NEW RESULTS ON THE ASYMPTOTIC BEHAVIOUR OF DIRICHLET PROBLEMS IN PERFORATED DOMAINS

GIANNI DAL MASO and ADRIANA GARRONI
S.I.S.S.A., via Beirut 4, 34014 Trieste, Italy

Abstract

Let A be a linear elliptic operator of the second order with bounded measurable coefficients on a bounded open set Ω of \mathbf{R}^{n}, and let $\left(\Omega_{h}\right)$ be an arbitrary sequence of open subsets of Ω. We prove the following compactness result: there exist a subsequence, still denoted by $\left(\Omega_{h}\right)$, and a positive Borel measure μ on Ω, not charging polar sets, such that, for every $f \in H^{-1}(\Omega)$, the solutions $u_{h} \in H_{0}^{1}\left(\Omega_{h}\right)$ of the equations $A u_{h}=f$ in Ω_{h}, extended to 0 on $\Omega \backslash \Omega_{h}$, converge weakly in $H_{0}^{1}(\Omega)$ to the unique solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of the problem $$
\langle A u, v\rangle+\int_{\Omega} u v d \mu=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)
$$

When A is symmetric, this compactness result is already known and was obtained by Γ-convergence techniques.

Our new proof, based on the method of oscillating test functions, extends the result to the non-symmetric case. The new technique, which is completely independent of Γ-convergence, relies on the study of the behaviour of the solutions $w_{h}^{*} \in H_{0}^{1}\left(\Omega_{h}\right)$ of the equations $A^{*} w_{h}^{*}=1$ in Ω_{h}, where A^{*} is the adjoint operator.

We prove also that the limit measure μ does not change if A is replaced by A^{*} Moreover, we prove that μ depends only on the symmetric part of the operator A, if the coefficients of the skew-symmetric part are continuous, while an explicit example shows that μ may depend also on the skew-symmetric part of A, when the coefficients are discontinuous.

1. Introduction

In this paper we study the asymptotic behaviour of the solutions of elliptic equations with Dirichlet boundary conditions in perforated domains. Among the physical motivations of the problem we mention the applications to scattering theory (see [28], [46]), electrostatic screening (see [47]), and heat conduction in domains with a complicated boundary (see [46], [10]). A further motivation for the study
of this problem in the most general case, without any geometric assumption on the domains, is given by the recent applications to a relaxed formulation of some optimal design problems (see [1], [6], [14], [5], [26]).

Our problem can be formulated as follows. Let A be a linear elliptic operator of the second order with bounded measurable coefficients on a bounded open set Ω of \mathbf{R}^{n}, and let $\left(\Omega_{h}\right)$ be an arbitrary sequence of open subsets of Ω. For every $f \in H^{-1}(\Omega)$ we consider the sequence $\left(u_{h}\right)$ of the solutions of the Dirichlet problems

$$
\begin{equation*}
u_{h} \in H_{0}^{1}\left(\Omega_{h}\right), \quad A u_{h}=f \quad \text { in } \Omega_{h} \tag{1.1}
\end{equation*}
$$

If we extend u_{h} to Ω by setting $u_{h}=0$ on $\Omega \backslash \Omega_{h}$, then $\left(u_{h}\right)$ can be regarded as a sequence in $H_{0}^{1}(\Omega)$. The problem is to describe the asymptotic behaviour of $\left(u_{h}\right)$ as $h \rightarrow \infty$.

The main result of the paper is the following compactness theorem (Theorem 4.6), which holds without any further hypothesis on the geometry of the sets Ω_{h}. For every sequence $\left(\Omega_{h}\right)$ of open subsets of Ω there exist a subsequence, still denoted by $\left(\Omega_{h}\right)$, and a positive Borel measure μ on Ω, not charging polar sets, such that, for every $f \in H^{-1}(\Omega)$, the solutions u_{h} of (1.1) converge weakly in $H_{0}^{1}(\Omega)$ to the unique solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of the problem

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\Omega} u v d \mu=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{1.2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.
To prove this compactness theorem we observe (Remark 2.3) that all problems of the form (1.1) can be written as problems of the form (1.2) for a suitable choice of the measure μ in a special class of positive measures, denoted by $\mathcal{M}_{0}(\Omega)$, which includes also measures which take the value $+\infty$ on a large family of sets. We prove (Theorem 4.5) that, for every sequence $\left(\mu_{h}\right)$ of measures of the class $\mathcal{M}_{0}(\Omega)$, there exist a subsequence, still denoted by $\left(\mu_{h}\right)$, and a measure $\mu \in \mathcal{M}_{0}(\Omega)$ such that, for every $f \in H^{-1}(\Omega)$, the solutions $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of the problems

$$
\begin{equation*}
\left\langle A u_{h}, v\right\rangle+\int_{\Omega} u_{h} v d \mu_{h}=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega) \tag{1.3}
\end{equation*}
$$

converge weakly in $H_{0}^{1}(\Omega)$ to the unique solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of (1.2). This more general formulation of the compactness theorem includes in our framework the problem of the asymptotic behaviour of the solutions of Schrödinger equations with positive oscillating potentials.

When A is symmetric, this compactness result is already known (see [2], [1], [23], [8], [38]), and the original proof is based on Γ-convergence techniques, for which we refer to [1] and [20]. In this case it is also possible to construct μ by using the limits of the capacities of the sets $U \backslash \Omega_{h}$, when U varies in the class of all relatively compact open subsets of Ω (see [7] and [19]).

Under some special hypotheses on the sequence $\left(\Omega_{h}\right)$, which imply, in particular, that the limit measure μ belongs to $H^{-1}(\Omega)$, the asymptotic behaviour of the solutions $\left(u_{h}\right)$ of (1.1) was studied in [30], [34], [46], [47], [31], [35], [32] by an orthogonal projection method, in [46], [12], [13] by Brownian motion estimates, in [39], [40], [41] by Green's function estimates, in [17], [15], [16] by means of oscillating test functions, in [43], [25] by the point interaction approximation, in [4] by capacitary methods. These papers provide also a description of the limit measure μ in terms of the relevant properties of the sets Ω_{h}. The case of random sets Ω_{h} was studied in [28], [45], [42], [44], [24], [11], [3].

Our new proof of the compactness theorem holds in the general case, even if the operator A is not symmetric. The new method, which is more direct than the previous one, and is completely independent of Γ-convergence, is based on the original technique of the oscillating test functions, which was introduced by Tartar [50] in the study of homogenization problems for elliptic operators, and was adapted to the case of perforated domains by Cioranescu and Murat [16].

However, our choice of the test functions is new, and allows us to avoid any additional hypothesis on the sequence $\left(\Omega_{h}\right)$. Our proof relies on the study of the behaviour of the solutions w_{h}^{*} of the Dirichlet problems

$$
\begin{equation*}
w_{h}^{*} \in H_{0}^{1}\left(\Omega_{h}\right), \quad A^{*} w_{h}^{*}=1 \quad \text { in } \Omega_{h} \tag{1.4}
\end{equation*}
$$

where A^{*} is the adjoint operator. For a complete study of the asymptotic behaviour of the solutions of (1.1) when A is symmetric and the sequence $\left(w_{h}^{*}\right)$ converges strongly in $H_{0}^{1}(\Omega)$ we refer to [49]. The main difficulty of our result lies in the fact that $\left(w_{h}^{*}\right)$ is compact only in the weak topology of $H_{0}^{1}(\Omega)$.

In the general case (1.3) we consider the solutions $w_{h}^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of the problems

$$
\begin{equation*}
\left\langle A^{*} w_{h}^{*}, v\right\rangle+\int_{\Omega} w_{h}^{*} v d \mu_{h}=\int_{\Omega} v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega) \tag{1.5}
\end{equation*}
$$

By an elementary variational estimate the sequence $\left(w_{h}^{*}\right)$ is bounded in $H_{0}^{1}(\Omega)$, and so we may assume that $\left(w_{h}^{*}\right)$ converges weakly in $H_{0}^{1}(\Omega)$ to some function w^{*}. We prove (Section 3) that $\nu^{*}=1-A^{*} w^{*}$ is a positive Radon measure on Ω, which belongs to $H^{-1}(\Omega)$, and thus we can consider the measure $\mu \in \mathcal{M}_{0}(\Omega)$ defined by

$$
\mu(B)= \begin{cases}\int_{B} \frac{d \nu^{*}}{w^{*}}, & \text { if } \operatorname{cap}\left(B \cap\left\{w^{*}=0\right\}, \Omega\right)=0 \\ +\infty, & \text { if } \operatorname{cap}\left(B \cap\left\{w^{*}=0\right\}, \Omega\right)>0\end{cases}
$$

This is the measure which appears in the limit problem (1.2). Since, by an elementary variational estimate, the sequence $\left(u_{h}\right)$ of the solutions of (1.3) is bounded in $H_{0}^{1}(\Omega)$, we may assume also that $\left(u_{h}\right)$ converges weakly in $H_{0}^{1}(\Omega)$ to a function u. Moreover, if $f \in L^{\infty}(\Omega)$, by the comparison principle (Proposition 2.5) the sequence $\left(u_{h}\right)$ is bounded in $L^{\infty}(\Omega)$, and thus $u \in L^{\infty}(\Omega)$.

To prove that u is the solution of (1.2), we show that u_{h} satisfies the equation

$$
\begin{equation*}
\left\langle A u_{h}, w_{h}^{*} \varphi\right\rangle-\left\langle A^{*} w_{h}^{*}, u_{h} \varphi\right\rangle=\int_{\Omega} f w_{h}^{*} \varphi d x-\int_{\Omega} u_{h} \varphi d x \tag{1.6}
\end{equation*}
$$

for every $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. As the difference of the first two terms is continuous with respect to the weak convergence of $\left(u_{h}\right)$ and $\left(w_{h}^{*}\right)$, it is easy to take the limit in (1.6) and to show that

$$
\begin{equation*}
\left\langle A u, w^{*} \varphi\right\rangle-\left\langle A^{*} w^{*}, u \varphi\right\rangle=\int_{\Omega} f w^{*} \varphi d x-\int_{\Omega} u \varphi d x \tag{1.7}
\end{equation*}
$$

for every $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Then we prove (Lemma 3.5) that (1.7) has a unique solution $u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, which coincides with the solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of (1.2). This concludes the proof of our compactness result in the case $f \in L^{\infty}(\Omega)$. The case $f \in H^{-1}(\Omega)$ can be treated by an easy approximation argument. If we repeat the proof with A replaced by A^{*}, we obtain the same limit measure μ (Theorem 4.3).

So far we have considered only the problem of the weak convergence of $\left(u_{h}\right)$ in $H_{0}^{1}(\Omega)$. In Section 5 we consider also the problem of the strong convergence of the gradients $\left(D u_{h}\right)$ in $L^{p}\left(\Omega, \mathbf{R}^{n}\right)$. Using Meyers' estimate [36] and a general result due to Murat [37], we prove (Theorem 5.1) that, without any additional hypothesis, the sequence ($D u_{h}$) converges to $D u$ strongly in $L^{p}\left(\Omega, \mathbf{R}^{n}\right)$ for every $1 \leq p<2$.

To obtain strong convergence of the gradients in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$ we construct a corrector term $P_{h}(x, s), x \in \Omega, s \in \mathbf{R}$, which depends on the sequence $\left(\mu_{h}\right)$, but is independent of f, u, u_{h}. We prove (Theorem 5.2) that for every $f \in L^{\infty}(\Omega)$ we have

$$
D u_{h}(x)=D u(x)+P_{h}(x, u(x))+R_{h}(x) \quad \text { a.e. in } \Omega
$$

where the remainders R_{h} tend to 0 strongly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$. This improves the corrector results of [16] and [29], which assume that $\mu \in H^{-1}(\Omega)$, and those of [27], which assume that $w^{*}>0$ a.e. in Ω. The corrector $P_{h}(x, s)$ is constructed explicitly in terms of the solutions of (1.4) or (1.5), with A^{*} replaced by A. If these functions converge strongly in $H_{0}^{1}(\Omega)$, we recover (Corollary 5.8) the result of [49].

In the last section we study the problem of the dependence of μ on the skewsymmetric part of the operator A. Extending a result of [16], we prove (Theorem 6.1) that the limit measure μ depends only on the symmetric part of the operator A, if the coefficients of the skew-symmetric part are continuous. Finally, we construct an explicit example, which shows that μ may depend also on the skew-symmetric part of A, when the coefficients are discontinuous.

2. Notation and Preliminaries

Let Ω be a bounded open subset of $\mathbf{R}^{n}, n \geq 2$. We denote by $H^{1, p}(\Omega)$ and $H_{0}^{1, p}(\Omega), 1 \leq p<+\infty$, the usual Sobolev spaces, and by $H^{-1, q}(\Omega), 1 / q+1 / p=1$, the dual of $H_{0}^{1, p}(\Omega)$. When $p=2$ we adopt the standard notation $H^{1}(\Omega), H_{0}^{1}(\Omega)$, and $H^{-1}(\Omega)$. On $H_{0}^{1}(\Omega)$ we consider the norm

$$
\|u\|_{H_{0}^{1}(\Omega)}^{2}=\int_{\Omega}|D u|^{2} d x
$$

By $L_{\mu}^{p}(\Omega), 1 \leq p \leq+\infty$, we denote the usual Lebesgue space with respect to the measure μ. If μ is the Lebesgue measure, we use the standard notation $L^{p}(\Omega)$.

For every subset E of Ω the (harmonic) capacity of E in Ω, denoted by $\operatorname{cap}(E, \Omega)$, is defined as the infimum of

$$
\int_{\Omega}|D u|^{2} d x
$$

over the set of all functions $u \in H_{0}^{1}(\Omega)$ such that $u \geq 1$ a.e. in a neighbourhood of E.

We say that a property $\mathcal{P}(x)$ holds quasi everywhere (abbreviated as q.e.) in a set E if it holds for all $x \in E$ except for a subset N of E with $\operatorname{cap}(N, \Omega)=0$. The expression almost everywhere (abbreviated as a.e.) refers, as usual, to the Lebesgue measure. A function $u: \Omega \rightarrow \mathbf{R}$ is said to be quasi continuous if for every $\varepsilon>0$ there exists a set $A \subseteq \Omega$, with $\operatorname{cap}(A, \Omega)<\varepsilon$, such that the restriction of u to $\Omega \backslash A$ is continuous.

It is well known that every $u \in H^{1}(\Omega)$ has a quasi continuous representative, which is uniquely defined up to a set of capacity zero. In the sequel we shall always identify u with its quasi continuous representative, so that the pointwise values of a function $u \in H^{1}(\Omega)$ are defined quasi everywhere. We recall that, if a sequence $\left(u_{h}\right)$ converges to u in $H_{0}^{1}(\Omega)$, then a subsequence of $\left(u_{h}\right)$ converges to u q.e. in Ω. For all these properties of quasi continuous representatives of Sobolev functions we refer to [51], Section 3.

A subset A of Ω is said to be a quasi open if for every $\varepsilon>0$ there exists an open subset U_{ε} of Ω, with $\operatorname{cap}\left(U_{\varepsilon}, \Omega\right)<\varepsilon$, such that $A \cup U_{\varepsilon}$ is open.

Lemma 2.1. For every quasi open subset A of Ω there exists an increasing sequence $\left(v_{h}\right)$ of non-negative functions of $H_{0}^{1}(\Omega)$ converging to 1_{A} pointwise q.e. in Ω.

Proof. This lemma is an easy consequence of a more general result proved in [18], Lemma 1.5. For the reader's convenience, we give here the easy proof in this particular case. Let A be a quasi open subset of Ω. Then there exists a sequence (U_{k}) of open subsets of Ω, with $\operatorname{cap}\left(U_{k}, \Omega\right)<1 / k$, such that the sets $A_{k}=A \cup U_{k}$
are open. Therefore, for every $k \in \mathbf{N}$ there exists an increasing sequence $\left(\varphi_{h}^{k}\right)_{h}$ of non-negative functions of $C_{0}^{\infty}(\Omega)$ converging to $1_{A_{k}}$ pointwise q.e. in Ω. Since $\operatorname{cap}\left(U_{k}, \Omega\right)<1 / k$, for every $k \in \mathbf{N}$ there exists $u_{k} \in H_{0}^{1}(\Omega)$ such that $u_{k} \geq 1$ q.e. in $U_{k}, u_{k} \geq 0$ q.e. in Ω, and $\int_{\Omega}\left|D u_{k}\right|^{2} d x<1 / k$. This implies that a subsequence of (u_{k}) converges to 0 q.e. in Ω. Moreover, as $\varphi_{h}^{k} \leq 1_{A_{k}}$, we have $\left(\varphi_{h}^{k}-u_{k}\right)^{+} \leq 1_{A}$ q.e. in Ω. Let us define

$$
v_{h}=\max _{1 \leq k \leq h}\left(\varphi_{h}^{k}-u_{k}\right)^{+}, \quad \psi=\sup _{h} v_{h} .
$$

Then $v_{h} \in H_{0}^{1}(\Omega), v_{h} \geq 0$ in Ω, the sequence $\left(v_{h}\right)$ is increasing, and $\psi \leq 1_{A}$ q.e. in Ω. For every $h \geq k$ we have $v_{h} \geq \varphi_{h}^{k}-u_{k}$. As $A \subseteq A_{k}$, we get $\psi \geq 1-u_{k}$ q.e. in A. Taking the limit as $k \rightarrow \infty$ along a suitable subsequence, we obtain $\psi \geq 1$ q.e. in A. This shows that $\psi=1_{A}$ and concludes the proof of the lemma.

By a Borel measure on Ω we mean a positive, countably additive set function defined in the Borel σ-field of Ω and with values in $[0,+\infty]$. By a Radon measure on Ω we mean a Borel measure which is finite on every compact subset of Ω.

We denote by $\mathcal{M}_{0}(\Omega)$ the set of all Borel measures μ on Ω such that
(i) $\mu(B)=0$ for every Borel set $B \subseteq \Omega$ with $\operatorname{cap}(B, \Omega)=0$,
(ii) $\mu(B)=\inf \{\mu(A): A$ quasi open, $B \subseteq A\}$ for every Borel set $B \subseteq \Omega$.

This definition differs from the definition used in [22] and [23], where condition (ii) is not present. Our class $\mathcal{M}_{0}(\Omega)$ coincides with the class $\mathcal{M}_{0}^{*}(\Omega)$ introduced in [19] and used in [8]. We refer to [19] for a comparison between these definitions. It is well known that every Radon measure satisfies (ii), while there are examples of Borel measures which satisfy (i), but do not satisfy (ii).

For every closed set $E \subseteq \Omega$ we denote by ∞_{E} the measure of the class $\mathcal{M}_{0}(\Omega)$ defined by

$$
\infty_{E}(B)= \begin{cases}0, & \text { if } \operatorname{cap}(B \cap E, \Omega)=0, \tag{2.1}\\ +\infty, & \text { otherwise } .\end{cases}
$$

We shall see in Theorem 4.6 that the measures ∞_{E} will be useful in the study of the asymptotic behaviour of sequences of Dirichlet problems in varying domains.

Finally, we say that a Radon measure ν on Ω belongs to $H^{-1}(\Omega)$ if there exists $f \in H^{-1}(\Omega)$ such that

$$
\begin{equation*}
\langle f, \varphi\rangle=\int_{\Omega} \varphi d \nu \quad \forall \varphi \in C_{0}^{\infty}(\Omega), \tag{2.2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$. We shall always identify f and ν. Note that, by the Riesz theorem, for every positive functional $f \in H^{-1}(\Omega)$, there exists a Radon measure ν such that (2.2) holds. It is well known that every Radon measure which belongs to $H^{-1}(\Omega)$ belongs also to $\mathcal{M}_{0}(\Omega)$ (see [51], Section 4.7).

Let $A: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ be an elliptic operator of the form

$$
\begin{equation*}
A u=-\sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} u\right) \tag{2.3}
\end{equation*}
$$

where $\left(a_{i j}\right)$ is an $n \times n$ matrix of functions of $L^{\infty}(\Omega)$ satisfying, for a suitable constant $\alpha>0$, the ellipticity condition

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{j} \xi_{i} \geq \alpha|\xi|^{2} \tag{2.4}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for every $\xi \in \mathbf{R}^{n}$. Let $A^{*}: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ be the adjoint operator, defined by

$$
A^{*} u=-\sum_{i, j=1}^{n} D_{i}\left(a_{j i} D_{j} u\right)
$$

for every $u \in H^{1}(\Omega)$. It is well known that $\left\langle A^{*} u, v\right\rangle=\langle A v, u\rangle$ for every u, $v \in H_{0}^{1}(\Omega)$.

Let $\mu \in \mathcal{M}_{0}(\Omega)$ and $f \in H^{-1}(\Omega)$. We shall consider the following relaxed Dirichlet problem (see [22] and [23]): find $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ such that

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\Omega} u v d \mu=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{2.5}
\end{equation*}
$$

The name is motivated by Theorem 4.6 and by the density results proved in [22] and [21].

Theorem 2.2. For every $f \in H^{-1}(\Omega)$ there exists a unique solution of problem (2.5).

Proof. The proof is a straightforward application of the Lax-Milgram lemma, see, e.g., [22], Theorem 2.4.

By the ellipticity condition (2.4), if we take u as test function in (2.5), we obtain the following estimate

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)} \leq \frac{1}{\alpha}\|f\|_{H^{-1}(\Omega)} . \tag{2.6}
\end{equation*}
$$

A connection between classical Dirichlet problems and relaxed Dirichlet problems (2.5) is given by the following remark.

Remark 2.3. It is easy to see that, if E is a closed set and $\mu=\infty_{E}$, then $u \in H_{0}^{1}(\Omega)$ is the solution of problem (2.5) if and only if $u=0$ q.e. in E and u is the solution in $\Omega \backslash E$ of the classical boundary value problem

$$
u \in H_{0}^{1}(\Omega \backslash E), \quad A u=f \quad \text { in } \Omega \backslash E .
$$

The solutions of relaxed Dirichlet problems satisfy a comparison principle.

Proposition 2.4. Let $\mu \in \mathcal{M}_{0}(\Omega)$, let $f \in H^{-1}(\Omega)$, and let $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of problem (2.5). If $f \geq 0$ in Ω, then $u \geq 0$ q.e. in Ω.

Proof. The proof is given in [22], Proposition 2.9, in a more general context. For the sake of completeness we give the proof in this simple case. Let $v=-(u \wedge 0)$. Then v is a non-negative function of $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$. Since $u v \leq 0$ q.e. in Ω and $\langle f, v\rangle \geq 0$, taking v as test function in (2.5) we obtain $\langle A u, v\rangle \geq 0$. As $D v=-D u$ a.e. in $\{v>0\}$ and $D v=0$ a.e. in $\{v=0\}$, we have that $\langle A v, v\rangle=-\langle A u, v\rangle \leq 0$. By the ellipticity assumption we obtain $v=0$ q.e. in Ω, hence $u \geq 0$ q.e. in Ω.

Proposition 2.5. Let $f_{1}, f_{2} \in H^{-1}(\Omega)$ and let $\mu_{1}, \mu_{2} \in \mathcal{M}_{0}(\Omega)$. Let u_{1}, $u_{2} \in H_{0}^{1}(\Omega)$ be the solutions of problem (2.5) corresponding to f_{1}, μ_{1} and to f_{2}, μ_{2}. If $0 \leq f_{1} \leq f_{2}$ and $\mu_{2} \leq \mu_{1}$ in Ω, then $0 \leq u_{1} \leq u_{2}$ q.e. in Ω.

Proof. This result is proved in [22], Proposition 2.10. For the reader's convenience we give here the complete proof. By Proposition 2.4 we have that $u_{1} \geq 0$ q.e. in Ω and $u_{2} \geq 0$ q.e. in Ω. Let $v=\left(u_{1}-u_{2}\right)^{+}$. Since $0 \leq v \leq u_{1}$ and $\mu_{2} \leq \mu_{1}$, we have $v \in L_{\mu_{1}}^{2}(\Omega) \cap L_{\mu_{2}}^{2}(\Omega)$. As $\int_{\Omega} u_{2} v d \mu_{2} \leq \int_{\Omega} u_{2} v d \mu_{1}$, taking v as test function in the problems solved by u_{1} and u_{2} and subtracting the corresponding equations, we obtain

$$
\left\langle A\left(u_{1}-u_{2}\right), v\right\rangle+\int_{\Omega}\left(u_{1}-u_{2}\right) v d \mu_{1} \leq\left\langle f_{1}-f_{2}, v\right\rangle \leq 0 .
$$

Since $\left(u_{1}-u_{2}\right) v \geq 0$ q.e. in Ω, by the ellipticity condition (2.4) we have

$$
\alpha\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq\langle A v, v\rangle=\left\langle A\left(u_{1}-u_{2}\right), v\right\rangle \leq 0 .
$$

Thus $v=0$ q.e. in Ω and, consequently, $u_{1} \leq u_{2}$ q.e. in Ω.
The following result will be useful in the sequel.
Proposition 2.6. Let ν be a positive Radon measure on Ω which belongs to $H^{-1}(\Omega)$ and let u be the solution in $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of problem (2.5) corresponding to $f=\nu$. Then

$$
\langle A u, v\rangle \leq \int_{\Omega} v d \nu
$$

for every $v \in H_{0}^{1}(\Omega)$ with $v \geq 0$ q.e. in Ω.
Proof. This proposition is proved in [22], Proposition 2.6, under more general hypotheses. Here we sketch the proof only in our particular case. Let $v \in H_{0}^{1}(\Omega)$ with $v \geq 0$ q.e. in Ω and let $v_{h}=\left(\frac{1}{h} v\right) \wedge u$. Since $u \geq 0$ (Proposition 2.4), we have that $v_{h} \geq 0$ q.e. in Ω and $v_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$. Then, taking v_{h} as test function
in problem (2.5) with $f=\nu$, we obtain $\left\langle A u, v_{h}\right\rangle \leq \int_{\Omega} v_{h} d \nu$. Since $D v_{h}=\frac{1}{h} D v$ in $\{v<h u\}$ and $D v_{h}=D u$ in $\{v \geq h u\}$, we have

$$
\begin{gathered}
\frac{1}{h} \int_{\{v<h u\}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} v\right) d x+\int_{\{v \geq h u\}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} u\right) d x \leq \\
\leq \int_{\Omega} v_{h} d \nu \leq \frac{1}{h} \int_{\Omega} v d \nu
\end{gathered}
$$

By neglecting the second term, which is non-negative by the ellipticity assumption, we get

$$
\int_{\{v<h u\}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} v\right) d x \leq \int_{\Omega} v d \nu
$$

Taking the limit as $h \rightarrow \infty$, we obtain

$$
\int_{\{u>0\}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} v\right) d x \leq \int_{\Omega} v d \nu
$$

Since $u \geq 0$ q.e. in Ω and $D_{j} u=0$ a.e. in $\{u=0\}$, the conclusion follows.

3. A Convex Set

In this section we shall study the properties of the set $\mathcal{K}(\Omega)$ of all functions $w \in H_{0}^{1}(\Omega)$ such that $w \geq 0$ q.e. in Ω and $A w \leq 1$ in Ω in the sense of $H^{-1}(\Omega)$. It is easy to see that $\mathcal{K}(\Omega)$ is a closed convex subset of $H_{0}^{1}(\Omega)$. Moreover, for every $w \in \mathcal{K}(\Omega)$ we have

$$
\alpha \int_{\Omega}|D w|^{2} d x \leq\langle A w, w\rangle \leq \int_{\Omega} w d x
$$

This shows that $\mathcal{K}(\Omega)$ is bounded, and hence weakly compact, in $H_{0}^{1}(\Omega)$. Let w_{0} be the solution of the Dirichlet problem

$$
w_{0} \in H_{0}^{1}(\Omega), \quad A w_{0}=1
$$

By the maximum principle we have $w \leq w_{0}$ q.e. in Ω for every $w \in \mathcal{K}(\Omega)$. As $w_{0} \in L^{\infty}(\Omega)$ (see [48]), the set $\mathcal{K}(\Omega)$ is bounded in $L^{\infty}(\Omega)$.

Given $w \in \mathcal{K}(\Omega)$, let $\nu=1-A w$. By the definition of $\mathcal{K}(\Omega)$ we have $\nu \geq 0$ in Ω in the sense of distributions, hence ν is a positive Radon measure. As $A w \in$ $H^{-1}(\Omega)$, we have also $\nu \in H^{-1}(\Omega)$.

We shall see that, if $w \in \mathcal{K}(\Omega)$, then w can be characterized as the solution of a particular relaxed Dirichlet problem. To this aim we need some preliminary results.

Proposition 3.1. Let $\mu \in \mathcal{M}_{0}(\Omega)$ and let $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$. For every $h \in \mathbf{N}$ let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of the problem

$$
\begin{equation*}
\left\langle A u_{h}, v\right\rangle+\int_{\Omega} u_{h} v d \mu+h \int_{\Omega}\left(u_{h}-u\right) v d x=0 \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{3.1}
\end{equation*}
$$

Then $\left(u_{h}\right)$ converges to u strongly in $H_{0}^{1}(\Omega)$ and in $L_{\mu}^{2}(\Omega)$. Moreover

$$
\begin{equation*}
\lim _{h \rightarrow \infty}\left(\left\langle A u_{h}, u_{h}\right\rangle+\int_{\Omega} u_{h}^{2} d \mu+h \int_{\Omega}\left(u_{h}-u\right)^{2} d x\right)=\langle A u, u\rangle+\int_{\Omega} u^{2} d \mu \tag{3.2}
\end{equation*}
$$

Proof. Taking $v=u_{h}-u$ as test function in (3.1) we obtain

$$
\begin{equation*}
\left\langle A u_{h}, u_{h}-u\right\rangle+\int_{\Omega} u_{h}\left(u_{h}-u\right) d \mu+h \int_{\Omega}\left(u_{h}-u\right)^{2} d x=0 \tag{3.3}
\end{equation*}
$$

hence

$$
\begin{gathered}
\left\langle A\left(u_{h}-u\right), u_{h}-u\right\rangle+\int_{\Omega}\left(u_{h}-u\right)^{2} d \mu+h \int_{\Omega}\left(u_{h}-u\right)^{2} d x= \\
=-\left\langle A u, u_{h}-u\right\rangle-\int_{\Omega} u\left(u_{h}-u\right) d \mu
\end{gathered}
$$

From the ellipticity condition (2.4) we get

$$
\begin{gather*}
\alpha\left\|u_{h}-u\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u_{h}-u\right\|_{L_{\mu}^{2}(\Omega)}^{2}+h\left\|u_{h}-u\right\|_{L^{2}(\Omega)}^{2} \leq \\
\leq-\left\langle A u, u_{h}-u\right\rangle-\int_{\Omega} u\left(u_{h}-u\right) d \mu \tag{3.4}
\end{gather*}
$$

hence

$$
\begin{aligned}
& \alpha\left\|u_{h}-u\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u_{h}-u\right\|_{L_{\mu}^{2}(\Omega)}^{2}+h\left\|u_{h}-u\right\|_{L^{2}(\Omega)}^{2} \leq \\
& \leq\|A u\|_{H^{-1}(\Omega)}\left\|u_{h}-u\right\|_{H_{0}^{1}(\Omega)}+\|u\|_{L_{\mu}^{2}(\Omega)}\left\|u_{h}-u\right\|_{L_{\mu}^{2}(\Omega)} .
\end{aligned}
$$

By using the Cauchy inequality we obtain

$$
\begin{gathered}
\frac{\alpha}{2}\left\|u_{h}-u\right\|_{H_{0}^{1}(\Omega)}^{2}+\frac{1}{2}\left\|u_{h}-u\right\|_{L_{\mu}^{2}(\Omega)}^{2}+h\left\|u_{h}-u\right\|_{L^{2}(\Omega)}^{2} \leq \\
\leq \frac{1}{2 \alpha}\|A u\|_{H^{-1}(\Omega)}^{2}+\frac{1}{2}\|u\|_{L_{\mu}^{2}(\Omega)}^{2} .
\end{gathered}
$$

This shows that $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$ and in $L_{\mu}^{2}(\Omega)$. By (3.4) this implies that $\left(u_{h}\right)$ converges to u strongly in $H_{0}^{1}(\Omega)$ and in $L_{\mu}^{2}(\Omega)$. Finally (3.3) gives

$$
\left\langle A u_{h}, u_{h}\right\rangle+\int_{\Omega} u_{h}^{2} d \mu+h \int_{\Omega}\left(u_{h}-u\right)^{2} d x=\left\langle A u_{h}, u\right\rangle+\int_{\Omega} u_{h} u d \mu
$$

which proves (3.2).

Lemma 3.2. Let $\mu \in \mathcal{M}_{0}(\Omega)$ and let $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of the problem

$$
\langle A w, v\rangle+\int_{\Omega} w v d \mu=\int_{\Omega} v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)
$$

Then $\mu(B)=+\infty$ for every Borel subset B of Ω with $\operatorname{cap}(B \cap\{w=0\}, \Omega)>0$.
Proof. Let $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$, with $0 \leq u \leq 1$ q.e. in Ω, and, for every $h \in \mathbf{N}$, let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of the problem

$$
\left\langle A u_{h}, v\right\rangle+\int_{\Omega} u_{h} v d \mu+h \int_{\Omega} u_{h} v d x=h \int_{\Omega} u v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) .
$$

By the comparison principle (Proposition 2.5) we have $0 \leq u_{h} \leq h w$ q.e. in Ω, hence $u_{h}=0$ q.e. in $\{w=0\}$. Since, by Proposition 3.1, $\left(u_{h}\right)$ converges to u in $H_{0}^{1}(\Omega)$, we have $u=0$ q.e. in $\{w=0\}$.

Let U be a quasi open subset of Ω such that $\mu(U)<+\infty$. By Lemma 2.1 there exists an increasing sequence $\left(z_{h}\right)$ in $H_{0}^{1}(\Omega)$ converging to 1_{U} pointwise q.e. in Ω and such that $0 \leq z_{h} \leq 1_{U}$ q.e. in Ω for every $h \in \mathbf{N}$. As $\mu(U)<+\infty$, each function z_{h} belongs to $L_{\mu}^{2}(\Omega)$, hence $z_{h}=0$ q.e. on $\{w=0\}$ by the previous step. This implies that $\operatorname{cap}(U \cap\{w=0\}, \Omega)=0$.

Let us consider a Borel set B with $\operatorname{cap}(B \cap\{w=0\}, \Omega)>0$. For every quasi open set U containing B we have $\operatorname{cap}(U \cap\{w=0\}, \Omega)>0$, hence $\mu(U)=+\infty$ by the previous step of the proof. By the definition of $\mathcal{M}_{0}(\Omega)$ we conclude that $\mu(B)=+\infty$.

Lemma 3.3. Let λ and μ be measures of $\mathcal{M}_{0}(\Omega)$. Assume that there exists a function $w \in H_{0}^{1}(\Omega) \cap L_{\lambda}^{2}(\Omega) \cap L_{\mu}^{2}(\Omega)$ such that

$$
\begin{array}{ll}
\langle A w, v\rangle+\int_{\Omega} w v d \lambda=\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\lambda}^{2}(\Omega) \\
\langle A w, v\rangle+\int_{\Omega} w v d \mu=\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{3.6}
\end{array}
$$

Then $\lambda=\mu$.
Proof. Let us consider the measures λ_{0} and μ_{0} defined for every Borel set $B \subseteq \Omega$ by

$$
\lambda_{0}(B)=\int_{B} w d \lambda, \quad \mu_{0}(B)=\int_{B} w d \mu
$$

Let us prove that $\lambda_{0}=\mu_{0}$. For every $\varepsilon>0$ let λ_{ε} and μ_{ε} be the measures defined by

$$
\lambda_{\varepsilon}(B)=\int_{B \cap\{w>\varepsilon\}} w d \lambda, \quad \mu_{\varepsilon}(B)=\int_{B \cap\{w>\varepsilon\}} w d \mu
$$

To prove that $\lambda_{0}=\mu_{0}$ it is enough to show that $\lambda_{\varepsilon}=\mu_{\varepsilon}$ for every $\varepsilon>0$. Let us fix $\varepsilon>0$. As $w \in L_{\lambda}^{2}(\Omega) \cap L_{\mu}^{2}(\Omega), \lambda_{\varepsilon}$ and μ_{ε} are bounded measures. Therefore it is enough to show that $\lambda_{\varepsilon}(U)=\mu_{\varepsilon}(U)$ for every open subset U of Ω. Let us fix U and let $U_{\varepsilon}=U \cap\{w>\varepsilon\}$. As U_{ε} is quasi open, by Lemma 2.1 there exists an increasing sequence $\left(z_{h}\right)$ in $H_{0}^{1}(\Omega)$ converging to $1_{U_{\varepsilon}}$ pointwise q.e. in Ω and such that $0 \leq z_{h} \leq 1_{U_{\varepsilon}}$ q.e. in Ω. As $w \in L_{\lambda}^{2}(\Omega) \cap L_{\mu}^{2}(\Omega)$ and $w>\varepsilon$ q.e. in U_{ε}, we have $\lambda\left(U_{\varepsilon}\right)<+\infty$ and $\mu\left(U_{\varepsilon}\right)<+\infty$, hence $z_{h} \in L_{\lambda}^{2}(\Omega) \cap L_{\mu}^{2}(\Omega)$. From (3.5) and (3.6) we get

$$
\int_{\Omega} w z_{h} d \lambda=\int_{\Omega} w z_{h} d \mu
$$

Taking the limit as $h \rightarrow \infty$ we obtain

$$
\lambda_{\varepsilon}(U)=\int_{U_{\varepsilon}} w d \lambda=\int_{U_{\varepsilon}} w d \mu=\mu_{\varepsilon}(U)
$$

This shows that $\lambda_{\varepsilon}=\mu_{\varepsilon}$ for every $\varepsilon>0$, hence $\lambda_{0}=\mu_{0}$. For every Borel set $B \subseteq\{w>0\}$ we have

$$
\lambda(B)=\int_{B} \frac{1}{w} d \lambda_{0}=\int_{B} \frac{1}{w} d \mu_{0}=\mu(B) .
$$

If B is Borel set contained in $\{w=0\}$ and $\operatorname{cap}(B, \Omega)>0$, then $\lambda(B)=\mu(B)=$ $+\infty$ by Lemma 3.2. If $\operatorname{cap}(B, \Omega)=0$, then $\lambda(B)=\mu(B)=0$ by the definition of $\mathcal{M}_{0}(\Omega)$. Therefore $\lambda(B)=\lambda(B \cap\{w>0\})+\lambda(B \cap\{w=0\})=\mu(B \cap\{w>0\})+$ $\mu(B \cap\{w=0\})=\mu(B)$ for every Borel set $B \subseteq \Omega$.

We give now the characterization of $\mathcal{K}(\Omega)$ in terms of relaxed Dirichlet problems.
Proposition 3.4. A function $w \in H_{0}^{1}(\Omega)$ belongs to $\mathcal{K}(\Omega)$ if and only if there exists $\mu \in \mathcal{M}_{0}(\Omega)$ such that $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ and

$$
\begin{equation*}
\langle A w, v\rangle+\int_{\Omega} w v d \mu=\int_{\Omega} v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{3.7}
\end{equation*}
$$

The measure $\mu \in \mathcal{M}_{0}(\Omega)$ is uniquely determined by $w \in \mathcal{K}(\Omega)$. More precisely, for every $w \in \mathcal{K}(\Omega)$ and for every Borel set $B \subseteq \Omega$ we have

$$
\mu(B)= \begin{cases}\int_{B} \frac{d \nu}{w}, & \text { if } \operatorname{cap}(B \cap\{w=0\}, \Omega)=0 \tag{3.8}\\ +\infty, & \text { if } \operatorname{cap}(B \cap\{w=0\}, \Omega)>0\end{cases}
$$

where ν is the measure of $H^{-1}(\Omega)$ defined by $\nu=1-A w$. Moreover, we have

$$
\begin{equation*}
\nu(B \cap\{w>0\})=\int_{B} w d \mu \tag{3.9}
\end{equation*}
$$

for every Borel set $B \subseteq \Omega$.

Proof. We follow the lines of the proof of Theorem 1 of [14]. Let $\mu \in \mathcal{M}_{0}(\Omega)$ and let $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be a solution of (3.7). Then $w \geq 0$ q.e. in Ω by Proposition 2.4 and $A w \leq 1$ in Ω by Proposition 2.6, hence $w \in \mathcal{K}(\Omega)$.

Conversely, assume that $w \in \mathcal{K}(\Omega)$ and let μ be the measure defined by (3.8). Let us prove that $\mu \in \mathcal{M}_{0}(\Omega)$. Since $\nu \in H^{-1}(\Omega)$, we have $\mu(B)=0$ for every Borel set $B \subseteq \Omega$ with $\operatorname{cap}(B, \Omega)=0$. It remains to prove that

$$
\begin{equation*}
\mu(B)=\inf \{\mu(A): A \text { quasi open }, B \subseteq A\} \tag{3.10}
\end{equation*}
$$

for every Borel set $B \subseteq \Omega$ with $\mu(B)<+\infty$. For every $h \in \mathbf{N}$ let μ_{h} be the measure on Ω defined by $\mu_{h}(B)=\mu\left(B \cap\left\{w>\frac{1}{h}\right\}\right)$. Note that

$$
\mu_{h}(\Omega)=\mu\left(\left\{w>\frac{1}{h}\right\}\right) \leq h \nu\left(\left\{w>\frac{1}{h}\right\}\right) \leq h^{2} \int_{\Omega} w d \nu=h^{2}\langle 1-A w, w\rangle<+\infty .
$$

Let us fix a Borel set $B \subseteq \Omega$ with $\mu(B)<+\infty$. By the definition of μ we have $\operatorname{cap}(B \cap\{w=0\}, \Omega)=0$. For every $h \geq 2$ let $B_{h}=B \cap\left\{\frac{1}{h}<w \leq \frac{1}{h-1}\right\}$, and let $B_{1}=\{1<w\}$, so that $\mu(B)=\sum_{h} \mu\left(B_{h}\right)$. Since $\mu_{h}(\Omega)<+\infty$, for every $\varepsilon>0$ and for every $h \in \mathbf{N}$ there exists an open set U_{h}, with $B_{h} \subseteq U_{h} \subseteq \Omega$, such that $\mu_{h}\left(U_{h}\right)<\mu_{h}\left(B_{h}\right)+\varepsilon 2^{-h}=\mu\left(B_{h}\right)+\varepsilon 2^{-h}$. Let $A_{h}=U_{h} \cap\left\{w>\frac{1}{h}\right\}$. As w is quasi continuous, the set A_{h} is quasi open. Moreover $B_{h} \subseteq A_{h}$ and $\mu\left(A_{h}\right)=\mu_{h}\left(U_{h}\right)<\mu\left(B_{h}\right)+\varepsilon 2^{-h}$. Let $A_{0}=B \cap\{w=0\}$ and let A be the union of all sets A_{h} for $h \geq 0$. Then A is quasi open, contains B, and $\mu(A)<\mu(B)+\varepsilon$. Since $\varepsilon>0$ is arbitrary, this proves (3.10).

Let us prove that w is a solution of (3.7). By (3.8) we have

$$
\int_{\Omega} w^{2} d \mu=\int_{\{w>0\}} w^{2} d \mu=\int_{\{w>0\}} w d \nu=\langle 1-A w, w\rangle<+\infty
$$

hence $w \in L_{\mu}^{2}(\Omega)$. Let $v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$. By (3.8) we have $v=0$ q.e. in $\{w=0\}$. By the definitions of μ and ν we have

$$
\begin{gathered}
\langle A w, v\rangle+\int_{\Omega} w v d \mu=\langle A w, v\rangle+\int_{\{w>0\}} w v d \mu= \\
=\langle A w, v\rangle+\int_{\{w>0\}} v d \nu=\langle A w, v\rangle+\int_{\Omega} v d \nu=\int_{\Omega} v d x,
\end{gathered}
$$

which proves (3.7). The uniqueness of μ follows from Lemma 3.3.
Property (3.9) is an easy consequence of (3.8).

The following lemma will be crucial in the proof of Theorem 4.3.

Lemma 3.5. Let $\mu \in \mathcal{M}_{0}(\Omega)$ and let $f \in L^{\infty}(\Omega)$. Let $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ and $w^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the problems

$$
\begin{array}{cc}
\langle A u, v\rangle+\int_{\Omega} u v d \mu=\int_{\Omega} f v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \\
\left\langle A^{*} w^{*}, v\right\rangle+\int_{\Omega} w^{*} v d \mu=\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{3.12}
\end{array}
$$

Then u is the unique solution in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of the problem

$$
\begin{equation*}
\left\langle A u, w^{*} \varphi\right\rangle-\left\langle A^{*} w^{*}, u \varphi\right\rangle=\int_{\Omega} f w^{*} \varphi d x-\int_{\Omega} u \varphi d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{3.13}
\end{equation*}
$$

Proof. First of all, we note that (3.13) can be written as

$$
\begin{gather*}
\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} \varphi\right) w^{*} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} w^{*}\right) u d x= \\
=\int_{\Omega} f w^{*} \varphi d x-\int_{\Omega} u \varphi d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{3.14}
\end{gather*}
$$

Let $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of (3.7). By the comparison principle (Theorem 2.5) we have $|u| \leq c w$ q.e. in Ω, with $c=\|f\|_{L^{\infty}(\Omega)}$. Since w is bounded, this implies that $u \in L^{\infty}(\Omega)$.

Let $\nu^{*}=1-A^{*} w^{*}$. By Proposition $2.6 \nu^{*}$ is a non-negative Radon measure. By Lemma 3.4 (applied to A^{*}) we have that

$$
\begin{equation*}
\nu^{*}\left(B \cap\left\{w^{*}>0\right\}\right)=\int_{B} w^{*} d \mu \tag{3.15}
\end{equation*}
$$

for every Borel set $B \subseteq \Omega$. As $w^{*} \in L_{\mu}^{2}(\Omega)$, we have $w^{*} \varphi \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ for every $\varphi \in C_{0}^{\infty}(\Omega)$. As $u \in L_{\mu}^{2}(\Omega)$, by Lemma 3.2 (applied to A^{*}) we have $u=0$ q.e. in $\left\{w^{*}=0\right\}$. Therefore (3.15) implies that

$$
\int_{\Omega} u w^{*} \varphi d \mu=\int_{\left\{w^{*}>0\right\}} u \varphi d \nu^{*}=\int_{\Omega} u \varphi d \nu^{*}
$$

Taking $v=w^{*} \varphi$ in (3.11) we obtain

$$
\left\langle A u, w^{*} \varphi\right\rangle+\int_{\Omega} u \varphi d \nu^{*}=\int_{\Omega} f w^{*} \varphi d x
$$

for every $\varphi \in C_{0}^{\infty}(\Omega)$. As $\nu^{*}=1-A^{*} w^{*}$, we conclude that u is a solution in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of (3.13).

Let us prove that the solution of (3.13) is unique. First of all we observe that, by an easy approximation argument, (3.13) holds for every $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Since the equation is linear in u, it is enough to consider the case $f=0$. Let us fix a solution $z \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of (3.13) with $f=0$. By (3.14) we have that

$$
\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z D_{i} v\right) w^{*} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} v D_{i} w^{*}\right) z d x+\int_{\Omega} z v d x=0
$$

for every $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Taking $v=z$ we obtain

$$
\begin{equation*}
\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z D_{i} z\right) w^{*} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z D_{i} w^{*}\right) z d x+\int_{\Omega} z^{2} d x=0 . \tag{3.16}
\end{equation*}
$$

As $z D_{j} z=\frac{1}{2} D_{j}\left(z^{2}\right)$ and $\nu^{*} \geq 0$ we have

$$
-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z D_{i} w^{*}\right) z d x=-\frac{1}{2}\left\langle A^{*} w^{*}, z^{2}\right\rangle \geq-\frac{1}{2} \int_{\Omega} z^{2} d x
$$

and so (3.16) gives

$$
\begin{equation*}
\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z D_{i} z\right) w^{*} d x+\frac{1}{2} \int_{\Omega} z^{2} d x \leq 0 \tag{3.17}
\end{equation*}
$$

Since $w^{*} \geq 0$ q.e. in Ω (Proposition 2.4), (3.17) and the ellipticity condition (2.4) imply that $z=0$ a.e. in Ω. This concludes the proof of the uniqueness.

4. The γ^{A}-Convergence and the Compactness Theorem

In this section we introduce the notion of γ^{A}-convergence in $\mathcal{M}_{0}(\Omega)$, related to the convergence of the solutions of the corresponding relaxed Dirichlet problems. When A is the Laplace operator $-\Delta$, this notion is defined in [23] in terms of the Γ-convergence of the functionals $\int_{\Omega}|D u|^{2} d x+\int_{\Omega} u^{2} d \mu$ associated with the relaxed Dirichlet problems. For the extension of this definition to the case of symmetric operators see [7] and [19]. The definition given here involves only the solutions of (2.5), and coincides with the previous ones in the symmetric cases.

Definition 4.1. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega)$ and let $\mu \in \mathcal{M}_{0}(\Omega)$. We say that $\left(\mu_{h}\right) \gamma^{A}$-converges to μ (in Ω) if for every $f \in H^{-1}(\Omega)$ the solutions $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of the problems

$$
\begin{equation*}
\left\langle A u_{h}, v\right\rangle+\int_{\Omega} u_{h} v d \mu_{h}=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega) \tag{4.1}
\end{equation*}
$$

converge weakly in $H_{0}^{1}(\Omega)$, as $h \rightarrow \infty$, to the solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of the problem

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\Omega} u v d \mu=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{4.2}
\end{equation*}
$$

We underline the fact that the γ^{A}-limit depends on the operator A. This fact will be discussed later in Section 6.

Remark 4.2. Since A is linear and the solutions of (4.1) depend continuously on the data, uniformly with respect to h (see the estimate (2.6)), a sequence (μ_{h}) γ^{A}-converges to μ if and only if the solutions of (4.1) converge weakly in $H_{0}^{1}(\Omega)$ to the solution of (4.2) for every f in a dense subset of $H^{-1}(\Omega)$.

Let $\left(\mu_{h}\right)$ be a sequence of measures of the class $\mathcal{M}_{0}(\Omega)$ and let $\mu \in \mathcal{M}_{0}(\Omega)$. Let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the problems

$$
\begin{align*}
\left\langle A w_{h}, v\right\rangle+\int_{\Omega} w_{h} v d \mu_{h} & =\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega) \tag{4.3}\\
\langle A w, v\rangle+\int_{\Omega} w v d \mu & =\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{4.4}
\end{align*}
$$

and let $w_{h}^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the corresponding problems for the adjoint operator A^{*}.

We are now in a position to characterize the γ^{A}-convergence of a sequence of measures $\left(\mu_{h}\right)$ in terms of the weak convergence in $H_{0}^{1}(\Omega)$ of the sequences $\left(w_{h}\right)$ and $\left(w_{h}^{*}\right)$.

Theorem 4.3. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega)$ and let $\mu \in \mathcal{M}_{0}(\Omega)$. Let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.3) and (4.4), and let $w_{h}^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$, $w^{*} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the corresponding problems for A^{*}. The following conditions are equivalent:
(a) $\left(w_{h}\right)$ converges to w weakly in $H_{0}^{1}(\Omega)$;
(b) $\left(w_{h}^{*}\right)$ converges to w^{*} weakly in $H_{0}^{1}(\Omega)$;
(c) $\left(\mu_{h}\right) \gamma^{A}$-converges to μ;
(d) $\left(\mu_{h}\right) \gamma^{A^{*}}$-converges to μ.

Proof. $\quad(b) \Rightarrow(c)$. Given $f \in L^{\infty}(\Omega)$, let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in$ $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the problems (4.1) and (4.2). By Lemma 3.5 and by (3.14) we have

$$
\begin{gather*}
\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} \varphi\right) w_{h}^{*} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} w_{h}^{*}\right) u_{h} d x= \\
=\int_{\Omega} f w_{h}^{*} \varphi d x-\int_{\Omega} u_{h} \varphi d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{4.5}
\end{gather*}
$$

By the estimate (2.6) the sequence $\left(u_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, so we may assume that $\left(u_{h}\right)$ converges weakly in $H_{0}^{1}(\Omega)$ to some function \tilde{u}. By the comparison principle (Theorem 2.5) we have $\left|u_{h}\right| \leq c w_{h}$ q.e. in Ω, with $c=\|f\|_{L^{\infty}(\Omega)}$. Taking the
limit as $h \rightarrow \infty$ we get $|\tilde{u}| \leq c w$ q.e. in Ω, and hence $\tilde{u} \in L^{\infty}(\Omega)$. Moreover, taking the limit in (4.5) we obtain that \tilde{u} satisfies (3.14), and so $\tilde{u}=u$ by Lemma 3.5. Therefore $\left(\mu_{h}\right) \gamma^{A}$-convereges to μ by Remark 4.2.
$(c) \Rightarrow(a)$. It is enough to take $f=1$ in the definition of γ^{A}-convergence.
$(a) \Rightarrow(d)$. It is enough to replace A by A^{*} in the proof of $(b) \Rightarrow(c)$.
$(d) \Rightarrow(b)$. It is enough to take $f=1$ in the definition of $\gamma^{A^{*}}$-convergence.

Remark 4.4. The uniqueness of the γ^{A}-limit is an easy consequence of Theorem 4.3, which implies that, if $\left(\mu_{h}\right) \gamma^{A}$-converges to λ and μ, then w satisfies (3.5) and (3.6), so that $\lambda=\mu$ by Lemma 3.3.

The following theorem proves the compactness of $\mathcal{M}_{0}(\Omega)$ with respect to γ^{A}-convergence.

Theorem 4.5. Every sequence of measures of $\mathcal{M}_{0}(\Omega)$ contains a γ^{A}-convergent subsequence.

Proof. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega)$ and, for every $h \in \mathbf{N}$, let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ be the solution of problem (4.3). By Proposition 3.4 we have $w_{h} \in \mathcal{K}(\Omega)$. Since $\mathcal{K}(\Omega)$ is compact in the weak topology of $H_{0}^{1}(\Omega)$, a subsequence of $\left(w_{h}\right)$ converges weakly in $H_{0}^{1}(\Omega)$ to some function $w \in \mathcal{K}(\Omega)$. By Proposition 3.4 there exists a measure $\mu \in \mathcal{M}_{0}(\Omega)$ such that w is a solution in $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of problem (4.4). The conclusion follows now from Theorem 4.3.

The case of Dirichlet problems in perforated domains is considered in the following theorem.

Theorem 4.6. Let $\left(\Omega_{h}\right)$ be an arbitrary sequence of open subsets of Ω. Then there exist a subsequence, still denoted by $\left(\Omega_{h}\right)$, and a measure $\mu \in \mathcal{M}_{0}(\Omega)$ such that, for every $f \in H^{-1}(\Omega)$, the solutions $u_{h} \in H_{0}^{1}\left(\Omega_{h}\right)$ of the equations $A u_{h}=f$ in Ω_{h}, extended to 0 on $\Omega \backslash \Omega_{h}$, converge weakly in $H_{0}^{1}(\Omega)$ to the unique solution $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of problem (4.2).

Proof. The conclusion follows easily from the compactness theorem (Theorem 4.5) and from the fact that each function u_{h} can be regarded as the solution of problem (4.1) with $\mu_{h}=\infty_{\Omega \backslash \Omega_{h}}$ (Remark 2.3).

Using Theorem 4.3 we can prove the following density result in $\mathcal{M}_{0}(\Omega)$. We shall see in Corollary 5.8 that the strong converegence in $H_{0}^{1}(\Omega)$ of the sequence $\left(w_{h}\right)$ implies the strong converegence in $H_{0}^{1}(\Omega)$ of the sequence $\left(u_{h}\right)$ of the solutions of (4.1) for every $f \in H^{-1}(\Omega)$.

Proposition 4.7. Every measure $\mu \in \mathcal{M}_{0}(\Omega)$ is the γ^{A}-limit of a sequence $\left(\mu_{h}\right)$ of Radon measures of $\mathcal{M}_{0}(\Omega)$ such that the solutions w_{h} of (4.3) converge strongly in $H_{0}^{1}(\Omega)$ to the solution w of (4.4).

Proof. By (3.8) a measure $\mu \in \mathcal{M}_{0}(\Omega)$ is a Radon measure if the solution w of (4.4) satisfies

$$
\begin{equation*}
\inf _{K} w>0 \quad \text { for every compact set } K \subseteq \Omega \tag{4.6}
\end{equation*}
$$

Now let $w_{0} \in H_{0}^{1}(\Omega)$ be the solution of the equation $A w_{0}=1$ in Ω. By the strong maximum principle (see [48]) we have that w_{0} satisfies (4.6).

Let us fix $\mu \in \mathcal{M}_{0}(\Omega)$ and let $w \in \mathcal{K}(\Omega)$ be the solution of (4.4). For every $h \in \mathbf{N}$ let us define $w_{h}=\left(1-\frac{1}{h}\right) w+\frac{1}{h} w_{0}$. It is easy to see that w_{h} is a positive subsolution of the equation $A u=1$, hence $w_{h} \in \mathcal{K}(\Omega)$. Moreover the functions w_{h} satisfy (4.6) and converge to w strongly in $H_{0}^{1}(\Omega)$. Therefore the measures $\mu_{h} \in$ $\mathcal{M}_{0}(\Omega)$ associated with w_{h} by Proposition 3.4 are Radon measures and γ^{A}-converge to μ by Theorem 4.3.

The following proposition deals with the case where also f varies.

Proposition 4.8. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$. Let $\left(f_{h}\right)$ be a sequence in $H^{-1}(\Omega)$ converging strongly to $f \in H^{-1}(\Omega)$. For every $h \in \mathbf{N}$ let $v_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ be the solution of the problem

$$
\left\langle A v_{h}, v\right\rangle+\int_{\Omega} v_{h} v d \mu_{h}=\left\langle f_{h}, v\right\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)
$$

and let $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of problem (4.2). Then (v_{h}) converges to u weakly in $H_{0}^{1}(\Omega)$.

Proof. For every $h \in \mathbf{N}$, let u_{h} be the solution in $H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of problem (4.1). By the estimate (2.6) and by the linearity of the problem the sequence $\left(v_{h}-u_{h}\right)$ converges to 0 strongly in $H_{0}^{1}(\Omega)$. Moreover, by the definition of γ^{A}-convergence, $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$. Therefore $\left(v_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$.

The following results (Theorem 4.9, Theorem 4.10, Corollary 4.11) show the local character of the γ^{A}-convergence. Let ω be an open subset of Ω. With a little abuse of notation we still denote by A the operator defined by (2.3) on $H^{1}(\omega)$, and by $\langle\cdot, \cdot\rangle$ the duality pairing between $H^{-1}(\omega)$ and $H_{0}^{1}(\omega)$.

Theorem 4.9. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging in Ω to a measure $\mu \in \mathcal{M}_{0}(\Omega)$. Let ω be an open subset of Ω, let $\left(f_{h}\right)$ be a sequence in $H^{-1}(\omega)$ converging to f strongly in $H^{-1}(\omega)$, and let $\left(u_{h}\right)$ be a sequence in $H^{1}(\omega)$ converging to u weakly in $H^{1}(\omega)$. Suppose that $u_{h} \in L_{\mu_{h}}^{2}\left(\omega^{\prime}\right)$ for every $\omega^{\prime} \subset \subset \omega$ and that

$$
\begin{equation*}
\left\langle A u_{h}, v\right\rangle+\int_{\omega} u_{h} v d \mu_{h}=\left\langle f_{h}, v\right\rangle \tag{4.7}
\end{equation*}
$$

for every $v \in H_{0}^{1}(\omega) \cap L_{\mu_{h}}^{2}(\omega)$ with $\operatorname{supp}(v) \subset \subset \omega$. Then $u \in L_{\mu}^{2}\left(\omega^{\prime}\right)$ for every $\omega^{\prime} \subset \subset \omega$ and

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\omega} u v d \mu=\langle f, v\rangle \tag{4.8}
\end{equation*}
$$

for every $v \in H_{0}^{1}(\omega) \cap L_{\mu}^{2}(\omega)$ with $\operatorname{supp}(v) \subset \subset \omega$.
Proof. Let $\varphi \in C_{0}^{\infty}(\omega)$ and let $z_{h}=\varphi u_{h}$. Since for every $v \in H_{0}^{1}(\Omega)$ we have

$$
\begin{aligned}
& \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} z_{h} D_{i} v\right) d x=\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} v\right) u_{h} d x+ \\
+ & \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} v\right) \varphi d x=\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} v\right) u_{h} d x+ \\
+ & \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i}(v \varphi)\right) d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} \varphi\right) v d x
\end{aligned}
$$

from (4.7) we obtain

$$
\left\langle A z_{h}, v\right\rangle+\int_{\Omega} z_{h} v d \mu_{h}=\left\langle g_{h}, v\right\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)
$$

where

$$
\left\langle g_{h}, v\right\rangle=\left\langle f_{h}, v \varphi\right\rangle+\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} v\right) u_{h} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} \varphi\right) v d x
$$

for every $v \in H_{0}^{1}(\Omega)$. Since $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\omega),\left(f_{h}\right)$ converges to f strongly in $H^{-1}(\omega)$, and φ has compact support in ω, it follows that (g_{h}) converges strongly in $H^{-1}(\Omega)$ to the functional $g \in H^{-1}(\Omega)$ defined by

$$
\langle g, v\rangle=\langle f, v \varphi\rangle+\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} \varphi D_{i} v\right) u d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} \varphi\right) v d x
$$

for every $v \in H_{0}^{1}(\Omega)$. As $\left(\mu_{h}\right) \gamma^{A}$-converges to μ and $\left(z_{h}\right)$ converges to $z=$ φu weakly in $H_{0}^{1}(\Omega)$, by Proposition 4.8 the function $z=\varphi u$ is the solution in $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of the problem

$$
\begin{equation*}
\langle A z, v\rangle+\int_{\Omega} z v d \mu=\langle g, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{4.9}
\end{equation*}
$$

Let us fix an open set ω^{\prime} and a function $v \in H_{0}^{1}(\omega) \cap L_{\mu}^{2}(\omega)$ with $\operatorname{supp}(v) \subset \subset$ $\omega^{\prime} \subset \subset \omega$. If we choose $\varphi \in C_{0}^{\infty}(\omega)$ such that $\varphi=1$ in ω^{\prime}, then $u=z$ q.e. in ω^{\prime}, hence $u \in L_{\mu}^{2}\left(\omega^{\prime}\right)$ and (4.9) implies (4.8).

Theorem 4.10. Let $\left(\mu_{h}\right)$ a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging in Ω to a measure $\mu \in \mathcal{M}_{0}(\Omega)$, and let ω be an open subset of Ω. Then $\left(\mu_{h}\right) \gamma^{A}$-converges to μ in ω.

Proof. Let us fix $f \in H^{-1}(\omega)$. For every $h \in \mathbf{N}$ let u_{h} be the solution in $H_{0}^{1}(\omega) \cap L_{\mu_{h}}^{2}(\omega)$ of problem (4.1), with Ω replaced by ω. By the estimate (2.6) we know that a subsequence, still denoted by $\left(u_{h}\right)$, converges weakly in $H_{0}^{1}(\omega)$ to a function $u \in H_{0}^{1}(\omega)$. Then, by Theorem 4.9, $u \in L_{\mu}^{2}\left(\omega^{\prime}\right)$ for every open set $\omega^{\prime} \subset \subset \omega$ and u is a solution of problem (4.8).

It remains to prove that $u \in L_{\mu}^{2}(\omega)$. Since $u \in H_{0}^{1}(\omega)$ and $u \in L_{\mu}^{2}\left(\omega^{\prime}\right)$ for every open set $\omega^{\prime} \subset \subset \omega$, there exists a sequence $\left(v_{h}\right)$ in $H_{0}^{1}(\omega) \cap L_{\mu}^{2}(\omega)$, converging to u weakly in $H_{0}^{1}(\omega)$, with $\operatorname{supp}\left(v_{h}\right) \subset \subset \omega$ and $u v_{h} \geq 0$ q.e. in ω, such that the sequence $\left(u v_{h}\right)$ is increasing and converges to u^{2} pointwise q.e. in ω. Taking $v=v_{h}$ in (4.8) we get

$$
\left\langle A u, v_{h}\right\rangle+\int_{\omega} u v_{h} d \mu=\left\langle f, v_{h}\right\rangle
$$

Taking the limit as $h \rightarrow \infty$ we obtain $\int_{\omega} u^{2} d \mu=\langle f, u\rangle-\langle A u, u\rangle<+\infty$, and thus $u \in L_{\mu}^{2}(\omega)$. By an easy approximation argument we can prove that u is the unique solution in $H_{0}^{1}(\omega) \cap L_{\mu}^{2}(\omega)$ of the problem

$$
\langle A u, v\rangle+\int_{\omega} u v d \mu=\langle f, v\rangle \quad \forall v \in H_{0}^{1}(\omega) \cap L_{\mu}^{2}(\omega) .
$$

Since the limit does not depend on the subsequence, the proof is complete.

Corollary 4.11. Let $\mu_{h}, \mu \in \mathcal{M}_{0}(\Omega)$. Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of open subsets of Ω which covers Ω. Then $\left(\mu_{h}\right) \gamma^{A}$-converges to μ in Ω if and only if $\left(\mu_{h}\right)$ γ^{A}-converges to μ in Ω_{i} for every $i \in I$.

Proof. The conclusion follows easily from the compactness theorem (Theorem 4.5) and from Theorem 4.10.

5. Strong Convergence

Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$. Let $f \in H^{-1}(\Omega)$ and let u_{h} and u be the solutions of problems (4.1) and (4.2). By the definition of γ^{A}-convergence the sequence $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$. In this section we study the strong convergence of the sequence of the gradients $\left(D u_{h}\right)$ in the space $L^{p}\left(\Omega, \mathbf{R}^{n}\right), 1 \leq p \leq 2$. The following theorem proves that $\left(D u_{h}\right)$ converges strongly to $D u$ in $L^{p}\left(\Omega, \mathbf{R}^{n}\right)$ for every $1 \leq p<2$.

Theorem 5.1. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$. Let $f \in H^{-1}(\Omega)$ and let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in$ $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.1) and (4.2). Then $\left(u_{h}\right)$ converges to u strongly in $H_{0}^{1, p}(\Omega)$ for every $1 \leq p<2$.

Proof. Since A is linear and the solutions of (4.1) depend continuously on the data, uniformly with respect to h (see the estimate (2.6)), it is not restrictive to suppose that $f \in L^{\infty}(\Omega)$ and $f \geq 0$.

By the definition of γ^{A}-convergence the sequence $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$, and hence $\left(A u_{h}\right)$ converges to $A u$ weakly in $H^{-1}(\Omega)$. By Proposition 2.6 we have $A u_{h} \leq f$, and so $f-A u_{h} \in H_{+}^{-1}(\Omega)$, the positive cone of $H^{-1}(\Omega)$. Since $H_{+}^{-1}(\Omega)$ is compactly imbedded in $H^{-1, p}(\Omega)$ for every $1 \leq p<2$ (see [37]), the sequence $\left(A u_{h}\right)$ converges to $A u$ strongly in $H^{-1, p}(\Omega)$ for every $1 \leq p<2$.

If we apply Meyers' estimate (see [36]) to the operator A^{*}, we find that there exists a real number $s>2$ such that the operator $A^{*}: H_{0}^{1, q}(\Omega) \rightarrow H^{-1, q}(\Omega)$ is an isomorphism for every $2 \leq q \leq s$. Denote by r the exponent conjugate to s, i.e., $1 / r+1 / s=1$. Then $A: H_{0}^{1, p}(\Omega) \rightarrow H^{-1, p}(\Omega)$ is an isomorphism for every $r \leq p \leq 2$. Since $\left(A u_{h}\right)$ converges to $A u$ strongly in $H^{-1, p}(\Omega)$ for every $r \leq p<2$, the sequence $\left(u_{h}\right)$ converges to u strongly in $H_{0}^{1, p}(\Omega)$ for every $r \leq p<2$, and hence for every $1 \leq p<2$.

Let $f \in L^{\infty}(\Omega)$ and let u_{h} and u be the solutions of problems (4.1) and (4.2). By Theorem 5.1 the sequence $\left(D u_{h}\right)$ converges to $D u$ weakly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$ and strongly in $L^{p}\left(\Omega, \mathbf{R}^{n}\right)$ for every $1 \leq p<2$. To obtain strong convergence in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$ we need a corrector term. This is a sequence of Borel functions P_{h} from $\Omega \times \mathbf{R}$ to \mathbf{R}^{n}, depending on the sequence $\left(\mu_{h}\right)$, but independent of f, u, u_{h}, such that

$$
\begin{equation*}
D u_{h}(x)=D u(x)+P_{h}(x, u(x))+R_{h}(x) \quad \text { a.e. in } \Omega \tag{5.1}
\end{equation*}
$$

where $\left(R_{h}\right)$ tends to 0 strongly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$. This condition means that the oscillations of the sequence of the gradients $\left(D u_{h}\right)$ near a point $x \in \Omega$ are determined, up to a term which is small in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$, only by the values of the limit function u near x and by the correctors P_{h}, which depend only on the sequence $\left(\mu_{h}\right)$.

Let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.3) and (4.4). The functions $P_{h}: \Omega \times \mathbf{R} \rightarrow \mathbf{R}^{n}$ are defined by

$$
P_{h}(x, s)= \begin{cases}\frac{s}{w(x)}\left(D w_{h}(x)-D w(x)\right), & \text { if } w(x)>0 \tag{5.2}\\ 0, & \text { if } w(x)=0\end{cases}
$$

We are now in a position to state the main theorem of this section.

Theorem 5.2. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$, and let $\left(P_{h}\right)$ be the sequence defined by (5.2). Let $f \in L^{\infty}(\Omega)$ and let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.1) and (4.2). Then (5.1) holds, with $\left(R_{h}\right)$ converging to 0 strongly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$.

Remark 5.3. Let w_{0} be the unique function of $H_{0}^{1}(\Omega)$ such that $A w_{0}=1$ in Ω. By the comparison principle (Proposition 2.5) we have $\left|u_{h}\right| \leq c w_{h} \leq c w_{0}$ and $|u| \leq c w \leq c w_{0}$ q.e. in Ω, with $c=\|f\|_{L^{\infty}(\Omega)}$. As $w_{0} \in L^{\infty}(\Omega)$ (see [48]), the functions u and w belong to $L^{\infty}(\Omega)$, and the sequences $\left(u_{h}\right)$ and $\left(w_{h}\right)$ are bounded in $L^{\infty}(\Omega)$.

To prove Theorem 5.2 we need the following lemmas. For every $\varepsilon>0$ we set $\Omega_{\varepsilon}=\{w>\varepsilon\}$.

Lemma 5.4. Assume that all hypotheses of Theorem 5.2 are satisfied. Let $\varepsilon>0$ and, for every $h \in \mathbf{N}$, let

$$
r_{h}^{\varepsilon}=u_{h}-\frac{u w_{h}}{w \vee \varepsilon}
$$

where $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ are the solutions of problems (4.3) and (4.4). Then $r_{h}^{\varepsilon} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ and $\left(D r_{h}^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}\left(\Omega_{2 \varepsilon}, \mathbf{R}^{n}\right)$.

Proof. Since the functions u and $\frac{1}{w \vee \varepsilon}$ belong to $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, and, in addition, the sequences $\left(u_{h}\right)$ and $\left(w_{h}\right)$ are bounded in $L^{\infty}(\Omega)$ (Remark 5.3) and converge to u and w weakly in $H_{0}^{1}(\Omega)$ (Definition 4.1), we conclude that $r_{h}^{\varepsilon} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and that $\left(r_{h}^{\varepsilon}\right)$ converges to $u-\frac{u w}{w \vee \varepsilon}$ weakly in $H_{0}^{1}(\Omega)$. As $u-\frac{u w}{w \vee \varepsilon}=0$ a.e. in Ω_{ε}, we obtain that $\left(r_{h}^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}\left(\Omega_{\varepsilon}\right)$ and $\left(D r_{h}^{\varepsilon}\right)$ converges to 0 weakly in $L^{2}\left(\Omega_{\varepsilon}, \mathbf{R}^{n}\right)$. Let us fix a function $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ such that $0 \leq \varphi \leq 1$ q.e. in $\Omega, \varphi=1$ q.e. in $\Omega_{2 \varepsilon}$, and $\varphi=0$ q.e. in $\Omega \backslash \Omega_{\varepsilon}$. For instance, we can take $\varphi(x)=\Phi_{\varepsilon}(w(x))$, where $\Phi_{\varepsilon}: \mathbf{R} \rightarrow \mathbf{R}$ is the Lipschitz function defined by $\Phi_{\varepsilon}(t)=0$ for $t \leq \varepsilon, \Phi_{\varepsilon}(t)=\frac{t}{\varepsilon}-1$ for $\varepsilon \leq t \leq 2 \varepsilon, \Phi_{\varepsilon}(t)=1$ for $t \geq 2 \varepsilon$. To conclude the proof it is enough to show that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{\Omega}\left|D r_{h}^{\varepsilon}\right|^{2} \varphi d x=0 \tag{5.3}
\end{equation*}
$$

By the ellipticity condition (2.4) we have

$$
\begin{gathered}
\alpha \int_{\Omega}\left|D r_{h}^{\varepsilon}\right|^{2} \varphi d x+\int_{\Omega}\left(r_{h}^{\varepsilon}\right)^{2} \varphi d \mu_{h} \leq \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} r_{h}^{\varepsilon} D_{i} r_{h}^{\varepsilon}\right) \varphi d x+\int_{\Omega}\left(r_{h}^{\varepsilon}\right)^{2} \varphi d \mu_{h}= \\
=\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} r_{h}^{\varepsilon}\right) \varphi d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} w_{h} D_{i} r_{h}^{\varepsilon}\right) \frac{u \varphi}{w \vee \varepsilon} d x-
\end{gathered}
$$

$$
\begin{aligned}
&-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j}\left(\frac{u}{w \vee \varepsilon}\right) D_{i} r_{h}^{\varepsilon}\right) w_{h} \varphi d x+\int_{\Omega} u_{h} r_{h}^{\varepsilon} \varphi d \mu_{h}-\int_{\Omega} \frac{u w_{h}}{w \vee \varepsilon} r_{h}^{\varepsilon} \varphi d \mu_{h}= \\
&= \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i}\left(r_{h}^{\varepsilon} \varphi\right)\right) d x+\int_{\Omega} u_{h} r_{h}^{\varepsilon} \varphi d \mu_{h}-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} w_{h} D_{i}\left(\frac{u r_{h}^{\varepsilon} \varphi}{w \vee \varepsilon}\right)\right) d x- \\
& \quad-\int_{\Omega} w_{h} \frac{u r_{h}^{\varepsilon} \varphi}{w \vee \varepsilon} d \mu_{h}-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} \varphi\right) r_{h}^{\varepsilon} d x+ \\
&+\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} w_{h} D_{i}\left(\frac{u \varphi}{w \vee \varepsilon}\right)\right) r_{h}^{\varepsilon} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j}\left(\frac{u}{w \vee \varepsilon}\right) D_{i} r_{h}^{\varepsilon}\right) w_{h} \varphi d x .
\end{aligned}
$$

By (4.1) and (4.3) we obtain

$$
\begin{gathered}
\alpha \int_{\Omega}\left|D r_{h}^{\varepsilon}\right|^{2} \varphi d x+\int_{\Omega}\left(r_{h}^{\varepsilon}\right)^{2} \varphi d \mu_{h} \leq \int_{\Omega_{\varepsilon}} f r_{h}^{\varepsilon} \varphi d x-\int_{\Omega_{\varepsilon}} \frac{u r_{h}^{\varepsilon} \varphi}{w \vee \varepsilon} d x- \\
-\int_{\Omega_{\varepsilon}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} \varphi\right) r_{h}^{\varepsilon} d x+\int_{\Omega_{\varepsilon}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} w_{h} D_{i}\left(\frac{u \varphi}{w \vee \varepsilon}\right)\right) r_{h}^{\varepsilon} d x- \\
-\int_{\Omega_{\varepsilon}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j}\left(\frac{u}{w \vee \varepsilon}\right) D_{i} r_{h}^{\varepsilon}\right) w_{h} \varphi d x .
\end{gathered}
$$

Since all terms in the right hand side of the previous inequality tend to 0 as $h \rightarrow \infty$, (5.3) holds and the proof is complete.

Lemma 5.5. Assume that all hypotheses of Theorem 5.2 are satisfied, and let $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of problem (4.4). Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \limsup _{h \rightarrow \infty} \int_{\{w<\varepsilon\}}\left|D u_{h}\right|^{2} d x=0 \tag{5.4}
\end{equation*}
$$

Proof. For every $\varepsilon>0$ let $\Phi^{\varepsilon}: \mathbf{R} \rightarrow \mathbf{R}$ be the Lipschitz function defined by $\Phi^{\varepsilon}(t)=1$ for $t \leq \varepsilon, \Phi^{\varepsilon}(t)=2-\frac{t}{\varepsilon}$ for $\varepsilon \leq t \leq 2 \varepsilon$, $\Phi^{\varepsilon}(t)=0$ for $t \geq 2 \varepsilon$, and let $w^{\varepsilon} \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$ be the function defined by $w^{\varepsilon}(x)=\Phi^{\varepsilon}(w(x))$. As $w^{\varepsilon} \geq 0$ q.e. in Ω and $w^{\varepsilon}=1$ q.e. in $\{w<\varepsilon\}$, by the ellipticity condition (2.4) and by (4.1) we have

$$
\begin{gathered}
\alpha \int_{\{w<\varepsilon\}}\left|D u_{h}\right|^{2} d x+\int_{\{w<\varepsilon\}}\left(u_{h}\right)^{2} d \mu_{h} \leq \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} u_{h}\right) w^{\varepsilon} d x+ \\
+\int_{\Omega}\left(u_{h}\right)^{2} w^{\varepsilon} d \mu_{h}=\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i}\left(u_{h} w^{\varepsilon}\right)\right) d x+\int_{\Omega}\left(u_{h}\right)^{2} w^{\varepsilon} d \mu_{h}- \\
-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} w^{\varepsilon}\right) u_{h} d x=\int_{\Omega} f u_{h} w^{\varepsilon} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u_{h} D_{i} w^{\varepsilon}\right) u_{h} d x .
\end{gathered}
$$

Since, by the definition of γ^{A}-convergence, $\left(u_{h}\right)$ converges to u weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$, we can take the limit in the last two terms as $h \rightarrow \infty$. Therefore we obtain

$$
\begin{equation*}
\alpha \limsup _{h \rightarrow \infty} \int_{\{w<\varepsilon\}}\left|D u_{h}\right|^{2} d x \leq \int_{\Omega} f u w^{\varepsilon} d x-\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} w^{\varepsilon}\right) u d x \tag{5.5}
\end{equation*}
$$

As $\left(w^{\varepsilon}\right)$ is bounded in $L^{\infty}(\Omega)$ and converges pointwise to the characteristic function of $\{w=0\}$, we have that $\left(u w^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}(\Omega)$ as $\varepsilon \rightarrow 0$ (recall that $|u| \leq c w$ q.e. in Ω by Remark 5.3). Moreover,

$$
\int_{\Omega}|u|^{2}\left|D w^{\varepsilon}\right|^{2} d x \leq \frac{c^{2}}{\varepsilon^{2}} \int_{\{\varepsilon<w<2 \varepsilon\}} w^{2}|D w|^{2} d x \leq 4 c^{2} \int_{\{\varepsilon<w<2 \varepsilon\}}|D w|^{2} d x
$$

and thus $\left(u D w^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}(\Omega)$. Taking the limit in (5.5) as $\varepsilon \rightarrow 0$ we obtain (5.4).

Proof of Theorem 5.2. Let us fix $\varepsilon>0$, let $r_{h}^{\varepsilon}=u_{h}-\frac{u w_{h}}{w \vee \varepsilon}$ as in Lemma 5.4, and let $\Omega_{2 \varepsilon}=\{w>2 \varepsilon\}$. Then $R_{h}=\left(\frac{w_{h}}{w}-1\right) D u-\left(\frac{w_{h}}{w}-1\right) \frac{u}{w} D w+D r_{h}^{\varepsilon}$ a.e. in $\Omega_{2 \varepsilon}$. Since $\left(D r_{h}^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}\left(\Omega_{2 \varepsilon}, \mathbf{R}^{n}\right)$ (Lemma 5.4) and, in addition, $\left(\frac{w_{h}}{w}\right)$ is bounded in $L^{\infty}\left(\Omega_{2 \varepsilon}\right)$ and converges to 1 strongly in $L^{2}\left(\Omega_{2 \varepsilon}\right)$, we conclude that (R_{h}) converges to 0 strongly in $L^{2}\left(\Omega_{2 \varepsilon}, \mathbf{R}^{n}\right)$. As $\int_{\Omega} R_{h}^{2} d x=\int_{\Omega_{2 \varepsilon}} R_{h}^{2} d x+\int_{\{w \leq 2 \varepsilon\}} R_{h}^{2} d x$, it is enough to prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}} R_{h}^{2} d x=0 \tag{5.6}
\end{equation*}
$$

Since $|u| \leq c w$ q.e. in Ω (Remark 5.3), we have $\left|R_{h}\right| \leq\left|D u_{h}-D u\right|+c\left|D w_{h}-D w\right|$ a.e. in Ω. Therefore

$$
\begin{aligned}
& \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}} R_{h}^{2} d x \leq 4 \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}}\left|D u_{h}\right|^{2} d x+4 \int_{\{w \leq 2 \varepsilon\}}|D u|^{2} d x+ \\
& \quad+4 c^{2} \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}}\left|D w_{h}\right|^{2} d x+4 c^{2} \int_{\{w \leq 2 \varepsilon\}}|D w|^{2} d x
\end{aligned}
$$

for every $\varepsilon>0$. As $|u| \leq c w$, we have $D u=D w=0$ a.e. in $\{w=0\}$. Since Lemma 5.5 can be applied to the sequences $\left(u_{h}\right)$ and $\left(w_{h}\right)$, from the previous inequality we obtain (5.6), which concludes the proof of the theorem.

Lemmas 5.4 and 5.5 enable us to prove the following corrector result in $H_{0}^{1}(\Omega)$.

Theorem 5.6. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$, and let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.3) and (4.4). Let $f \in L^{\infty}(\Omega)$ and let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.1) and (4.2). Then for every $\varepsilon>0$ we have

$$
u_{h}=\frac{u w_{h}}{w \vee \varepsilon}+r_{h}^{\varepsilon}
$$

with $\lim _{\varepsilon \rightarrow 0} \limsup _{h \rightarrow \infty}\left\|r_{h}^{\varepsilon}\right\|_{H_{0}^{1}(\Omega)}=0$.
Proof. Setting $\Omega_{2 \varepsilon}=\{w>2 \varepsilon\}$, we have

$$
\begin{equation*}
\int_{\Omega}\left|D r_{h}^{\varepsilon}\right|^{2} d x=\int_{\Omega_{2 \varepsilon}}\left|D r_{h}^{\varepsilon}\right|^{2} d x+\int_{\{w \leq 2 \varepsilon\}}\left|D r_{h}^{\varepsilon}\right|^{2} d x \tag{5.7}
\end{equation*}
$$

Since, by Lemma $5.4,\left(D r_{h}^{\varepsilon}\right)$ converges to 0 strongly in $L^{2}\left(\Omega_{2 \varepsilon}, \mathbf{R}^{n}\right)$ as $h \rightarrow \infty$, we have only to estimate the last term of (5.7). As

$$
D r_{h}^{\varepsilon}=D u_{h}-\frac{u}{w \vee \varepsilon} D w_{h}-\frac{w_{h}}{w \vee \varepsilon} D u+\frac{u w_{h}}{(w \vee \varepsilon)^{2}} D(w \vee \varepsilon)
$$

and $|u| \leq c w$ (Remark 5.3), we have

$$
\frac{1}{4}\left|D r_{h}^{\varepsilon}\right|^{2} \leq\left|D u_{h}\right|^{2}+c^{2}\left|D w_{h}\right|^{2}+\left(\frac{w_{h}}{w \vee \varepsilon}\right)^{2}|D u|^{2}+c^{2}\left(\frac{w_{h}}{w \vee \varepsilon}\right)^{2}|D w|^{2}
$$

Since $\left(w_{h}\right)$ is bounded in $L^{\infty}(\Omega)$ and converges to w weakly in $H_{0}^{1}(\Omega)$, we obtain

$$
\begin{aligned}
& \quad \frac{1}{4} \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}}\left|D r_{h}^{\varepsilon}\right|^{2} d x \leq \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}}\left|D u_{h}\right|^{2} d x+ \\
& +c^{2} \limsup _{h \rightarrow \infty} \int_{\{w \leq 2 \varepsilon\}}\left|D w_{h}\right|^{2} d x+\int_{\{w \leq 2 \varepsilon\}}|D u|^{2} d x+c^{2} \int_{\{w \leq 2 \varepsilon\}}|D w|^{2} d x
\end{aligned}
$$

As $|u| \leq c w$, we have $D u=0$ a.e. in $\{w=0\}$, and so the last two terms tend to 0 as $\varepsilon \rightarrow 0$. The conclusion follows now from Lemma 5.5.

The case $f \notin L^{\infty}(\Omega)$ requires a further approximation (see [9]).
Theorem 5.7. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$, and let $\left(P_{h}\right)$ be the sequence of correctors defined by (5.2). Let $f \in H^{-1}(\Omega)$ and let $u_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.1) and (4.2). Finally, let $\left(f^{\lambda}\right)$ be a sequence in $L^{\infty}(\Omega)$ converging to f strongly in $H^{-1}(\Omega)$, and let $u^{\lambda} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of the problems

$$
\begin{equation*}
\left\langle A u^{\lambda}, v\right\rangle+\int_{\Omega} u^{\lambda} v d \mu=\int_{\Omega} f^{\lambda} v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega) \tag{5.8}
\end{equation*}
$$

Then $D u_{h}(x)=D u(x)+P_{h}\left(x, u^{\lambda}(x)\right)+R_{h}^{\lambda}(x)$ a.e. in Ω, with

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \limsup _{h \rightarrow \infty} \int_{\Omega}\left(R_{h}^{\lambda}\right)^{2} d x=0 \tag{5.9}
\end{equation*}
$$

Proof. For every λ and for every h let $u_{h}^{\lambda} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ be the solution of the problem

$$
\left\langle A u_{h}^{\lambda}, v\right\rangle+\int_{\Omega} u_{h}^{\lambda} v d \mu_{h}=\int_{\Omega} f^{\lambda} v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)
$$

By Theorem 5.2 we have $D u_{h}^{\lambda}(x)=D u^{\lambda}(x)+P_{h}\left(x, u^{\lambda}(x)\right)+S_{h}^{\lambda}(x)$ a.e. in Ω, where $\left(S_{h}^{\lambda}\right)$ converges to 0 strongly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$ for every λ. As $R_{h}^{\lambda}-S_{h}^{\lambda}=$ ($\left.D u_{h}-D u_{h}^{\lambda}\right)-\left(D u-D u^{\lambda}\right)$, from the estimate (2.6) we obtain

$$
\left\|R_{h}^{\lambda}\right\|_{L^{2}\left(\Omega, \mathbf{R}^{n}\right)} \leq\left\|S_{h}^{\lambda}\right\|_{L^{2}\left(\Omega, \mathbf{R}^{n}\right)}+\frac{2}{\alpha}\left\|f-f^{\lambda}\right\|_{H^{-1}(\Omega)}
$$

which implies (5.9).
Corollary 5.8. Let $\left(\mu_{h}\right)$ be a sequence of measures of $\mathcal{M}_{0}(\Omega) \gamma^{A}$-converging to a measure $\mu \in \mathcal{M}_{0}(\Omega)$, and let $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.3) and (4.4). Let $f \in H^{-1}(\Omega)$ and let $u_{h} \in$ $H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solutions of problems (4.1) and (4.2). If (w_{h}) converges strongly in $H_{0}^{1}(\Omega)$, then $\left(u_{h}\right)$ converges strongly in $H_{0}^{1}(\Omega)$.

Proof. Let $\left(f^{\lambda}\right)$ be a sequence in $L^{\infty}(\Omega)$ converging to f strongly in $H^{-1}(\Omega)$, and, for every λ, let $u^{\lambda} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ be the solution of problem (5.8). By Remark 5.3 each function u^{λ} / w is bounded on $\{w>0\}$. Therefore, if (w_{h}) converges strongly in $H_{0}^{1}(\Omega)$, then $\left(P_{h}\left(x, u^{\lambda}(x)\right)\right)$ converges to 0 strongly in $L^{2}\left(\Omega, \mathbf{R}^{n}\right)$ for every λ, and so the conclusion follows from Theorem 5.7.

6. The Rôle of the Skew-Symmetric Part of the Operator

Let $\left(a_{i j}^{s}\right)$ and $\left(b_{i j}\right)$ be the symmetric and the skew-symmetric part of the matrix $\left(a_{i j}\right)$, and let A^{s} be the operator associated with the matrix ($a_{i j}^{s}$) according to (2.3). In this section we shall study the dependence of the γ^{A}-limit of a sequence $\left(\mu_{h}\right)$ on the skew-symmetric part $\left(b_{i j}\right)$ of the matrix $\left(a_{i j}\right)$. We begin by proving that, if the functions $b_{i j}$ are continuous, then the γ^{A}-limit depends only on the symmetric part $a_{i j}^{s}$.

Theorem 6.1. Let $\mu, \mu_{h} \in \mathcal{M}_{0}(\Omega)$. If the functions $b_{i j}, i, j=1, \ldots, n$, are continuous, then $\left(\mu_{h}\right) \gamma^{A}$-converges to μ if and only if $\left(\mu_{h}\right) \gamma^{A^{s}}$-converges to μ.

Proof. Since the γ^{A}-convergence and the $\gamma^{A^{s}}$-convergence are compact (Theorem 4.5), we may assume that $\left(\mu_{h}\right) \gamma^{A^{s}}$-converges to a measure μ, and we have only to prove that $\left(\mu_{h}\right) \gamma^{A}$-converges to μ.

Suppose that $b_{i j} \in C^{1}(\Omega)$ for every $i, j=1, \ldots, n$. Then, for every pair of functions $u, v \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, we have

$$
\begin{align*}
&\langle A u, v\rangle= \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j}^{s} D_{j} u D_{i} v\right) d x+\int_{\Omega}\left(\sum_{i, j=1}^{n} b_{i j} D_{j} u D_{i} v\right) d x= \\
&=\left\langle A^{s} u, v\right\rangle-\int_{\Omega}\left(\sum_{i, j=1}^{n} D_{i}\left(b_{i j} D_{j} u\right)\right) v d x \\
&=\left\langle A^{s} u, v\right\rangle-\int_{\Omega}\left(\sum_{i, j=1}^{n} D_{i} b_{i j} D_{j} u\right) v d x \tag{6.1}
\end{align*}
$$

where, in the last equality, we have used the fact that $\left(b_{i j}\right)$ is skew-symmetric, while $\left(D_{i} D_{j} u\right)$ is symmetric. By continuity, the same equality holds for every u, $v \in H_{0}^{1}(\Omega)$. Therefore the solution $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of problem (4.3) satisfies

$$
\left\langle A^{s} w_{h}, v\right\rangle+\int_{\Omega} w_{h} v d \mu_{h}=\left\langle f_{h}, v\right\rangle \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)
$$

with

$$
f_{h}=1+\sum_{i, j=1}^{n} D_{i} b_{i j} D_{j} w_{h}
$$

By the estimate (2.6) the sequence $\left(w_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$. Passing, if necessary, to a subsequence, we may assume that $\left(w_{h}\right)$ converges weakly in $H_{0}^{1}(\Omega)$ to a function w. This implies that $\left(f_{h}\right)$ converges to

$$
f=1+\sum_{i, j=1}^{n} D_{i} b_{i j} D_{j} w
$$

weakly in $L^{2}(\Omega)$, and hence strongly in $H^{-1}(\Omega)$. Since $\left(\mu_{h}\right) \gamma^{A^{s}}$-converges to μ, by Proposition 4.8 the function w is the solution in $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of the problem

$$
\left\langle A^{s} w, v\right\rangle+\int_{\Omega} w v d \mu=\int_{\Omega}\left(1+\sum_{i, j=1}^{n} D_{i} b_{i j} D_{j} w\right) v d x \quad \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)
$$

By (6.1) w turns out to be the solution in $H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of (4.4), and this implies that $\left(\mu_{h}\right) \gamma^{A}$-converges to μ by Theorem 4.3. Since the limit does not depend on the subsequence, the whole sequence $\left(\mu_{h}\right) \gamma^{A}$-converges to μ.

Let us consider now the more general hypothesis $b_{i j} \in C^{0}(\Omega)$. Let ($b_{i j}^{\varepsilon}$) be a sequence of skew-symmetric matrices of class C^{1} converging uniformly to ($b_{i j}$) as $\varepsilon \rightarrow 0$. Let $a_{i j}^{\varepsilon}=a_{i j}^{s}+b_{i j}^{\varepsilon}$ and let A_{ε} be the corresponding elliptic operators on $H^{1}(\Omega)$. By the first step of the proof $\left(\mu_{h}\right) \gamma^{A_{\varepsilon}}$-converges to μ. Therefore, if $w_{h}^{\varepsilon} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ and $w^{\varepsilon} \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ are the solutions of the problems

$$
\begin{aligned}
\left\langle A_{\varepsilon} w_{h}^{\varepsilon}, v\right\rangle+\int_{\Omega} w_{h}^{\varepsilon} v d \mu_{h} & =\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega) \\
\left\langle A_{\varepsilon} w^{\varepsilon}, v\right\rangle+\int_{\Omega} w^{\varepsilon} v d \mu & =\int_{\Omega} v d x & \forall v \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)
\end{aligned}
$$

then $\left(w_{h}^{\varepsilon}\right)$ converges to w^{ε} weakly in $H_{0}^{1}(\Omega)$ for every $\varepsilon>0$.
Let us prove that the solutions $w_{h} \in H_{0}^{1}(\Omega) \cap L_{\mu_{h}}^{2}(\Omega)$ of (4.3) converge weakly in $H_{0}^{1}(\Omega)$ to the solution $w \in H_{0}^{1}(\Omega) \cap L_{\mu}^{2}(\Omega)$ of (4.4). For every $\varepsilon>0$ we have

$$
\begin{equation*}
\left\|w_{h}-w\right\|_{L^{2}(\Omega)} \leq\left\|w_{h}-w_{h}^{\varepsilon}\right\|_{L^{2}(\Omega)}+\left\|w_{h}^{\varepsilon}-w^{\varepsilon}\right\|_{L^{2}(\Omega)}+\left\|w^{\varepsilon}-w\right\|_{L^{2}(\Omega)} \tag{6.2}
\end{equation*}
$$

We already proved that the second term of the right hand side tends to 0 as $h \rightarrow \infty$. Let us estimate the first term. If we choose $w_{h}^{\varepsilon}-w_{h}$ as test functions in the problems solved by w_{h}^{ε} and w_{h}, we obtain

$$
\begin{aligned}
\left\langle A_{\varepsilon} w_{h}^{\varepsilon}, w_{h}^{\varepsilon}-w_{h}\right\rangle+\int_{\Omega} w_{h}^{\varepsilon}\left(w_{h}^{\varepsilon}-w_{h}\right) d \mu_{h} & =\int_{\Omega}\left(w_{h}^{\varepsilon}-w_{h}\right) d x \\
\left\langle A w_{h}, w_{h}^{\varepsilon}-w_{h}\right\rangle+\int_{\Omega} w_{h}\left(w_{h}^{\varepsilon}-w_{h}\right) d \mu_{h} & =\int_{\Omega}\left(w_{h}^{\varepsilon}-w_{h}\right) d x
\end{aligned}
$$

By subtracting the second equation from the first one we get

$$
\begin{gathered}
\left\langle A_{\varepsilon}\left(w_{h}^{\varepsilon}-w_{h}\right), w_{h}^{\varepsilon}-w_{h}\right\rangle+\int_{\Omega} \sum_{i, j=1}^{n}\left(b_{i j}^{\varepsilon}-b_{i j}\right) D_{j} w_{h} D_{i}\left(w_{h}^{\varepsilon}-w_{h}\right) d x+ \\
\int_{\Omega}\left(w_{h}^{\varepsilon}-w_{h}\right)^{2} d \mu_{h}=0
\end{gathered}
$$

Then, using the ellipticity assumption (2.4)(that depends only on the symmetric part of the matrix) and the Hölder inequality, we obtain

$$
\begin{gathered}
\left\|w_{h}^{\varepsilon}-w_{h}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq \frac{1}{\alpha}\left\langle A_{\varepsilon}\left(w_{h}^{\varepsilon}-w_{h}\right), w_{h}^{\varepsilon}-w_{h}\right\rangle \leq \\
\leq \frac{1}{\alpha} \int_{\Omega}\left|\sum_{i, j=1}^{n}\left(b_{i j}^{\varepsilon}-b_{i j}\right) D_{j} w_{h} D_{i}\left(w_{h}^{\varepsilon}-w_{h}\right)\right| d x \leq \\
\leq \frac{1}{\alpha} \sum_{i, j=1}^{n}\left\|b_{i j}^{\varepsilon}-b_{i j}\right\|_{L^{\infty}(\Omega)}\left\|w_{h}\right\|_{H_{0}^{1}(\Omega)}\left\|w_{h}^{\varepsilon}-w_{h}\right\|_{H_{0}^{1}(\Omega)} .
\end{gathered}
$$

Since $\left(b_{i j}^{\varepsilon}\right)$ converges uniformly to $b_{i j}$ as $\varepsilon \rightarrow 0$, and $\left(w_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, it follows that $\left\|w_{h}^{\varepsilon}-w_{h}\right\|_{H_{0}^{1}(\Omega)}$ tends to 0 , as $\varepsilon \rightarrow 0$, uniformly with respect to h. To prove that $\left\|w^{\varepsilon}-w\right\|_{H_{0}^{1}(\Omega)}$ tends to zero we can use the same arguments.

Therefore (6.2) shows that $\left(w_{h}\right)$ converges to w strongly in $L^{2}(\Omega)$. As $\left(w_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, we obtain that $\left(w_{h}\right)$ converges to w weakly in $H_{0}^{1}(\Omega)$, and, by Theorem 4.3, we conclude that $\left(\mu_{h}\right) \gamma^{A}$-converges to μ.

In the rest of this section we prepare the technical tools for a counterexample (Theorem 6.4) which shows that, if the coefficients of the skew-symmetric part $\left(b_{i j}\right)$ of the matrix $\left(a_{i j}\right)$ are not continuous, then the γ^{A}-limit of a sequence $\left(\mu_{h}\right)$ of measures of $\mathcal{M}_{0}(\Omega)$ may depend also on the skew-symmetric part of the matrix, i.e., the γ^{A}-limit may be different from the $\gamma^{A^{s}}$-limit.

Let us introduce some notion concerning the capacity relative to the (possibly non-symmetric) operator A associated with the matrix $\left(a_{i j}\right)$. In particular we are interested in the definition and properties of the capacity with respect the whole space \mathbf{R}^{n}.

In the rest of this section we assume $n \geq 3$. Let $H\left(\mathbf{R}^{n}\right)$ be the space of all functions belonging to $L^{2^{*}}\left(\mathbf{R}^{n}\right), 1 / 2^{*}=1 / 2-1 / n$, whose first order distribution derivatives belong to $L^{2}\left(\mathbf{R}^{n}\right)$. By the Sobolev inequality, it is easy to see that $H\left(\mathbf{R}^{n}\right)$ is a Hilbert space with norm $\|u\|_{H\left(\mathbf{R}^{n}\right)}=\|D u\|_{L^{2}\left(\mathbf{R}^{n}\right)}$. We assume now that $\left(a_{i j}\right)$ is an $n \times n$ matrix of functions of $L^{\infty}\left(\mathbf{R}^{n}\right)$, satisfying the ellipticity condition (2.4) for a.e. $x \in \mathbf{R}^{n}$. With a little abuse of notation, A is now the elliptic operator defined by (2.3) for every $u \in H\left(\mathbf{R}^{n}\right)$. Let $a(u, v)$ be the bilinear form defined on $H\left(\mathbf{R}^{n}\right) \times H\left(\mathbf{R}^{n}\right)$ by

$$
a(u, v)=\int_{\mathbf{R}^{n}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} v\right) d x .
$$

Let E be a bounded closed subset of \mathbf{R}^{n} and let $K=\left\{v \in H\left(\mathbf{R}^{n}\right): v \geq 1\right.$ q.e. on $E\}$. By (2.4) we have that the form $a(u, v)$ is coercive on $H\left(\mathbf{R}^{n}\right)$ and hence there exists a unique solution z of the following variational inequality

$$
\begin{equation*}
z \in K, \quad a(z, v-z) \geq 0 \quad \forall v \in K \tag{6.3}
\end{equation*}
$$

The capacity of E with respect to \mathbf{R}^{n} (relative to the operator A) is defined by

$$
\begin{equation*}
\operatorname{cap}^{A}\left(E, \mathbf{R}^{n}\right)=a(z, z) \tag{6.4}
\end{equation*}
$$

The function z is called the capacitary potential of E with respect to \mathbf{R}^{n}.
Let us denote by B_{R} the closed ball of center 0 and radius R. The corresponding open ball will be denoted by U_{R}. Given $R_{0}>0$ such that $E \subseteq B_{R_{0}}$, for every $R>R_{0}$ we set $K_{R}=\left\{v \in H_{0}^{1}\left(U_{R}\right): v \geq 1\right.$ q.e. on $\left.E\right\}$ and we consider the bilinear form on $H_{0}^{1}\left(U_{R}\right) \times H_{0}^{1}\left(U_{R}\right)$ defined by

$$
a_{R}(u, v)=\int_{U_{R}}\left(\sum_{i, j=1}^{n} a_{i j} D_{j} u D_{i} v\right) d x
$$

Then, for every $R>R_{0}$, there exists a unique solution of the variational inequality

$$
\begin{equation*}
z_{R} \in K_{R}, \quad a_{R}\left(z_{R}, v-z_{R}\right) \geq 0 \quad \forall v \in K_{R} \tag{6.5}
\end{equation*}
$$

The function z_{R} is called the capacitary potential of E with respect to U_{R} and

$$
\begin{equation*}
\operatorname{cap}^{A}\left(E, U_{R}\right)=a_{R}\left(z_{R}, z_{R}\right) \tag{6.6}
\end{equation*}
$$

is the capacity of E with respect to U_{R} (relative to the operator A). For the main properties of cap ${ }^{A}$ we refer to [48]. In particular, we shall use the following estimate of the capacity relative to the operator A in terms of the harmonic capacity defined in Section 2:

$$
\begin{equation*}
k_{1} \operatorname{cap}\left(E, U_{R}\right) \leq \operatorname{cap}^{A}\left(E, U_{R}\right) \leq k_{2} \operatorname{cap}\left(E, U_{R}\right) \tag{6.7}
\end{equation*}
$$

where k_{1} and k_{2} are two positive constants depending only on the ellipticity constant α and on the L^{∞} norm of the coefficients $a_{i j}$.

Our counterexample is based on the following lemma.
Lemma 6.2. Let E be a bounded closed subset of \mathbf{R}^{n}. Then

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \operatorname{cap}^{A}\left(E, U_{R}\right)=\operatorname{cap}^{A}\left(E, \mathbf{R}^{n}\right) \tag{6.8}
\end{equation*}
$$

and the capacitary potential z on \mathbf{R}^{n} is the unique solution of the problem

$$
\begin{equation*}
z \in H\left(\mathbf{R}^{n}\right), \quad \sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} z\right)=0 \quad \text { in } \mathbf{R}^{n} \backslash E, \quad z=1 \text { q.e. in } E . \tag{6.9}
\end{equation*}
$$

Proof. If z_{R} is the capacitary potential of E in U_{R}, we extend it to \mathbf{R}^{n} by setting $z_{R}=0$ in $\mathbf{R}^{n} \backslash U_{R}$. By the Sobolev imbedding theorem we have that $z_{R} \in H\left(\mathbf{R}^{n}\right)$. Using the coerciveness of A, the explicit formula for the harmonic capacity of a ball, and the inequality (6.7) we obtain

$$
\left\|D z_{R}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} \leq \alpha^{-1} a\left(z_{R}, z_{R}\right)=\alpha^{-1} \operatorname{cap}^{A}\left(E, U_{R}\right) \leq k_{2} \alpha^{-1} \operatorname{cap}\left(B_{R_{0}}, U_{R}\right) \leq C
$$

for every $R \geq R_{0}+1$. Thus we may assume, passing, if necessary, to a subsequence, that $\left(z_{R}\right)$ converges weakly to a function $\zeta \in H\left(\mathbf{R}^{n}\right)$. By the lower semicontinuity of $a(v, v)$ and by (6.5), we have

$$
\begin{gather*}
a(\zeta, \zeta) \leq \liminf _{R \rightarrow \infty} a\left(z_{R}, z_{R}\right)=\liminf _{R \rightarrow \infty} a_{R}\left(z_{R}, z_{R}\right) \leq \limsup _{R \rightarrow \infty} a_{R}\left(z_{R}, z_{R}\right) \leq \\
\leq \lim _{R \rightarrow \infty} a_{R}\left(z_{R}, v\right)=\lim _{R \rightarrow \infty} a\left(z_{R}, v\right)=a(\zeta, v) \tag{6.10}
\end{gather*}
$$

for every $v \in H\left(\mathbf{R}^{n}\right)$ with compact support in \mathbf{R}^{n} and with $v \geq 1$ q.e. on E. By a density argument we obtain that ζ is the solution of (6.3), and thus ζ coincides with the capacitary potential z of E in \mathbf{R}^{n}. Taking $v=\zeta=z$ in (6.10), we obtain (6.8).

The characterization of z given by (6.9) follows easily from standard techniques of variational inequalities (see [33], Chapter II).

Let $\Omega^{+}=\left\{x \in \mathbf{R}^{n}: x_{n}>0\right\}$, let $\Omega^{-}=\left\{x \in \mathbf{R}^{n}: x_{n}<0\right\}$, and let $\left(\beta_{i j}\right)$ be the matrix defined by

$$
\beta_{i j}= \begin{cases}0, & \text { if } i=j \\ 1, & \text { if } i>j \\ -1, & \text { if } i<j\end{cases}
$$

To construct the counterexample we consider the matrix ($a_{i j}^{0}$) given by

$$
\begin{equation*}
a_{i j}^{0}(x)=\delta_{i j}+b_{i j}^{0}(x), \tag{6.11}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker symbol, and $b_{i j}^{0}(x)=\beta_{i j}$, if $x_{n}>0$, while $b_{i j}^{0}(x)=0$, if $x_{n} \leq 0$. Note that the skew-symmetric part $\left(b_{i j}^{0}\right)$ of $\left(a_{i j}^{0}\right)$ is discontinuous along the hyperplane $\Gamma=\left\{x \in \mathbf{R}^{n}: x_{n}=0\right\}$. We denote by A_{0} the elliptic operator associated with ($a_{i j}^{0}$).

The following lemma plays a crucial rôle in the counterexample. We recall that B_{1} is the closed unit ball of $\mathbf{R}^{n}, n \geq 3$.

Lemma 6.3. Let $\left(a_{i j}^{0}\right)$ be the matrix defined by (6.11). Then

$$
\begin{equation*}
\operatorname{cap}^{A_{0}}\left(B_{1}, \mathbf{R}^{n}\right) \neq \operatorname{cap}\left(B_{1}, \mathbf{R}^{n}\right) \tag{6.12}
\end{equation*}
$$

where $\operatorname{cap}\left(B_{1}, \mathbf{R}^{n}\right)$ is the capacity defined by (6.4) relative to the Laplace operator $-\Delta$.

As $A_{0}^{s}=-\Delta$, the previous inequality means that the capacity relative to the operator A_{0} is different from the capacity relative to its symmetric part A_{0}^{s}.

Proof of Lemma 6.3. Let z be the capacitary potential of B_{1} in \mathbf{R}^{n} relative to the operator A_{0}, defined as the unique solution of problem (6.3) with $E=B_{1}$. Let u be the harmonic capacitary potential of B_{1} in \mathbf{R}^{n}, i.e., the solution of problem (6.3) corresponding to the Laplace operator $-\Delta$. It is well known that u is characterized as the unique minimum point of the problem

$$
\begin{equation*}
\min \left\{\|D v\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}: v \in H\left(\mathbf{R}^{n}\right), v \geq 1 \text { a.e. on } B_{1}\right\} \tag{6.13}
\end{equation*}
$$

Suppose, by contradiction, that $\operatorname{cap}^{A_{0}}\left(B_{1}, \mathbf{R}^{n}\right)=\operatorname{cap}\left(B_{1}, \mathbf{R}^{n}\right)$. Then $a_{0}(z, z)=$ $\|D u\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}$. Since $a_{0}(z, z)=\|D z\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}$, the function z is a minimum point for the problem (6.13) and hence $z=u$. Therefore, to prove (6.12) it is sufficient to show that $z \neq u$.

Let us define $\tilde{\Omega}=\mathbf{R}^{n} \backslash B_{1}, \tilde{\Omega}^{+}=\Omega^{+} \backslash B_{1}, \tilde{\Omega}^{-}=\Omega^{-} \backslash B_{1}$, and $\tilde{\Gamma}=\Gamma \backslash B_{1}$. By (6.9), for every $\varphi \in C_{0}^{\infty}(\tilde{\Omega})$ we have

$$
\begin{gather*}
0=\int_{\tilde{\Omega}^{+}}\left(\sum_{i, j=1}^{n} a_{i j}^{0} D_{j} z D_{i} \varphi\right) d x+\int_{\tilde{\Omega}^{-}}\left(\sum_{i, j=1}^{n} a_{i j}^{0} D_{j} z D_{i} \varphi\right) d x= \\
=-\int_{\tilde{\Gamma}}\left(\sum_{j=1}^{n}\left(a_{n j}^{0} D_{j} z\right)^{+}\right) \varphi d \sigma+\int_{\tilde{\Gamma}}\left(\sum_{j=1}^{n}\left(a_{n j}^{0} D_{j} z\right)^{-}\right) \varphi d \sigma-\int_{\mathbf{R}^{n} \backslash B_{1}} \varphi \Delta z d x \tag{6.14}
\end{gather*}
$$

where $\left(a_{n j}^{0} D_{j} z\right)^{+}$and $\left(a_{n j}^{0} D_{j} z\right)^{-}$denote the limits on Γ of $a_{n j}^{0} D_{j} z$ from Ω^{+}and Ω^{-}respectively.

Suppose now, by contradiction, that $z=u$. Since, by (6.9), $\Delta u=0$ on $\mathbf{R}^{n} \backslash B_{1}$, by (6.14) we obtain that

$$
\int_{\tilde{\Gamma}}\left(\sum_{j=1}^{n}\left(a_{n j}^{0} D_{j} u\right)^{+}\right) \varphi d \sigma=\int_{\tilde{\Gamma}}\left(\sum_{j=1}^{n}\left(a_{n j}^{0} D_{j} u\right)^{-}\right) \varphi d \sigma
$$

for every $\varphi \in C_{0}^{\infty}(\tilde{\Omega})$. As $\sum_{j}\left(a_{n j}^{0} D_{j} u\right)^{+}=D_{n} u+\sum_{j} \beta_{n j} D_{j} u$ and $\sum_{j}\left(a_{n j}^{0} D_{j} u\right)^{-}=$ $D_{n} u$, we have

$$
\begin{equation*}
D u \cdot \nu=0 \quad \text { q.e. on } \tilde{\Gamma}, \tag{6.15}
\end{equation*}
$$

with $\nu=\left(\beta_{n 1}, \beta_{n 2}, \ldots, \beta_{n n}\right)=(1,1, \ldots, 1,0)$. But, using (6.9) with $A=-\Delta$, we find that $u(x)=|x|^{2-n}$ for every $x \in \tilde{\Omega}$. In particular $D u(x)$ is different from 0 and is parallel to the vector x for every $x \in \tilde{\Gamma}$. Therefore, (6.15) implies that $x \cdot \nu=0$ for every $x \in \tilde{\Gamma}$, and so we have to conclude that ν is orthogonal to Γ, which is clearly false. This contradiction proves (6.12).

Let $\Omega=]-1,1\left[{ }^{n}, n \geq 3\right.$, and let $\Gamma=\left\{x \in \Omega: x_{n}=0\right\}$. To give the counterexample for every $h \in \mathbf{N}$ we consider on Γ the periodic lattice, with period $1 / h$, composed of the points $x_{h}^{i}=i / h=\left(i_{1} / h, \ldots, i_{n-1} / h, 0\right)$, with i in the set

$$
I_{h}=\left\{i=\left(i_{1}, \ldots, i_{n-1}, 0\right): i_{j} \in \mathbf{Z},-h<i_{j}<h \text { for } j=1, \ldots, n-1\right\} .
$$

Let us fix a constant $\beta>0$. For every $i \in I_{h}$ let $B_{r_{h}}^{i}$ be the closed ball in \mathbf{R}^{n} with center x_{h}^{i} and radius r_{h} such that

$$
\begin{equation*}
r_{h}^{n-2} h^{n-1}=\beta . \tag{6.16}
\end{equation*}
$$

Finally let us define E_{h} as the union of all closed balls $B_{r_{h}}^{i}$ for $i \in I_{h}$.
We are now in a position to prove the following theorem, which shows that the γ^{A}-limit of a sequence of measures may depend also on the skew-symmetric part $\left(b_{i j}\right)$ of the matrix $\left(a_{i j}\right)$, when $\left(b_{i j}\right)$ is discontinuous.

Theorem 6.4. Let E_{h} be the sets constructed above, let $\mu_{h}=\infty_{E_{h}}$ be the measures of $\mathcal{M}_{0}(\Omega)$ defined by (2.1), let A_{0} be the operator associated with the matrix $\left(a_{i j}^{0}\right)$ defined by (6.11), and let μ_{0} be the ($n-1$)-dimensional measure on $\Gamma=\left\{x_{n}=0\right\}$. Then $\left(\mu_{h}\right) \gamma^{A_{0}}$-converges to $c \mu_{0}$, with $c=\beta \operatorname{cap}^{A_{0}}\left(B_{1}, \mathbf{R}^{n}\right)$, while $\left(\mu_{h}\right) \gamma^{A_{0}^{s}}$-converges to $c_{s} \mu_{0}$, with $c_{s}=\beta \operatorname{cap}\left(B_{1}, \mathbf{R}^{n}\right) \neq c$.

To prove the theorem, we shall use a general result, based on the method introduced in [16]. We recall that the Kato space $K_{n}^{+}(\Omega), n \geq 3$, is the set of all Radon measures μ on Ω such that

$$
\lim _{r \rightarrow 0^{+}} \sup _{x \in \Omega} \int_{\Omega \cap B_{r}(x)}|y-x|^{2-n} d \mu(y)=0
$$

In particular, the measure μ_{0} considered in Theorem 6.4 belongs to $K_{n}^{+}(\Omega)$.
For every $i \in \mathbf{Z}^{n}$ let Q_{h}^{i} be the cube with center i / h and side $1 / h$, i.e.,

$$
Q_{h}^{i}=\left\{x \in \mathbf{R}^{n}:\left(2 i_{k}-1\right) / 2 h \leq x_{k}<\left(2 i_{k}+1\right) / 2 h \text { for } k=1, \ldots, n\right\}
$$

and let J_{h} be the set of all indices i such that $Q_{h}^{i} \subseteq \Omega$.
Theorem 6.5. Let $\mu \in K_{n}^{+}(\Omega)$. Let $\left(c_{h}\right)$ be a sequence of positive real numbers converging to $c>0$. For every $i \in J_{h}$ let A_{h}^{i} be the open ball with the same center as Q_{h}^{i} and radius $1 / 2 h$, and let E_{h}^{i} be the closed ball with the same center such that

$$
\operatorname{cap}^{A}\left(E_{h}^{i}, A_{h}^{i}\right)=c_{h} \mu\left(Q_{h}^{i}\right)
$$

Define E_{h} as the union of all closed balls E_{h}^{i} for $i \in J_{h}$. Then the sequence of measures $\left(\infty_{E_{h}}\right) \gamma^{A}$-converges to $c \mu$.

Proof. This result can be deduced from [16] and is proved in [21] assuming that A is symmetric and that $c_{h}=c$ for every h. This proof can be easily adapted to the general case.

Proof of Theorem 6.4. In order to apply Theorem 6.5, we consider the periodic lattice J_{h} on Ω. Note that $I_{h}=\left\{i \in J_{h}: i / h \in \Gamma\right\}$. For every $i \in I_{h}$ we set $E_{h}^{i}=B_{r_{h}}^{i}$, if $i \in I_{h}$, and $E_{h}^{i}=\emptyset$, if $i \in J_{h} \backslash I_{h}$. Now we apply Theorem 6.5 to the operator A_{0} and to the measure μ_{0}.

Since $a_{i j}^{0}(\lambda x)=a_{i j}^{0}(x)$ for every $\lambda>0$, for every $x \in \mathbf{R}^{n}$, and for every $i, j=1, \ldots, n$, it is easy to see that

$$
\begin{equation*}
\lambda^{n-2} \operatorname{cap}^{A_{0}}\left(B_{r}, U_{R}\right)=\operatorname{cap}^{A_{0}}\left(B_{\lambda r}, U_{\lambda R}\right) \tag{6.17}
\end{equation*}
$$

for every $0<r<R$. Moreover, the capacity relative to A_{0} is invariant with respect to translations parallel to the hyperplane $\left\{x_{n}=0\right\}$. In particular, with notation from Theorem 6.5, $\operatorname{cap}^{A_{0}}\left(E_{h}^{i}, A_{h}^{i}\right)=\operatorname{cap}^{A_{0}}\left(B_{r_{h}}^{i}, A_{h}^{i}\right)$ does not depend on $i \in I_{h}$ and $\operatorname{cap}^{A_{0}}\left(E_{h}^{i}, A_{h}^{i}\right)=\operatorname{cap}^{A_{0}}\left(B_{r_{h}}, U_{1 / 2 h}\right)$ for every $i \in I_{h}$, where $B_{r_{h}}$ and $U_{1 / 2 h}$ denote the closed ball with center 0 and radius r_{h} and the open ball with center 0 and radius $1 / 2 h$.

As μ_{0} is the $(n-1)$-dimensional measure on Γ, from (6.16) and (6.17) we obtain

$$
\frac{\operatorname{cap}^{A_{0}}\left(E_{h}^{i}, A_{h}^{i}\right)}{\mu_{0}\left(Q_{h}^{i}\right)}=h^{n-1} \operatorname{cap}^{A_{0}}\left(B_{r_{h}}, U_{1 / 2 h}\right)=\beta \operatorname{cap}^{A_{0}}\left(B_{1}, U_{1 / 2 h r_{h}}\right)
$$

for every $i \in I_{h}$. Since $\operatorname{cap}^{A_{0}}\left(B_{1}, U_{1 / 2 h r_{h}}\right)$ tends to $\operatorname{cap}^{A_{0}}\left(B_{1}, \mathbf{R}^{n}\right)$ as $h \rightarrow \infty$ (Lemma 6.2), Theorem 6.5 implies that $\left(\infty_{E_{h}}\right) \gamma^{A_{0}}$-converges to $c \mu_{0}$, where the constant c is given by $c=\beta \operatorname{cap}^{A_{0}}\left(B_{1}, \mathbf{R}^{n}\right)$. Moreover, if we apply Theorem 6.5 to the case of the operator $A_{0}^{s}=-\Delta$, we obtain that $\left(\infty_{E_{h}}\right) \gamma^{A_{0}^{s}}$-converges to $c_{s} \mu_{0}$, with $c_{s}=\beta \operatorname{cap}\left(B_{1}, \mathbf{R}^{n}\right)$. The fact that $c_{s} \neq c$ follows from Lemma 6.3.

Acknowledgments

This work is part of the Project EURHomogenization - ERB4002PL910092 of the Program SCIENCE of the Commission of the European Communities, and of the Research Project "Irregular Variational Problems" of the Italian National Research Council.

References

1. H. Attouch: Variational Convergence for Functions and Operators (Pitman, 1984).
2. H. Attouch, C. Picard: Variational inequalities with varying obstacles: the general form of the limit problem, J. Funct. Anal. 50 (1983) 329-386.
3. M. Balzano: Random relaxed Dirichlet problems, Ann. Mat. Pura Appl. (4) 153 (1988) 133-174.
4. J. R. Baxter, N. C. Jain: Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math. 31 (1987) 469-495.
5. G. Buttazzo: Relaxed formulation for a class of shape optimization problems, in Boundary Control and Boundary Variations (Sophia-Antipolis, 1990), Lecture Notes in Control and Information Sci., Vol. 178 (Springer, 1992), pp. 50-59.
6. G. Buttazzo, G. Dal Maso: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991) 17-49.
7. G. Buttazzo, G. Dal Maso, U. Mosco: A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal. 71 (1987) 263-278.
8. G. Buttazzo, G. Dal Maso, U. Mosco: Asymptotic behaviour for Dirichlet problems in domains bounded by thin layers, in Partial Differential Equations and the Calculus of Variations, Essays in Honor of Ennio De Giorgi (Birkhäuser, 1989), pp. 193-249.
9. J. Casado Diaz: Thèse, Univ. Paris VI (1993).
10. I. Chavel, E. A. Feldman: The Lenz shift and Wiener sausage in insulated domains, in From Local Times to Global Geometry, Control and Physics (Coventry, 1984-85), Pitman Res. Notes in Math., Vol. 150 (Longman, 1986), pp. 47-67.
11. I. Chavel, E.A. Feldman: The Lenz shift and Wiener sausage in Riemannian manifolds, Compositio Math. 60 (1986) 65-84.
12. I. Chavel, E. A. Feldman: Spectra of manifolds less a small hole,. Duke Math. J. $5 \mathbf{6}$ (1986) 339-414.
13. I. Chavel, E. A. Feldman: The Wiener sausage, and a theorem of Spitzer, in Riemannian manifolds, in Probability Theory and Harmonic Analysis (Cleveland, Ohio, 1983), Monographs Textbooks Pure Appl. Math., Vol. 98 (Dekker, 1986), pp. 45-60.
14. M. Chipot, G. Dal Maso: Relaxed shape optimization: the case of nonnegative data for the Dirichlet problem, Adv. Math. Sci. Appl. 1 (1992) 47-81.
15. D. Cioranescu: Calcul des variations sur des sous-espaces variables. Applications, C. R. Acad. Sci. Paris Sér. A 291 (1980) 87-90.
16. D. Cioranescu, F. Murat: Un terme étrange venu d'ailleurs, I and II, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar. Vol. II and Vol. III, Res. Notes in Math., Vol. 60 and Vol. 70 (Pitman, 1982 and 1983), pp. 98-138 and pp.154-178.
17. D. Cioranescu, J. Saint Jean Paulin: Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1979) 590-607.
18. G. Dal Maso: On the integral representation of certain local functionals, Ricerche Mat. 32 (1983) 85-113.
19. G. Dal Maso: Γ-convergence and μ-capacities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464.
20. G. Dal Maso: An Introduction to Γ-Convergence (Birkhäuser, 1993).
21. G. Dal Maso, A. Malusa: Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains, Preprint SISSA (Trieste, 1992).
22. G. Dal Maso, U. Mosco: Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal. 95 (1986) 345-387.
23. G. Dal Maso, U. Mosco: Wiener's criterion and Γ-convergence, Appl. Math. Optim. 15 (1987) 15- 63.
24. R. Figari, E. Orlandi, S. Teta: The Laplacian in regions with many small obstacles: fluctuation around the limit operator, J. Statist. Phys. 41 (1985), 465-487.
25. R. Figari, G. Papanicolaou, J. Rubinstein: The point interaction approximation for diffusion in regions with many small holes, in Stochastic Methods in Biology, Lecture Notes in Biomath., Vol. 70 (Springer, 1987), pp. 202-220.
26. S. Finzi Vita: Numerical shape optimization for relaxed Dirichlet problems, Math. Mod. Meth. Appl. Sci. 3 (1993) 19-34.
27. S. Finzi Vita, N. A. Tchou: Correctors results for relaxed Dirichlet problems, Asymptotic Anal. 5 (1992) 269-281.
28. M. Kac: Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math. 4 (1974) 511-538.
29. H. Kacimi, F. Murat: Estimation de l'erreur dans des problèmes de Dirichlet où apparait un terme étrange, in Partial Differential Equations and the Calculus of Variations, Essays in Honor of Ennio De Giorgi (Birkhäuser, 1989), pp. 661-696.
30. E. Ya. Khruslov: The method of orthogonal projections and the Dirichlet problems in domains with a fine-grained boundary, Math. USSR-Sb. 17 (1972) 37-59.
31. E. Ya. Khruslov: The first boundary value problem in domains with a complicated boundary for higher order equations, Math. USSR-Sb. 32 (1977) 535-549.
32. E. Ya. Khruslov: Homogenized models of composite media, in Composite Media and Homogenization Theory (Trieste, 1990) (Birkhäuser, 1991), pp. 159-182.
33. D. Kinderlehrer, G. Stampacchia: An introduction to variational inequalities and their applications (Academic Press, 1980).
34. A. V. Marchenko, E. Ya. Khruslov: Boundary Value Problems in Domains with Fine-Grained Boundaries (Russian). (Naukova Dumka, 1974).
35. A. V. Marchenko, E. Ya. Khruslov: New results in the theory of boundary value problems for regions with closed-grained boundaries, Uspekhi Mat. Nauk 33 (1978) 127.
36. N. G. Meyers: An L^{p}-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963) 189-206.
37. F. Murat: L'injection du cône positif de H^{1} dans $W^{-1, q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9) 60 (1981) 309-322.
38. L. Notarantonio: Asymptotic behaviour of Dirichlet problems on a Riemannian manifold, Ricerche Mat., to appear.
39. S. Ozawa: Surgery of domain and the Green's function of the Laplacian, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980) 459-461.
40. S. Ozawa: Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J. 48 (1981) 767-778.
41. S. Ozawa: Eigenvalues of the Laplacian on wildly perturbed domains, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 419-421.
42. S. Ozawa: On an elaboration of M. Kac's theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles, Comm. Math. Phys. 91 (1983) 473-487.
43. S. Ozawa: Point interaction potential approximation for $(-\Delta+U)^{-1}$ and eigenvalue of the Laplacian on wildly perturbed domain, Osaka J. Math. 20 (1983) 923-937.
44. S. Ozawa: Random media and the eigenvalues of the Laplacian, Comm. Math. Phys. 94 (1984) 421-437.
45. G. C. Papanicolaou, S. R. S. Varadhan: Diffusion in regions with many small holes, in Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), Lecture Notes in Control and Information Sci., Vol. 25 (Springer, 1980), pp. 190-206.
46. J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975) 27-59.
47. J. Rauch, M. Taylor: Electrostatic screening, J. Math. Phys. 16 (1975) 284-288.
48. G. Stampacchia.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258.
49. V. Šverák: On optimal shape design, C. R. Acad. Sci. Paris Sér I Math. 315 (1992) 545-549, and J. Math. Pures Appl., to appear.
50. L. Tartar: Cours Peccot au Collège de France. Paris (1977).
51. W. P. Ziemer: Weakly Differentiable Functions (Springer, 1989).
