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Introduction

Let L be a linear elliptic operator on a bounded open set Ω of Rn , n ≥ 2, and
let (Ωh) be a sequence of open sets contained in Ω. In this paper we prove that the
asymptotic behaviour, as h→∞ , of the solutions uh of the Dirichlet problems

(0.1)

uh ∈ H1
0 (Ωh) ,

Luh = f in Ωh ,

for f ∈ H−1(Ω), is uniquely determined by the asymptotic behaviour, for a suitable
class of sets E ⊂⊂ Ω, of the capacities capL(E \ Ωh) associated with the operator L

according to Stampacchia [13]. In particular we prove (Theorem 6.1) that, if

(0.2) lim
h→∞

capL(E \ Ωh) = α(E)

for all sets E in a sufficiently large class E of subsets of Ω, then for every f ∈ H−1(Ω)
the solutions uh of (0.1), extended by 0 in Ω \ Ωh , converge weakly in H1

0 (Ω) to the
solution u of the “relaxed Dirichlet problem”

(0.3)


u ∈ H1

0 (Ω) ∩ L2
µ(Ω) ,

〈Lu, v〉 +
∫

Ω

uv dµ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) ,

where µ is a non-negative Borel measure on Ω, which is uniquely determined by the set
function α defined by (0.2). More precisely, let β be the regularization of α defined by

β(U) = sup{α(E) : E ∈ E , E ⊂⊂ U} , if U is open in Ω ,

β(B) = inf{β(U) : U open , B ⊆ U ⊆ Ω} , if B ⊆ Ω .

Then the measure µ which appears in (0.3) is the smallest Borel measure on Ω which
satisfies µ(B) ≥ β(B) for every Borel set B ⊆ Ω: it is given by the formula

µ(B) = sup
∑
i∈I

β(Bi) ,

where the supremum is taken over all finite Borel partitions (Bi)i∈I of B .
If there exists a Radon measure ν on Ω such that β(B) ≤ ν(B) for every Borel set

B ⊆ Ω, then µ can be obtained also by a derivation argument: we prove (Theorem 5.11
and Remark 5.12) that the limit

lim
r→0

β(Br(x))
ν(Br(x))

= g(x)
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exists for ν -almost every x ∈ Ω and that

µ(B) =
∫
B

g dν

for every Borel set B ⊆ Ω.
In the paper we consider, more in general, the asymptotic behaviour of the solutions

uh of the “relaxed Dirichlet problems”

(0.4)


uh ∈ H1

0 (Ω) ∩ L2
µh

(Ω) ,

〈Luh, v〉 +
∫

Ω

uhv dµh = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µh
(Ω) ,

where (µh) is a sequence of measures of the class M0(Ω) defined in Section 1. In this case
the behaviour of the solutions uh is determined by the behaviour of the µh -capacities
(introduced in [9] and [10]) on a “sufficiently large” class of Borel subsets of Ω. We will
show explicitly that all problems of the form (0.1) can be written in the form (0.4) for a
suitable choice of the measures µh (Remark 1.4), and that, in this case, the correspond-
ing µh -capacities coincide with the set functions E 7→ capL(E \ Ωh) considered above
(Remark 2.3).

When the operator L is symmetric, these results were obtained in [2] and [4] by
using Γ-convergence techniques and the variational properties of capL . The results of
the present paper are valid also in the non-symmetric case. This fact forces to deep
changes in the proofs, because now capL is not characterized by a minimum problem,
and the relevant properties of capL have been proved only recently in [7]. Our results
are based on the new compactness theorem proved in [6] and on a careful study of the
properties of the µ-capacity for possibly non-symmetric elliptic operators introduced
in [9].

1. Notation and preliminary results

Let Ω be a bounded open subset of Rn , n ≥ 2. We denote by H1(Ω) and H1
0 (Ω)

the usual Sobolev spaces, and by H−1(Ω) the dual space of H1
0 (Ω).

For every subset E of Ω the (harmonic) capacity of E in Ω, denoted by cap(E,Ω),
is defined as the infimum of

∫
Ω
|Du|2 dx over the set of all functions u ∈ H1

0 (Ω) such
that u ≥ 1 a.e. in a neighbourhood of E . We use the notation cap(E) when Ω is clear
from the context. We say that a property P(x) holds quasi everywhere (abbreviated as
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q.e.) in a set E if it holds for all x ∈ E except for a subset N of E with cap(N) = 0.
The expression almost everywhere (abbreviated as a.e.) refers, as usual, to the Lebesgue
measure. A function u: Ω → R is said to be quasi continuous if for every ε > 0 there
exists a set A ⊆ Ω, with cap(A) < ε , such that the restriction of u to Ω \A is continuous.

It is well known that every u ∈ H1(Ω) has a quasi continuous representative, which
is uniquely defined up to a set of capacity zero. In the sequel we shall always identify
u with its quasi continuous representative, so that the pointwise values of a function
u ∈ H1(Ω) are defined quasi everywhere. We recall that, if a sequence (uh) converges to
u in H1

0 (Ω), then a subsequence of (uh) converges to u q.e. in Ω. For all these properties
of quasi continuous representatives of Sobolev functions we refer to [14], Section 3.

A subset A of Ω is said to be a quasi open if for every ε > 0 there exists an open
subset Uε of Ω, with cap(Uε) < ε , such that A ∪ Uε is open. It is clear that, if u is
quasi continuous, then the level sets {u > t} = {x ∈ Ω : u(x) > t} are quasi open for
every t ∈ R . This is true, in particular, when u ∈ H1(Ω).

Lemma 1.1. For every quasi open subset A of Ω there exists an increasing sequence
(vh) of non-negative functions of H1

0 (Ω) which converges to 1A pointwise q.e. in Ω .

Proof. See [3], Lemma 1.5.

Lemma 1.2. Let (uh) be a bounded sequence of H1
0 (Ω) which converges to a function u

pointwise q.e. in Ω . Then u is (the quasi continuous representative of) a function of
H1

0 (Ω) and (uh) converges to u weakly in H1
0 (Ω) .

Proof. Let ϕh = inf
k≥h

uk and ψh = sup
k≥h

uk . It is easy to see that ϕh ↗ u q.e. in Ω and

ψh ↘ u q.e. in Ω. Moreover ϕh ≤ uk ≤ ψh for every h ≤ k . Now for every h the set
Kh = {v ∈ H1

0 (Ω) : ϕh ≤ v ≤ ψh q.e. in Ω} is convex and closed in H1
0 (Ω), thus it is

weakly closed. Since (uh) is bounded in H1
0 (Ω), a subsequence of (uh) converges weakly

in H1
0 (Ω) to a function v . Then v ∈ Kh , so that ϕh ≤ v ≤ ψh q.e. in Ω for every h .

This implies u = v q.e. in Ω and concludes the proof of the lemma.

By a non-negative Borel measure in Ω we mean a countably additive set function
defined in the Borel σ -field of Ω and with values in [0,+∞] . By a non-negative Radon
measure in Ω we mean a non-negative Borel measure which is finite on every compact
subset of Ω. We shall always identify a non-negative Borel measure with its completion.
If µ is a non-negative Borel measure, by suppµ we denote the support of µ , i.e., the
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smallest closed set whose complement has measure zero under µ . If E is µ-measurable
in Ω, the Borel measure µ E is defined by (µ E)(B) = µ(E ∩B) for every Borel set
B ⊆ Ω. By Lpµ(Ω), 1 ≤ p ≤ +∞ , we denote the usual Lebesgue space with respect to
the measure µ . If µ is the Lebesgue measure, we use the standard notation Lp(Ω).

Definition 1.3. We denote by M0(Ω) the set of all non-negative Borel measures µ

in Ω such that µ(B) = 0 for every Borel set B ⊆ Ω with cap(B) = 0.

Let L:H1(Ω)→ H−1(Ω) be an elliptic operator of the form

(1.1) Lu = −
n∑

i,j=1

Di(aijDju) ,

where (aij) is an n×n matrix of functions of L∞(Ω) satisfying, for a suitable constant
α > 0, the ellipticity condition

n∑
i,j=1

aij(x)ξjξi ≥ α|ξ|2

for a.e. x ∈ Ω and for every ξ ∈ Rn . By a(u, v) we denote the corresponding bilinear
form in H1(Ω). The adjoint operator, related to the matrix aji , is denoted by L∗ , and
the corresponding bilinear form by a∗(u, v).

Let µ ∈ M0(Ω), g ∈ H1(Ω), and f ∈ H−1(Ω). We shall consider the following
relaxed Dirichlet problem (see [9] and [10]): find u such that

(1.2)


u ∈ H1(Ω) ∩ L2

µ(Ω) , u− g ∈ H1
0 (Ω) ,

a(u, v) +
∫

Ω

uv dµ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) ,

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). If there exists

z ∈ H1(Ω) ∩ L2
µ(Ω) such that z − g ∈ H1

0 (Ω), then problem (1.2) has a unique solution
(see [9], Theorem 2.4). In this case we say that g is µ -admissible. Note that, if suppµ
is compact in Ω, then every g ∈ H1(Ω) is µ-admissible.

Remark 1.4. For every subset E of Ω let ∞E be the measure in M0(Ω) defined by

(1.3) ∞E(B) =
{

0 , if cap(B ∩ E) = 0,
+∞ , otherwise
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for every Borel set B ⊆ Ω. It is easy to see that, if E is closed in the relative topology
of Ω and there exists a function ψ ∈ H1(Ω) such that ψ − g ∈ H1

0 (Ω) and ψ = 0 q.e.
in E , then g is ∞E -admissible and the solution u of problem (1.2) coincides in Ω \ E
with the solution v of the classical boundary value problem v − ψ ∈ H1

0 (Ω \ E) ,

Lv = f in Ω \ E ,

while u = 0 q.e. in E .

Proposition 1.5. (Comparison principle) Let f1 , f2 ∈ H−1(Ω) , let µ1 , µ2 ∈M0(Ω) ,
and let g1 , g2 ∈ H1(Ω) . Suppose that u1 and u2 are the solutions of problem (1.2)
corresponding to f1 , µ1 , g1 and to f2 , µ2 , g2 . If 0 ≤ f1 ≤ f2 , µ2 ≤ µ1 , and
0 ≤ g1 ≤ g2 in Ω , then 0 ≤ u1 ≤ u2 q.e. in Ω .

Proof. See [9], Proposition 2.10.

Proposition 1.6. Let µ ∈ M0(Ω) , let g be a non-negative µ-admissible function of
H1(Ω) , and let u be the solution of the relaxed Dirichlet problem (1.2) corresponding to
f = 0 . Then a(u, v) ≤ 0 for every v ∈ H1

0 (Ω) with v ≥ 0 q.e. in Ω .

Proof. See [9], Proposition 2.6.

Definition 1.7. Let (µh) be a sequence of measures of M0(Ω) and let µ ∈ M0(Ω).
We say that (µh) γL -converges to µ (in Ω) if for every f ∈ H−1(Ω) the solutions uh
of the problems

(1.4)


uh ∈ H1

0 (Ω) ∩ L2
µh

(Ω) ,

a(uh, v) +
∫

Ω

uhv dµh = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µh
(Ω)

converge weakly in H1
0 (Ω), as h→∞ , to the solution u of the problem

u ∈ H1
0 (Ω) ∩ L2

µ(Ω) ,

a(u, v) +
∫

Ω

uv dµ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

The definition of γL -convergence is expressed in terms of the solutions of prob-
lem (1.2) with g = 0. The case g 6= 0 is considered in the following proposition.
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Proposition 1.8. Let (µh) be a sequence of measures of M0(Ω) which γL -converges
to a measure µ0 ∈M0(Ω) . Suppose that there exists a compact subset K of Ω such that
suppµh ⊆ K for every h . Then suppµ0 ⊆ K . Moreover for every function g ∈ H1(Ω)
and for every f ∈ H−1(Ω) the solution uh of problem (1.2) corresponding to µ = µh

converges weakly in H1(Ω) to the solution u0 of the same problem with µ = µ0 .

Proof. If the operator L is symmetric one can adapt the proof of Proposition 5.12 of [10].
For the general case we refer to Theorem 4.9 of [6].

Theorem 1.9. (Compactness of the γL -convergence) Every sequence of measures of
M0(Ω) contains a γL -convergent subsequence.

Proof. See [10], Theorem 4.14, for the symmetric case, and [6], Theorem 4.5, for the
general case.

Theorem 1.10. (Localization of the γL -convergence) Let (µh) be a sequence of mea-
sures of M0(Ω) which γL -converges in Ω to a measure µ ∈ M0(Ω) , and let Ω̂ be an
open subset of Ω . Then (µh) γL -converges to µ in Ω̂ .

Proof. See [6], Theorem 4.10.

We introduce now an equivalence relation on M0(Ω), suggested by the role of the
measure µ in problem (1.2).

Definition 1.11. We say that two measures µ1 , µ2 ∈ M0(Ω) are equivalent if∫
Ω
u2dµ1 =

∫
Ω
u2dµ2 for every u ∈ H1

0 (Ω).

Remark 1.12. Since every quasi open set differs from a Borel set by a set of capacity
zero, all quasi open sets are µ-measurable for every µ ∈ M0(Ω). It is easy to see that
µ1 , µ2 ∈ M0(Ω) are equivalent if and only if they agree on all quasi open subsets of Ω
(see [4], Theorem 2.6). Moreover, if this condition is satisfied, then H1

0 (Ω) ∩ L2
µ1

(A) =
H1

0 (Ω) ∩L2
µ2

(A) for every quasi open set A ⊆ Ω and
∫
A
uvdµ1 =

∫
A
uvdµ2 for every u ,

v ∈ H1
0 (Ω) ∩ L2

µ1
(A).

Remark 1.13. By the previous remark the solution of the relaxed Dirichlet problem
(1.2) does not change when the measure µ varies in its equivalence class. Therefore the
γL -convergence of the sequence (µh) to µ in M0(Ω) does not depend on the choice
of µh and µ in their equivalence classes in M0(Ω).
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Definition 1.14. We denote by M̃0(Ω) the class of measures µ ∈M0(Ω) such that

(1.5) µ(B) = inf{µ(A) : A quasi open , B ⊆ A ⊆ Ω}

for every Borel set B ⊆ Ω. For every µ ∈M0(Ω) we define

(1.6) µ̃(B) = inf{µ(A) : A quasi open , B ⊆ A ⊆ Ω}

for every Borel set B ⊆ Ω.

Remark 1.15. For every measure µ ∈ M0(Ω) the set function µ̃ defined by (1.6) is
a measure and belongs to M̃0(Ω). It is the unique measure in M̃0(Ω) equivalent to µ

and µ̃ ≥ λ for every λ ∈ M0(Ω) in the equivalence class of µ (see [4], Section 3). It is
easy to see that, if µ1 , µ2 ∈M0(Ω) and µ1 ≤ µ2 , then µ̃1 ≤ µ̃2 . Finally, if µ ∈M0(Ω)
is a Radon measure, then µ ∈ M̃0(Ω) and no other measure is equivalent to µ .

Remark 1.16. It is easy to see that, if µ belongs to M̃0(Ω) and E is a closed subset
of Ω, then the measures µ E and ∞E belong to M̃0(Ω). This is not true, in general,
when E is not closed.

Many properties of the measure µ ∈M0(Ω) can be studied by means of the solutions
w and w∗ of the problems

(1.7)


w ∈ H1

0 (Ω) ∩ L2
µ(Ω) ,

a(w, v) +
∫

Ω

wv dµ =
∫

Ω

v dx ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) ,

(1.8)


w∗ ∈ H1

0 (Ω) ∩ L2
µ(Ω) ,

a∗(w∗, v) +
∫

Ω

w∗v dµ =
∫

Ω

v dx ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

Note that w ≥ 0 and w∗ ≥ 0 q.e. in Ω by the comparison principle (Proposition 1.5).
These functions have been introduced in [6], where the γL -convergence is defined

only for measures of the class M̃0(Ω) (denoted by M0(Ω) in that paper). The advantage
of that choice is that in the class M̃0(Ω) there is a one to one correspondence between
the measure µ and the solution w of problem (1.7), and it is possible to construct
explicitly µ from w (Theorem 1.20). In the present paper we are forced to consider also
measures of M0(Ω) that are not in M̃0(Ω), since we need to use the restriction µ E

of a measure µ to non-closed sets E (see Remark 1.16).
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Lemma 1.17. Let µ ∈ M0(Ω) and let w be the solution of problem (1.7). Then
µ̃(B) = +∞ for every Borel set B ⊆ Ω with cap(B ∩ {w = 0}) > 0 .

Proof. See [6], Lemma 3.2.

Lemma 1.18. Let µ ∈ M0(Ω) and let w be the solution of problem (1.7). Then the
set {wϕ : ϕ ∈ C∞0 (Ω)} is dense in the space H1

0 (Ω) ∩ L2
µ(Ω) .

Proof. When µ ∈ M̃0(Ω) the result is proved in [11], Proposition 5.5. The general case
follows from Remarks 1.12 and 1.13.

Lemma 1.19. Let µ ∈ M0(Ω) and let w (resp. w∗ ) be the solution of problem (1.7)
(resp. (1.8)). Then cap({w > 0} 4 {w∗ > 0}) = 0 , where 4 denotes the symmetric
difference of sets.

Proof. Since w∗ ∈ H1
0 (Ω) ∩ L2

µ(Ω), by Lemma 1.18 there exists a sequence of functions
ϕh ∈ C∞0 (Ω) such that (wϕh) converges to w∗ in H1

0 (Ω) ∩ L2
µ(Ω) and q.e. in Ω. This

implies w∗ = 0 q.e. in {w = 0} . Similarly we obtain that w = 0 q.e. in {w∗ = 0} .

Theorem 1.20. Let µ ∈ M0(Ω) , let w be the solution of problem (1.7), and let
ν = 1− Lw . Then ν is a non-negative Radon measure of H−1(Ω) and for every Borel
set B ⊆ Ω we have

µ̃(B) =


∫
B

dν

w
, if cap(B ∩ {w = 0}) = 0,

+∞ , if cap(B ∩ {w = 0}) > 0.

Moreover ν(B ∩ {w > 0}) =
∫
B

w dµ̃ for every Borel set B ⊆ Ω . In particular

(1.9)
∫

Ω

vw dµ ≤ 〈1− Lw, v〉

for every v ∈ H1
0 (Ω) with v ≥ 0 .

Proof. See [6], Proposition 3.4, with obvious modifications.

Finally, the solutions of problems (1.7) are useful to characterize the γL -convergence
of measures in M0(Ω). Let (µh) be a sequence of measures of M0(Ω) and let wh

(resp. w∗h ) be the solution of problem (1.7) (resp. (1.8)) corresponding to µ = µh . The
following result characterizes the γL -convergence in terms of convergence of the functions
wh or w∗h .
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Theorem 1.21. The following conditions are equivalent:

(a) (wh) converges to w weakly in H1
0 (Ω) ;

(b) (w∗h) converges to w∗ weakly in H1
0 (Ω) ;

(c) (µh) γL -converges to µ ;

(d) (µh) γL
∗

-converges to µ .

Proof. See [6], Theorem 4.3.

2. The µ-capacity with respect to the operator L

Let A and B be two arbitrary sets with A ⊆ B ⊆ Ω. Suppose that there exists
a function v ∈ H1

0 (Ω) such that v = 1 q.e. in A and v = 0 q.e. in Ω \ B . Then the
capacity of A in B with respect to L is defined as capL(A,B) = a(u, u), where u is the
solution of the following problem

(2.1)

u ∈ H1
0 (Ω) , u = 1 q.e. in A , u = 0 q.e. in Ω \B ,

a(u, v) = 0 ∀v ∈ H1
0 (Ω) , v = 0 q.e. in A ∪ (Ω \B) .

The function u is called the capacitary potential of A in B with respect to L . When
A is closed and B is open this definition of capacity coincides with the definition given
by Stampacchia (see [13]). The general case was studied in [7]. When B = Ω, we shall
write simply capL(A). For technical reasons we have to consider also situations where A
is not closed and B is not open.

The capacity relative to L is increasing, strongly subadditive, and countably sub-
additive with respect to A , and decreasing with respect to B . These properties are
well known when the operator L is symmetric and were proved in [7] when L is not
symmetric.

In this section we shall study the main properties of the µ-capacity with respect to
the operator L , defined in [9]. These properties will be the basic tools to describe, in
Section 5, the γL -limit of a sequence of measures in M0(Ω).

Let µ ∈ M0(Ω) and let E be a Borel subset of Ω such that E ⊂⊂ Ω. Then there
exists a unique solution vE of the problem

(2.2)


vE ∈ H1(Ω) ∩ L2

µ(E) , vE − 1 ∈ H1
0 (Ω) ,

a(vE , v) +
∫
E

vEv dµ = 0 ∀v ∈ H1
0 (Ω) ∩ L2

µ(E) .
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Definition 2.1. The solution vE of problem (2.2) is called the µ-capacitary potential
of E in Ω, with respect to the operator L , and the µ-capacity of E in Ω, with respect
to L , is defined by

capLµ(E,Ω) = a(vE , vE) +
∫
E

v2
Edµ .

We shall write simply capLµ(E) when no ambiguity can arise.

Remark 2.2. By Remark 1.12 it is easy to see that, if µ1 , µ2 ∈ M0(Ω) are two
equivalent measures, then capLµ1

and capLµ2
agree on all quasi open subsets of Ω. In

particular, by Remark 1.15, capLµ(A) = capLµ̃(A) for every µ ∈ M0(Ω) and for every
quasi open set A ⊆ Ω.

Remark 2.3. It is easy to see that, if F is a subset of Ω and µ is the measure ∞F

defined by (1.3), then capLµ(E) = capL(E ∩ F ).

Remark 2.4. By the comparison principle (Proposition 1.5) we have 0 ≤ vE ≤ 1 q.e.
in Ω.

Lemma 2.5. Let µ ∈ M0(Ω) , let E ⊂⊂ Ω be a Borel set, and let vE be the µ-
capacitary potential of E relative to L . Let us extend vE to Rn by setting vE = 1 q.e.
on Rn \Ω . Then there exist two non-negative Radon measures λE and νE in H−1(Rn)
such that LvE = λE − νE in the sense of distributions in Rn , with suppλE ⊆ ∂Ω and
supp νE ⊆ E . In particular we have

(2.3) a(vE , v) = λE(∂Ω) −
∫

Ω

v dνE

for every v ∈ H1(Ω) with v − 1 ∈ H1
0 (Ω) .

Proof. By Proposition 1.6 we have that a(vE , v) ≤ 0 for every v ∈ H1
0 (Ω) with v ≥ 0

q.e. in Ω. By the Riesz representation theorem, there is a non-negative Radon measure
νE ∈ H−1(Ω) such that

a(vE , v) = −
∫

Ω

v dνE

for every v ∈ H1
0 (Ω). Moreover, for every v ∈ H1

0 (Ω) with v = 0 q.e. in E , by (2.2) we
have

0 = a(vE , v) = −
∫

Ω

v dνE ,
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and this implies that supp νE ⊆ E . In order to prove the existence of the measure λE
we follow the lines of the proof of Lemma 2.1 in [8]. Let Ω′ be a bounded open set such
that Ω ⊂⊂ Ω′ and let z be the solution of the obstacle problem z ∈ H1

0 (Ω′) , z ≥ 0 q.e. in Ω′ \ Ω ,

〈Lz + νE , v − z〉 ≥ 0 ∀v ∈ H1
0 (Ω′) , v ≥ 0 q.e. in Ω′ \ Ω ,

where, in this case, 〈·, ·〉 denotes the duality pairing between H−1(Ω′) and H1
0 (Ω′). It is

well known that there exists a unique solution z of this problem, and that z is a super-
solution of the equation Lu = −νE , i.e., Lz+νE = λE in the sense of H−1(Ω′) for some
non-negative Radon measure λE ∈ H−1(Ω′). Moreover z ≤ ζ for every supersolution
ζ ∈ H1(Ω′) of the equation Lu = −νE with ζ ≥ 0 q.e. in Ω′ \Ω (see [12], Section II.6).
In particular z ≤ 0 q.e. in Ω and this implies that z = 0 q.e. in Ω′\Ω, hence z ∈ H1

0 (Ω).
Since Lz + νE = 0 and LvE + νE = 0 in the sense of H−1(Ω), by uniqueness we obtain
z = vE−1. This implies that LvE = λE−νE in Ω′ . As LvE = −νE in Ω, supp νE ⊆ E ,
and vE = 1 q.e. in Rn \ Ω, we conclude that suppλE ⊆ ∂Ω. This implies that λE is
a bounded Radon measure on Rn and that LvE = λE − νE in Rn . Finally, in order
to prove (2.3), let ϕ ∈ C∞0 (Ω) be a function such that ϕ = 1 in Ω, and let v ∈ H1(Ω)
with v − 1 ∈ H1

0 (Ω). Let us extend v to Rn by setting v = 1 q.e. in Rn \ Ω. Then
ϕv ∈ H1(Rn). As LvE = λE − νE in Rn , we obtain

(2.4) a(vE , v) = a(vE , ϕv) =
∫
∂Ω

ϕv dλE −
∫

Ω

ϕv dνE .

Since ϕ = 1 in Ω and v = 1 q.e. in ∂Ω, we have that ϕv = v in Ω and ϕv = 1 q.e. in
∂Ω. Thus (2.3) follows from (2.4).

The measures νE and λE , defined in Lemma 2.5, are called the inner and the outer
µ-capacitary distribution of E in Ω relative to L .

Lemma 2.6. Let µ ∈ M0(Ω) , let E ⊂⊂ Ω be a Borel set, let vE be the µ-capacitary
potential of E in Ω with respect to the operator L , and let νE be the corresponding inner
µ-capacitary distribution. Then

(2.5)
∫

Ω

v dνE =
∫
E

vvE dµ

for every v ∈ H1(Ω) ∩ L2
µ(E) .
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Proof. It is enough to prove (2.5) for every v ∈ H1(Ω) ∩ L2
µ(E) with v ≥ 0 q.e. in Ω.

Since every function v with these properties can be approximated pointwise q.e. in Ω
by an increasing sequence of functions of H1

0 (Ω) ∩ L2
µ(E), it suffices to prove (2.5) for

every v ∈ H1
0 (Ω) ∩ L2

µ(E). From the definitions of νE and vE it follows that∫
Ω

v dνE = −a(vE , v) =
∫
E

vvE dµ

for every v ∈ H1
0 (Ω) ∩ L2

µ(E), and the lemma is proved.

Lemma 2.7. Let µ ∈ M0(Ω) , let E ⊂⊂ Ω be a Borel set, let vE be the µ-capacitary
potential of E in Ω with respect to L , and let νE and λE be the corresponding inner
and outer µ-capacitary distributions. Then capLµ(E,Ω) = νE(Ω) = λE(∂Ω) .

Proof. By taking v = 1 in (2.3) we obtain νE(Ω) = λE(∂Ω). If we take v = vE in (2.3),
by (2.5) we obtain also

a(vE , vE) = λE(∂Ω) −
∫

Ω

vE dνE = λE(∂Ω) −
∫

Ω

v2
Edµ ,

which, by the definition of µ-capacity, implies capLµ(E,Ω) = λE(∂Ω).

The following result will be fundamental in the proof of the main properties of the
µ-capacity.

Theorem 2.8. Let µ ∈ M0(Ω) and let E ⊂⊂ Ω be a Borel set. Then capLµ(E) =
capL

∗

µ (E) .

Proof. Let vE and v∗E be the µ-capacitary potentials of E relative to L and L∗ , and
let νE and ν∗E (resp. λE and λ∗E ) be the corresponding inner (resp. outer) µ-capacitary
distributions. By (2.5) we have∫

Ω

v∗E dνE =
∫
E

vEv
∗
E dµ =

∫
Ω

vE dν
∗
E .

Therefore by Lemma 2.7 and (2.3)

capLµ(E) = λE(∂Ω) = a(vE , v
∗
E) +

∫
Ω

v∗E dνE =

= a∗(v∗E , vE) +
∫

Ω

vE dν
∗
E = λ∗E(∂Ω) = capL

∗

µ (E) ,

which concludes the proof of the theorem.
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We are now in a position to study the monotonicity properties of capLµ(E,Ω) with
respect to µ (Theorem 2.10), E (Theorem 2.11), and Ω (Theorem 2.12). We begin with
an auxiliary lemma.

Lemma 2.9. Let µ1 , µ2 ∈ M0(Ω) , with µ1 ≤ µ2 , and let E ⊂⊂ Ω be a Borel
set. Let v1 (resp. v∗2 ) be the µ1 -capacitary (resp. µ2 -capacitary) potential of E relative
to L (resp. L∗ ) and let ν1 (resp. ν∗2 ) be the corresponding inner µ1 -capacitary (resp.
µ2 -capacitary) distribution. Then∫

Ω

v∗2 dν1 ≤
∫

Ω

v1 dν
∗
2 .

Proof. For every h ∈ N let Uh = {v∗2 > 1/h} . Since Uh is quasi open, by Lemma 1.1 for
every h there exists an increasing sequence (zkh) in H1

0 (Ω) converging to 1Uh
pointwise

q.e. in Ω as k → ∞ and such that 0 ≤ zkh ≤ 1Uh
q.e. in Ω for every h and k . As

v∗2 ∈ L2
µ2

(E), we have µ2(E ∩ Uh) < +∞ and hence zkhv1 ∈ H1(Ω) ∩ L2
µ2

(E). Thus by
(2.5) we have ∫

E

zkhv1v
∗
2 dµ1 ≤

∫
E

zkhv1v
∗
2 dµ2 =

∫
Ω

zkhv1dν
∗
2 ≤

∫
Ω

v1dν
∗
2

for every h and k . Taking the limit as k →∞ we obtain∫
E∩Uh

v1v
∗
2 dµ1 ≤

∫
Ω

v1dν
∗
2

for every h . Since v∗2 ∈ L2
µ2

(E) ⊆ L2
µ1

(E), taking the limit as h→∞ , by (2.5) we get∫
Ω

v∗2 dν1 =
∫
E∩{v∗2>0}

v∗2v1 dµ1 ≤
∫

Ω

v1dν
∗
2 ,

and this concludes the proof.

Theorem 2.10. Let µ1 , µ2 ∈ M0(Ω) , with µ1 ≤ µ2 , and let E ⊂⊂ Ω be a Borel set.
Then capLµ1

(E) ≤ capLµ2
(E) .

Proof. Let v1 (resp. v∗2 ) be the µ1 -capacitary (resp. µ2 -capacitary) potential of E
relative to L (resp. L∗ ) and let ν1 and λ1 (resp. ν∗2 and λ∗2 ) be the corresponding
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inner and outer µ1 -capacitary (resp. µ2 -capacitary) distributions. By Lemmas 2.5, 2.7,
and 2.9 we have

capLµ1
(E) = λ1(∂Ω) = a(v1, v

∗
2) +

∫
Ω

v∗2 dν1 ≤

≤ a∗(v∗2 , v1) +
∫

Ω

v1 dν
∗
2 = λ∗2(∂Ω) = capL

∗

µ2
(E) .

The conclusion follows now from Theorem 2.8.

Theorem 2.11. Let µ ∈ M0(Ω) and let E and F be two Borel sets such that E ⊆
F ⊂⊂ Ω . Then capLµ(E) ≤ capLµ(F ) .

Proof. It is enough to apply Theorem 2.10 to the measures µ1 = µ E and µ2 = µ ,
noticing that capLµ(E) = capLµ E(F ) ≤ capLµ(F ).

Theorem 2.12. Let µ ∈ M0(Ω) , let Ω̂ be an open subset of Ω , and let E be a Borel
set such that E ⊂⊂ Ω̂ ⊆ Ω . Then capLµ(E, Ω) ≤ capLµ(E, Ω̂) .

Proof. Let vE be the µ-capacitary potential of E relative to L in Ω and let v̂∗E be
the µ-capacitary potential of E relative to L∗ in Ω̂. We extend vE and v̂∗E to Rn by
setting vE = 1 q.e. in Rn \Ω and v̂∗E = 1 q.e. in Rn \ Ω̂ . Let νE and λE be the inner
and the outer µ -capacitary distributions of E relative to L in Ω, and let ν̂∗E and λ̂∗E
be the inner and the outer µ -capacitary distributions of E in Ω̂ relative to L∗ . Now
from (2.5) we have that∫

Ω

v̂∗E dνE =
∫
E

v̂∗EvE dµ =
∫

Ω̂

vE dν̂
∗
E .

Since 0 ≤ vE ≤ 1 q.e. in Rn (Remark 2.4), by Lemmas 2.5 and 2.7 we get

capLµ(E, Ω) = λE(∂Ω) = a(vE , v̂
∗
E) +

∫
Ω

v̂∗E dνE =

= a∗(v̂∗E , vE) +
∫

Ω̂

vE dν̂
∗
E =

=
∫
∂Ω̂

vE dλ̂
∗
E ≤ λ̂∗E(∂Ω̂) = capL

∗

µ (E, Ω̂) .

The conclusion follows now from Theorem 2.8.

The following theorem shows the subadditivity of capLµ(·).
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Theorem 2.13. Let µ ∈M0(Ω) and let E1 and E2 be two Borel set such that E1 ⊂⊂ Ω
and E2 ⊂⊂ Ω . Then

capLµ(E1 ∪ E2) ≤ capLµ(E1) + capLµ(E2) .

Proof. Let vE1∪E2
and νE1∪E2

(resp. λE1∪E2
) be the µ-capacitary potential and the

inner (resp. outer) µ-capacitary distribution of E1 ∪ E2 relative to L and let v∗E1
, v∗E2

and λ∗E1
, λ∗E2

be the µ-capacitary potentials and the outer µ-capacitary distributions
of E1 and E2 relative to L∗ . We note that v∗E1

∧ v∗E2
= v∗E1

+ v∗E2
− v∗E1

∨ v∗E2
and that

v∗E1
∧ v∗E2

∈ L2
µ(E1 ∪ E2). Since v∗E1

∧ v∗E2
− 1 ∈ H1

0 (Ω), from (2.5) and (2.3) we obtain

λE1∪E2
(∂Ω) = a(vE1∪E2

, v∗E1
∧ v∗E2

) +
∫
E1∪E2

(v∗E1
∧ v∗E2

)vE1∪E2
dµ =

= a∗(v∗E1
, vE1∪E2

) + a∗(v∗E2
, vE1∪E2

) − a(vE1∪E2
, v∗E1

∨ v∗E2
) +

+
∫
E1∪E2

v∗E1
vE1∪E2

dµ +
∫
E1∪E2

v∗E2
vE1∪E2

dµ −
∫
E1∪E2

(v∗E1
∨ v∗E2

)vE1∪E2
dµ .

We note that by (2.3) and (2.5)

a∗(v∗Ei
, vE1∪E2

) +
∫
Ei

v∗Ei
vE1∪E2

dµ = λ∗Ei
(∂Ω) , i = 1, 2 .

Moreover, as λE1∪E2
(∂Ω) = νE1∪E2

(Ω) (Lemma 2.7) and v∗E1
∨v∗E2

−1 ∈ H1
0 (Ω), by (2.3)

we have

a(vE1∪E2
, v∗E1

∨ v∗E2
) = νE1∪E2(Ω) −

∫
Ω

v∗E1
∨ v∗E2

dνE1∪E2 ≥ 0 .

Thus we obtain

λE1∪E2
(∂Ω) ≤ λ∗E1

(∂Ω) + λ∗E2
(∂Ω) +

∫
E2\E1

v∗E1
vE1∪E2

dµ+

+
∫
E1\E2

v∗E2
vE1∪E2

dµ −
∫
E1∪E2

(v∗E1
∨ v∗E2

)vE1∪E2
dµ .

Since∫
E2\E1

v∗E1
vE1∪E2

dµ +
∫
E1\E2

v∗E2
vE1∪E2

dµ ≤
∫
E1∪E2

(v∗E1
∨ v∗E2

)vE1∪E2
dµ ,

we get λE1∪E2
(∂Ω) ≤ λ∗E1

(∂Ω) + λ∗E2
(∂Ω), and the conclusion follows from Lemma 2.7

and Theorem 2.8.
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Finally, we give a bound from above for the µ -capacity in terms of the harmonic
capacity and of the measure µ .

Proposition 2.14. Let µ ∈M0(Ω) and let E be a Borel set such that E ⊂⊂ Ω . Then

(a) capLµ(E) ≤ µ(E) ,

(b) capLµ(E) ≤ capL(E) ≤ k cap(E) ,

where the constant k depends only on the ellipticity constant α and on the L∞ bounds
of the coefficients aij of L .

Proof. Property (a) is trivial if µ(E) = +∞ . If µ(E) < +∞ , let vE be the µ-
capacitary potential of E relative to the operator L and let νE be the inner µ-capacitary
distribution. Since 1 ∈ L2

µ(E), by Lemma 2.7 and by (2.5) we get

capLµ(E) = νE(Ω) =
∫

Ω

dνE =
∫
E

vEdµ ≤ µ(E) ,

and (a) is proved.
Let us prove (b). Since for every µ ∈ M0(Ω) we have µ ≤ ∞Ω (Remark 1.4), by

Theorem 2.10 and Remark 2.3 we obtain that capLµ(E) ≤ capL(E). The inequality
capL(E) ≤ k cap(E) is proved in [13], Theorem 3.11.

3. Continuity properties of the µ-capacity

In this section we prove the continuity of the µ-capacity along increasing sequences
of sets and study the approximation properties by means of compact and open sets.

Lemma 3.1. Let µ ∈M0(Ω) . If (Eh) is an increasing sequence of Borel subsets of Ω
and E = ∪hEh , then the sequence (µ Eh) γL -converges to the measure µ E .

Proof. Let wh be the solutions of the problems

(3.1)


wh ∈ H1

0 (Ω) ∩ L2
µ(Eh) ,

a(wh, v) +
∫
Eh

whv dµ =
∫

Ω

v dx ∀v ∈ H1
0 (Ω) ∩ L2

µ(Eh) .

By the ellipticity condition it is easy to see that (wh) is bounded in H1
0 (Ω). Therefore we

may assume that (wh) converges weakly in H1
0 (Ω) to a function w . By Proposition 1.5
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the sequence (wh) is decreasing and hence, by Lemma 1.2, it converges to w pointwise
q.e. in Ω. Therefore (1Eh

wh) converges to 1Ew pointwise µ-a.e. in Ω. Since∫
Ω

12
Eh
w2
h dµ =

∫
Eh

w2
h dµ =

∫
Ω

wh dx− a(wh, wh) ≤
∫

Ω

wh dx ,

the sequence (1Eh
wh) is bounded in L2

µ(Ω). This implies that w ∈ L2
µ(E) and that

(1Eh
wh) converges to 1Ew weakly in L2

µ(Ω). For every h we can take any function
v ∈ H1

0 (Ω) ∩ L2
µ(E) as test function in (3.1) and, passing to the limit, we obtain that w

is the solution of the problem
w ∈ H1

0 (Ω) ∩ L2
µ(E) ,

a(w, v) +
∫
E

wv dµ =
∫

Ω

v dx ∀v ∈ H1
0 (Ω) ∩ L2

µ(E) .

The conclusion follows from the characterization of the γL -convergence (Theorem 1.21).

Theorem 3.2. Let µ ∈ M0(Ω) . If (Eh) is an increasing sequence of Borel subsets
of Ω and E = ∪hEh ⊂⊂ Ω , then

capLµ(E) = sup
h

capLµ(Eh) .

Proof. Since capLµ(·) is increasing (Theorem 2.11), we have only to prove that capLµ(E) ≤
suph capLµ(Eh). If vEh

is the µ-capacitary potential of Eh , by Lemma 3.1 and Proposi-
tion 1.8 the sequence (vEh

) converges weakly in H1(Ω) to the µ-capacitary potential vE
of E . Now, since vE ≤ vEh

q.e. in Ω (Proposition 1.5) and the quadratic form a(v, v)
is lower semicontinuous in the weak topology of H1(Ω), for every k ∈ N we have

a(vE , vE) +
∫
Ek

v2
E dµ ≤ lim inf

h→∞

(
a(vEh

, vEh
) +

∫
Ek

v2
Eh
dµ
)
≤

≤ lim inf
h→∞

(
a(vEh

, vEh
) +

∫
Eh

v2
Eh
dµ
)
.

As k →∞ we conclude the proof.

As a consequence of Theorem 3.2 we obtain the countable subadditivity of the µ-
capacity.
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Theorem 3.3. Let µ ∈ M0(Ω) . If (Eh) is a sequence of Borel sets, with Eh ⊂⊂ Ω ,
and E ⊆ ∪hEh is a Borel set, with E ⊂⊂ Ω , then

capLµ(E) ≤
∑
h

capLµ(Eh) .

Proof. The result follows easily from Theorems 2.11, 2.13, and 3.2.

Theorem 3.4. Let µ ∈M0(Ω) . Then

capLµ(A) = sup{capLµ(K) : K compact , K ⊆ A} ,

capLµ(A) = inf{capLµ(U) : U open , A ⊆ U ⊂⊂ Ω}

for every quasi open set A ⊂⊂ Ω .

Proof. Once we have proved Theorems 2.11, 2.13, 2.14(a), 3.2, we can follow the lines
of the proof given in [4], Theorem 2.9(i) and (j).

Finally we prove the outer regularity of the µ -capacity when the measure µ belongs
to M̃0(Ω).

Theorem 3.5. Let µ ∈ M̃0(Ω) . Then

capLµ(B) = inf{capLµ(U) : U open , B ⊆ U ⊂⊂ Ω}

for every Borel set B ⊂⊂ Ω .

Proof. By Theorem 3.4 it is enough to prove that

(3.2) capLµ(B) = inf{capLµ(A) : A quasi open , B ⊆ A ⊂⊂ Ω}

for every Borel set B ⊂⊂ Ω. Let us fix B and let us denote by I the right hand side of
(3.2). By monotonicity (Theorem 2.11) we have capLµ(B) ≤ I . It remains to prove the
opposite inequality.

Let vB be the µ-capacitary potential of B in Ω. Since vB ∈ L2
µ(B) we have that

µ(B ∩ {vB ≥ ε}) < +∞ for every ε > 0. Thus, by the definition of M̃0(Ω), there exists
a quasi open set Uε such that B∩{vB ≥ ε} ⊆ Uε ⊂⊂ Ω and µ(Uε \ (B∩{vB ≥ ε})) < ε .
Let us consider the quasi open set {vB < ε} . In order to prove that {vB < ε} ⊂⊂ Ω
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for ε small enough, let us choose two open sets B0 and Ω0 with smooth boundary such
that B ⊆ B0 ⊂⊂ Ω ⊆ Ω0 , and let z be the solution of the problemLz = 0 in Ω0 \B0,

z = 0 in B0,
z = 1 in ∂Ω0.

Since vB − 1 ∈ H1
0 (Ω) and LvB = 0 on Ω \ B , by the maximum principle we have

vB ≥ z q.e. in Ω, so that {vB < ε} ⊆ {z < ε} . As z is continuous in Ω0 by De Giorgi’s
Theorem and {z = 0} = B0 ⊂⊂ Ω by the strong maximum principle, for ε small enough
we have {vB < ε} ⊆ {z < ε} ⊂⊂ Ω.

Let us fix ε > 0 such that {vB < ε} ⊂⊂ Ω and let us define vε = max{0, vB−ε
1−ε } .

We have vε − 1 ∈ H1
0 (Ω), 0 ≤ vε ≤ vB

1−ε q.e. in Ω, vε ∈ L2
µ(B), vε = 0 q.e. in

{vB ≤ ε} , and vε = vB−ε
1−ε q.e. in {vB ≥ ε} . By the definition of vε and vB for every

v ∈ H1
0 (Ω) ∩ L2

µ(B), with v = 0 q.e. in {vB ≤ ε} , we obtain

(3.3)
a(vε, v) =

1
1− ε

a(vB , v) = − 1
1− ε

∫
B

vBv dµ =

= −
∫
B∩{vB>ε}

vεv dµ −
ε

1− ε

∫
B∩{vB>ε}

v dµ .

Let us define the Borel measure ρ by

ρ(E) =

µ(E) +
ε

1− ε

∫
E

dµ

vε
, if cap(E \ (B ∩ {vB > ε})) = 0,

+∞ , otherwise.

Note that ρ belongs to M0(Ω) and that

(3.4)
∫
B∪{vB≤ε}

vεv dρ =
∫
B∩{vB>ε}

vεv dµ +
ε

1− ε

∫
B∩{vB>ε}

v dµ

for every Borel function v ≥ 0. By taking v = vε we obtain vε ∈ L2
ρ(B ∪ {vB ≤ ε}),

using the fact that vε is bounded and µ(B ∩ {vB > ε}) < +∞ . Since µ ≤ ρ , every
function in H1

0 (Ω) ∩ L2
ρ(B ∪ {vB ≤ ε}) belongs to H1

0 (Ω) ∩ L2
µ(B) and is zero q.e. in

{vB ≤ ε} . Then, by (3.3) and (3.4), it is easy to check that vε is the solution of the
problem

vε ∈ H1
0 (Ω) ∩ L2

ρ(B ∪ {vB ≤ ε}) , vε − 1 ∈ H1
0 (Ω) ,

a(vε, v) +
∫
B∪{vB≤ε}

vεv dρ = 0 ∀v ∈ H1
0 (Ω) ∩ L2

ρ(B ∪ {vB ≤ ε}) ,
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and hence vε is the ρ -capacitary potential of the set B ∪ {vB ≤ ε} in Ω. Moreover by
Theorem 2.10 we have

(3.5) capLµ(B ∪ {vB ≤ ε}) ≤ capLρ (B ∪ {vB ≤ ε}) .

Finally let us define Aε = Uε ∪ {vB < ε} ; the set Aε is quasi open, contains B , and
Aε ⊂⊂ Ω. Then, by (3.4), (3.5), and Theorems 2.13 and 2.14(a), we get

I ≤ capLµ(Aε) ≤ capLµ(B ∪ {vB ≤ ε}) + capLµ(Uε \B) ≤

≤ capLρ (B ∪ {vB ≤ ε}) + µ(Uε \ (B ∩ {vB ≥ ε})) ≤

≤ a(vε, vε) +
∫
B∩{vB>ε}

v2
εdµ+

ε

1− ε

∫
B∩{vB>ε}

vεdµ+ ε ≤

≤ 1
(1− ε)2

a(vB , vB) +
1

1− ε

∫
B∩{vB>ε}

vBvεdµ+ ε ≤ 1
(1− ε)2

capLµ(B) + ε .

Taking the limit as ε→ 0 we conclude the proof.

Remark 3.6. For every measure µ ∈ M0(Ω), by Theorem 3.5 and Remark 2.2, we
have

capLµ̃(B) = inf{capLµ(U) : U open , B ⊆ U ⊂⊂ Ω}

for every Borel set B ⊂⊂ Ω.

4. Getting µ from its µ-capacity

In this section we state a derivation theorem for the µ -capacity and a theorem which
allows us to reconstruct the measure µ from the knowledge of its µ-capacity. The proofs
are omitted, since they are identical to those given in [2] and [4] when the operator L is
symmetric. Indeed in the previous sections we have proved that all relevant properties
of the µ-capacity in the symmetric case can be extended to the case of non-symmetric
operators.

We begin with the derivation theorem, which will be used in the proof of Theo-
rem 5.11. The open ball in Rn of center x and radius r is denoted by Br(x).



The capacity method for asymptotic Dirichlet problems 21

Theorem 4.1. Let µ ∈ M0(Ω) , let ν be a Radon measure of the class M0(Ω) , and
for every x ∈ Ω let

(4.1) g(x) = lim inf
r→0

capLµ(Br(x))
ν(Br(x))

.

Assume that g ∈ L1
ν(Ω) and g(x) < +∞ for q.e. x ∈ Ω . Then µ is a Radon measure

and µ(E) =
∫
E
g dν for every Borel set E ⊆ Ω . Moreover the lower limit in (4.1) is a

limit for ν -a.e. x ∈ Ω .

Proof. When L is symmetric this result was proved in [2], Theorem 2.3, by using some
properties of the µ-capacity and of the Green’s function of the operator L . Since these
properties are still true when L is non-symmetric, the proof remains valid also in the
general case.

The following theorem characterizes µ as the least measure which is greater than or
equal to capLµ .

Theorem 4.2. Let µ ∈M0(Ω) . Then for every Borel set B ⊂⊂ Ω we have

µ(B) = sup
∑
i∈I

capLµ(Bi) ,

where the supremum is taken over all finite Borel partitions (Bi)i∈I of B .

Proof. As in [4], Theorem 4.3, this result can be obtained as consequence of the derivation
theorem (Theorem 4.1).

5. µ-capacity and γL -convergence

In this section we shall study the connection between the γL -convergence of a se-
quence of measures (µh) and the convergence of the corresponding µh -capacities relative
to the operator L .

First of all we prove that inequalities between measures in M̃0(Ω) are preserved by
γL -convergence. To this aim let us establish some preliminary lemmas.
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Lemma 5.1. Let µ1 , µ2 ∈ M0(Ω) be two measures such that µ1 ≤ µ2 . Let w1

(resp. w∗2 ) be the solution of problem (1.7) (resp. (1.8)) corresponding to µ = µ1 (resp.
µ = µ2 ). Then for every ϕ ∈ C∞0 (Ω) , with ϕ ≥ 0 , we have

〈1− Lw1, ϕw
∗
2〉 ≤ 〈1− L∗w∗2 , ϕw1〉 .

Proof. First note that, since w1 and w∗2 are non-negative, we have

(5.1)
∫

Ω

ϕw1w
∗
2 dµ1 ≤

∫
Ω

ϕw1w
∗
2 dµ2 .

Since L2
µ2

(Ω) ⊆ L2
µ1

(Ω), we have w∗2 ∈ L2
µ1

(Ω) and hence

(5.2)
∫

Ω

ϕw1w
∗
2 dµ1 = 〈1− Lw1, ϕw

∗
2〉 .

Moreover by (1.9) we have

(5.3)
∫

Ω

ϕw1w
∗
2 dµ2 ≤ 〈1− L∗w∗2 , ϕw1〉 .

The conclusion follows from (5.1), (5.2), and (5.3).

Lemma 5.2. Fix ϕ ∈ C∞0 (Ω) . Then the bilinear form defined on H1
0 (Ω)×H1

0 (Ω) by

b(u, v) = 〈Lu, ϕv〉 − 〈L∗v, ϕu〉

is sequentially weakly continuous on H1
0 (Ω) × H1

0 (Ω) , i.e., if (uh) and (vh) are two
sequences in H1

0 (Ω) which converge weakly to some functions u and v , then b(uh, vh)
converges to b(u, v) .

Proof. It is enough to note that

〈Lu, ϕv〉 − 〈L∗v, ϕu〉 =
∫

Ω

( n∑
i,j=1

aijDjuDiϕ
)
v dx −

∫
Ω

( n∑
i,j=1

aijDjϕDiv
)
u dx .
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Theorem 5.3. Let (µh1 ) and (µh2 ) be two sequences of measures of M0(Ω) which
γL -converge to µ1 and µ2 respectively. If µ̃h1 ≤ µ̃h2 for every h , then µ̃1 ≤ µ̃2 .

Proof. Let wh1 be the solution of problem (1.7) corresponding to µ = µ̃h1 and let (wh2 )∗ be
the solution of problem (1.8) corresponding to µ = µ̃h2 . If µ̃h1 ≤ µ̃h2 , then by Lemma 5.1
we have

(5.4) 〈1− Lwh1 , ϕ(wh2 )∗〉 ≤ 〈1− L∗(wh2 )∗, ϕwh1 〉

for every ϕ ∈ C∞0 (Ω) with ϕ ≥ 0. By Theorem 1.21 and by Remark 1.13 the functions
wh1 (resp. (wh2 )∗ ) converge weakly in H1

0 (Ω) to the solution w1 (resp. w∗2 ) of problem
(1.7) (resp. (1.8)) corresponding to µ = µ̃1 (resp. µ = µ̃2 ). By Lemma 5.2 we can pass
to the limit in (5.4) and we obtain

(5.5) 〈1− Lw1, ϕw
∗
2〉 ≤ 〈1− L∗w∗2 , ϕw1〉

for every ϕ ∈ C∞0 (Ω) with ϕ ≥ 0. By approximation (5.5) holds for every ϕ ∈ H1
0 (Ω) ∩

L∞(Ω) with ϕ ≥ 0. Let w∗1 (resp. (wh1 )∗ ) be the solution of problem (1.8) corresponding
to µ = µ̃1 (resp. µ = µ̃h1 ). By the comparison principle (Proposition 1.5) we have that
(wh2 )∗ ≤ (wh1 )∗ q.e. in Ω. Taking the limit as h → ∞ , we obtain w∗2 ≤ w∗1 q.e. in Ω.
Hence w∗2 ∈ L2

µ̃1
(Ω). By Lemma 1.17, µ̃2(B) = +∞ for every Borel set B such that

cap(B∩{w∗2 = 0}) > 0. Then it is sufficient to prove that µ̃1 ≤ µ̃2 in {w∗2 > 0} . Now let
Wk = {w∗2 > 1

k}∩{w1 >
1
k} , so that µ̃2(Wk) < +∞ . If B is a quasi open subset of Wk ,

then by Lemma 1.1 there exists an increasing sequence (ϕh) in H1
0 (Ω) which converges

to 1B q.e. in Ω and such that 0 ≤ ϕh ≤ 1B . As w1 is bounded (see [6], Section 3) and
µ̃2(B) < +∞ , we have w1ϕh ∈ L2

µ̃2
(Ω). Therefore (5.5) and the equations satisfied by

w1 and w∗2 imply that ∫
Ω

w1w
∗
2ϕh dµ̃1 ≤

∫
Ω

w1w
∗
2ϕh dµ̃2 .

Passing to the limit as h→∞ we obtain∫
B

w1w
∗
2 dµ̃1 ≤

∫
B

w1w
∗
2 dµ̃2

for every quasi open set B ⊆ Wk . Since the measures w1w
∗
2µ̃1 and w1w

∗
2µ̃2 are finite

on Wk , this relation holds for every Borel set of Wk . Finally, if B is a Borel set in
{w∗2 > 0} , then

µ̃1(B ∩Wk) =
∫
B∩Wk

1
w1w

∗
2

w1w
∗
2 dµ̃1 ≤

∫
B∩Wk

1
w1w

∗
2

w1w
∗
2 dµ̃2 = µ̃2(B ∩Wk) .
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Passing to the limit we obtain

µ̃1(B ∩ {w1 > 0}) ≤ µ̃2(B ∩ {w1 > 0}) .

Since B ⊆ {w∗2 > 0} ⊆ {w∗1 > 0} and by Lemma 1.19 cap({w∗1 > 0} 4 {w1 > 0}) = 0,
we have that µ̃1(B) = µ̃1(B ∩ {w1 > 0}) ≤ µ̃2(B ∩ {w1 > 0}) = µ̃2(B).

Let us recall now some notions related to the general theory of increasing set func-
tions, for which we refer to [5], Chapters 14 and 15. As usual the family of all Borel
subsets of Ω is denoted by B(Ω).

Definition 5.4. We say that a family E of Borel sets E ⊂⊂ Ω is dense (in B(Ω)) if
for every pair (K,U), with K compact, U open, and K ⊆ U ⊂⊂ Ω, there exist E ∈ E
such that K ⊆ E ⊆ U . We say that E is rich (in B(Ω)) if, for every chain (Et)t∈R in
B(Ω), the set {t ∈ R : Et 6∈ E} is at most countable. By a chain in B(Ω) we mean a
family (Et)t∈R of Borel subsets of Ω, such that Es ⊆ E̊t for every s , t ∈ R with s < t .

Remark 5.5. It is easy to check that any countable intersection of rich families is rich.
Moreover it is possible to prove that every rich family is dense (see [5], Chapter 14).

We say that a function α:B(Ω)→ R is increasing if α(E) ≤ α(F ) whenever E ⊆ F .

Proposition 5.6. Let α , β : B(Ω)→ R be two increasing functions. Then the following
conditions are equivalent:

(i) α and β coincide in a dense subset of B(Ω) ;

(ii) α and β coincide in a rich subset of B(Ω) .

Proof. See [5], Proposition 14.15.

Proposition 5.7. Let α , β : H1
0 (Ω)×B(Ω) → R be two functionals such that α(u, ·)

and β(u, ·) are increasing for every u ∈ H1
0 (Ω) . Assume, in addition, that for every

E ∈ B(Ω) the functionals α(·, E) and β(·, E) are lower semicontinuous with respect to
the strong topology of H1

0 (Ω) . If β(u,E) ≤ α(u, F ) ≤ β(u,G) for every E , F , G ∈ B(Ω)
with E ⊆ F̊ ⊆ F ⊆ G̊ and for every u ∈ H1

0 (Ω) , then there exists a rich subset R of
B(Ω) such that α(u,E) = β(u,E) for every u ∈ H1

0 (Ω) and for every E ∈ R .

Proof. See [5], Proposition 15.18.
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In order to study the convergence of the µh -capacities when the sequence (µh)
γL -converges to µ ∈M0(Ω), we need to know the convergence properties of the restric-
tion (µh E) of the sequence (µh) to an arbitrary Borel set E . By the compactness
theorem we can assume that (µh E) γL -converges to some λ ∈ M0(Ω), but, in gen-
eral, we cannot say that λ is equivalent to µ E . Indeed by the localization property
(Theorem 1.10) we obtain that λ is equivalent to µ E in E̊ and in Ω \ E , but it is
possible to construct easy examples where λ and µ E are so different in ∂E that λ
is not equivalent to µ E (see [10], Example 5.5). Nevertheless the class of Borel sets
E ⊂⊂ Ω such that (µh E) γL -converges to µ E is large enough, as stated in the
following theorem.

Theorem 5.8. Let (µh) be a sequence of measures of M0(Ω) which γL -converges to
a measure µ ∈ M0(Ω) . Then the family of Borel subsets E of Ω such that (µh E)
γL -converges to µ E is rich.

Proof. For every Borel subset E of Ω let us denote by ME the class of all measures
λ ∈ M0(Ω) for which there exists a subsequence (µhk

) of (µh) such that (µhk
E)

γL -converges to λ . Let us define the following functionals on H1
0 (Ω)× B(Ω):

α(u,E) =
∫
E

u2dµ ,

β(u,E) = sup
λ∈ME

∫
Ω

u2dλ ,

δ(u,E) = inf {lim inf
h→∞

δ̂(uh, E) : uh
H1

0 (Ω)−→ u} ,

where δ̂(u,E) = inf
λ∈ME

∫
Ω

u2dλ . Since µ vanishes on all sets of capacity zero, the func-

tional α(·, E) is lower semicontinuous in the strong topology of H1
0 (Ω). Moreover α(u, ·)

is increasing. The same properties hold for the functionals β(u,E) and δ(u,E). The
first one is lower semicontinuous since it is the supremum of a family of lower semicon-
tinuous functionals and the second one by construction. Let us prove that β(u, ·) and
δ(u, ·) are increasing for every u ∈ H1

0 (Ω). Let us fix two Borel sets E and F , with
E ⊆ F ⊆ Ω, and a function u ∈ H1

0 (Ω). Let t < β(u,E) and let λ ∈ME be a measure
such that t <

∫
Ω
u2dλ . Since λ ∈ ME there exists a subsequence (µhk

) of (µh) such
that (µhk

E) γL -converges to λ . By the compactness theorem (Theorem 1.9) a sub-
sequence of (µhk

F ) γL -converges to some measure ν ∈ MF . By Theorem 5.3 and
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Remark 1.15 we have λ̃ ≤ ν̃ and hence

t <

∫
Ω

u2dλ =
∫

Ω

u2dλ̃ ≤
∫

Ω

u2dν̃ =
∫

Ω

u2dν ≤ β(u, F ) .

By the arbitrariness of t < β(u,E) we obtain that β(u,E) ≤ β(u, F ). Similarly we can
prove that δ̂(u, ·) is increasing, and the same property holds for δ(u, ·).

We want to apply Proposition 5.7 to the functionals α , β , and δ . To this aim let
us fix a Borel set E ⊆ Ω and let us consider a measure λ ∈ ME . By the localization
theorem (Theorem 1.10) applied to Ω̂ = E̊ and Ω̂ = Ω \ E we obtain λ̃ = µ̃ in E̊ and
λ = 0 in Ω \E . Moreover, by Theorem 5.3 and Remark 1.15, we have λ ≤ λ̃ ≤ µ̃ in Ω.
Thus, if E , F , and G are three Borel subsets of Ω such that E ⊆ F̊ ⊆ F ⊆ G̊ , for every
λ ∈ ME and ν ∈ MG we get λ ≤ µ̃ F̊ ≤ µ̃ G̊ ≤ ν̃ . By Remarks 1.12 and 1.15 this
implies that ∫

Ω

u2dλ ≤
∫
F̊

u2dµ̃ =
∫
F̊

u2dµ ≤
∫
F

u2dµ ≤

≤
∫
G̊

u2dµ =
∫
G̊

u2dµ̃ ≤
∫

Ω

u2dν̃ =
∫

Ω

u2dν .

Therefore β(u,E) ≤ α(u, F ) ≤ β(u,G) and δ(u,E) ≤ α(u, F ) ≤ δ(u,G) whenever
u ∈ H1

0 (Ω) and E ⊆ F̊ ⊆ F ⊆ G̊ . Consequently, by Proposition 5.7, there exists a rich
subset R of B(Ω) such that

(5.6) β(u,E) = δ(u,E) = α(u,E) =
∫

Ω

u2d(µ E)

for every u ∈ H1
0 (Ω) and E ∈ R .

Let us prove that (µh E) γL -converges to µ E for every E ∈ R . Let us fix
E ∈ R and λ ∈ME . By the definition of β and δ we have δ(u,E) ≤

∫
Ω
u2dλ ≤ β(u,E)

for every u ∈ H1
0 (Ω); so that, by (5.6), we get∫

Ω

u2d(µ E) =
∫

Ω

u2dλ

for every u ∈ H1
0 (Ω), hence µ E and λ are equivalent. By Remark 1.13 this im-

plies that every convergent subsequence of (µh E) γL -converges to µ E . Since
γL -convergence is compact (Theorem 1.9), we conclude that the whole sequence (µh E)
γL -converges to µ E .

We are now in a position to prove the main result of this section.
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Theorem 5.9. Let (µh) be a sequence in M0(Ω) and let µ ∈ M0(Ω) . Then the
following conditions are equivalent:

(a) (µh) γL -converges to µ ;

(b) lim
h→∞

capLµh
(E) = capLµ(E) for every E in a dense subset of B(Ω) ;

(c) lim
h→∞

capLµh
(E) = capLµ(E) for every E in a rich subset of B(Ω) .

Proof. (c) ⇒ (b). See Remark 5.5.
(b) ⇒ (c). For every Borel set E ⊂⊂ Ω let α′(E) = lim inf

h→∞
capLµh

(E), α′′(E) =

lim sup
h→∞

capLµh
(E), and α(E) = capLµ(E). By Proposition 5.6 condition (b) implies that

α′ = α′′ in a rich subset R1 of B(Ω) and α′ = α in a rich subset R2 of B(Ω). By
Remark 5.5 the class R = R1 ∩R2 is rich in B(Ω) and we have

lim inf
h→∞

capLµh
(E) = lim sup

h→∞
capLµh

(E) = capLµ(E)

for every E ∈ R .
(a) ⇒ (c). If (µh) γL -converges to µ , then there exists a rich subset R of B(Ω)

such that (µh E) γL -converges to µ E for every E ∈ R (Theorem 5.8). Let E ∈
R and let vhE and vE be the µh -capacitary potential and the µ-capacitary potential
of E relative to L . Then (vhE) converges to vE weakly in H1

0 (Ω) (Proposition 1.8).
Moreover, if νhE and νE are the inner µh -capacitary distribution and the inner µ-
capacitary distribution of E relative to L , then (νhE) converges to νE weakly in H−1(Ω)
(Lemma 2.5). Since E ⊂⊂ Ω, it is possible to find ϕ ∈ C∞0 (Ω) such that ϕ = 1 in E

and, since supp νhE ⊆ E and supp νE ⊆ E , by Lemma 2.7 we have

lim
h→∞

capLµh
(E) = lim

h→∞

∫
Ω

ϕdνhE =
∫

Ω

ϕdνE = capLµ(E) .

(c) ⇒ (a). By the compactness of the γL -convergence there exists a subsequence of
(µh) which γL -converges to some measure λ ∈M0(Ω). It is enough to prove that µ and
λ are equivalent. By the previous step we have that capLµh

(E) converges to capLλ (E)
for every E in a rich subset of B(Ω). Since the intersection of two rich sets is rich
(Remark 5.5), (c) implies that capLλ (E) = capLµ(E) for every E in a rich subset R of
B(Ω). Let U ⊂⊂ Ω be an arbitrary open set and let ε > 0. By Theorem 3.4 there
exists a compact set K contained in U such that capLµ(U) ≤ capLµ(K) + ε . Since R
is dense, there exists E ∈ R such that K ⊆ E ⊆ U . By monotonicity (Theorem 2.11)
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we have that capLµ(U) ≤ capLµ(E) + ε = capLλ (E) + ε ≤ capLλ (U) + ε . Since ε > 0 is
arbitrary, we obtain capLµ(U) ≤ capLλ (U). By exchanging the roles of λ and µ we prove
the opposite inequality, hence capLµ(U) = capLλ (U). By Remark 3.6 this implies that
capLµ̃(B) = capL

λ̃
(B) for every Borel set B ⊂⊂ Ω. Therefore µ̃ = λ̃ by Theorem 4.2, so

that µ and λ are equivalent by Remark 1.15.

Theorem 5.10. Let (µh) be a sequence in M0(Ω) . Suppose that there exists a dense
subset D of B(Ω) such that

lim
h→∞

capLµh
(E) = α(E)

for every E ∈ D . Let β be the increasing set function defined by

(5.7)
β(U) = sup{α(E) : E ∈ D , E ⊂⊂ U} , if U is open in Ω ,

β(B) = inf{β(U) : U open , B ⊆ U ⊆ Ω} , if B ⊆ Ω .

Finally, let µ be the measure defined for every Borel set B ⊆ Ω by

(5.8) µ(B) = sup
∑
i∈I

β(Bi) ,

where the supremum is taken over all finite Borel partitions (Bi)i∈I of B .
Then µ ∈ M̃0(Ω) , the sequence (µh) γL -converges to µ , and β(B) = capLµ(B) for

every Borel set B ⊂⊂ Ω .

Proof. By compactness of the γL -convergence we can assume that the sequence (µh)
γL -converges to a measure λ in M̃0(Ω) and, by Theorem 5.9, that capLµh

(E) converges
to capLλ (E) for every E in a rich subset R of B(Ω). We have to prove that λ = µ .

Let us consider an open set U ⊆ Ω and a set E ∈ D with E ⊂⊂ U . Since R is
dense (Remark 5.5), there exists F ∈ R such that E ⊆ F ⊆ U . This implies that

α(E) = lim
h→∞

capLµh
(E) ≤ lim

h→∞
capLµh

(F ) = capLλ (F ) ≤ capLλ (U) .

By the definition of β this implies β(U) ≤ capLλ (U), and from Theorem 3.5 we obtain
β(B) ≤ capLλ (B) for every Borel set B ⊂⊂ Ω.

To prove the opposite inequality, let us consider an open set U ⊆ Ω and a compact
set K ⊆ U . Since D and R are dense, there exist E ∈ D and F ∈ R such that
K ⊆ F ⊆ E ⊂⊂ U . Then

capLλ (K) ≤ capLλ (F ) = lim
h→∞

capLµh
(F ) ≤ lim

h→∞
capLµh

(E) = α(E) ≤ β(U) .

By Theorem 3.4 this implies capLλ (U) ≤ β(U), and from Theorem 3.5 we obtain
capLλ (B) ≤ β(B), and hence capLλ (B) = β(B), for every Borel set B ⊂⊂ Ω. Then
the conclusion follows from (5.8) and Theorem 4.2.
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As consequence of Theorems 4.1 and 5.9 we obtain the following characterization of
the limit measure by means of a derivation argument.

Theorem 5.11. Let (µh) be a sequence measures of the class M0(Ω) and let ν be a
Radon measure of the class M0(Ω) . Assume that

(5.9) lim inf
r→0

lim inf
h→∞

capLµh
(Br(x))

ν(Br(x))
= lim inf

r→0
lim sup
h→∞

capLµh
(Br(x))

ν(Br(x))
= g(x)

for q.e. x ∈ Ω , and that
∫

Ω
g dν < +∞ . Then (µh) γL -converges to µ = gν and the

lim inf
r→0

is actually a lim
r→0

for ν -a.e. x ∈ Ω .

Proof. The result follows from Theorem 5.9 and 4.1, as in the proof of Theorem 5.2
in [2].

Remark 5.12. Under the hypotheses of Theorem 5.10, condition (5.9) is satisfied, for
instance, when β(B) ≤ ν(B) for every Borel set B ⊆ Ω.

6. Dirichlet problems in perforated domains

The asymptotic behaviour of Dirichlet problems in varying domains can be obtained
as a particular case of the previous results. We consider only the consequence of Theo-
rem 5.10. Similar results can be obtained also from Theorems 5.9 and 5.11.

Theorem 6.1. Let (Ωh) be a sequence of open subsets of Ω . Suppose that there exists
a dense subset D of B(Ω) such that

lim
h→∞

capL(E ∩ Ωh) = α(E)

for every E ∈ D . Let β be the increasing set function defined by (5.7) and let µ be the
measure defined by (5.8). Then for every f ∈ H−1(Ω) the solution uh of the Dirichlet
problem

(6.1)

uh ∈ H1
0 (Ωh) ,

Luh = f in Ωh ,
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extended by 0 in Ω \ Ωh , converges weakly in H1
0 (Ω) to the solution u of the relaxed

Dirichlet problem
u ∈ H1

0 (Ω) ∩ L2
µ(Ω) ,

a(u, v) +
∫

Ω

uv dµ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

Moreover µ ∈ M̃0(Ω) and β(B) = capLµ(B) for every Borel set B ⊂⊂ Ω .

Proof. Let Eh = Ω \ Ωh and let µh = ∞Eh
. By Remark 1.4 the solution of (6.1),

extended by 0 in Ω \ Ωh , coincides with the solution of (1.4). By Remark 2.3 we have
capLµh

(B) = capL(B∩Eh) for every Borel set B ⊂⊂ Ω. The conclusion follows now from
Theorem 5.10 and from the definition of γL -convergence.

In the rest of this section we shall use the previous result to prove that, if µ0 is a
Radon measure in M0(Ω), then there exists a sequence Ωh of open subset of Ω such that
the conclusion of Theorem 6.1 holds with µ = µ0 . This approximation result is obtained
by an explicit construction of the sets Ωh , which are obtained from Ω by removing a
suitable disjoint family of “small” closed sets, whose size depends on the local value of µ .

For every h ∈ N we consider the partition of Rn composed of the semi-open cubes
of side 1/h

Qih = {x ∈ Rn: ik/h ≤ xk < (ik + 1)/h for k = 1, . . . , n} , i = (i1, . . . , in) ∈ Zn ,

and we denote by Nh the set of all indices i such that Qih ⊂⊂ Ω.
We fix a Radon measure µ0 in M0(Ω) and for every h ∈ N and i ∈ Nh we consider

a closed set Eih ⊆ Qih such that capL(Eih, Q
i
h) = µ0(Qih). Let Eh be the union of the

sets Eih for i ∈ Nh and let Ωh = Ω\Eh . We shall prove that, in this case, the conclusion
of Theorem 6.1 holds with µ = µ0 . More generally, for every i ∈ Nh we fix a constant
cih ≥ 0 and we choose the closed sets Eih ⊆ Qih so that capL(Eih, Q

i
h) = cihµ0(Qih). Then

the asymptotic behaviour of the solutions of problems (6.1) is uniquely determined by
the weak∗ limit in L∞µ0

(Ω) of the sequence (ψh) defined by

(6.2) ψh(x) =
∑
i∈Nh

cih1Qi
h
(x) .

The following theorem is a generalization, to the case of non-symmetric operators,
of the approximation result given in [8], Theorem 2.5, and in [1], Theorem 2.2.
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Theorem 6.2. Let µ0 be a Radon measure belonging to M0(Ω) and let (cih)h∈N,i∈Nh

be a family of non-negative real numbers. For every h ∈ N let Eh =
⋃
i∈Nh

Eih , where
Eih are closed sets contained in Qih with capL(Eih, Q

i
h) = cihµ0(Qih) . Suppose that the

sequence (ψh) defined by (6.2) converges to some function ψ in the weak∗ topology of
L∞µ0

(Ω) . Then for every f ∈ H−1(Ω) the solution uh of problem (6.1) converges weakly
in H1

0 (Ω) to the solution u of the relaxed Dirichlet problem
u ∈ H1

0 (Ω) ∩ L2
λ(Ω) ,

a(u, v) +
∫

Ω

uv dλ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

λ(Ω) ,

where λ = ψµ0 .

Proof. We just give an outline of the proof, since it follows closely the one given in
[1], Theorem 2.2. We know that problem (6.1) can be rewritten as a relaxed Dirichlet
problem in Ω by choosing µh = ∞Eh

(Remark 1.4). Then by the compactness of the
γL -convergence (Theorem 1.9) we can suppose that (∞Eh

) γL -converges to a measure
λ ∈M0(Ω). We have to prove that λ = ψµ0 .

Step 1. We prove that λ ≤ ψµ0 . Since capLµh
is subadditive and, by Theorem 5.9,

lim
h→∞

capL(Eh ∩ E) = lim
h→∞

capLµh
(E) = capLλ (E)

for every E belonging to a rich subset of B(Ω), we can repeat the proof of Proposition 2.3
of [1] and we obtain capLλ (E) ≤

∫
E
ψdµ0 for every Borel set E ⊂⊂ Ω. The conclusion

follows now from Theorem 4.2.

Step 2. We prove that for every open set U ⊂⊂ Ω and for every δ > 0 the following
estimate holds

(6.3) λ(U) ≥ (1− cδ)2

∫
U

ψ(x) dµ0(x) − c

δ

∫∫
U×U

G(x− y) dµ0(x)dµ0(y) ,

where G is the fundamental solution for the Laplace operator in Rn and c is a positive
constant independent of U and δ . This estimate can be obtained as in [1], Lemmas 2.6
and 2.7. The only difference is in the proof of the “local almost-superadditivity” of the
capacity of the sets Eh (see Lemma 6.3 below), that in [1] relies heavily on the symmetry
of the operator L .

Step 3. If µ0 ∈ H−1(Ω), estimate (6.3) implies that λ ≥ (1− cδ)2ψµ0 by Lemma 2.5
of [1]. Since δ > 0 is arbitrary, we get λ ≥ ψµ0 . To extend this result to any Radon
measure of M0(Ω) we use the truncation argument of Theorem 2.2 in [1], which in our
case is based on Theorem 5.3.
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We conclude by proving the “local almost-superadditivity” used in Step 2 of Theo-
rem 6.2.

Lemma 6.3. Let U be an open set, with U ⊂⊂ Ω , and let 0 < δ < 1 . Let u be the
capacitary potential of Eh ∩ U in Ω with respect to the operator L . For every h ∈ N

we denote by Ih the set of all indices i ∈ Nh such that Qih ∩ U 6= Ø and u ≤ δ q.e. in
∂Qih . Then ∑

i∈Ih

capL(Eih, Q
i
h) ≤ 1

(1− δ)2
capL(Eh ∩ U,Ω) .

Proof. Let us consider the function v = max{0, u−δ1−δ } and for every h ∈ N and i ∈ Ih
let vih be the function such that vih = v q.e. in {u > δ} ∩ Qih and vih = 0 q.e. in
Ω \ ({u > δ} ∩ Qih). It is easy to see that vih is the capacitary potential of Eih in
{u > δ} ∩Qih according to (2.1), hence

capL(Eih, {u > δ} ∩Qih) =
∫
{u>δ}∩Qi

h

( n∑
i,j=1

aijDjvDiv
)
dx .

Then, by the monotonicity properties of capL (see [7], Theorem 3.3), we get∑
i∈Ih

capL(Eih, Q
i
h) ≤

∑
i∈Ih

capL(Eih, {u > δ} ∩Qih) =

=
∑
i∈Ih

∫
{u>δ}∩Qi

h

( n∑
i,j=1

aijDjvDiv
)
dx ≤ 1

(1− δ)2

∫
Ω

( n∑
i,j=1

aijDjuDiu
)
dx ,

which, by the definition of u , concludes the proof.
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