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Abstract

We study the asymptotic behaviour in terms of Γ-convergence of the following one dimen-
sional energy

Fε(u) = µε

∫
I

∫
I

|u(x) − u(y)|2

|x − y|2 dx dy + ηε

∫
I

W

(
u(x)

ε

)
dx

where I is a given interval, W is a one-periodic potential that vanishes exactly on Z.
Different regimes for the asymptotic behaviour of the parameter µε and ηε are consid-

ered. In a very diluted regime we get a limit defined on BV (I) and proportional to the
total variation of u. In this particular case we also consider the limit of a suitable boundary
value problem for which we characterize the second order Γ-limit.
The study under consideration is motivated by the analysis of a variational model for a very
important class of defects in crystals, the dislocations, and the derivation of macroscopic
models for plasticity.
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1 Introduction

Dislocations are, at the mesoscopic level, line defects in crystals that lie on a slip plane and
are due to plastic slips that are not compatible with the crystal structure. In a recent paper
[17] a phase field model for dislocations has been proposed. Mathematically speaking, after a
renormalization, the free energy consists on a 2D singular perturbation of a non linear potential
with infinitely many, periodically distributed, wells, of the form

Eσ(ξ) =
∫

Q

∫
Q

K(x− y)|ξ(x)− ξ(y)|2 dx dy +
1
σ

∫
Q

W (ξ) dx . (1.1)
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Here Q is the unit square in R2, W is one-periodic, non-negative and vanishes exactly on
the integers Z, and the nonlocal part of the energy behaves like the H1/2 semi norm (i.e.
K(t) ∼ |t|−3 as t → 0). In this variational model the phase field ξ can be interpreted as the slip
field measured in units of the Burgers vector b. The non local term is due to the long range
elastic energy induced by the slip ξb; i.e., obtained by minimizing the isotropic elastic energy of
the cylinder Q×R subject to suitable lateral boundary conditions and the constraint that the
slip along the plane {x3 = 0} is given, that is U+−U− = ξb on Q×{0} where [U ] := U+−U−

is the jump of the displacement U : Q ×R → R3 across the plane {x3 = 0}. The non linear
potential W penalizes slips that are not compatible with the crystalline structure and the small
parameter σ is proportional to the lattice parameter |b|.

In [13] the asymptotic behaviour for a scaled version of (1.1) has been studied in terms of
Γ-convergence. More precisely the Γ-limit of the functional

1
| lnσ|

Eσ

is finite on all functions ξ ∈ BV (Q,Z) and it is given by a line tension energy of the form∫
Sξ

γ(νξ)|[ξ]| dH1 ,

where Sξ is the jump set of ξ and νξ its normal vector. In terms of the application to the problem
of dislocations, the quantity | lnσ| represents the energy of the core of a single dislocation line.
As a consequence the scaling under consideration in [13] is based on the assumption that the
slip fields are of the order of the Burgers vector, i.e., |[U ]| ∼ |b| or ξ ∼ 1; and the limit can be
interpreted as a mesoscopic regime at which one can still see the line structure. On the other
hand in the study of the macroscopic plastic behaviour one would expect the jumps of the
displacement of order larger than |b|.

In this paper we give a complete analysis of the one dimensional problem, under the general
condition |[U ]| >> |b|.

1.1 Heuristic derivation of the scaling

We start by rewriting in scaled variables the result in [13] which can be schematically summa-
rized as follows

[ξσ]2H1/2(Q) +
1
σ

∫
Q

W (ξσ)dx ∼ | lnσ||Dξ|(Q),

where [ξ]H1/2(Q) denotes the H1/2 seminorm in Q and ξσ → ξ in energy (ξσ is a recovery sequence
for ξ). To this end we introduce a parameter δ = δσ of the order of the slip; i.e. δσ ∼ |[U ]|. We
will be interested in the regime δσ >> σ. Recalling that the slip satisfies |[U ]| ∼ ξσ we introduce
a new variable w = σ

δσ
ξ that represents a normalized slip in terms of δσ and we rewrite the

energy as

Eσ(wσ, Q) =
(

δσ

σ

)2

[wσ]2H1/2(Q) +
1
σ

∫
Q

W

(
δσ

σ
wσ

)
dx ∼ δσ

σ
| lnσ||Dw|(Q).

This asymptotic analysis can be refined taking into account the non local character of the first
term in the energy (1.1). Taking a partition of Q made of sufficiently small subsets Qi we argue
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that

Eσ(wσ, Q) ∼
∑

i

Eσ(wσ, Qi) +
(

δ

σ

)2

[wσ]2H1/2(Q),

and from the additivity of the total variation of w we get∑
i

Eσ(wσ, Qi) ∼
δσ

σ
| lnσ||Dw|(Q).

In other words it is possible to show that the leading energy contribution in the result of [13] is
due to the non local part of the energy (1.1) and it is concentrated in a neighbourhood of the
diagonal of Q×Q (see also Corollary 3.9). As a consequence the heuristic asymptotic expansion
can be refined as follows

Eσ(w) ∼ δσ

σ
| lnσ||Dw|(Q) +

(
δσ

σ

)2

[w]2H1/2(Q)

=
δσ

σ
| lnσ|

(
|Dw|(Q) +

δσ

σ| lnσ|
[w]2H1/2(Q)

)
. (1.2)

Both the prefactors δσ| lnσ|/σ and (δσ/σ)2 are diverging, so that depending on the different
choices of δσ, with δσ/σ → +∞, we get three different regimes.

In view of (1.2) the three regimes are identified by the value of the following limit

lim
σ→0+

δσ

σ| lnσ|
= Ξ.

Specifically we have the three asymptotic behaviours:

Ξ = 0. The leading pre-factor is the one in front of the total variation; hence, we scale the
energies by δσ

σ | lnσ| and get by (1.2)

δσ

σ| lnσ|
[w]2H1/2(Q) +

1
δσ| lnσ|

∫
Q

W

(
δσ

σ
w

)
dx ∼ |Dw|(Q).

Ξ ∈ (0,+∞). The two pre-factors are of the same order; scaling the energies by δσ

σ | lnσ| in
(1.2) entails

δσ

σ| lnσ|
[w]2H1/2(Q) +

1
δσ| lnσ|

∫
Q

W

(
δσ

σ
w

)
dx ∼ |Dw|(Q) + Ξ [w]2H1/2(Q).

Ξ = +∞. The leading pre-factor is the one in front of the H1/2 seminorm; hence, scaling the
energies in (1.2) by (δσ/σ)2 yields

[w]2H1/2(Q) +
σ

δ2
σ

∫
Q

W

(
δσ

σ
w

)
dx ∼ [w]2H1/2(Q).
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1.2 The Γ-convergence results

Our results make rigorous, in the one dimensional case, the heuristic computations carried out
above. More precisely we study the asymptotic behaviour in terms of Γ-convergence of the
following functional

Fε(u) =

µε[u]2H1/2(I) + ηε

∫
I

W

(
u(x)

ε

)
dx u ∈ H1/2(I)

+∞ otherwise.

Depending on the different regimes for the parameters µε and ηε we obtain the three limits
described in the previous section. In particular the first regime can be reduced to the case when
µε → 0, ηε → ∞ and εµε ln ηε → K ∈ (0,+∞) as ε → 0+. In this case the functional Fε has
the classical structure of a singular perturbation (with regularizing effects) of a multiple well
potential, as studied by Modica and Mortola [21] with the regularization given by the Dirichlet
integral. As in [21] the distance between the wells tends to zero, the competition between the
regularizing term and the penalization force the optimal sequences to make many small jumps
so that they may converge in L1 to any function with bounded variation and in energy to
its total variation. Indeed, the limiting functional is given by 2K|Du|(I). The role of the non
local singular perturbation has been first studied by Alberti, Bouchitté and Seppecher in [2] for
the case of a finite number of wells and then considered by Kurzke [18] in the case of infinitely
many wells in the one dimensional case (for similar results in higher dimensions see [13], [19], [8]
and references therein). Our strategy follows closely the one in [2] and [18] with the additional
difficulty that the wells are not well separated.

We also consider a boundary value problem. Here the presence of the non local regularization
requires some extra care in the definition of the boundary conditions. We show that the bound-
ary data are compatible with the Γ-convergence result. In this case the limit functional turns
out to be very degenerate and in order to get more pieces of information about the minimizers
we perform a further analysis computing the next term in the so-called Γ-development (see [4]
and [6]). In the same spirit are the results of Cabré and Consul [7] and Kurzke [19] where they
compute the so-called renormalized energy of the minimizers (see also [5] and [9]).

The plan of the paper is the following. In Section 2 we state all the results that we will
prove: the results corresponding to the regimes described above (see Theorems 2.2, Corollary
2.7, and Remark 2.8) and the ones concerning the second order Γ-limit for the first regime (see
Theorems 2.3 and 2.4). Section 3 is devoted to the study of the asymptotic behaviour of (Fε)
in the most diluted regime (the one corresponding to Ξ = 0). The main part of the proofs is
contained in that section, in particular a sharp lower bound that permits to deduce later in
Section 4 also the second order expansion in this regime (see Proposition 4.3 and Proposition
4.4).
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2 Statements of the results

The main goal of the paper is to study of the asymptotic behaviour as ε → 0+ of the functional
Fε : L1(I) → [0,+∞] defined by

Fε(u) =

µε[u]2H1/2(I) + ηε

∫
I

W

(
u(x)

ε

)
dx u ∈ H1/2(I)

+∞ otherwise.

(2.1)

Here [u]H1/2(I) denotes the seminorm of u in the Sobolev fractional space H1/2 on the interval
I = (α, β) ⊂ R; i.e.,

[u]2H1/2(I) =
∫

I

∫
I

|u(x)− u(y)|2

|x− y|2
dx dy .

The nonlinear potential is given by a non-negative Z-periodic continuous function W with
W−1(0) = Z and for which there exist p > 0, δ > 0 and c > 0 such that

W (t) ≥ c|t|p (2.2)

for any |t| ≤ δ. The positive parameters µε and ηε always satisfy the conditions

lim
ε→0+

εµε ln ηε = K ∈ [0,+∞) , (2.3)

ηε → +∞ and µε → µ as ε → 0+. We will get different behaviours depending on the value of
µ = limε µε, whether it is 0, finite or +∞.

Remark 2.1 The asymptotic behaviour for the functional Fσ : L1(I) → [0,+∞] defined by

Fσ(u) =
δσ

σ| lnσ|
[u]2H1/2(I) +

1
δσ| lnσ|

∫
I

W

(
δσ

σ
u(x)

)
dx

and discussed in Section 1.1 can be deduced from the study of Fε defined in (2.1) by setting
ε = σ/δσ, µε ∼ δσ

σ| ln σ| and ηε = 1
δσ| ln σ| . With this choice

lim
ε→0+

εµε ln ηε = lim
σ→0+

| ln δσ|
| lnσ|

,

and the three regimes discussed in Section 1.1 are given by the three cases µ = 0, µ ∈ (0,+∞)
and µ = +∞.

As for the first regime we have the following result (see Propositions 3.4 and 3.8 in Section
3).

Theorem 2.2 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. The family (Fε)
in (2.1) Γ-converges w.r.t. the L1 topology to the functional F : L1(I) → [0,+∞] given by

F (u) =

{ 2K|Du|(I) if u ∈ BV (I)

+∞ otherwise.

More precisely
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(i) Compactness: if supε Fε(uε) < +∞, then there exist u ∈ BV (I), a subsequence (uεk
) and

(ak) ⊂ R for which (uεk
− ak) converges to u in Lp(I) for every p ∈ [1,+∞).

(ii) Lower bound inequality: if uε → u in L1(I), we have

lim inf
ε→0+

Fε(uε) ≥ F (u). (2.4)

(iii) Upper bound inequality: for every u ∈ L1(I) there exists (uε) ⊂ H1/2(I) such that uε → u
in L1(I) and

lim sup
ε→0+

Fε(uε) ≤ F (u).

The result obtained above generalizes the ones contained in [2], [18] and to some extent Theorem
9 in [13] to the case of accumulating zeros. Its proof is partly inspired by those, although some
non-trivial points have to be fixed.

In terms of the application to the dislocation problem, we are considering a very diluted
regime, so that the total variation of the phase field represents the self interaction of the
dislocation lines. In view of the heuristic performed in Section 1.1 we however expect that the
regularization due to the long range interaction between dislocations should also play a role.
Our aim is then to look at the next order for the energy and identify a term that accounts for
this effect. To make this asymptotic expansion rigurous in terms of Γ-convergence we need to
specify the type of minimum problem we are considering.

In the following we will consider the case of boundary conditions u(α) = 0 and u(β) = L,
with L > 0 fixed. The non local regularization and the fact that the limit energy is defined
in BV require a suitable definition of the boundary condition. For a given δ ∈ (0, |I|/2) we
consider the spaces

Dε
L(I) = {u ∈ H1/2(I) : u

(α,α+δ)
≡ 0, u

(β−δ,β)
≡ ε [L/ε]}, (2.5)

and introduce the energies Gε : L1(I) → [0,+∞] given by

Gε(u) =

Fε(u) if u ∈ Dε
L(I)

+∞ otherwise in L1(I).
(2.6)

This stronger condition is necessary in order to take the boundary data to the limit. A more
detailed explanation of this choice will be discussed in Section 4.

Slightly modifying the argument used to prove the Γ-convergence result in Theorem 2.2 we
can infer an analogous statement in case boundary data are taken into account.

Theorem 2.3 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. The family of
functionals (Gε), Γ-converges w.r.t. the L1 topology to the functional G : L1(I) → [0,+∞]
defined by

G(u) =

 2K|Du|(I) if u ∈ DL ∩BV (I),

+∞ otherwise,

where
DL(I) = {u ∈ H1/2(I) : u

(α,α+δ)
≡ 0, u

(β−δ,β)
≡ L}.
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The above theorem together with the compactness result (i) of Theorem 2.2 imply the conver-
gence of the minimum problems minGε to the corresponding minimum of G, together with the
convergence of the minimizing sequences to minimum points of G (see Corollary 7.17 [10]).

Clearly the minimization of G does not give many pieces of information on the minimizers of
Gε. Indeed, the minimum value of G on L1(I) is 2KL, and it is achieved by any non decreasing
function in BV ∩ DL(I).

Following [4], more accurate pieces of information on the minimizers of Gε can be recovered
by studying the asymptotic Γ-development of (Gε). In order to do that, by keeping the same
notation introduced in Theorem 2.3, we define for any u ∈ L1(I)

G1
ε(u) =

Gε(u)− 2[L/ε]ε2µε ln ηε

µε
, (2.7)

the scaling µε being suggested by the construction of the recovery sequence in the Γ-limit of Fε

(see (3.34)). In Section 4.2 (see Propositions 4.3 and 4.4) we prove

Theorem 2.4 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. Let ε = o(µε), let
(G1

ε) be the family defined in (2.7) and let G1 : L1(I) → [0,+∞] be given by

G1(u) =

 [u]2H1/2(I) u ∈ DL ∩BV (I), |Du|(I) = L

+∞ otherwise in L1(I).

Then

(i) Compactness: if supε G1
ε(uε) < +∞, then there exist u ∈ DL∩BV (I) such that |Du|(I) =

L, and a subsequence (uεk
) which converges to u in Lp(I) for every p ∈ [1,+∞).

(ii) (G1
ε) Γ-converges w.r.t. the L1 topology to the functional G1.

As remarked before, the first order Γ-limit energy arises only from the contribution of the non
local part of Gε concentrated on a neighbourhood of the diagonal. Thus, separating it from the
contribution far from the diagonal we are able to prove that the effect of rescaling Gε by µε is
to get the H1/2 seminorm in the limit (see Proposition 4.3).

Remark 2.5 From the result above we can easily deduce that if (uε) is a minimizing sequence
for Gε such that

Gε(uε) = minGε + o(µε) ,

then (uε) is a minimizing sequence also for the functional G1
ε; hence up to a subsequence it

converges to a minimum point for G1. Futhermore we get the following asymptotic expansion
for the minimizers

minGε = 2[L/ε]ε2µε ln ηε + µε minG1 + o(µε) .

Remark 2.6 By strict convexity G1 has a unique minimizer. By means of a qualitative analysis
of the related Euler-Lagrange equation, it is possible to prove that the behaviour of the minimizer
at α + δ and β − δ is of the type

√
x− α− δ and

√
β − δ − x,

respectively. If we interpretate this result in terms of the dislocations problem we recover the well
known fact (see for instance [16] and [20]) that for a pile up problem the dislocations accumulate
at the obstacle with a square root rate (see Figure 1 below).
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ε

0

L

Figure 1: Pile up of dislocations.

The analysis performed in this diluted regime (Ξ = 0) permits to deduce straightforward
the asymptotic behaviour of the remaining two cases. More precisely, in the case Ξ ∈ (0,+∞)
we will prove that the two terms in the heuristic expansion are of the same order and both
contribute to the limit energy.

Corollary 2.7 Assume that µε → µ ∈ (0,+∞) and (2.3) hold, then the family (Fε) in (2.1)
Γ-converges w.r.t. the L1 topology to the functional Fµ : L1(I) → [0,+∞] given by

Fµ(u) =

µ[u]2
H1/2(I)

+ 2K|Du|(I) if u ∈ BV (I) ∩H1/2(I)

+∞ otherwise.

Moreover, if supε Fε(uε) < +∞, then there exist u ∈ BV ∩ H1/2(I), a subsequence (uεk
) and

(ak) ⊂ R for which (uεk
− ak) converges to u in Lp(I) for every p ∈ [1,+∞).

Eventually, we deal with the case Ξ = +∞ which corresponds to µε → +∞. In this case we
have to rescale the energy in order to get a finite limit and study the Γ-limit of Fε/µε. This
identifies three other regimes and the corresponding asymptotic behaviours can be deduced
either from Theorem 2.2 or from Corollary 2.7.

Remark 2.8 The asymptotic behaviour of the functional Fσ for the dislocations problem in the
regime Ξ = +∞ corresponds to the Γ-limit of

Fε(u)
µε

=

 [u]2H1/2(I) +
ηε

µε

∫
I

W

(
u(x)

ε

)
dx u ∈ H1/2(I)

+∞ otherwise
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in the case when ε ln ηε

µε
= σ

δ ln σ
δ2 → 0. In view of Corollary 2.7 this gives

F∞(u) =

 [u]2
H1/2(I)

if u ∈ H1/2(I)

+∞ otherwise.

3 Proof of the Γ-convergence result

In this section we prove the Γ-convergence result for the family (Fε) stated in Theorem 2.2 as
well as some refinements concerning the localization of the energy contribution (see Corollaries
3.9 and 3.10).

The proof of Theorem 2.2 is split in the subsequent Proposition 3.4 and Proposition 3.8. In
particular, in the former we prove the compactness result as well as the lower bound inequality,
while the latter is devoted to the proof of the upper bound inequality.

In the following we need some more notation. In particular, we denote by Fε(·, A) the
localized version of Fε obtained by changing the domain of integration I into an open interval
A contained in I.

3.1 The compactness and the Γ-liminf inequality

The main tool in order to prove the compactness and the Γ-liminf inequality is the optimal
lower bound given by the following lemma (in the same spirit of what done in [2],[18]). Denote
by Au,t the t-super-level set of u in A, i.e. Au,t = {x ∈ A : u(x) > t}.

Lemma 3.1 Let θε ∈ (0, ε/4) and a non-constant u ∈ L∞ ∩H1/2(A), A being an interval, be
given. If r, s ∈ Z are such that

[
ess infA u

ε

]
≤ r < s ≤

[ ess supA u
ε

]
1, then

[u]2H1/2(A) ≥ 2(s− r)(ε− 2θε)2
(

ln
(
|Au,εs−θε

||A \Au,εr+θε
|

|A|2

)
− ln

(
|Br,s

ε |
|A|

))
, (3.1)

where Br,s
ε = ∪s

j=r(Au,εj+θε \Au,ε(j+1)−θε
).

Roughly speaking the proof goes as follows. After reducing to monotone functions, we have
to estimate the transition cost between two wells kε far away, it is then possible to show that it
is more convenient to make k-transitions of height ε rather than one of height kε (see inequality
(3.8)). Then an optimal lower bound follows essentially by a rearrangement of all the terms
involved.

As in [2] a lower bound for the energy of a function u on a transition between two wells
can be obtained by estimating the non local term with a double integral on suitably chosen
sublevels of u. In this direction we will often use the following remark.

Remark 3.2 Let (αi, βi) ⊂ I, i = 1, 2, be disjoint with β1 ≤ α2, then∫
(α1,β1)×(α2,β2)

1
|x− y|2

dxdy ≤ (β2 − α2)(β1 − α1)
(α2 − β1)2

, (3.2)

1Note that r and s satisfying the assumption of Lemma 3.1, always exist if ε is small enough.
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more precisely a direct computation yields∫
(α1,β1)×(α2,β2)

1
|x− y|2

dxdy = ln
(β2 − β1)(α2 − α1)
(β2 − α1)(α2 − β1)

. (3.3)

Proof of Lemma 3.1. Let us first assume u to be non-decreasing and consider the sets
Ai

ε := Au,εi−θε
\ Au,εi+θε

for i ∈ {r + 1, . . . , s − 1}. With a slight abuse of notation we also
denote Ar

ε := A \ Au,εr+θε
and As

ε := Au,εs−θε
. Then the sets Ai

ε, for i ∈ {r, . . . , s}, and
Au,εj+θε

\Au,ε(j+1)−θε
for j ∈ {r, . . . , s} provide a disjoint ordered partition of A into intervals.

By using the notations introduced above and by taking into account (3.3) we get

[u]2H1/2(A) ≥ 2
∑

r≤i<j≤s

∫
Ai

ε×Aj
ε

((j − i)ε− 2θε)2

|x− y|2
dxdy

=
∑

r≤i<j≤s

Λε
j−i ln

(supAj
ε − supAi

ε)(inf Aj
ε − inf Ai

ε)
(supAj

ε − inf Ai
ε)(inf Aj

ε − supAi
ε)

, (3.4)

where
Λε

k = 2(εk − 2θε)2 (3.5)

for every k ≥ 1 and Λε
0 = 0.

Let us denote now ai
ε = |Au,εi−θε

\ Au,εi+θε
| and bi

ε = |Au,εi+θε
\ Au,ε(i+1)−θε

|. Since u is
non decreasing and belongs to H1/2(A), it is continuous and then ai

ε and bi
ε are strictly positive

for every i ∈ {r, . . . , s}. Moreover, let aj,k
ε =

∑k
i=j ai

ε if k ≥ j and 0 otherwise, and define bj,k
ε

analogously. With this notation we have

supAj
ε − supAi

ε = ai+1,j
ε + bi,j−1

ε , inf Aj
ε − inf Ai

ε = ai,j−1
ε + bi,j−1

ε ,

supAj
ε − inf Ai

ε = ai,j
ε + bi,j−1

ε , inf Aj
ε − supAi

ε = ai+1,j−1
ε + bi,j−1

ε .

Then we can rewrite (3.4) as

[u]2H1/2(A) ≥
∑

r≤i<j≤s

Λε
j−i

[
ln
(

1 +
ai

ε

ai+1,j−1
ε + bi,j−1

ε

)
− ln

(
1 +

ai
ε

ai+1,j
ε + bi,j−1

ε

)]

=
s−1∑
i=r

s−i∑
k=1

Λε
k

[
ln
(

1 +
ai

ε

ai+1,i+k−1
ε + bi,i+k−1

ε

)
− ln

(
1 +

ai
ε

ai+1,i+k
ε + bi,i+k−1

ε

)]

≥
s−1∑
i=r

s−i∑
k=1

Λε
k

[
ln

(
1 +

ai
ε

ai+1,i+k−1
ε + |Br,s

ε |

)
− ln

(
1 +

ai
ε

ai+1,i+k
ε + |Br,s

ε |

)]
,

(3.6)

where the last inequality follows from the fact that the functions

t ∈ [0,+∞) → ln
(

1 +
ai

ε

ai+1,i+k−1
ε + t

)
− ln

(
1 +

ai
ε

ai+1,i+k
ε + t

)
(3.7)

are non-negative and decreasing for every i, k.
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By the convexity of t → 2t2 we deduce 2Λε
k+1 < Λε

k+2 + Λε
k, which in turn, by induction,

implies that the sequence (k−1Λε
k)k≥1 is increasing, and thus

kΛε
1 ≤ Λε

k. (3.8)

Inequality (3.8), together with the fact that the function in (3.7) is positive and a rearrangement
of the terms in (3.6), gives

[u]2H1/2(A) ≥ Λε
1

s−1∑
i=r

ln
(

1 +
ai

ε

|Br,s
ε |

)
(3.9)

−Λε
1

s−1∑
i=r

(s− i) ln

(
1 +

ai
ε

ai+1,s
ε + |Br,s

ε |

)
+ Λε

1

s−2∑
i=r

s−i−1∑
k=1

ln

(
1 +

ai
ε

ai+1,i+k
ε + |Br,s

ε |

)
.

Set Li,j
ε = ln

(
(|Br,s

ε |+ ai,j
ε )/|A|

)
, then by its very definition Li,j

ε ≤ 0 for every i, j, Lr,s
ε = 0,

and Li,j
ε = ln(|Br,s

ε |/|A|) for i > j. By using this notation, the right hand side of (3.9) can be
rewritten as

[u]2H1/2(A) ≥ Λε
1

s−1∑
i=r

Li,i
ε − (s− r)Λε

1 ln
(
|Br,s

ε |
|A|

)

−Λε
1

s−1∑
i=r

(s− i)
(
Li,s

ε − Li+1,s
ε

)
+ Λε

1

s−2∑
i=r

s−i−1∑
k=1

(
Li,i+k

ε − Li+1,i+k
ε

)
= Λε

1

s−1∑
i=r

(
Lr,i

ε + Li+1,s
ε − ln

(
|Br,s

ε |
|A|

))
. (3.10)

Eventually, since Lr,i
ε ≥ Lr,r

ε , Li+1,s
ε ≥ Ls,s

ε for every i ∈ {r, . . . , s− 1}, we get by (3.10)

[u]2H1/2(A) ≥ Λε
1(s− r)

(
Lr,r

ε + Ls,s
ε − ln

(
|Br,s

ε |
|A|

))
,

from which the conclusion follows.
In order to remove the additional assumption on u to be non-decreasing we notice that (3.1)

involves only the measure of sub-/super-level sets of u. Then, to prove (3.1) in the general
case it is enough to apply the previous argument to the non-decreasing rearrangement u∗ of u,
since the two functions are equi-distributed and moreover [u]H1/2(A) ≥ [u∗]H1/2(A) (see [14] or
Theorem 5.8 [1]).

By combining (3.1) and the potential term we are now able to get a pointwise lower bound
for the energies Fε.

Corollary 3.3 Fix θε = ε1+1/p. Under the same assumptions and keeping the same notations
of Lemma 3.1 it holds 2

Fε(u, A) ≥ 2µε(s− r)(ε− 2θε)2 ln
(
|Au,εs−θε

||A \Au,εr+θε
|

|A|2

)
+2µε(s− r)(ε− 2θε)2 ln

(
ωεηε|A|

2µε(ε− 2θε)2(s− r)

)
(3.11)

2As in Lemma 3.1 the assumptions of Corollary 3.3 are satisfied if ε is small enough.
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where ωε = infd(y,Z)≥θε/ε W .

Proof. By the very definition of Br,s
ε it holds∫

A

W

(
u(x)

ε

)
dx ≥ ωε|Br,s

ε |,

thus by applying (3.1) one gets

Fε(u, A) ≥ 2µε(s− r)(ε− 2θε)2 ln
(
|Au,εs−θε ||A \Au,εr+θε |

|A|2

)
−2µε(s− r)(ε− 2θε)2 ln

(
|Br,s

ε |
|A|

)
+ ηεωε|Br,s

ε |.

By optimizing the right hand side above as a function of |Br,s
ε | it is easy to see that the minimum

value is attained in 2µε(ε−2θε)2(s−r)
ηεωε

, which gives

Fε(u, A) ≥ 2µε(s− r)(ε− 2θε)2 ln
(
|Au,εs−θε

||A \Au,εr+θε
|

|A|2

)
+2µε(s− r)(ε− 2θε)2 ln

(
ωεηε|A|

2µε(ε− 2θε)2(s− r)

)
+ ηεωε

2µε(ε− 2θε)2(s− r)
ηεωε

and implies (3.11).

We are now in a position to prove the compactness and the lower bound results stated in
Theorem 2.2.

Proposition 3.4 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. Let (uε) ⊂
H1/2(I), then

(i) Compactness: if supFε(uε) < +∞, then there exist u ∈ BV (I), a subsequence (uεk
) and

(zk) ⊂ Z for which (uεk
− εkzk) converges to u in Lp(I) for every p ∈ [1,+∞).

(ii) Lower bound inequality: if uε → u in L1(I), we have

lim inf
ε→0+

Fε(uε) ≥ F (u). (3.12)

The proof of the compactness follows in part the strategy developed in [18] for the case in
which W has countably but well separated zeros. Further, in the same paper an optimal estimate
in the Orlicz space eL is proved (see Remark 3.6). This result is based on a fine estimate of
the decay of the super-levels of the sequence uε combined with the well known Trudinger’s
embedding for fractional Sobolev spaces (see [15], [23]) that we recall below for the reader’s
convenience.

Theorem 3.5 There are constants C,C ′ > 0 such that for every u ∈ H
1/2
0 (A), the following

estimate holds ∫
A

exp

(
C|u(x)|2

[u]2
H1/2(A)

)
dx ≤ C ′|A|,

where H
1/2
0 (A) denotes the closure of C∞

0 (A) w.r.t. the seminorm [·]H1/2(A).
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Proof of Proposition 3.4. Compactness. Let M > 0 be such that supε Fε(uε) ≤ M , and
denote by med(uε, I) a median of uε in I, i.e., |I−uε,−t| ≤ |I|/2 for t < med(uε, I) and |Iuε,t| ≤
|I|/2 for t > med(uε, I), and let zε = [med(uε, I)/ε] ∈ Z.

If we define vε = uε − εzε, it is clear from the definition of zε that |I \ Ivε,ε| ≥ |I|/2 and
|Ivε,−ε| ≥ |I|/2.

We claim that (vε) has a subsequence pre-compact in Lp(I) for every p ∈ [1,+∞). The proof
of the claimed assertion will be split into several steps.

Step 1. An estimate on the super level sets: We show that there exist ε0 > 0, such that for
every ε ∈ (0, ε0) and t ≥ 16M/K it holds

|I|vε|,t| ≤ 2[(2µεεt) ∨ 1]|I|e−
M

2µεεt . (3.13)

In order to prove (3.13) it is clear that we can assume |I|vε|,t| > 0, being otherwise the inequality
trivial. Furthermore, since I|vε|,t = Ivε,t ∪ I−vε,t we can estimate the measures of the latter two
sets separately. Moreover, we choose M large enough such that 16M/K > 1.

Fix ε0 ∈ (0, 1/2) such that 2µεε ln(ωεηε|I|) ≥ K for ε ∈ (0, ε0), then by applying Corol-
lary 3.3 with r = 1 and s = [ t

ε ] we get

M ≥ Fε(uε) = Fε(vε)

≥ 2µε

([
t

ε

]
− 1
)

(ε− 2θε)2
[
ln

(
|Ivε,ε[ t

ε ]−θε
||I \ Ivε,ε+θε

|
|I|2

)
+ ln

(
ωεηε|I|
2µεεt

)]

≥ 2µε

([
t

ε

]
− 1
)

(ε− 2θε)2
[
ln
(
|Ivε,t|
2|I|

)
− (ln(2µεεt) ∨ 0) +

K

2µεε

]
. (3.14)

To obtain the last inequality we used |Ivε,ε[ t
ε ]−θε

| ≥ |Ivε,t|, |I \ Ivε,ε+θε
| ≥ |I \ Ivε,ε| ≥ |I|/2 and

that, thanks to the choice of ε0, 2µεε ln(ωεηε|I|) ≥ K. Since θε ∈ (0, ε/4), the fact that ε < 1/2
and t > 16M/K > 1 implies that ε

4 (t − 2ε) ≤
([

t
ε

]
− 1
)
(ε − 2θε)2 ≤ εt and that t − 2ε > t

2 .
Thus from (3.14) we get

M ≥ t

(
2µεε ln

(
|Ivε,t|
2|I|

)
− 2µεε(ln(2µεεt) ∨ 0) +

K

8

)
and so

|Ivε,t| ≤ 2|I| exp

(
M − K

8 t

2µεεt
+ ln(2µεεt) ∨ 0

)
.

To derive the desired inequality for |Ivε,t| notice that exp (ln(2µεεt) ∨ 0) = (2µεεt)∨ 1 and that
M − K

8 t ≤ −M on (16M/K,+∞).
Obviously, the very same proof applies to −vε and t in order to estimate |I−vε,t|, so that

(3.13) follows.

Step 2. (vε) is weakly pre-compact in L1(I).
In this step we improve the pointwise bound for the measure of the super-level sets of |vε|
obtained in Step 1 to a uniform bound in ε. From this we deduce the equi-integrabilty of
the sequence vε, which in turn gives the desired pre-compactness property by the Dunford-
Pettis’ criterion (see Proposition 1.3 [22]). More precisely, we show that there exist two positive
constants c1, c2 such that for every t ≥ 16M/K and for all ε small enough we have

|I|vε|,t| ≤ c1e
−c2t. (3.15)
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As before we estimate |Ivε,t| and then deduce the same inequality for |I−vε,t|. Furthermore,
without loss of generality we may assume vε to be non-decreasing (see [14] or Theorem 5.8 [1]).

In order to improve estimate (3.13) the idea is to make use of the Trudinger’s inequality
stated in Theorem 3.5. This requires to modify vε. Set Ĩ = (α, 2β − α) and let ṽε : Ĩ → R be
the function

ṽε(x) =
{

vε(x) x ∈ (α, β)
vε(2β − x) x ∈ (β, 2β − α).

It is easy to check that ṽε ∈ H1/2(Ĩ) with [ṽε]2H1/2(Ĩ)
≤ 4[vε]2H1/2(I)

3. Then we define v̂ε =

(ṽε −N)+, with N = 16M/K. Hence v̂ε ∈ H
1/2
0 (Ĩṽε,N )

By applying Theorem 3.5 above to v̂ε on the interval A = Ĩṽε,N , Chebychev’s inequality
yields, for every t > N ,

|Ĩṽε,t| ≤ C ′|Ĩṽε,N | exp

(
− Ct2

[v̂ε]2H1/2(Ĩṽε,N )

)
≤ C ′|Ĩṽε,N |e−Cµεt2/4M , (3.16)

where we also used that µε[v̂ε]2H1/2(Ĩṽε,N )
≤ 4M . Moreover, since |Ĩṽε,s| = 2|Ivε,s| for any s, we

have by (3.16), Step 1

|Ivε,t| ≤ C ′|Ivε,N |e−
Cµεt2

4M ≤ c[(2µεεN) ∨ 1]e−
M

2εµεN−
Cµεt2

4M .

If ε is small enough to guarantee that 2µεεN < 1 and we apply Young’s inequality to the
previous estimate we get

|Ivε,t| ≤ c1e
−c2t

for some positive constants c1 and c2. Obviously, a similar inequality holds for |I−vε,t| if t ≥
16M/K, so that the claim follows.

Step 3. Ruling-out oscillations: (vε) is pre-compact w.r.t. the convergence in measure.
By Step 2 we may apply the Fundamental Theorem of Young Measures (see Theorem 6.2 [22])
and extract a sub-sequence (vεk

) which generates a Young measure (νx) on I.
For every open subset A ⊆ I, let

LA = sup
{

t ∈ R : lim inf
k→+∞

|Avεk
,t| > 0

}
,

lA = inf
{

t ∈ R : lim inf
k→+∞

|A \Avεk
,t| > 0

}
,

and note that lA ≤ LA and lA, LA ∈ (−16M/K, 16M/K) by (3.13). Moreover, for every t ∈ R
we have (as follows easily from Theorem 6.2 [22])

lim inf
k→+∞

|Avεk
,t| = lim inf

k→+∞

∫
A

χ(t,+∞)(vεk
(x))dx

≥
∫

A

∫
R

χ(t,+∞)(λ)dνx(λ)dx =
∫

A

νx((t,+∞))dx,

3Indeed, we have [ṽε]2
H1/2(Ĩ)

= [vε]2
H1/2(I)

+ [ṽε]2
H1/2(Ĩ\I)

+ 2
∫

I×(Ĩ\I)

∣∣ vε(x)−ṽε(y)
x−y

∣∣2 dxdy. Then, an easy

change of variables gives [ṽε]2
H1/2(Ĩ\I)

= [vε]2
H1/2(I)

, and
∫

I×(Ĩ\I)

∣∣ vε(x)−ṽε(y)
x−y

∣∣2 dxdy ≤ [vε]2
H1/2(I)

.
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and analogously

lim inf
k→+∞

|A \Avεk
,t| ≥

∫
A

νx((−∞, t))dx.

From this, one infers sptνx ⊆ [lA, LA] for a.e. x ∈ A and, being u(x) = 〈Id, νx〉 the barycenter
of νx, we have u(x) ∈ [lA, LA] for a.e. x ∈ A.

With fixed x ∈ I, for every r ∈ (0, d(x, ∂I)) we claim that

lim inf
k→+∞

Fεk
(uεk

, Ir(x)) ≥ 2K
(
LIr(x) − lIr(x)

)
, (3.17)

where Ir(x) = (x−r, x+r). Taking the latter inequality for granted it is easy to prove the conclu-
sion of Step 3. Indeed, since supε Fε(uε) ≤ M the set {x ∈ I : limr (lim infk Fεk

(uεk
, Ir(x))) ≥

1
n} must be finite for every n ∈ N, and thus estimate (3.17) implies the existence of a countable
set J such that for every x ∈ I \ J

lim
r→0+

(
LIr(x) − lIr(x)

)
= 0.

Hence, νx = δu(x) for x ∈ I \J , and so the sequence (vεk
) converges in measure to u (see Lemma

6.3 [22]).
In the following we justify (3.17). We may assume that LIr(x) > lIr(x), being otherwise the

statement trivial. Fix lIr(x) < t < T < LIr(x), and apply Corollary 3.3 to uε with reference
interval A = Ir(x), rε =

[
t
ε

]
, sε =

[
T
ε

]
and ε small enough to ensure rε < sε, to get

Fε(uε, A) ≥ 2µε(sε − rε)(ε− 2θε)2 ln
(
|Auε,εsε−θε ||A \Auε,εrε+θε |

|A|2

)
+2µε(sε − rε)(ε− 2θε)2 ln

(
ωεηε|A|

2µε(sε − rε)(ε− 2θε)2

)
. (3.18)

Notice that the choice of t, T implies that the first term on the right hand side of (3.18) above
is infinitesimal as ε → 0+. Moreover, ε lnωε is infinitesimal as ε → 0+ by the continuity
assumption on W , (2.2) and the choice of θε. Thus, from (3.18) we may conclude that

lim inf
k→+∞

Fεk
(uεk

, Ir(x)) ≥ 2K (T − t) ,

and then (3.17) follows as t → l+Ir(x) and T → L−Ir(x).

Step 4. Conclusion: (vε) is pre-compact in Lp(I) for any p ∈ [1,+∞).
Step 2 and Step 3 imply that (vε) is pre-compact in L1(I), the conclusion is then straightforward
thanks to (3.15).

We are now in a position to prove the lower bound inequality essentially by localizing (3.11)
and arguing as in Step 3 above.

Lower bound inequality. Without loss of generality we may assume uε → u a.e. in I, and

lim inf
ε→0+

Fε(uε) ≤ M < +∞. (3.19)
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Moreover, remark that 4

Fε(uε) ≥ Fε

(
uε ∧ ε

[
k

ε

]
∨
(
−ε

[
k

ε

]))
and that, by Step 3, u ∈ L∞(I), with ‖u‖L∞ ≤ 16M/K; hence we may assume (uε) equi-
bounded in L∞(I).

For a given partition (Ij)r
j=1 of I into pairwise disjoint intervals, fix 1 ≤ j ≤ r for which u

is not constant on Ij , so that we may also assume uε not constant on Ij .
We can argue as in (3.18) of Step 3 with A = Ij , noticing that in this case LIj = ess supIj

u

and lIj
= ess infIj

u as follows from the convergence of (uε) to u in L1(I). Thus, (3.17) rewrites
as

lim inf
ε→0+

Fε(uε, Ij) ≥ 2KoscIj
u , (3.20)

where oscAu = ess supA u− ess infA u denotes the essential oscillation of u on A. Actually, the
latter estimate holds for every 1 ≤ j ≤ r, being trivial in case u is constant on Ij . Then, the
sub-additivity of the inferior limit operator implies

lim inf
ε→0+

Fε(uε) ≥ 2K
r∑

j=1

oscIj
u,

from which, by passing on the supremum over the partitions, we deduce u ∈ BV (I) and

lim inf
ε→0+

Fε(uε) ≥ 2K|Du|(I).

Remark 3.6 As a consequence of the estimate (3.15) in the proof of the compactness result
we get an apriori estimate in the Orlicz space eL for any sequence with equi-bounded energy.
As in [18] one can give an example of a sequence with equi-bounded energy that is not bounded
in L∞. This in essence shows that the estimate in eL is optimal.

Remark 3.7 Note that the argument performed in Step 3 in the above proof that gives (3.20)
is still valid if µε → µ ∈ [0,+∞).

3.2 The Γ-limsup inequality

In this subsection we establish the upper bound inequality which completes the proof of Theorem
2.2.

As common we first prove the Γ-limsup inequality fo a subclass of functions dense in the L1

convergence and in a topology for which the limit energy is continuous.
We choose piecewise affine and piecewise strictly monotone functions and provide for those

functions a recovery sequence. This class satisfies the requirements above and also provide the
upper bound for the second order development of Section 4.2 (see Theorem 2.4 and Proposition

4This follows by taking into account that by truncation the oscillation of uε is reduced and so is the H1/2

semi-norm, and that W ≥ 0, while ±
[

k
ε

]
∈ W−1(0).
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4.4). To this aim we keep track of all the vanishing quantities appearing in the computations
below, with their exact infinitesimal order.

To simplify the calculations we need some more notation: For any u ∈ H1/2(I) and any
L2-measurable set Ω ⊂ I × I consider the locality defect of Fε

D(u, Ω) =
∫

Ω

∣∣∣∣u(x)− u(y)
x− y

∣∣∣∣2 dxdy .

The terminology, introduced in [1], is justified since given two disjoint intervals A,B ⊆ I, it
holds

Fε(u, A ∪B) = Fε(u, A) + Fε(u, B) + 2µεD(u, A×B). (3.21)

According to Lemma 3.1 and Corollary 3.3 we build up a sequence which lies as much as
possible in the ε-wells of the potential and has all the transitions of height ε.

Proposition 3.8 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. For every
u ∈ L1(I) there exists (uε) ⊂ H1/2(I) such that uε → u in L1(I) and

lim sup
ε→0+

Fε(uε) ≤ F (u).

Proof. Without loss of generality we assume u ∈ BV (I). Moreover, the further reduction to
piecewise affine functions can be done since such a class is dense in BV (I) with respect to
BV strict convergence, namely both the convergence of the functions in L1 and of their total
variations on I. Actually, it is not restrictive to also assume such functions being piecewise
strictly monotone. The conclusion then follows by a standard diagonal argument.

Let (xi
ε) be an increasing ordering of u−1(εZ), and set x0

ε = inf I, xNε+1
ε = sup I, where

Nε = #u−1(εZ). Let γε be a positive infinitesimal (which we will choose appropriately later
on) satisfying γε = o(ε). Define the piecewise affine functions uε : I → R by uε = Pε(u) where

Pε(u)(x) :=



u(xi
ε) + (u(xi+1

ε )− u(xi
ε))
(

x− xi
ε

γε
∧ 1
)

x ∈ [xi
ε, x

i+1
ε ],

i ∈ {1, . . . , Nε − 1}

u(x1
ε) x ∈ [x0

ε, x
1
ε]

u(xNε
ε ) x ∈ [xNε

ε , xNε+1
ε ].

(3.22)

Notice that uε ∈ C0 ∩H1/2(I) and

‖uε − u‖L∞(I) ≤ ε.

For ε sufficiently small, xi
ε + γε ∈ (xi

ε, x
i+1
ε ) for any i ∈ {1, . . . , Nε − 1}. Thus, we may define

the sets Ai
ε = [xi

ε, x
i
ε + γε], Ci

ε = [xi
ε + γε, x

i+1
ε ], C0

ε = [x0
ε, x

1
ε], and CNε

ε = [xNε
ε , xNε+1

ε ]. By
construction uε

Ci
ε

≡ u(xi+1
ε ) for each i ∈ {1, . . . , Nε − 1}, and uε

CNε
ε

≡ u(xNε
ε ). Moreover note

that for any x ∈ Ci
ε and y ∈ Cj

ε , |uε(x) − uε(y)| = |u(xi+1
ε ) − u(xj+1

ε )| ≤ |j − i|ε and we can
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!

Figure 2: u is represented by the thick line, uε by the thinner one.

estimate the oscillation of u as follows |u(x)− u(y)| ≤ (|j − i|+ 2)ε. Thus we have

|uε(x)− uε(y)|2 − |u(x)− u(y)|2

= (|uε(x)− uε(y)|+ |u(x)− u(y)|)(|uε(x)− uε(y)| − |u(x)− u(y)|)

≤ 2(|j − i|+ 1)ε
∣∣∣|uε(x)− uε(y)| − |u(x)− u(y)|

∣∣∣
≤ 2(|j − i|+ 1)ε(|uε(x)− u(x)|+ |uε(y)− u(y)|) ≤ 4(|j − i|+ 1)ε2,

and thus
|uε(x)− uε(y)|2 ≤ |u(x)− u(y)|2 + 4(|j − i|+ 1)ε2 (3.23)

for any x ∈ Ci
ε and y ∈ Cj

ε .
In the sequel c denotes a positive constant, which may vary from line to line, independent

from ε.

Step 1. Estimate of the H1/2 seminorms. We prove that

[uε]
2
H1/2(I) ≤ −2ε ln γε|Du|(I) + [u]2H1/2(I) + o(1), (3.24)

the infinitesimal o(1) being uniform for all functions u such that 0 < a ≤ |u′| ≤ b.
To get estimate (3.24) consider the decomposition

[uε]
2
H1/2(I) =

Nε∑
i,j=0

D
(
uε, C

i
ε × Cj

ε

)
+

Nε−1∑
i,j=1

D
(
uε, A

i
ε ×Aj

ε

)
+

∑
i=0,...,Nε

j=1,...,Nε−1

D
(
uε, C

i
ε ×Aj

ε

)
. (3.25)

In the following we will treat separately each sum above and show that the main contribution
is given by the first, while the latter are infinitesimal.
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To deal with the first term in (3.25) we further separate the interactions of height ε, for
which we take into account the sharp computation of (3.3), from the others, for which we use
the following estimate

D
(
uε, C

i
ε × Cj

ε

)
≤ D

(
u, Ci

ε × Cj
ε

)
+

c|j − i|ε4

(|j − i|ε + γε)
2 , (3.26)

where i, j ∈ {0, . . . , Nε}, with i 6= j. The latter can be deduced straightforward by (3.2), (3.23)
and taking into account that |Ci

ε| = O(ε) for every i, thanks to the piecewise strict monotonicity
of u.

In view of (3.3) and (3.26) we get

Nε∑
i,j=0

D
(
uε, C

i
ε × Cj

ε

)
=

Nε∑
h=1

∑
|j−i|=h

D
(
uε, C

i
ε × Cj

ε

)
≤ 2ε2

Nε∑
i=1

ln
(

(xi+1
ε − xi

ε)(x
i
ε − xi−1

ε )
(xi+1

ε − xi−1
ε − γε)γε

)
+

Nε∑
h=2

∑
|j−i|=h

D
(
uε, C

i
ε × Cj

ε

)
≤ 2(−ε2 ln γε + cε2 ln ε)Nε +

Nε∑
h=2

∑
|j−i|=h

(
D
(
u, Ci

ε × Cj
ε

)
+

chε2(
h + γε

ε

)2
)

≤ −2ε2Nε ln γε + [u]2H1/2(I) + cε2
Nε−1∑
h=2

∑
|j−i|=h

1
h

≤ −2ε2Nε ln γε + [u]2H1/2(I) + cε2Nε lnNε

≤ −2ε ln γε|Du|(I) + [u]2H1/2(I) + o(1). (3.27)

In the last inequality we have used that εNε ≤ |Du|(I).
For what the second term in (3.25) is concerned, fix i, j ∈ {1, . . . , Nε− 1} and recall that uε

is either constant or affine with slope ε/γε on each Ai
ε and Aj

ε, so that

- for i = j, if uε is constant the corresponding term gives a null contribution, while if uε is
affine the double integral is nothing but |Aε

i ×Aε
i |ε2/γ2

ε , which reduces to ε2;

- for i 6= j, |x− y| ≥ c|j− i|ε and |uε(x)−uε(y)| ≤ (|j− i|+1)ε for any x ∈ Ai
ε and y ∈ Aj

ε.

Taking this into account, we get

Nε−1∑
i,j=1

D
(
uε, A

i
ε ×Aj

ε

)
≤ cγ2

ε

∑
i,j=1,...,Nε−1

i 6=j

(
|j − i|+ 1
|j − i|

)2

+ 2ε2Nε

≤ c(εNε)2
(γε

ε

)2

+ 2ε2Nε ≤ c|Du|2(I)
(γε

ε

)2

+ 2ε|Du|(I) = o(1).

(3.28)
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Now consider the following further splitting of the third term in (3.25)∑
i=0,...,Nε

j=1,...,Nε−1

D
(
uε, C

i
ε ×Aj

ε

)
=

∑
|j−i|≥1
j 6=i−1

D
(
uε, C

i
ε ×Aj

ε

)

+
Nε−1∑
i=1

D
(
uε, C

i
ε ×Ai

ε

)
+

Nε∑
i=2

D
(
uε, C

i
ε ×Ai−1

ε

)
. (3.29)

The first sum on the right hand side above can be dealt with as the one in (3.28), so that∑
|j−i|≥1
j 6=i−1

D
(
uε, C

i
ε ×Aj

ε

)
= o(1). (3.30)

Moreover, a direct integration yields

D
(
uε, C

i
ε ×Ai

ε

)
≤ ε2,

and of course a similar computation holds for D
(
uε, C

i−1
ε ×Ai

ε

)
, so that

Nε−1∑
i=1

(
D
(
uε, C

i
ε ×Ai

ε

)
+ D

(
uε, C

i−1
ε ×Ai

ε

))
≤ 2ε2Nε. (3.31)

By collecting (3.30), and (3.31) we have by (3.29)∑
i=0,...,Nε

j=1,...,Nε−1

D
(
uε, C

i
ε ×Aj

ε

)
= o(1). (3.32)

Eventually, (3.27), (3.28) and (3.32) give (3.24).

Step 2. Estimate of the potential term.
The one-periodicity of W and the very definition of uε yield∫

I

W

(
uε(x)

ε

)
dx =

Nε−1∑
i=1

∫ xi
ε+γε

xi
ε

W

(
uε(x)

ε

)
dx (3.33)

= γε

Nε−1∑
i=1

∫ u(xi+1
ε )/ε

u(xi
ε)/ε

W (t)dt ≤ γεNε

∫ 1

0

W (t)dt ≤ γε

ε
|Du|(I)

∫ 1

0

W (t)dt.

Step 3. Conclusion.
From Step 1 and Step 2 it follows

Fε(uε) ≤
(
−2µεε ln γε + ηε

γε

ε

∫ 1

0

W (t)dt

)
|Du|(I) + µε[u]2H1/2(I) + o(µε).

Eventually, the choice γε = µεε
2/ηε is such that γε = o(ε) and

Fε(uε) ≤ 2µεε ln
(

ηε

µε

)
|Du|(I) + µε[u]2H1/2(I) + o(µε). (3.34)

Taking the limit as ε → 0+ we conclude the proof.
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3.3 Some related results

In the following two corollaries we refine (ii) of Proposition 3.4, and prove that the energy of
any sequence is concentrated on a neighbourhood of the diagonal set ∆ in I × I. To show that,
we exploit the independence of the Γ-limit from the particular choice of the potential W .

Corollary 3.9 Assume that µε → 0+ and that (2.3) is satisfied with K 6= 0. For any u ∈ BV (I)
and any sequence (uε) converging to u in L1(I) with supε Fε(uε) < +∞, we have

lim inf
ε→0+

µεD(uε,∆γε
) ≥ 2K|Du|(I), (3.35)

where γε is any positive infinitesimal such that µε = o(γ2
ε ), and for every γ > 0

∆γ = {(x, y) ∈ I × I : |x− y| ≤ γ}.

Proof. We first notice that the results of Proposition 3.4 do not depend on the particular
choice of W , but only on the qualitative assumptions on it. More precisely, fixed σ > 0, (ii) in
Proposition 3.4 yields

lim inf
ε→0+

[
µε[uε]2H1/2(I) + ηεσ

∫
I

W

(
uε(x)

ε

)
dx

]
≥ 2K|Du|(I),

which, by letting σ → 0+ and taking into account the upper bound for the energy of uε, implies

lim inf
ε→0+

µε[uε]2H1/2(I) ≥ 2K|Du|(I). (3.36)

Moreover, given γ > 0, if (Ij)j is a partition of I such that |Ij | ≤
√

2γ and |Du|(∂Ij) = 0 for
every j, from the lower bound inequality (Proposition 3.4, (ii)) we infer

lim inf
ε→0+

[
µεD(uε,∆γ) + ηε

∫
I

W

(
uε(x)

ε

)
dx

]
≥
∑

j

lim inf
ε→0+

[
µε[uε]2H1/2(Ij)

+ ηε

∫
Ij

W

(
uε(x)

ε

)
dx

]
≥ 2K|Du|(I). (3.37)

By combining the arguments leading to (3.36) and (3.37), it follows

lim inf
ε→0+

µεD(uε,∆γ) ≥ 2K|Du|(I). (3.38)

In addition, the compactness result in (i) of Proposition 3.4 entails that (uε) (up to ε-integer
translations) actually converges to u in L2(I) and thus

lim
ε→0+

µεD(uε, I × I \∆γε) = 0 (3.39)

provided that µε = o(γ2
ε ). Hence, (3.35) follows by (3.38) and (3.39).
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Corollary 3.10 For any u ∈ BV (I) and any sequence (uε) converging to u in L1(I) with
supε Fε(uε) < +∞, any cluster point ν of the family of measures

νε = µε

∣∣∣∣uε(x)− uε(y)
x− y

∣∣∣∣2 dL2b(I × I), (3.40)

is concentrated on the diagonal ∆, and satisfies π#ν ≥ 2K|Du| where π denotes the projection
on the first coordinate.

In particular, in case (uε) is a recovery sequence for u, the family (νε) weakly ∗ converges
to ν satisfying

π#ν = 2K|Du|.

Proof. The proof is a straightforward consequence of the compactness result (Proposition 3.4
(i)), (3.39) and Corollary 3.9 localized on open subsets of I.

Eventually, we briefly give the proof of Corollary 2.7. It can be worked out using the same
arguments of Theorem 2.2, the only warning being that now we have also to take into account the
non-vanishing contribution given by the H1/2 seminorm in the asymptotic of (Fε). In particular
in the proof of the Γ-liminf and the Γ-limsup inequalities we follow the notation introduced in
Proposition 3.4 and Proposition 3.8, respectively.

Proof of Corollary 2.7. Compactness. The statement trivially follows by using the compact
embedding of H1/2 functions with zero mean in Lp(I) for every p ∈ [1,+∞).

Lower bound inequality. Fix γ > 0. From inequality (3.20), applied to a partition (Ij)j of I
satisfying supj |Ij | ≤

√
2γ, we easily deduce (see Remark 3.7)

lim inf
ε→0+

Fε(uε) ≥ lim inf
ε→0+

µεD(uε, I × I \∆γ) + 2K
r∑

j=1

oscIj
u

≥ µD(u, I × I \∆γ) + 2K

r∑
j=1

oscIj u.

The lower bound inequality then follows by passing on the supremum on the partition and then
letting γ → 0+.
Upper bound inequality. We repeat the construction of Proposition 3.8. The proof follows from
estimate (3.34) and a standard density argument.

4 Boundary Data

In this section we consider the case in which a boundary condition is imposed. As already
discussed in Section 2 the non local regularization and the fact that the limit energy is defined
in BV requires to give the boundary conditions in a strong version; i.e. restricting our functionals
to the space

Dε
L(I) = {u ∈ H1/2(I) : u

(α,α+δ)
≡ 0, u

(β−δ,β)
≡ ε [L/ε]}.
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Namely we introduce the energies Gε : L1(I) → [0,+∞] given by

Gε(u) =

Fε(u) if u ∈ Dε
L(I)

+∞ otherwise in L1(I).

In general for functionals defined on BV , as the case of our Γ-limit, in order to impose the
boundary condition it is enough to assign the outer trace; i.e. to require u(x) = 0 if x < a and
u(x) = L if x > b. This condition is relaxed in a term that penalizes the non attainment of
the boundary data. On the other hand, in terms of the functionals Fε this condition disappears
in the limit. For instance, one can approximate any constant function with a sequence (uε)
satisfying the outer boundary condition and such that Fε(uε) → 0. This problem is overcome
by imposing the inner trace as in the space Dε

L(I) (see Remark 4.1 and Remark 4.5). Finally,
the condition u = ε [L/ε] on the set (b− δ, b) is necessary for the Γ-limit of the whole family Fε

to exist.

4.1 First Order Limit

The proof of Theorem 2.3 is a consequence of Theorem 2.2 once we show that it is possible to
construct the recovery sequence matching the boundary data.

Proof of Theorem 2.3. Compactness and lower bound are an immediate consequence of
Theorem 2.2.

As for the recovery sequence for a given function u in

DL(I) = {u ∈ H1/2(I) : u
(α,α+δ)

≡ 0, u
(β−δ,β)

≡ L}

we only need to modify the construction done in Proposition 3.8 for piecewise affine and piece-
wise strictly monotone functions on I.

In fact it is not restrictive to assume u ∈ DL(I) to be piecewise affine on I and piecewise
strictly monotone on J = (α + δ, β − δ).

Set J1 = (α, α + δ), J2 = (β − δ, β) and λε = [L
ε ] ε

L . Then, using (3.22), we define

uε :=


Pε(λεu) on J ,
0 on J1,
[L

ε ]ε on J2.

Then, ‖uε − u‖L∞(I) ≤ ε + ε
L‖u‖L∞(I) and in particular uε → u in L1(I). Since I = J1 ∪ J ∪ J2

by (3.21) it follows

Gε(uε) = Fε(uε, J) + 2µε (D(uε, J1 × J) + D(uε, J1 × J2) + D(uε, J × J2)) ,

taking into account that Fε(uε, J1) = Fε(uε, J2) = 0. Moreover, by Step 1 of Proposition 3.8,
(3.33), and using that 1− ε/L ≤ λε ≤ 1, we get

Gε(uε) ≤ −2µεε ln γε|Du|(I) + µε[u]2H1/2(J) + o(µε)

+2µε (D(uε, J1 × J) + D(uε, J1 × J2) + D(uε, J × J2)) . (4.1)
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We claim that the latter estimate entails

Gε(uε) ≤ −2µεε ln γε|Du|(I) + µε[u]2H1/2(I) − 4ε2µε ln γε + o(µε). (4.2)

Indeed, by Lebesgue Dominated Convergence Theorem we have

lim sup
ε→0+

D(uε, J1 × J2) ≤ D(u, J1 × J2),

thus to prove the claim it suffices to show that for i ∈ {1, 2} it holds

D(uε, Ji × J) ≤ D(u, Ji × J)− ε2 ln γε + o(1). (4.3)

The proof of the above estimate, as in Step 1 of Proposition 3.8, is based on the splitting

D (uε, Ji × J) =
[L/ε]−1∑

j=0

D
(
uε, Ji × Cj

ε

)
+

[L/ε]−1∑
j=0

D
(
uε, Ji ×Aj

ε

)
, (4.4)

and follows by similar arguments.
Eventually, recalling that γε = µεε

2/ηε (see Proposition 3.8) we deduce from (4.2)

lim sup
ε→0+

Gε(uε) ≤ 2K|Du|(I).

Remark 4.1 Refining the argument used above one can realize that it is possible to characterize
the Γ-limit also in the case δ → 0+ with ln δ ∼ ln ε, obtaining

G(u) = 2K (|Du|(I) + |u(α+)|+ |L− u(β−)|)

for any u ∈ BV (I) (u(α+) and u(β−) denote the inner traces of u at α and β, respectively).
In other words in the limit the boundary condition is substituted by the penalization given by
the last two terms of the energy.

4.2 Second Order Limit

In this subsection we select among the minimizers of G those which better describe the asymp-
totic behaviour of the minimum points of Gε by proving the second order expansion in terms
of Γ-convergence (see [4]) stated in Theorem 2.4 (see also Remark 2.5). In order to do that, we
consider the functionals G1

ε : L1(I) → [0,+∞] defined by

G1
ε(u) =

Gε(u)− 2[L/ε]ε2µε ln ηε

µε
,

if u ∈ Dε
L(I) and equal to +∞ otherwise in L1(I).

Remark 4.2 If we assume that µεε ln ηε−K
µε

→ 0 as ε → 0+, which is admissible in terms of the
scaling argument given in Section 1.1, we can define G1

ε alternatively as

G1
ε(u) =

Gε(u)− 2Kε[L/ε]
µε

.
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The proof of Theorem 2.4 is carried out in Proposition 4.3 and Proposition 4.4 below.

Proposition 4.3 Assume that µε → 0+, that (2.3) is satisfied with K 6= 0, and that ε = o(µε).
Let (uε) ⊂ L1(I), then

(i) Compactness: if supε G1
ε(uε) < +∞, then there exist u ∈ DL∩BV (I) such that |Du|(I) =

L, and a subsequence (uεk
) which converges to u in Lp(I) for every p ∈ [1,+∞).

(ii) Lower bound inequality: if uε → u in L1(I), we have

lim inf
ε→0+

G1
ε(uε) ≥ G1(u). (4.5)

Notice that any function in DL ∩ BV (I) has total variation greater than or equal to L. In
case the total variation is exactly L then the function is necessarily non-decreasing, and thus a
minimizer for G on DL(I). So that, in particular, Proposition 4.3 implies that G1 is finite only
on the minimizers of G.

Proof of Proposition 4.3. Compactness. By taking into account (i) of Proposition 3.4
and the boundary conditions, we obtain a subsequence (uεk

) converging in Lp(I) for every
p > 1. Moreover, if u denotes the limit point, the energy bound supε G1

ε(uε) < +∞ and (ii) of
Proposition 3.4 implies that

2K|Du|(I) = G(u) ≤ lim inf
k→+∞

Gεk
(uεk

) ≤ 2KL,

so that u ∈ BV (I). Furthermore, the convergence of (uεk
) to u in Lp(I) implies u ∈ DL∩BV (I)

and thus |Du|(I) = L.

Lower bound inequality. Let us consider u ∈ L1(I) and a family (uε) converging to u in L1(I)
such that lim infε G1

ε(uε) < +∞. In particular, we may assume that supε G1
ε(uε) < +∞. The

compactness result proved above implies that u is a minimizer for G on DL(I), and then it
is non-decreasing. Hence, it is not restrictive to assume that uε is also non-decreasing up to
passing to its non-decreasing rearrangement.

As already pointed out after the statement of Theorem 2.4 the strategy of the proof is to
isolate the energy contribution outside the set ∆γ , for an arbitrary γ > 0, as follows

G1
ε(uε) ≥ D(uε, I × I \∆γ) +

(
D(uε,∆γ) +

ηε

µε

∫
I

W
(uε

ε

)
dx− 2[L/ε]ε2 ln ηε

)
, (4.6)

and to prove that the second term of the right hand side above is positive in the limit as
ε → 0+. This given, Fatou’s Lemma and the arbitrariness of γ > 0 give the required lower
bound inequality.

The proof is based on the following claim.

Claim. Fix N ∈ N. There exists a constant σN > 0 such that for every ε > 0 there exists a
partition of I into intervals Ii

ε = (xi
ε, x

i+1
ε ), i = 1, . . . , N − 1, satisfying:

(i)
|I|
2N

≤ |Ii
ε| ≤

3|I|
2N

;

25



(ii) |{x ∈ Ii
ε : uε(x) ≤ εri

ε + ε3}| > σNε, where r1
ε = 0 and for i ∈ {2, . . . , N − 1}

ri
ε := argmin{|εz − inf

Ii
ε

uε|, z ∈ Z};

(iii) |εri
ε − infIi

ε
uε| < ε3 if i ∈ {1, . . . , N};

(iv) |{x ∈ Ii
ε : uε(x) ≥ εsi

ε − ε3}| > σNε, where sN
ε = [L/ε] and for i ∈ {1, . . . , N − 1}

si
ε := argmin{|εz − sup

Ii
ε

uε|, z ∈ Z};

(v) |εsi
ε − supIi

ε
uε| < ε3 if i ∈ {1, . . . , N}.

Note that in the above definitions si
ε = ri+1

ε for every i ∈ {1, . . . , N − 1}.
The rough idea is that the potential term in the energy forces the sequence uε to have almost

all ε-levels of the order ε. Thus, starting from an arbitrary partition, we can always slightly
move the extremes of each interval in order to satisfy conditions (ii)–(v).

Take a partition of I given by the intervals (yi, yi+1), i ∈ {1, . . . , N − 1}, of length at least
|I|
N . For any i ∈ {1, . . . , N − 1}, consider IN (yi) =

(
yi − |I|

4N , yi + |I|
4N

)
∩ I and for any s ∈ Z

define the intervals
J i,s

ε = {x ∈ IN (yi) : |uε(x)− εs| < ε3}.

Since supε G1
ε(uε) < +∞, there exists a positive constant M for which supε Gε(uε) ≤ M , and

thus
ωεηε

∑
s∈Z

|IN (yi) \ J i,s
ε | ≤ ηε

∫
IN (yi)

W
(uε

ε

)
dx ≤ M.

This in turn implies ∑
s∈Z

|J i,s
ε | > |I|

4N
− M

ωεηε
,

and then there exists an integer si
ε, with [infIN (yi) uε/ε] ≤ si

ε ≤ [supIN (yi) uε/ε], such that

|J i,si
ε

ε | >
(
|I|
4N

− M

ωεηε

)
1[

osc uε

ε

]
+ 2

.

By the fact that uε is monotone and belongs to Dε
L(I), we have 0 ≤ [osc uε/ε] ≤ [L/ε], from

which we infer that

|J i,si
ε

ε | >
(
|I|
4N

− M

ωεηε

)
ε

L + 2ε
.

Note that since W satisfies (2.2), ωε ∼ ε2p and then ωεηε → +∞ as ε → 0+. Thus there exists
ε0 > 0 and σN > 0 such that for all ε ∈ (0, ε0)

|J i,si
ε

ε | > 2σNε. (4.7)

Finally, we can define the partition required by the claim taking the points xi
ε to be the middle

points of the intervals J
i,si

ε
ε if i = 2, . . . , N − 1, x1

ε = y1 and xN
ε = yN . With this choice
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Ii
ε = (xi

ε, x
i+1
ε ) satisfy (i)–(v). Indeed, (i) holds true since xi

ε ∈ IN (yi) and |yi+1 − yi| ≥ |I|
N , (ii)

and (iv) are satisfied by (4.7), while (iii) and (v) by construction; so that the claim is proved.

The partition provided by the claim satisfies ∪iI
i
ε × Ii

ε ⊆ ∆ 3
√

2
4N

, and then using (4.6) we can

estimate G1
ε(uε) for every N > 0 by

G1
ε(uε) ≥ D(uε, I × I \∆ 3

√
2

4N

) +
N∑

i=1

(
[uε]2H1/2(Ii

ε) +
ηε

µε

∫
Iε

i

W
(uε

ε

)
dx

)
− 2[L/ε]ε2 ln ηε.

Taking into account that ri
ε = si−1

ε , r1
ε = 0, sN

ε = [L/ε] we get

G1
ε(uε) ≥ D(uε, I × I \∆ 3

√
2

4N

)

+
N∑

i=1

(
[uε]2H1/2(Ii

ε) +
ηε

µε

∫
Iε

i

W
(uε

ε

)
dx− 2(si

ε − ri
ε)ε

2 ln ηε

)
. (4.8)

The conclusion follows from (4.8) by the arbitrariness of N provided we show

lim inf
ε→0+

N∑
i=1

(
[uε]2H1/2(Ii

ε) +
ηε

µε

∫
Iε

i

W
(uε

ε

)
dx− 2(si

ε − ri
ε)ε

2 ln ηε

)
≥ 0. (4.9)

This is accomplished by the lower bound of Corollary 3.3 applied on the set Ii
ε with s = si

ε and
r = ri

ε (which can be done thanks to (iii) and (v)). Indeed, with these choices we get

[uε]2H1/2(Ii
ε) +

ηε

µε

∫
Iε

i

W
(uε

ε

)
dx− 2(si

ε − ri
ε)ε

2 ln ηε

≥ 2(si
ε − ri

ε)(ε− 2ε3)2
(

ln
(
|Ai

ε||Bi
ε|

|Ii
ε|2

)
+ ln

(
ωε|Ii

ε|
2µε(si

ε − ri
ε)(ε− 2ε3)2

))
+2(si

ε − ri
ε)(4ε6 − 4ε4) ln ηε,

where we denote Ai
ε = {x ∈ Ii

ε : uε(x) > εsi
ε − ε3}, Bi

ε = {x ∈ Ii
ε : uε(x) ≤ εri

ε + ε3}, and
ωε = infd(y,Z)≥ε2 W . Since by construction |Ai

ε| > σNε, |Bi
ε| > σNε and |I|

2N ≤ |Ii
ε| ≤

3|I|
2N , it is

easy to see that the right hand side tends to zero as ε → 0+ and thus (4.9) is established.

To complete the proof of Theorem 2.4 we etablish the upper bound inequality, which is a
direct consequence of the construction performed in Theorem 2.3.

Proposition 4.4 Assume that µε → 0+, that (2.3) is satisfied with K 6= 0, and that ε = o(µε).
For every u ∈ L1(I) there exists a sequence (uε) ⊂ Dε

L(I) such that uε → u in L1(I) and

lim sup
ε→0+

G1
ε(uε) ≤ G1(u).

Proof. Without loss of generality we may assume G1(u) < +∞. Moreover, by a density ar-
gument the further reduction to piecewise affine and piecewise strictly monotone functions on
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(α + δ, β − δ) can be done. Thus, if we consider the sequence (uε) constructed in the proof of
Theorem 2.3, by (4.2) we have

G1
ε(uε) ≤ −2ε lnµε|Du|(I) + [u]2H1/2(I) − 4ε2 ln γε + o(1).

The thesis then follows by passing to the limit on ε → 0+ since ε = o(µε), γε = µεε
2/ηε,

λε =
[

L
ε

]
ε
L , and |Du|(I) = L.

Remark 4.5 The proof given above is also compatible with the case ln δ ∼ ln ε and produces as
second order Γ-limit the H1/2 seminorm in I without any constraint on the boundary values. So
that the minimum point selected by this asymptotic expansion would be given by any constant
function, neglecting completely the boundary conditions.

5 Conclusions

In this paper we studied in certain regimes the asymptotic behaviour in terms of Γ-convergence
of a scaled variational model for dislocations of Nabarro-Peierls type, as proposed by Koslowski-
Cuitiño and Ortiz in [17].

In this model the slip is assumed to occur only on one slip plane and the dislocations are
interpreted as integer level sets of a phase field (proportional to the jump of the displacement
across the slip plane). In the regimes under consideration the slip is assumed to be much larger
than the lattice spacing or, in other words, the amount of dislocations on a large box tends to
infinity as the size of the box increases. In this respect we regard our asymptotics as a step
in the direction of describing the macroscopic plastic behaviour due to the presence of a large
number of dislocations.

We performed a rigorous analysis in the one dimensional case (the two dimensional case being
probably very similar, but mathematically much more involved). We identify three regimes (very
diluted, critical and more dense). In the critical regime we show the coexistence of two effects:
a self interaction that gives rise to a line tension energy term and a long range interaction
between dislocations given by a non local energy. Those effects are also present in the other two
regimes at different order (as shown in the diluted case by means of an asymptotic expansion
in terms of Γ-convergence). In particular in the dense regime the leading term of the energy is
the non local, specifically it is given by the H1/2 seminorm of the phase field.

In our opinion this result validates, in the case of a large number of dislocations (larger
than log L in a box of side length L), the working assumption in the simulations in [17]; i.e.
the idea that the overall distribution of dislocations is given by (the level sets of) a profile that
minimizes the H1/2 seminorm.
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