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Abstract

We study the relaxed formulation of the shape optimization problem with constraints

min
A

{∫
A

j(x, uA) dλ : A open ⊆ Ω , λ(A) ∈ T , LuA = f in A , uA ∈ H1
0 (A)

}
,

where Ω is a bounded open set in Rn , n ≥ 2 , j: Ω×R→ R is a Carathéodory function,

λ is a nonnegative Radon measure on Ω vanishing on all sets with harmonic capacity zero,

T is a closed subinterval of [0, λ(Ω)] , L is an elliptic operator on Ω, and f ∈ H−1(Ω) .
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0. Introduction

A large class of shape optimization problems can be studied by considering cost
functionals of the form

(0.1) J(A) = F (uA) ,

where A varies in a suitable class A of open subsets of a given bounded domain Ω ⊆ Rn ,
and uA is the solution of a partial differential equation in A (see, for instance, [21], [22],
[27], [23], [25], [10], [3], [4], [5]). The papers [9], [7], [12], [8], [19] deal in particular with
the case where A is the family of all open sets A contained in Ω, and uA is the solution
of the problem

(0.2) LuA = f in A , uA = 0 in Ω\A ,

where L is a given elliptic operator, f ∈ H−1(Ω), and F (u) in (0.1) is an integral
functional, continuous on L2(Ω), of the form

F (u) =
∫

Ω

j(x, u) dx.

In these papers it was pointed out that in general the corresponding minimization prob-
lem

(0.3) min
A

{∫
Ω

j(x, uA) dx : A open ⊆ Ω , LuA = f in A , uA = 0 in Ω\A
}

does not admit any solution. An explanation of this fact is that, if {Ah} is a sequence of
open subsets of Ω, in particular a minimizing sequence of (0.3), then the corresponding
sequence {uAh} of solutions of (0.2) has a subsequence converging to a function u in
L2(Ω), but, in general, there is no open set A such that u = uA . Nevertheless there
exists a nonnegative, possibly unbounded, Borel measure µ such that u is the solution
(in the sense (1.4) below) of the problem

(0.4) Luµ + µuµ = f in Ω , uµ = 0 on ∂Ω .

The relaxed form of (0.3) is studied in [9] and it is given by

min
µ

{∫
Ω

j(x, uµ) dx : µ ∈M0(Ω) , Luµ + µuµ = f in Ω , uµ = 0 on ∂Ω
}
,
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where M0(Ω) is the class of all nonnegative Borel measures on Ω which vanish on all
Borel sets of harmonic capacity zero. Moreover, if we identify each open set A with the
measure µA defined in (1.1) below, the functional J̃(µ) =

∫
Ω
j(x, uµ) dx which appears in

the relaxed problem turns out to be the lower semicontinuous envelope of the functional
J(A) =

∫
Ω
j(x, uA) dx with respect to a suitable notion of convergence in M0(Ω), called

γL -convergence, introduced in [18], [11], [15]. We recall that a sequence of measures
{µh} of M0(Ω) γL -converges to a measure µ ∈ M0(Ω) if for every f ∈ H−1(Ω) the
sequence {uµh} of the solutions to the problems

Luµh + µhuµh = f in Ω , uµh = 0 on ∂Ω ,

converge strongly in L2(Ω) to the solution uµ of (0.4). It is possible to prove that the
topological space

(
M0(Ω), γL

)
is actually a compact metric space (see [17], [15]), and

hence the relaxation of problem (0.3) studied in [9] can be considered in the general
framework of [1].

In this paper we treat a case where the cost functionals J depend on the unknown
domain A not only through the solution uA as in (0.1). More precisely, we consider
functionals J of the form

J(A) =


∫
A
j(x, uA) dλ, if λ(A) ∈ T ,

+∞, otherwise,

where λ is a bounded measure in M0(Ω), and T = [m,M ] is a subinterval of [0, λ(Ω)]
possibly degenerating to a point. Notice that the functional J depends on A through the
domain of integration, through the solution uA of the differential equation, and through
the constraint λ(A) ∈ T . We shall prove that also in this case the minimum problem

min {J(A): A open , A ⊆ Ω}

has, in general, no solution, and that the relaxed problem can be written as

min
{
J(µ): µ ∈M0(Ω)

}
,

where J is the lower semicontinuous envelope of J in M0(Ω) with respect to the
γL -convergence (Remark 1.12).

The main result of the paper is an explicit integral representation of J in terms
of the integrand j and of the constraint T (Theorem 3.1). The relevant new difficulty
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with respect to [9] lies in the fact that A appears in J also in the domain of integration.
This requires a substantial change in the proof, which is based on some new measure
theoretical arguments.

The paper is organized as it follows:
– in Section 1 we recall the main properties of the class M0(Ω) together with the

preliminary results we shall use in the sequel;
– in Section 2 we prove a lower semicontinuity result with respect to the γL -conver-

gence for some functionals defined on the class of open subsets of Ω, or more gen-
erally, for their extension to M0(Ω);

– Section 3 is devoted to the representation of the functionals J .

Acknowledgements. The research of the first and second authors is part of the project
“EURHomogenization”, contract SC1-CT91-0732 of the program SCIENCE of the Com-
mission of the European Communities.

1. Preliminaries

Let Ω be a bounded open subset of Rn , n ≥ 2. We shall denote by H1(Ω) and
H1

0 (Ω) the usual Sobolev spaces and by H−1(Ω) the dual space of H1
0 (Ω). By Lpµ(Ω),

1 ≤ p ≤ +∞ , we denote the Lebesgue space with respect to a nonnegative measure µ .
If µ is the Lebesgue measure, we shall use the standard notation Lp(Ω).

In the sequel B(x, r) will denote the open ball with center x and radius r .
For every subset E of Ω the (harmonic) capacity of E in Ω, denoted by cap(E,Ω),

is defined as the infimum of ∫
Ω

|Du|2 dx

over the set of all functions u ∈ H1
0 (Ω) such that u ≥ 1 a.e. in a neighbourhood of E .

We say that a property P(x) holds quasi everywhere (shortly q.e.) in a set E if
it holds for all x ∈ E except for a subset N of E with cap(N,Ω) = 0. A function
u: Ω → R is said to be quasi continuous if for every ε > 0 there exists a set E ⊆ Ω,
with cap(E,Ω) < ε , such that the restriction of u to Ω\E is continuous.

It is well known that every u ∈ H1(Ω) has a quasi continuous representative, which
is uniquely defined up to a set of capacity zero. In the sequel we shall always identify
u with its quasi continuous representative, so that the pointwise values of a function
u ∈ H1(Ω) are defined quasi everywhere. We recall that, if a sequence {uh} converges
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to u in H1
0 (Ω), then a subsequence of {uh} converges to u q.e. in Ω. Moreover if

u, v ∈ H1
0 (Ω) and u ≤ v a.e. in Ω, then u ≤ v q.e. in Ω. For all these properties of

quasi continuous representatives of Sobolev functions we refer to [26], Section 3.
A subset A of Ω is said to be quasi open if for every ε > 0 there exists an open

subset Uε of Ω, with cap(Uε,Ω) < ε , such that A ∪ Uε is open.
Let us denote by B(Ω) the σ -field of all Borel subsets of Ω. By a nonnegative Borel

measure on Ω we mean a countably additive set function µ:B(Ω)→ [0,+∞] . By a non-
negative Radon measure on Ω we mean a nonnegative Borel measure which is bounded
on every compact subset of Ω. Given a nonnegative Borel measure µ , its completion is
still denoted by µ . If µ is a nonnegative Borel measure and h is a nonnegative Borel
measurable function, we shall denote by hµ the nonnegative Borel measure defined by
(hµ)(B) =

∫
B
h dµ for every B ∈ B(Ω).

We say that a nonnegative Borel measure µ is nonatomic if µ({x}) = 0 for every
x ∈ Ω. It is well known that, if µ is nonnegative and nonatomic, then for every B ∈ B(Ω)
there exists a Borel subset B1 of B such that 0 < µ(B1) ≤ 1

2µ(B), and, by induction,
for every k ∈ N there exists Bk ⊆ B such that

0 < µ(Bk) ≤ 1
2k
µ(B) .

It is also well known that a nonnegative, nonatomic bounded measure has the following
continuity property: for every choice of A,B ∈ B(Ω), with A ⊆ B , and for every α

in the interval [µ(A), µ(B)] there exists a set C ∈ B(Ω) such that A ⊆ C ⊆ B and
µ(C) = α (see, e.g., [20]). In the sequel we shall need the following continuity result,
involving only open sets.

Lemma 1.1. Let µ be a nonnegative nonatomic bounded measure in Ω and let A,B be
two open subsets of Ω such that A ⊆ B . Then for every α such that µ(A) ≤ α ≤ µ(B)
there exists an open set C such that A ⊆ C ⊆ B and µ(C) = α .

Proof. Let {Ck} be an increasing sequence of open subsets of B such that C0 = A and
α ≥ µ(Ck+1) ≥ sk − 1/k , where

sk = sup {µ(U) : U open, Ck ⊆ U ⊆ B, µ(U) ≤ α} .

If we define C =
⋃
k Ck and

s = sup {µ(U) : U open, C ⊆ U ⊆ B, µ(U) ≤ α} ,
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then C is open, A ⊆ C ⊆ B , and 0 ≤ s ≤ sk for every k . As {Ck} is an increasing
sequence, we have

µ(C) = lim
k→∞

µ(Ck) ≥ lim
k→∞

sk ≥ s ,

hence µ(C) = s and µ(U) = s for every open set U such that C ⊆ U ⊆ B and
µ(U) ≤ α .

It remains to prove that s = α . By contradiction, if s < α , then µ(B \C) > 0.
Let us fix 0 < β < α − s . Since µ is nonatomic, there exists a set E ∈ B(Ω) such that
E ⊆ B\C and 0 < µ(E) < β . Moreover, since µ is a Radon measure, there exists an
open set V such that E ⊆ V ⊆ B and µ(E) ≤ µ(V ) ≤ β . If we denote U = C ∪ V ,
then C ⊆ U ⊆ B , µ(U) ≤ s , and

µ(U) ≥ µ(C ∪ E) = µ(C) + µ(E) > µ(C) = s ,

which gives a contradiction. Thus µ(C) = α , and this concludes the proof.

every
We say that a nonnegative Radon measure ν on Ω belongs to H−1(Ω) if there exists
f ∈ H−1(Ω) such that

〈f, ϕ〉 =
∫

Ω

ϕdν ∀ϕ ∈ C∞0 (Ω) ,

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). We shall always

identify f and ν . Having identified each function u in H1
0 (Ω) with its quasi continuous

representative, for every nonnegative Radon measure ν ∈ H−1(Ω) we have H1
0 (Ω) ⊆

L1
ν(Ω), and 〈f, u〉 =

∫
Ω
u dν for every u ∈ H1

0 (Ω). Moreover the injection of H1
0 (Ω)

into L1
ν(Ω) is compact. Indeed, if {vh} is a sequence of functions which converges to

a function v weakly in H1
0 (Ω), then |vh − v| converges to 0 weakly in H1

0 (Ω), so that∫
Ω
|vh − v| dν = 〈ν, |vh − v|〉 tends to 0.

We denote by M0(Ω) the set of all nonnegative Borel measures µ on Ω such that

(i) µ(B) = 0 for every Borel set B ⊆ Ω with cap(B,Ω) = 0,

(ii) µ(B) = inf{µ(A) : A quasi open , B ⊆ A} for every Borel set B ⊆ Ω.

Since all quasi open sets differs from a Borel set by a set of capacity zero, all quasi
open sets are µ–measurable for every nonnegative Borel measure µ which satisfies (i).
Therefore µ(A) is well defined when A is quasi open, and condition (ii) makes sense.
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It is well known that every nonnegative Radon measure which belongs to H−1(Ω)
belongs also to M0(Ω) (see [26], Section 4.7). For every quasi open set A ⊆ Ω we denote
by µA the measure defined by

(1.1) µA(B) =
{

0, if cap(B\A,Ω) = 0,
∞, otherwise.

Notice that µA belongs to M0(Ω). Indeed condition (i) is clearly satisfied and (ii) is
trivial whenever µA(B) = +∞ . Moreover, if µA(B) = 0, then cap(B\A,Ω) = 0, so that
B ∪A is a quasi open set containing B with µA(A ∪B) = µA(B). This implies (ii).

In the sequel we shall use the following result.

Proposition 1.2. For every measure µ ∈M0(Ω) there exist a nonnegative Borel mea-
surable function h and a nonnegative measure ν ∈ H−1(Ω) such that µ(A) = (hν)(A)
for every quasi open subset A of Ω .

Proof. See [13], Theorem 2.2.

Let L:H1
0 (Ω)→ H−1(Ω) be an elliptic operator of the form

(1.2) Lu = −
n∑

i,j=1

Di(aijDju) ,

where (aij) is an n×n matrix of functions of L∞(Ω) satisfying, for a suitable constant
α > 0, the ellipticity condition

(1.3)
n∑

i,j=1

aij(x)ξjξi ≥ α|ξ|2

for a.e. x ∈ Ω and for every ξ ∈ Rn .

Let µ ∈M0(Ω) and f ∈ H−1(Ω). We shall consider the following relaxed Dirichlet
problem (see [17] and [18]): find u ∈ H1

0 (Ω) ∩ L2
µ(Ω) such that

(1.4) 〈Lu, v〉+
∫

Ω

uv dµ = 〈f, v〉 ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

In [18] it was proved that there exists a unique solution of problem (1.4). For the sake
of simplicity in the sequel we formally write problem (1.4) as

Lu+ µu = f in Ω , u ∈ H1
0 (Ω) ∩ L2

µ(Ω) ,

although the equality can not be interpreted in the usual distributional sense, because,
in general, H1

0 (Ω) ∩ L2
µ(Ω) does not contain C∞0 (Ω).
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Remark 1.3. It is easy to see that if A is an open set and µ = µA , then u ∈ H1
0 (Ω) is

the solution of problem (1.4) if and only if u = 0 q.e. in Ω\A and u is the solution in
A of the classical boundary value problem

u ∈ H1
0 (A) , Lu = f in A .

For every µ ∈ M0(Ω) we define wµ to be the unique solution in the sense of (1.4) of
the problem

(1.5) Lwµ + µwµ = 1 in Ω , wµ ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

The functions wµ are bounded in L∞(Ω) uniformly with respect to µ , wµ ≥ 0 q.e. in
Ω, and for every solution of problem (1.4), with f ∈ L∞(Ω), we have |u| ≤ ‖f‖∞wµ q.e.
in Ω (see [15], Section 3). In the sequel we shall use the following comparison principle.

Lemma 1.4. If µ1, µ2 ∈M0(Ω) and µ1 ≥ µ2 , then wµ1 ≤ wµ2 q.e. in Ω .

Proof. The result follows from a more general comparison principle proved in [17],
Theorem 2.10.

By Aµ we shall denote the set {x ∈ Ω : wµ(x) > 0} . Notice that Aµ is defined
only up to a set of capacity zero, hence all the equalities or inclusions involving Aµ are
intended up to sets of capacity zero. Since wµ is quasi continuous, Aµ is quasi open.

Lemma 1.5. Let µ ∈ M0(Ω) and let wµ be the solution of problem (1.5). Then
µ(B) = +∞ for every Borel subset B of Ω with cap(B\Aµ,Ω) > 0 .

Proof. See [15], Lemma 3.2.

Remark 1.6. It is easy to see that, if µ is a Radon measure of M0(Ω), then Aµ = Ω.
If µ = µA and A is open, then Aµ = A by Remark 1.3 and by the strong maximum
principle.

Definition 1.7. Let {µh} be a sequence of measures of M0(Ω) and let µ ∈ M0(Ω).
We say that {µh} γL -converges to µ (in Ω) if the sequence {wµh} converges to wµ

weakly in H1
0 (Ω).
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Remark 1.8. This convergence of measures is equivalent to that one given in [15] (The-
orem 4.3) and is the natural extension of the notion of γL -convergence introduced in [18],
when L is the Laplace operator, and in [11] when L is symmetric. More precisely, the
sequence of measures {µh} γL -converges to the measure µ in the sense of Definition 1.7
if and only if, for every f ∈ H−1(Ω), the sequence {uh} of the solutions of the relaxed
Dirichlet problems

Luh + µhuh = f in Ω , uh ∈ H1
0 (Ω) ∩ L2

µh
(Ω)

converges weakly in H1
0 (Ω) to the solution u of the relaxed Dirichlet problem

Lu+ µu = f in Ω , u ∈ H1
0 (Ω) ∩ L2

µ(Ω) .

Then main properties of γL -convergence are stated in the following propositions.

Proposition 1.9. (Compactness). Every sequence of measures of M0(Ω) contains a
γL -convergent subsequence.

Proof. See [15], Theorem 4.5.

Proposition 1.10. (Density). Let us fix a nonnegative Radon measure λ . Then for
every µ ∈ M0(Ω) there exists a sequence {Eh} of compact subsets of Ω such that
{µΩ\Eh} γL -converges to µ , and λ(Eh) = 0 for every h ∈ N .

Proof. Since by Proposition 3.7 of [15] every measure of M0(Ω) can be approximated in
γL -convergence by a sequence of Radon measures of M0(Ω), here it is not restrictive to
suppose that µ is a Radon measure. When L is symmetric, an explicit approximation for
every Radon measure is given in [2], Theorem 2.2, by means of a sequence µΩ\Eh , where
Eh is the union of closed balls with centers on a periodic lattice Zh . For the extension
of this result to the nonsymmetric case see [16]. It is easy to see that the construction
of [2], Definition 2.1, can be carried over, with minor changes, taking Eh as the disjoint
union of (n−1)-dimensional balls with centers near the lattice points of Zh and lying on
hyperplanes parallel to a fixed hyperplane. Since the measure λ is σ–finite it is possible
to choose these hyperplanes with measure zero for λ .

Finally, let us consider a real valued functional J defined on the class of all
open subsets of Ω. With every open subset A of Ω we can associate the measure
µA . Thus the functional J can be considered as a functional defined on the subclass
{µA : A open, A ⊆ Ω} of M0(Ω).
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Definition 1.11. We shall call relaxation of J in M0(Ω) with respect to the γL -conver-
gence, and we shall denote it by J , the greatest γL -lower semicontinuous functional
defined on M0(Ω) such that J(µA) ≤ J(A) for every open set A ⊆ Ω.

Remark 1.12. One can check that

(1.6) J(µ) = inf
{

lim inf
h→∞

J(Ah) : Ah open, {µAh} γL -converging to µ
}
,

for every µ ∈M0(Ω). The previous formula characterizes the relaxation J as the unique
functional which satisfies the following properties for every µ ∈M0(Ω):
(i) for every sequence {Ah} of open sets with {µAh} γL -converging to µ in M0(Ω)

J(µ) ≤ lim inf
h→∞

J(Ah) ;

(ii) there exists a sequence {Ah} of open sets such that {µAh} γL -converges to µ in
M0(Ω) and

J(µ) ≥ lim sup
h→∞

J(Ah) .

The relaxation J describes the behaviour of the minimizing sequences of J . More
precisely J is γL -lower semicontinuous and so, by the direct method of calculus of vari-
ations, J has a minimum point on the γL -compact set M0(Ω). Moreover

min
M0(Ω)

J(µ) = inf
A open
A⊆Ω

J(A) ,

every cluster point of a minimizing sequence for J is a minimum point for J in M0(Ω),
and every minimum point for J in M0(Ω) is the limit of a minimizing sequence for J
(in the last statements we identify every open set A ⊆ Ω with the corresponding measure
µA ).

For a more general treatment of this subject see, e.g., [6] and [14].

2. Lower Semicontinuity

In this section we study the lower semicontinuity, with respect to the γL -convergence,
of some functionals defined on M0(Ω). More precisely, fixed a bounded measure λ in
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M0(Ω), a function g in L1
λ(Ω), and a closed (possibly degenerating to a point) subin-

terval T = [m,M ] of [0, λ(Ω)] , we consider the functional

(2.1) GT (µ) = inf
{∫

B

g dλ : B ∈ B(Ω), Aµ ⊆ B, λ(B) ∈ T
}
,

where Aµ is the quasi open set introduced in Section 1. We shall always use the conven-
tion inf Ø = +∞ .

Theorem 2.1. The functional GT defined in (2.1) is lower semicontinuous in M0(Ω)
with respect to the γL -convergence.

Remark 2.2. Let us fix a constant c such that 0 ≤ c ≤ λ(Ω). If the set T takes the
form T = {c} , T = [0, c] , or T = [c, λ(Ω)] , then the functional GT becomes respectively

Gc(µ) = inf
{∫

B

g dλ : B ∈ B(Ω) , Aµ ⊆ B , λ(B) = c

}
,

G[0,c](µ) = inf
{∫

B

g dλ : B ∈ B(Ω) , Aµ ⊆ B , λ(B) ≤ c
}
,

G[c,λ(Ω)](µ) = inf
{∫

B

g dλ : B ∈ B(Ω) , Aµ ⊆ B , λ(B) ≥ c
}
.

Notice that, in general, Gc , G[0,c] , and G[c,λ(Ω)] are different as it can be easily seen by
choosing g ≡ 1 in each functional. Indeed in this case we have

Gc(µ) =
{
c, if λ(Aµ) ≤ c,
+∞, otherwise,

G[0,c](µ) =
{
λ(Aµ), if λ(Aµ) ≤ c,
+∞, otherwise,

G[c,λ(Ω)](µ) = sup{c, λ(Aµ)} .

Moreover, for every g ∈ L1
λ(Ω) the functional G[0,c] can be rewritten as

G[0,c](µ) =
∫
Aµ

g+ dλ− sup
∫
B

g− dλ ,
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where g+ and g− are the positive and the negative part of g respectively, and the
supremum is taken over all the Borel subset B of Ω such that Aµ ⊆ B , and λ(B) = c .
When c = λ(Ω), it reduces to the functional

G[0,λ(Ω)](µ) =
∫
Aµ

g+ dλ−
∫

Ω

g− dλ =
∫
Aµ

g dλ−
∫

Ω\Aµ
g− dλ ,

which then turns out to be γL -lower semicontinuous on M0(Ω).

In order to prove Theorem 2.1 we need a result of measure theory.

Lemma 2.3. Let λ be a nonnegative, nonatomic bounded Borel measure on Ω , and
let g ∈ L1

λ(Ω) . Fixed a closed subinterval T = [m,M ] of [0, λ(Ω)] , let us consider the
functional

(2.2) G(A) = inf
{∫

B

g dλ : B ∈ B(Ω), A ⊆ B, λ(B) ∈ T
}

defined on the class of all Borel subsets A of Ω . Then, for every A1 , A2 such that
λ(A1) ≤M and λ(A2) ≤M , we have

(2.3) G(A1) ≤ G(A2) + 2ω(λ(A1\A2)) ,

where ω(δ) = sup
{∫
B
|g| dλ : λ(B) ≤ δ

}
, and hence ω(δ)→ 0 as δ → 0 .

Proof. Let B2 be any Borel set such that A2 ⊆ B2 and λ(B2) ∈ T . Since λ is nonatomic
and λ(B2\A1) = λ(B2)−λ(A1)+λ(A1\B2), if λ(B2)−λ(A1) ≥ 0 one can find a Borel set
E ⊆ B2\A1 such that λ(E) = λ(A1\B2). Thus, setting F = B2\(A1 ∪E) = (B2\A1)\E
and B1 = A1 ∪ F = (A1 ∪B2)\E , we have A1 ⊆ B1 , and

λ(B1) = λ(A1) + λ(F ) = λ(A1) + λ(B2\A1)− λ(A1\B2) = λ(B2) ,

and hence λ(B1) belongs to T . Moreover, as A1 ∪ B2 = B1 ∪ E and B1 ∩ E = Ø, we
have ∫

B1

g dλ =
∫
B2

g dλ+
∫
A1\B2

g dλ−
∫
E

g dλ .

Since λ(A1\B2) = λ(E) ≤ λ(A1\A2) we get

G(A1) ≤
∫
B1

g dλ ≤
∫
B2

g dλ+ 2ω(λ(A1\A2)) .



12 G. Buttazzo, G. Dal Maso, A. Garroni, A. Malusa

If λ(B2)− λ(A1) ≤ 0, then λ(B2) ≤ λ(A1) ≤M , so that λ(A1) ∈ T and

G(A1) ≤
∫
A1

g dλ .

Since in this case λ(B2\A1) ≤ λ(A1\B2), we have

G(A1) ≤
∫
B2

g dλ+
∫
A1\B2

g dλ−
∫
B2\A1

g dλ ≤
∫
B2

g dλ+ 2ω(λ(A1\A2)) .

Therefore (2.3) follows by taking the infimum over all admissible B2 . The fact that
ω(δ)→ 0 as δ → 0 is a consequence of the absolute continuity of the integral.

We consider now a first lower semicontinuity result for functionals defined on
M0(Ω).

Lemma 2.4. Let λ ∈ M0(Ω) and let {µh}be a sequence in M0(Ω) γL -converging to
µ ∈M0(Ω) . Then

λ(Aµ) ≤ lim inf
h→∞

λ(Aµh) .

If, in addition, λ(Aµ) < +∞ , then lim
h→∞

λ(Aµ\Aµh) = 0 .

Proof. By Proposition 1.2 there exist a nonnegative measure ν ∈ H−1(Ω) and a non-
negative Borel function h such that λ = hν on the class of all quasi open subsets of Ω.
In particular λ(Aµ) =

∫
Aµ
h dν for every µ ∈ M0(Ω). Let f : Ω×R→ [0,+∞] be the

Borel function defined by

f(x, s) =
{
h(x) , if s > 0,
0 , if s ≤ 0.

Then f(x, ·) is lower semicontinuous, and by definition of Aµ we have

λ(Aµ) =
∫

Ω

f(x,wµ) dν ∀µ ∈M0(Ω) ,

where wµ is the solution of problem (1.5). Let now {µh} be a sequence in M0(Ω)
which γL -converges to a measure µ ∈M0(Ω), i.e., the sequence {wµh} converges to wµ

weakly in H1
0 (Ω) (see Definition 1.7). Since ν ∈ H−1(Ω), {wµh} converges to wµ in the

strong topology of L1
ν(Ω). Thus, possibly passing to a subsequence, {wµh} converge to

wµ ν -a.e. in Ω. Therefore, by Fatou’s lemma and the lower semicontinuity of f(x, ·),
we obtain

λ(Aµ) =
∫

Ω

f(x,wµ) dν ≤ lim inf
h→∞

∫
Ω

f(x,wµh) dν = lim inf
h→∞

λ(Aµh) ,
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and the proof of the first statement is complete. Let us suppose now that λ(Aµ) <
+∞ . As we have shown before, the γL -convergence of {µh} to µ implies the strong
convergence in L1

ν(Ω) of {wµh} to wµ . Hence, using Fatou’s lemma again, we get

lim sup
h→∞

λ(Aµ\Aµh) = lim sup
h→∞

[λ(Aµ)− λ(Aµh ∩Aµ)] =

=
∫
Aµ

f(x,wµ) dν − lim inf
h→∞

∫
Aµ

f(x,wµh) dν ≤ 0 ,

which concludes the proof.

Remark 2.5. If the measure λ does not belong to M0(Ω), the conclusion of Lemma 2.4
may be false. In fact, take n ≥ 2, x0 ∈ Ω and let λ be the Dirac measure δx0 . It is
easy to see that the measures µh = µΩ\B(x0,1/h) γL -converge to the measure µ which is
identically zero on Ω. On the other hand we have Aµh = Ω\B(x0, 1/h), Aµ = Ω, so
that λ(Aµ) = 1 > 0 = lim inf

h→∞
λ(Aµh).

Proof of Theorem 2.1. Let µ be a fixed measure in M0(Ω), and let {µh} be a sequence
in M0(Ω) which γL -converges to µ . It is not restrictive to suppose that GT (µh) < +∞
for every h ∈ N . This implies that λ(Aµh) ≤ M for every h ∈ N , and then, by
Lemma 2.4, we have also λ(Aµ) ≤ M . Since for every quasi open set A there exists
a Borel set B containing A , with cap(B \A,Ω) = 0, we can apply Lemma 2.3 with
A1 = Aµ , and A2 = Aµh , and we get

GT (µ) ≤ GT (µh) + 2ω(λ(Aµ\Aµh)) .

The γL -lower semicontinuity of GT follows now from the second part of Lemma 2.4.

3. Relaxation

In this section we apply the previous lower semicontinuity results in order to obtain
an explicit representation of the relaxation of some cost functionals in optimal shape
design.

Let us fix a functional f ∈ H−1(Ω), a bounded measure λ in M0(Ω), a closed
interval T = [m,M ] of [0, λ(Ω)] with M > 0, and a Borel function j: Ω × R → R

satisfying the following conditions:
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(i) for every u ∈ H1
0 (Ω) the function j(x, u(x)) belongs to L1

λ(Ω);

(ii) the map u 7→
∫

Ω
j(x, u) dλ is sequentially continuous in the weak topology of H1

0 (Ω).

We shall consider the functional J defined on the class of all open subsets of Ω as

(3.1) J(A) =


∫
A
j(x, uA) dλ, if λ(A) ∈ T,

+∞, otherwise,

where uA is the unique solution of the Dirichlet problem

(3.2)
{
LuA = f on A,
uA = 0 on ∂A.

Different hypotheses on λ and j can be made in order to fulfill (i) and (ii). For
instance, if we assume that j(x, s) is measurable in x and continuous in s , we can require
one of the following properties:
(1) λ is the Lebesgue measure and |j(x, s)| ≤ c(1 + |s|p) for λ -a.e. x in Ω and for

every p < 2n/(n − 2). Namely, in this case, by Sobolev imbedding (i) and (ii) are
obviously fulfilled.

(2) λ is the (n − 1)-dimensional Hausdorff measure restricted on a smooth (n − 1)-
dimensional hypersurface S ⊆ Ω and |j(x, s)| ≤ c(1 + |s|2) for λ -a.e. x in S .
In this case (i) and (ii) follow from the compactness of the trace operator between
H1

0 (Ω) and L2(S).
(3) λ belongs to H−1(Ω) and j has linear growth in s . In this case, (i) and (ii) follow

from the compactness of the injection of H1
0 (Ω) into L1

λ(Ω).

It is well known that, under these very weak assumptions, the optimal design problem

min
λ(A)∈T

J(A)

in general has no solution (see Examples 3.11 and 3.12). Thus, in order to investigate
the asymptotic behaviour of the minimizing sequences of J , we are interested in its
relaxation. To this aim, for every µ ∈ M0(Ω) we denote by uµ the unique solution in
the sense of (1.4) of the problem

(3.3) Luµ + µuµ = f in Ω , uµ ∈ H1
0 (Ω) ∩ L2

µ(Ω).

The main result of this section is the following.
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Theorem 3.1. Let f ∈ H−1(Ω) , let λ be a bounded measure in M0(Ω) , and let
j: Ω × R → R be a Borel function satisfying (i) and (ii). Fixed a closed subinterval
T = [m,M ] of [0, λ(Ω)] with M > 0 , we consider the functional J defined by (3.1) for
every open set A ⊆ Ω , where uA is the solution of problem (3.2). Then its relaxation J

in M0(Ω) is given by

(3.4) J(µ) =
∫
Aµ

j(x, uµ) dλ+ inf

{∫
B\Aµ

j(x, 0) dλ : B∈B(Ω), Aµ ⊆ B, λ(B)∈T

}
,

with the convention inf Ø = +∞ .

Example 3.2. If there exists a constant k such that j(x, 0) = k for every λ -a.e. x ∈ Ω,
then (3.4) can be simplified. Namely, if k is positive, then (3.4) becomes

J(µ) =


∫
Aµ
j(x, uµ) dλ + k(m− λ(Aµ))+, if λ(Aµ) ≤M,

+∞, otherwise,

while, if k is negative, we get

J(µ) =


∫
Aµ
j(x, uµ) dλ + k(M − λ(Aµ)), if λ(Aµ) ≤M,

+∞, otherwise.

In particular, if T = {c} , then (3.4) takes the form

J(µ) =


∫

Ω
j(x, uµ) dλ + k(c− λ(Ω)), if λ(Aµ) ≤ c,

+∞, otherwise.

Remark 3.3. The functional J can be written as

J(A) =
∫

Ω

j(x, uA) dλ−
∫

Ω

j(x, 0) dλ+
∫
A

j(x, 0) dλ ,

where uA is extended to 0 on Ω\A . For every fixed µ ∈M0(Ω) and for every sequence
{Ah} of open subsets of Ω such that {µAh} γL -converges to µ , we have that the sequence
{uAh} of the solutions of the Dirichlet problems on Ah converges to the solution uµ of
the relaxed Dirichlet problem (3.3) in the weak topology of H1

0 (Ω) (see Remarks 1.3
and 1.8), so that, by (ii),

lim
h→∞

∫
Ω

j(x, uAh) dλ−
∫

Ω

j(x, 0) dλ =
∫

Ω

j(x, uµ) dλ−
∫

Ω

j(x, 0) dλ .
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Hence, by (1.6), in order to exhibit the relaxation J of J , it is enough to relax the
functional

(3.5) J0(A) =


∫
A
j(x, 0) dλ, if λ(A) ∈ T ,

+∞, otherwise.

Since the solution uµ of (3.3) is zero q.e. in Ω\Aµ (Lemma 1.5), to conclude the proof
it is enough to show that the relaxation J0 of J0 coincides with the functional

(3.6) J̃0(µ) = inf
{∫

B

j(x, 0) dλ : B ∈ B(Ω), Aµ ⊆ B , λ(B) ∈ T
}
.

By Theorem 2.1, J̃0 is γL -lower semicontinuous. Since J̃0(µA) ≤ J0(A) for every open
set A ⊆ Ω, by definition of J0 , we have J̃0 ≤ J0 .

Suppose that, for every µ ∈ M0(Ω) with J̃0(µ) < +∞ and for every Borel set B
containing Aµ with λ(B) ∈ T , we are able to find a sequence {Ah} of open subsets of
Ω such that λ(Ah) ∈ T , {µAh} γL -converges to µ , and

lim
h→∞

∫
Ah

j(x, 0) dλ =
∫
B

j(x, 0) dλ .

Then by (1.6) we get

J0(µ) ≤ lim
h→∞

J0(Ah) =
∫
B

j(x, 0) dλ .

Taking the infimum over all admissible B we obtain J0(µ) ≤ J̃0(µ), and hence J0(µ) =
J̃0(µ).

In order to construct the sequence {Ah} we shall require that the set B is open.
As shown in the following lemma, this condition is not restrictive for a large class of
measures in M0(Ω).

Lemma 3.4. Let g , λ , and G be as in Theorem 2.1 and let T = [m,M ] ⊆ [0, λ(Ω)] .
Then

(3.7) G(µ) = inf
{∫

B

g dλ : B open , Aµ ⊆ B, λ(B) ∈ T
}

for every measure µ ∈M0(Ω) such that λ(Aµ) < M .

Proof. Let µ ∈ M0(Ω) with λ(Aµ) < M . Let us denote by H(µ) the right–hand
side of (3.7). It is enough to prove that G(µ) ≥ H(µ), since the opposite inequality is
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trivial. Since λ(Aµ) < M , λ is nonatomic, and T is an interval, G(µ) coincides with the
infimum taken over all Borel sets B such that λ(B) ∈ T , Aµ ⊆ B , and λ(B) > λ(Aµ).

Given one of these sets B , we shall exhibit a sequence {Ah} of open subsets of Ω,
with λ(Ah) = λ(B) and Aµ ⊆ Ah , such that

(3.8) lim
h→∞

∫
Ah

g dλ =
∫
B

g dλ .

Since H(µ) ≤
∫
Ah
g dλ , taking the limit as h→∞ we obtain

(3.9) H(µ) ≤
∫
B

g dλ ,

and taking the infimum with respect to B we get H(µ) ≤ G(µ). It remains to construct
the sequence Ah . Since λ is bounded, we can find a sequence {Uh} of open subsets
of Ω such that Aµ ⊆ Uh for every h ∈ N , and λ(Uh\Aµ) ≤ 1/h . Moreover for every
h ∈ N there exists an open set Bh ⊇ B such that λ(Bh\B) ≤ 1/h . It is not restrictive
to suppose Uh ⊆ Bh , since one can always replace Bh with Bh ∪ Uh , and

λ((Bh ∪ Uh)\B) ≤ λ(Bh\B) + λ(Uh\B) ≤ λ(Bh\B) + λ(Uh\Aµ) ≤ 2/h .

Thus, for h large enough, λ(Uh) ≤ λ(Aµ)+1/h < λ(B) ≤ λ(Bh), so that, by Lemma 1.1
we can find an open set Ah such that Uh ⊆ Ah ⊆ Bh and λ(Ah) = λ(B). Moreover we
have that Aµ ⊆ Uh ⊆ Ah and∫

Ah

g dλ =
∫
B

g dλ−
∫
B\Ah

g dλ+
∫
Ah\B

g dλ .

Since λ(Ah) = λ(B), we have λ(B\Ah) = λ(Ah\B) ≤ λ(Bh\B) ≤ 1/h . Then, as
g ∈ L1

λ(Ω), (3.8) follows from the absolute continuity of the integral.

Lemma 3.5. Let λ and T be as in Theorem 3.1, and let µ ∈M0(Ω) . Then for every
open set B containing Aµ , with λ(B) ∈ T , there exists a sequence {Ah} of open subsets
of B , with λ(B\Ah) = 0 , such that the sequence {µAh} γL -converges to µ .

Proof. Applying Proposition 1.10 with Ω replaced by B , it is possible to find a se-
quence {Ah} of open subsets of B with λ(B\Ah) = 0, such that the sequence {µAh}
γL -converges to µ in B , i.e., replacing Ω by B in Definition 1.7, the sequence {wh} of
the solutions to the problems

(3.10) Lwh = 1 in Ah , wh = 0 on ∂Ah ,
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extended to zero outside Ah weakly converges in H1
0 (B) to the solution w in the sense

of (1.4) of the problem

(3.11) Lw + µw = 1 in B , w ∈ H1
0 (B) ∩ L2

µ(B)

extended to zero outside B . Since Aµ ⊆ B , the solution wµ of (1.5) in Ω equals zero
q.e. on Ω\B , so that wµ ∈ H1

0 (B) ∩ L2
µ(B) and satisfies (3.11). As Ah ⊆ B , this shows

that {µAh} γL -converges to µ in Ω.

We are now in a position to prove (3.4) for every µ ∈M0(Ω) such that λ(Aµ) < M .

Proposition 3.6. Let j , λ , and T be as in Theorem 3.1 and let J̃0 be the functional
defined in (3.6). Then J0(µ) = J̃0(µ) for every µ ∈M0(Ω) with λ(Aµ) < M .

Proof. Let us fix µ ∈ M0(Ω) such that λ(Aµ) < M . As pointed out in Remark 3.3,
it is enough to show that J0(µ) ≤ J̃0(µ). Let us consider an open set B , containing
Aµ , with λ(B) ∈ T . By Lemma 3.5 there exists a sequence {Ah} of open subsets of B ,
with λ(Ah) = λ(B), such that {µAh} γL -converges to µ . Thus, as in Remark 3.3, we
obtain J0(µ) ≤

∫
B
j(x, 0) dλ . Taking the infimum over all admissible open sets B , by

Lemma 3.4 applied to g(x) = j(x, 0), we obtain J0(µ) ≤ J̃0(µ).

In order to extend the equality J0(µ) = J̃0(µ) to every µ ∈ M0(Ω), we need the
following lemma.

Lemma 3.7. Let {Ah} and {Ãh} be two sequences of quasi open subsets of Ω such
that Ah ⊆ Ãh for every h and cap(Ãh\Ah,Ω) → 0 . Let wh and w̃h be the solutions
of problem (1.5) with µ = µAh and µ = µÃh . If {wh} and {w̃h} converge weakly to w

and w̃ , then w = w̃ q.e. in Ω .

Proof. Since Ah ⊆ Ãh , by Lemma 1.4 we have wh ≤ w̃h q.e. in Ω for every h ∈ N , and
then w ≤ w̃ q.e. in Ω. Let us prove the opposite inequality. To this aim, following the
ideas of Stampacchia (see [24]), for every subset E of Ω we denote with KE the set of
all functions v ∈ H1

0 (Ω) such that v ≥ 1 q.e. in E and, if KE is nonempty, we consider
the unique solution z of the variational inequality{

z ∈ KE ,
〈Lz, v − z〉 ≥ 0 ∀v ∈ KE .
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The function z is called the L–capacitary potential of E in Ω and the L–capacity of
E in Ω is defined by capL(E,Ω) = 〈Lz, z〉 . We set capL(E,Ω) = +∞ if KE = Ø. It is
easy to see that

〈Lz, ψ〉 = 0 ∀ψ ∈ H1
0 (Ω) , with ψ = 0 q.e. in E .

Moreover, by the maximum principle, one can check that z = 1 q.e. in E . Finally
capL(E,Ω) ≤ c cap(E,Ω) so that, by hypothesis, capL(Ãh\Ah,Ω) → 0. Then by the
ellipticity assumption on L the sequence {zh} of the L-capacitary potentials of the sets
Ãh\Ah in Ω converges to zero strongly in H1

0 (Ω). Let c be a positive constant such
that w̃h ≤ c q.e. in Ω for every h ∈ N . We claim that for every h ∈ N

(3.12) w̃h ≤ wh + czh q.e. in Ω .

As zh = 1 q.e. in Ãh\Ah , wh ≥ 0, and w̃h = 0 q.e. in Ω\Ãh , (3.12) is trivially satisfied
in Ω\Ah . Since 〈Lzh, ψ〉 = 0 for every ψ ∈ H1

0 (Ω) with ψ = 0 q.e. in Ãh \Ah , in
particular, we have

(3.13) 〈L(w̃h − wh − czh), ψ〉 = 0

for every ψ ∈ H1
0 (Ω) with ψ = 0 q.e. in Ω\Ah . Taking in (3.13) ψ = (w̃h−wh− c zh)+ ,

by the ellipticity assumption on L , we obtain that (w̃h − wh − c zh)+ = 0 q.e. in Ω,
which proves (3.12).

Proof of Theorem 3.1. By Remark 3.3 it is enough to characterize the relaxation of the
functional J0 defined by (3.5). By Proposition 3.6 J̃0(µ) = J0(µ) for every µ ∈M0(Ω)
with λ(Aµ) < M . Let us consider now a measure µ ∈ M0(Ω) with λ(Aµ) = M . Let
λ|Aµ be the measure on Ω defined by (λ|Aµ )(B) = λ(Aµ ∩ B). Since M > 0, there
exists a point x ∈ suppλ|Aµ , that is λ(B(x, r) ∩ Aµ) > 0 for every r > 0. Setting
Bh = B(x, 1/h), Ah = Aµ \Bh , and µh = µ + µΩ\Bh we have that Aµh ⊆ Ah and
λ(Aµh) < M . By Lemma 3.7 applied to Ãh = Aµ , the sequence {µh} γL -converges to
µ . Thus by the γL -lower semicontinuity of J0 we have

J0(µ) ≤ lim inf
h→∞

J0(µh) .

As λ(Aµh) < M , by Proposition 3.6 J0(µh) = J̃0(µh) for every h ∈ N . Moreover,
since Aµh ⊆ Aµ and λ(Aµ) = M , we have J̃0(µh) ≤

∫
Aµ
j(x, 0) dλ = J̃0(µ) for every h .

Therefore
J0(µ) ≤ lim inf

h→∞
J̃0(µh) ≤ J̃0(µ) ,

and hence J0(µ) = J̃0(µ) for every µ ∈M0(Ω).
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Remark 3.8. If T = {0} and λ is the Lebesgue measure, then the functional J0 defined
in (3.5) takes the form

(3.14) J0(A) =
{

0, if A = Ø,
+∞, otherwise.

Thus its relaxation J0 is the functional defined by

(3.15) J0(µ) =
{

0, if µ = µØ,
+∞, otherwise.

It turns out that J0 coincides with the functional J̃0 defined in (3.6). Indeed J̃0 is finite
and, more precisely, takes the value zero, only for µ ∈M0(Ω) with λ(Aµ) = 0. It is well
known that every quasi open set with Lebesgue measure zero has capacity zero, so that
λ(Aµ) = 0 if and only if µ = µØ .

The following counterexample shows that, for a general λ , the functional

J̃0(µ) =
{

0, if λ(Aµ) = 0,
+∞, otherwise,

does not coincide with the relaxation of the functional J0 when T = {0} .

Counterexample 3.9. Let {qh} = Ω∩Qn and let {rh} a sequence of positive number
such that cap(B(qh, rh),Ω) < 1/2h . Let V =

⋃
hB(qh, rh) and let u be the function

in H1
0 (Ω) such that u = 1 q.e. in V and

∫
Ω
|Du|2dx = cap(V,Ω). Let us consider the

measure λ defined as

λ(B) = Ln(V ∩B)

for every B ∈ B(Ω), where Ln denotes the n–dimensional Lebesgue measure. Since for
every open subset A of Ω with A 6= Ø we have λ(A) > 0, the functional J0 defined
in (3.5) corresponding to this choice of λ takes the form (3.14) and its relaxation J0 is
given by (3.15). On the other hand, if we consider the quasi open set A = {x ∈ Ω :
u(x) < 1/2} , since u = 1 q.e. in V we have cap(A ∩ V,Ω) = 0 and hence λ(A) = 0.
Finally A has positive Lebesgue measure, and then positive capacity, so that µA(A) =
0 6= +∞ = µØ(A). Thus J̃0(µA) = 0, but J0(µA) = +∞ .
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Remark 3.10. If T = [0, λ(Ω)] , then by Remarks 2.2 and 3.3 the relaxed functional J
can be written as

J(µ) =
∫
Aµ

j(x, uµ) dλ−
∫

Ω\Aµ
j−(x, 0) dλ .

The following example shows that for every fixed ν ∈ M0(Ω) there exists a func-
tional Jν as in Theorem 3.1, with f = 1 and T = [0, λ(Ω)] , such that ν is the unique
minimum point of Jν . If ν 6= µA for every open set A ⊆ Ω, then the minimum problem

min
A open
A⊆Ω

Jν(A)

has no solution. Indeed Jν(A) ≥ Jν(µA) > Jν(ν) for every open set A ⊆ Ω, and

inf
A open
A⊆Ω

Jν(A) = min
µ∈M0(Ω)

Jν(µ) = Jν(ν)

by Remark 1.12.

Example 3.11. Let w0 be the solution of the Dirichlet problem

w0 ∈ H1
0 (Ω) , Lw0 = 1 in Ω .

Then w0 ∈ L∞(Ω) and wµ ≤ w0 q.e. in Ω by the comparison principle (Lemma 1.4).
Let us fix ν ∈M0(Ω) and let gν ∈ L∞(Ω) be the function defined by

gν =


wν in Aν ,

3k in Ω\Aν ,

where k ∈ R and k ≥ ‖w0‖
L∞(Ω)

. Let jν : Ω×R→ R be the function defined by

jν(x, s) = |s− gν(x)|2 − k2 .

Finally let f = 1, let λ be the Lebesgue measure, and let T = [0, λ(Ω)] . Then the
functional defined by (3.1) is given by

Jν(A) =
∫
A

(|wA − gν |2 − k2) dx ,
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for every open set A ⊆ Ω. By Remark 3.10 the relaxation Jν of Jν takes the form

(3.16) Jν(µ) =
∫
Aµ

(|wµ − gν |2 − k2) dx−
∫

Ω\Aµ
(g2
ν − k2)

−
dx

for every µ ∈ M0(Ω). We want to prove that Jν(µ) > Jν(ν) = −k2λ(Aν) for every
µ ∈M0(Ω) with µ 6= ν . By (3.16) we can write

Jν(µ) =
∫
Aµ∩Aν

(|wµ − wν |2 − k2) dx+
∫
Aµ\Aν

(w2
µ − 6kwµ + 8k2) dx

−
∫

Ω\(Aµ∪Aν)

(9k2 − k2)
−
dx−

∫
Aν\Aµ

(w2
ν − k2)

−
dx ,

Since wν = 0 q.e. in Aµ\Aν , wµ = 0 q.e. in Aν \Aµ , and 0 ≤ wµ ≤ k q.e. in Ω, we
have w2

µ = |wµ −wν |2 q.e. in Aµ\Aν , −6kwµ + 8k2 ≥ 0 q.e. in Ω, and −(w2
ν − k2)− =

w2
ν − k2 = |wµ − wν |2 − k2 q.e. in Aν \Aµ . Hence

Jν(µ) ≥
∫
Aµ∩Aν

|wµ − wν |2 dx− k2λ(Aµ ∩Aν) +
∫
Aµ\Aν

|wµ − wν |2 dx

+
∫
Aν\Aµ

|wµ − wν |2 dx− k2λ(Aν \Aµ) =
∫

Ω

|wµ − wν |2 − k2λ(Aν) .

This shows that Jν(µ) ≥ Jν(ν) = −k2λ(Aν) for every µ ∈ M0(Ω). If Jν(µ) = Jν(ν),
then

∫
Ω
|wµ − wν |2 = 0, hence wµ = wν a.e. in Ω, and this implies µ = ν by Lemma 3.3

of [15].

In the following example, which is a particular case of the previous one, the function
j is continuous, and even C∞(Ω) if the coefficients of the operator L are C∞(Ω).

Example 3.12. Let w0 , k , λ , f , T be as in Example 3.9, let j(x, s) = |s− 1
2w0|2−k2 ,

and let
J(A) =

∫
A

(|wA −
1
2
w0|2 − k2) dx

be the corresponding functional defined for every open set A ⊆ Ω. Then

(3.17) inf
A open
A⊆Ω

J(A) = −k2λ(Ω) ,

where λ is the Lebesgue measure, but the minimum in (3.17) is not achieved. To prove
this fact it is enough to notice that w0 > 0 in Ω by the strong maximum principle, and
that

L(
1
2
w0) +

1
2
w0

w0
= 1 in Ω ,
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hence 1
2w0 is the solution of (1.5) corresponding to the measure ν = λ/w0 . Therefore

1
2w0 = wν . As Aν = Ω, using the notation of the Example 3.11 we have gν = 1

2w0 ,
jν = j , Jν = J . Therefore J(µ) > J(ν) = −k2λ(Ω) for every µ ∈ M0(Ω) with µ 6= ν .
The conclusion follows from (3.16) and (3.17).
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