is the Laplace operator −∆, so that the L-capacity coincides with
the harmonic capacity considered in Section 1. We construct two bounded open sets A
and B , with A ⊆ B , such that:
(i) A is compatible with B , i.e., cap(A,B) < +∞ ;

(ii) the inner and outer capacitary distributions ν and λ of A in B do not belong to
H−1(Rn).
The set B is just a ball with radius R > 0 and with center on the positive x1 -axis at

a distance R from the origin, so that 0 ∈ ∂B . The set A is the union of a sequence (Ai)
of disjoint open balls contained in B . Each ball Ai has center on the positive x1 -axis,
radius ri , and distance from the origin di , so that its center has distance di + ri from
the origin. We assume that (di) and (ri) tend to zero and that

(4.1) di+1 + 2ri+1 < di ∀i ∈ N ,

so the ball Ai+1 lies on the left of the ball Ai . We have to choose the parameters di

and ri in such way that (i) and (ii) are satisfied. For every k let Uk be the union of the
balls A1, . . . , Ak . Let us denote by uk and vk the capacitary potentials of Ak and Uk

in B . Finally, let us fix a non-negative function w ∈ C∞(Rn\{0}) ∩H1(Rn) such that
w(x) = ω(|x|), with ω decreasing and with lim

ρ→0
ω(ρ) = +∞ . We will show that it is

possible to choose the parameters di and ri in such a way that:

(4.2) vk ≤
k∑
i=1

ui ≤
(
1 +

k−1∑
i=1

1
2k
)
vk ∀k ∈ N ,

(4.3) −
∞∑
i=1

∫
∂B

∂ui
∂n

dσ < +∞ ,

(4.4) −
∞∑
i=1

∫
∂B

∂ui
∂n

w dσ = +∞ ,

where n is the exterior unit normal to ∂B and σ is the surface measure on ∂B . By this
choice of di and ri we will obtain our result. Let us prove this fact. Since ui = vk = 0
on ∂B , by (4.2) we have

(4.5) −∂vk
∂n
≤ −

k∑
i=1

∂ui
∂n
≤ −

(
1 +

k−1∑
i=1

1
2k
)∂vk
∂n

on ∂B .
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Then, using Remark 2.8, Proposition 2.9, and Theorem 3.4, from (4.3) we obtain

cap(Uk, B) ≤
k∑
i=1

cap(Ai, B) ≤ −
∞∑
i=1

∫
∂B

∂ui
∂n

dσ < +∞

for every k ∈ N , and thus A is compatible with B by Theorem 3.5.
Let us denote by v the capacitary potential of A in B . Since, by the maximum

principle, vk ≤ v in B and vk = v = 0 on ∂B , we have that −∂vk∂n ≤ −
∂v
∂n on ∂B .

Moreover, if we denote by λ the outer capacitary distribution of A in B , by Remark 2.8,
we get

λ(E) = −
∫
∂B∩E

∂v

∂n
dσ

for every Borel set E , with 0 /∈ E . As {0} has capacity zero, the previous formula holds
for every Borel set. Since by (4.4) and (4.5)

−
∫
∂B

∂vk
∂n

w dσ → +∞

as k →∞ , we have ∫
∂B

w dλ = +∞ .

As w ∈ H1(Rn), this implies that λ 6∈ H−1(Rn). Since ν−λ ∈ H−1(Rn) (Theorem 2.6),
we have also ν 6∈ H−1(Rn).

It remains to construct (di) and (ri) such that (4.1), (4.2), (4.3), (4.4) are satisfied.
From now on we will denote by Br the open ball of center zero and radius r . Let us fix
a sequence of positive numbers (ρi) converging to zero. If we choose Ai such that

(4.6) −
∞∑
i=1

∫
∂B\Bρi

∂ui
∂n

dσ < +∞ ,

then the conditions

(4.7) −
∞∑
i=1

∫
∂B∩Bρi

∂ui
∂n

dσ < +∞

and

(4.8) −
∞∑
i=1

∫
∂B∩Bρi

∂ui
∂n

w dσ = +∞

clearly imply (4.3) and (4.4). To get (4.6) we need the following lemma.
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Lemma 4.1. There exist three functions α(ε) , δ(ε) , η(ε) , defined for 0 < ε < 1 and
converging to 0 as ε→ 0 , such that, if Eε is any subset of B∩Bα(ε) compatible with B ,
and zε is the capacitary potential of Eε in B , then

(a) zε ≤ δ(ε) q.e. in B\Bε

(b)
∫
∂B\Bε

∂zε
∂n

dσ ≤ η(ε) for every 0 < ε < 1 .

Proof. Let α(ε) = exp(−1/ε) and let ζε(|x|) be the capacitary potential of Bα(ε) in
B2R . We set δ(ε) = ζε(ε) and η(ε) = cap(Bα(ε), Bε). By direct computation we verify
that δ(ε) and η(ε) tend to 0 as ε tends to 0. Let Cε = B∪Bε and let wε the capacitary
potential of Bα(ε) in Cε . By Theorem 3.3 we have that

(4.9) cap(Bα(ε), Cε) ≤ η(ε) .

Let Eε be a subset of B ∩ Bα(ε) compatible with B , and let zε be the capacitary
potential of Eε in B . By the maximum principle we have −∂wε∂n ≥ 0 on ∂Cε and
zε(x) ≤ wε(x) ≤ ζε(|x|) for x ∈ B\Bα(ε) . As ζε(|x|) is decreasing with respect to |x| ,
we obtain (a). Since zε = wε = 0 on ∂B\Bε , we obtain that 0 ≤ −∂zε∂n ≤ −

∂wε
∂n on

∂B\Bε . Finally (4.9) together with Remark 2.8 and Proposition 2.9 implies

−
∫
∂B\Bε

∂zε
∂n

dσ ≤ −
∫
∂B\Bε

∂wε
∂n

dσ ≤ −
∫
∂Cε

∂wε
∂n

dσ = cap(Bα(ε), Cε) ≤ η(ε) .

Let us fix a sequence (εi) such that 0 < εi < ρi and η(εi) ≤ 1/2i . If

(4.10) Ai ⊆ Bα(εi) ,

then by Lemma 4.1 we have

(4.11) −
∫
∂B\Bρi

∂ui
∂n

dσ ≤ 1
2i
.

This yields (4.6). It remains to find additional conditions on di and ri which imply (4.7)
and (4.8).

Let us fix the following notation: γi = ω(ρi), where w(x) = ω(|x|) is the function
which appears in (4.4), and

ψi(di, ri) = −
∫
∂B∩Bρi

∂ui
∂n

dσ .
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Since ω is decreasing, to obtain (4.8) it is enough to prove that

(4.12)
∞∑
i=1

ψi(di, ri)γi = +∞ .

Since γi → +∞ as i→ +∞ , there exists a subsequence (γik) such that

1
γik
≤ 1

2k
∀k ∈ N .

If we define the sequence βi by

βi =


1
γik

, if i = ik,

1
γi
∧ 1

2i , otherwise,

then
∑
i βiγi = +∞ and

∑
i βi < +∞ . Therefore, if we choose di and ri satisfying

(4.13) ψi(di, ri) = βi ∀i ∈ N ,

we obtain (4.7) and (4.12) , and hence also (4.8).
We are now in a position to construct the sequences (di) and (ri) by induction.

Suppose that di and ri have already been fixed for every i = 1, . . . , k− 1, and that they
satisfy (4.1), (4.2), (4.10), (4.13) . Let us construct dk and rk . Since ui(0) = 0 and ui

is continuous at 0, there exists Sk , 0 < Sk < dk−1 , such that

(4.14) 0 ≤
k−1∑
i=1

ui(x) ≤
k−1∑
i=1

1
2i

∀x ∈ B ∩BSk .

Moreover, by Lemma 4.1(a), if Sk is small enough, then

(4.15) 0 ≤ uk(x) ≤ 1
2k−1

∀x ∈ Uk−1 =
k−1⋃
i=1

Ai

for every pair dk , rk such that Ak ⊆ BSk , i.e., dk + 2rk ≤ Sk . As uk = 1 in Ak and,
by induction,

1 ≤
k−1∑
i=1

ui(x) ≤ 1 +
k−2∑
i=1

1
2i

∀x ∈ Uk−1 ,

by (4.14) and (4.15) , we get

1 ≤
k∑
i=1

ui(x) ≤ 1 +
k−1∑
i=1

1
2i

∀x ∈ Uk .
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Then, taking into account that vk = 1 in Uk , by the maximum principle we obtain (4.2)
whenever Ak ⊆ BSk , i.e., dk + 2rk ≤ Sk . We can choose Rk and Dk small enough such
that Dk + 2Rk ≤ Sk < dk−1 and Ak ⊆ Bα(εk) (see (4.10)), i.e., Dk + 2Rk < α(εk).
Then, for every rk ≤ Rk and dk ≤ Dk , (4.1), (4.2), (4.10) are satisfied. It remains
to find rk ≤ Rk and dk ≤ Dk such that (4.13) holds. Since cap(Ai, B) tends to +∞
as di → 0, Remark 2.8 and Proposition 2.9, together with (4.11), imply that ψk(δ,Rk)
tends to +∞ as δ → 0. Therefore it is possible to fix dk ≤ Dk such that

ψk(dk, Rk) ≥ 1
γk
.

By the definition of βk we have that 0 < βk ≤ ψk(dk, Rk). As ψk(dk, ρ) decreases
continuously to zero as ρ→ 0, it is possible to find rk ≤ Rk such that ψk(dk, rk) = βk .
With this choice of dk and rk conditions (4.1), (4.2), (4.10), (4.13) are satisfied, and this
concludes our construction.
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