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Abstract

We study, via Γ-convergence, the homogenization in L∞ of supremal function-
als of the form Fε(u) = ess sup

Ω
f
(

x

ε
, Du

)

. We prove that the homogenized
problem is still supremal and its energy density is given by a cell-problem
formula.
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1 Introduction

The last decade has witnessed a growing interest in variational principles whose
energies are not integral and where the relevant quantities does not express a mean
property, while the pointwise behaviour of the energy density is important also on
very small sets.

An example is the problem of modeling the dielectric breakdown for a composite
conductor. In [17] such a model has been derived; in particular, in the case of a
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composite material made of two homogeneous phases the variational principle that
one has to consider is the following

min

{

ess sup
Ω

|λ(x)Du| : −

∫

Du dx = ξ

}

(1.1)

where λ(x) is a piecewise-constant function taking values α and β (the two phases)
and the condition that −

∫

Du dx = ξ corresponds to assign the average electric
field. The idea is that when this minimum reaches a certain threshold the first-
failure dielectric breakdown occurs. A similar model could also be applied to other
physical situation like the perfect plasticity problem in the case of anti-plane shear
(as formulated, e.g., by [22]).

On the other hand part of the mathematical literature on such problems was
originally motivated by the following problem: find the best Lipschitz extension in
Ω of a function ϕ defined on ∂Ω. This can be clearly expressed in the following
variational form

inf
u=ϕ on ∂Ω

‖Du‖L∞(Ω) .

Variants of this problem have been extensively studied by many authors using ap-
proximations results and the theory of viscosity solutions (see for instance [3], [6],
Juutinen’s thesis [21] and the references therein).

In general one can consider the following functionals

F (u) = ess sup
x∈Ω

f(x, Du(x)) (1.2)

where Ω ⊂ RN and u ∈ W 1,∞(Ω). The latter have been recently studied using the
direct method of the calculus of variations and a partial theory has been developed
parallel to the well established theory for integral functionals. In [1], where they
have been baptized supremal functionals, a representation theorem has been proved
in the case when the functionals do not depend on the gradient, i.e. they are of the
form

ess sup
x∈Ω

f(x, u(x)) , (1.3)

and their semicontinuity has been completely characterized in the natural frame-
work of measurable functions. Subsequently in [23], a relaxation theorem for func-
tionals (1.3) has been proved. The analogous problems for functionals of the form
(1.2) were studied in [5] and in [7] requiring a continuous dependence on the x
variable, the general case is considered in a forthcoming paper [18]. The ques-
tion whether this class of functionals is stable under Γ-convergence in L∞ arises
naturally. The answer is not always clear. In fact it is possible to construct an
example of a sequence of supremal functionals whose Γ-limit can not be represented
in the supremal form (see [23]). This problem of studying the Γ-limit of sequences
of supremal functionals has been first approached in [23] and [11] for the class of
functionals (1.3) but the case of functionals of the form (1.2) is still open.

In this paper we give a partial answer to this question studying the case of
homogenization. Namely, we consider the following sequence of functionals

Fε(u, Ω) := ess sup
x∈Ω

f
(x

ε
, Du(x)

)

, (1.4)
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where Ω is a bounded subset of RN , u ∈ W 1,∞(Ω) and f is periodic in the second
variable. The aim is to replace this highly oscillating functional, as ε goes to zero,
with a simpler functional F hom, the homogenized functional, which captures the
relevant features of the sequence Fε.

This problem has been considered in [17] in the particular form (1.1) in order
to study the macroscopic behavior of a two-phases composite material for the first
failure dielectric breakdown model. The authors use an approximation approach:
they prove that the approximation of (1.1) by “power-law functionals” used by
material scientists and considered by [8] and [6] in the case of the viscosity solutions
approach, is indeed a Γ-limit as p → ∞. More precisely, for any fixed ε > 0, they
consider the sequence of functionals

Fp,ε(u) :=







(
∫

Ω

∣

∣

∣
λ
(x

ε

)

Du(x)
∣

∣

∣

p

dx

)1/p

if u ∈ W 1,p(Ω)

+∞ otherwise in L1(Ω) ,

(1.5)

with λ periodic and 0 < α ≤ λ(x) ≤ β, and they prove its Γ-convergence (with
respect to the L1 topology) to the supremal functional

Fε(u) :=







ess sup
x∈Ω

∣

∣

∣
λ
(x

ε

)

Du(x)
∣

∣

∣
if u ∈ W 1,∞(Ω)

+∞ otherwise in L1(Ω) .
(1.6)

One can consider the homogenized functional for (1.5), which describes the macro-
scopic behavior of the approximating “power-law materials” and by the classical
homogenization theory is given by (the power 1/p of) an integral functional, F hom

p ,

whose energy density fhom
p is homogeneous and is given by the following cell-problem

formula

fhom
p (ξ) := inf

{

∫

(0,1)N

λp(x)|Du(x) + ξ|pdx : u ∈ W 1,p((0, 1)N ) , 1-periodic

}

.

Thanks to the Γ-convergence of Fp,ε as p →∞ one has that the functions (fhom
p )1/p

converge, as p →∞, to the function fhom defined by

fhom(ξ) := min

{

ess sup
(0,1)N

λ(x)|Du(x) + ξ| : u ∈ W 1,∞((0, 1)N ) , 1-periodic

}

.

(1.7)
In view of the application to the computation of bounds for composite materials, in
[17], the authors consider fhom as the “relevant” energy density for the macroscopic
behavior of the limit problem Fε, but they do not actually prove that it can be
obtained directly by homogenizing it. This will be the main result of our paper in
a broader context.

We will prove the homogenization theorem for supremal functionals of the gen-
eral form (1.4), under very mild assumptions for the function f(x, ξ), and inspired
by the previous procedure we will prove that the energy density of the homoge-
nized functional can be represented by means of a cell-problem formula obtained by
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an approximation technique (see Lemma 3.2). This is possible thanks to the fact
that the “power-law” approximation described above holds true for very general f
(see [14]). As a consequence we obtain that the homogenization and the power-law
approximation commute as summarized by the following diagram

-

Γ(L∞)
Fp,ε Fε

p −→∞

?

Γ(Lp)

ε
−
→

0

?

Γ(L∞)

ε
−
→

0

F hom
p

Γ(L∞)
-

p −→∞
F hom

the down arrow being proved in Theorem 3.3 and the right arrow being proved in
Theorem 4.1. A similar approximation argument by “power law” energies has been
used in [13] for the homogenization of unbounded functionals in L∞ of the form
described below (see (1.8)).

A second important step in our proof of is the key remark that there is a strict
relation between the class of supremal functional and a class of very degenerate
functional of the form

G(u) =

∫

Ω

1C(x)(Du) dx =







0 if Du(x) ∈ C(x) a.e. in Ω

+∞ otherwise,
(1.8)

where C(x) is a convex set (see Propositions 2.1 and 2.6 in [17]). In particular
the knowledge of the homogenized functional for the latter permits, with a suitable
choice of the set C(x), to deduce the Γ-limsup inequality. The homogenization for
functionals of the form (1.8) can be obtained as a particular case of the results
by Carbone et al. (see [12]) for unbounded integral functionals. We will use their
result, however this strategy force us to restrict our study to the class of convex
subsets Ω of RN .

The case of general Ω is studied under some additional continuity assumptions
on f . In this case we can use, up to certain extent, a localization strategy for the
proof of the Γ-limsup inequality similar to that used for the homogenization of in-
tegral functionals (see e.g. [9]) without applying the result in Theorem 4.3 to the
level sets of the function f . A key point in the case of integral functionals is the
representation of the limit on piecewise-affine functions and then on all functions
by a density argument. This is not possible in our case: a major difficulty is that
a priori in the limit we cannot neglect sets of zero measure. This is overcome by
obtaining the representation of the limit directly on C1 functions by an accurate
use of cut-off arguments. We remark that this approach heavily relies on the peri-
odicity assumption; anyhow it shows that, even though the comparison between our
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problem and the result of Theorem 4.3 is somehow natural being based on pointwise
conditions for the gradient, the supremal functionals can be much regular and then
less degenerate.

Our result partially overlap in the 1-dimensional case those obtained by Alvarez
and Barron [2] using the method of viscosity solutions.

The plan of the paper is the following. In Section 2 we recall the main tools we
use for our result. Section 3 will be devoted to the derivation, by approximation,
of the cell problem (see Lemma 3.2). In Section 4 we state and prove the homoge-
nization theorem under the assumption Ω convex (Theorem 4.1). In Section 5 we
show that under some additional assumptions on the function f it is possible to
prove the homogenization result for a larger class of sets Ω (Theorem 5.2). Finally
in Section 6 we comment the result and we give some examples.

2 Formulation of the problem and preliminaries

The aim of this paper is to give an homogenization result for a sequence of supremal
functionals in W 1,∞(Ω), i.e. functionals of the form

Fε(u) = ess sup
x∈Ω

f
(x

ε
, Du(x)

)

, (2.1)

where f(x, ξ) is a Borel function 1-periodic in the second variable.
A sufficient condition for the lower semicontinuity in L∞ for functionals of this

type has been proved in [1] and is given by the following two conditions:

(i) (lower semicontinuity) f(x, ·) is lower semicontinuous for a.e. ∈ Ω.

(ii) (level convexity) f(x, ·) is level convex for a.e. x ∈ Ω, i.e. for every t ∈ R the
level set

{

ξ ∈ RN : f(x, ξ) ≤ t
}

is convex.

Remark that the level convexity can be equivalently stated as follows: for each
λ ∈ (0, 1), ξ1, ξ2 ∈ RN ,

f(x, λξ1 + (1− λ)ξ2) ≤ f(x, ξ1) ∨ f(x, ξ2)

for a.e. x ∈ Ω.

Condition (ii) has been proved to be necessary in [5] under a further continuity
assumption on f .
For the first part of the paper we will require for f the following growth conditions:

(iii) (“standard” growth conditions) there exist two positive constants C1 and C2

such that
C1|ξ| ≤ f(x, ξ) ≤ C2(1 + |ξ|)

for every ξ ∈ RN and a.e. x ∈ RN .
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The growth condition will be highly relaxed in the final homogenization result
(see Theorem 4.1).

In order to study the asymptotic behavior of Fε as ε → 0 we will use the notion
of Γ-convergence introduced by De Giorgi. For convenience of the reader let us
recall the definition (more details on Γ-convergence and homogenization theory can
be found for instance in [9], [10] and [15]).

We say that a given sequence of functionals Gε defined in a metric space X ,
Γ-converges to the functional G, as ε → 0, if the following properties hold

(a) For every u ∈ X and for every sequence {uε} converging to u in X we have

G(u) ≤ lim inf
ε→0

Gε(uε).

(b) For every u ∈ X there exists a sequence {uε} (recovering sequence) such that

G(u) ≥ lim sup
ε→0

Gε(uε).

We will refer to (a) as the Γ(X)-liminf inequality and to (b) as the Γ(X)-limsup
inequality. The former is actually equivalent to

G(u) ≤ inf{lim inf
ε→0

Gε(uε) : uε → u in X} := Γ(X)- lim inf
ε→0

Gε (u) ,

while the latter gives

G(u) ≥ inf{lim sup
ε→0

Gε(uε) : uε → u in X} := Γ(X)- lim sup
ε→0

Gε (u) .

We will use the notion of Γ-convergence both for the homogenization in Lp(Ω),
1 < p ≤ +∞, and for the “power-law” approximation, i.e. as p → +∞. In the
latter the definition above will be applied with ε = 1/p.

A key step in order to use an approximation argument is the following result
proved in [14].

Theorem 2.1 Let Ω ⊂ RN be a bounded open set and let f : Ω ×RN → [0, +∞]
satisfy conditions (i)–(iii). For any p ≥ 1, we define

Fp(u) :=











(

∫

(0,1)N

fp(x, Du(x))dx

)1/p

if u ∈ W 1,p((0, 1)N )

+∞ otherwise.

The family (Fp)p≥1 Γ-converges (as p goes to +∞) to F : L∞(Ω) → [0, +∞]

F(u) :=

{

ess sup
x∈(0,1)N

f(x, Du(x)) if u ∈ W 1,∞((0, 1)N)

+∞ otherwise,

with respect to the topology of the uniform convergence.
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3 Power-law approximation and cell-problem

In order to study the Γ-limit for Fε and to give an explicit representation of it,
we will follow the strategy of [17]. In view of the approximation result given in
Theorem 2.1 let us consider the functional

Fp,ε(u) :=

(
∫

Ω

fp
(x

ε
, Du(x)

)

dx

)1/p

. (3.1)

For any fixed 1 < p < +∞ one can consider the Γ-limit as ε → 0, i.e. the
homogenized functional F hom

p of Fp,ε. Indeed, the function fp(x, ξ) satisfies the
standard growth conditions in W 1,p which permit to characterize the homogeniza-
tion of Fp,ε as ε → 0. Namely, for any bounded open set Ω the sequence Fp,ε(u)
Γ(Lp)-converges to the functional

F hom
p (u) :=

(
∫

Ω

fhom
p (Du(x))dx

)1/p

(3.2)

where the energy density fhom
p is given by the following cell-problem formula

fhom
p (ξ) := (fp)hom(ξ) = inf

{
∫

(0,1)N

fp(x, ξ + Du(x))dx : u ∈ W 1,p
# ((0, 1)N )

}

(3.3)
(the space W 1,p

# ((0, 1)N ) being defined by

W 1,p
# ((0, 1)N ) := {u ∈ W 1,p

loc (RN ) : u is 1-periodic}

for all 1 < p ≤ +∞).
Using Theorem 2.1, from (3.3) we can derive a cell-problem formula as p → +∞

which will be our candidate for the representation of the homogenized functional of
Fε, i.e.

fhom(ξ) = inf

{

ess sup
(0,1)N

f(x, ξ + Du(x)) : u ∈ W 1,∞
# ((0, 1)N )

}

. (3.4)

Remark 3.1 If f satisfies conditions (i)–(iii) then for any fixed ξ ∈ RN the
functional ess sup(0,1)N f(x, ξ + Du(x)) is lower semicontinuous and coercive in

W 1,∞
# ((0, 1)N ) and thus the infimum in the definition of fhom(ξ) is achieved. In

fact, as a consequence of the Ascoli-Arzela theorem, any minimizing sequence is
compact, up to a translation, and, hence up to a subsequence it must converge to
a minimum point.

Moreover, it can be easily checked that the function fhom(ξ) defined by (3.4) is
level convex. Indeed, for any fixed ξ1, ξ2 ∈ RN there exist u1, u2 ∈ W 1,∞

# ((0, 1)N)

such that fhom(ξi) = ess supx∈(0,1)N f(x, ξi + Dui(x)) , (i = 1 , 2). Thus for every
λ ∈ (0, 1)

fhom(λξ1 + (1− λ)ξ2) ≤ ess sup
x∈(0,1)N

f(x, λ(ξ1 + Du1(x)) + (1− λ)(ξ2 + Du2(x)))

≤ ess sup
x∈(0,1)N

[f(x, ξ1 + Du1(x)) ∨ f(x, ξ2 + Du2(x))]

≤ fhom(ξ1) ∨ fhom(ξ2),
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which is equivalent to the level convexity of fhom.

We have the following result.

Lemma 3.2 Let f : RN × RN → [0, +∞] be a Borel function, 1-periodic in the
first variable satisfying conditions (i)–(iii), then

1. for every ξ ∈ RN

lim
p→∞

(

fhom
p (ξ)

)1/p
= fhom(ξ), (3.5)

2. for all open bounded set Ω ⊂ RN and u ∈ W 1,∞(Ω),

lim
p→∞

(
∫

Ω

fhom
p (Du(x))dx

)1/p

= ess sup
x∈Ω

fhom(Du(x)). (3.6)

Proof.
In order to prove (3.5), let us fix ξ ∈ RN and observe that, by definition,

(

fhom
p

)1/p
is a non-decreasing sequence such that

(

fhom
p (ξ)

)1/p
≤ fhom(ξ), ∀p > 1, (3.7)

hence the limit as p → +∞ exists and

lim
p→∞

(

fhom
p (ξ)

)1/p
≤ fhom(ξ). (3.8)

To prove the reverse inequality, without loss of generality, we may assume that

lim
p→∞

(

fhom
p (ξ)

)1/p
< +∞.

Let ε > 0, and p > 1, by definition of fhom
p (ξ) there exists up ∈ W 1,p

# ((0, 1)N)
such that

Fp(up + ξ · x) =

(

∫

(0,1)N

fp(x, Dup(x) + ξ)dx

)1/p

≤ (fhom
p (ξ)

)1/p
+ ε.

By the coerciveness of f , there exists C > 0 such that ||Dup||Lq ≤ C for every
p > q > 1. Without loss of generality, we may assume that up has zero average, thus,
by Poincaré-Wirtinger inequality, we conclude that for every q > 1 the sequence
(up)p>q is bounded in W 1,q((0, 1)N ). Furthermore, there exists u∞ ∈ W 1,∞

# ((0, 1)N)
such that (up)p (up to a subsequence) converges uniformly to u∞ as p → +∞. Then,
by Theorem 2.1, and the definition of fhom we get

fhom(ξ) ≤ ess sup
x∈(0,1)N

f(x, ξ + Du∞(x))

≤ lim inf
p→∞

Fp(up + ξ · x)

≤ lim inf
p→∞

(

fhom
p (ξ)

)1/p
+ ε.
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By the arbitrariness of ε, we conclude the proof of (3.5).
In order to prove (3.6) it is enough to obtain

lim
p→∞

(
∫

Ω

fhom
p (Du(x))dx

)1/p

≥ ess sup
x∈Ω

fhom(Du(x)) ,

the reverse inequality being an easy consequence of (3.7). Fix ε > 0 and u ∈
W 1,∞(Ω). Let us define

Eε :=

{

x ∈ Ω : fhom(Du(x)) > ess sup
Ω

fhom(Du)−
ε

2

}

,

mε := L(Eε) > 0 and fix 0 < δ << mε. By (3.5) and Egorov’s theorem, there exists
Fδ ⊂ Ω such that L(Fδ) ≤ δ and

lim
p→∞

||(fhom
p (Du))1/p − fhom(Du)||L∞(Ω\Fδ) = 0.

In particular there exists p0 = p0(ε) such that if p ≥ p0, then

(fhom
p )1/p(Du(x)) − fhom(Du(x)) ≥ −

ε

2
∀x ∈ Ω \ Fδ .

Thanks to our choice of δ, L(Eε \ Fδ) > 0 and if x ∈ Eε \ Fδ , then

(

fhom
p

)1/p
(Du(x)) ≥ ess sup

Ω
fhom(Du)− ε , ∀p ≥ p0.

Thus the set Ep
ε defined by

Ep
ε :=

{

x ∈ Ω :
(

fhom
p

)1/p
(Du(x)) > ess sup

Ω
fhom(Du)− ε

}

contains Eε \Fδ, and hence, for every p ≥ p0, has positive measure. Finally we have

(
∫

Ω

fhom
p (Du(x)) dx

)1/p

≥

(
∫

Ep
ε

fhom
p (Du(x)) dx

)1/p

≥

(
∫

Ep
ε

(ess sup
Ω

fhom(Du)− ε)pdx

)1/p

= L(Ep
ε )1/p

(

ess sup
x∈Ω

fhom(Du(x)) − ε
)

≥ L(Eε \ Fδ)
1/p
(

ess sup
x∈Ω

fhom(Du(x))− ε
)

for every p ≥ p0. This implies

lim
p→∞

(
∫

Ω

fhom
p (Du(x))dx

)1/p

≥ ess sup
x∈Ω

fhom(Du(x)) − ε

which, by arbitrariness on ε, gives us (3.6).
ut
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We now have the means to study the Γ-limit as p →∞ of the functionals F hom
p

defined in (3.2).

Theorem 3.3 Let f : RN ×RN → [0, +∞] be a Borel function, 1-periodic in the
first variable and satisfying conditions (i)–(iii). Let Ω be a bounded subset of RN

and, for any p > 1, let F hom
p be defined as in (3.2). Therefore

Γ(L∞)- lim
p→∞

F hom
p (u) = F hom(u) := sup

x∈Ω
fhom(Du(x))

where fhom is given by (3.4).

Proof. For every p > 1 the functional

F hom
p (u) =

(
∫

Ω

fhom
p (Du(x))dx

)1/p

,

being the Γ-limit of Fp,ε in Lp, is lower semicontinuous in W 1,p with respect to
the Lp topology. In particular it is lower semicontinuous in W 1,∞ with respect to
the L∞ topology. Since the sequence

(

F hom
p

)

p
is increasing and, by Lemma 3.2,

converges pointwise to F hom as p →∞, this easily implies

Γ(L∞) - lim
p→∞

F hom
p = F hom.

ut

Remark 3.4 The homogenization result for integral functionals together with the
previous theorem shows that

Γ(L∞)- lim
p→∞

(

Γ(Lp)- lim
ε→0

Fp,ε(u)
)

= sup
Ω

fhom(Du).

4 Homogenization on convex domains

The present section is devoted to the statement and the proof of the homogenization
result in the case of convex domains. More precisely, we will show that the functional
F hom can be obtained directly by taking the limit as ε → 0 of Fε. As a consequence
the two limits in Remark 3.4 commute.

Theorem 4.1 Let f : RN × RN → [0, +∞] be a Borel function, 1-periodic in
the first variable and lower semicontinuous and level convex in the second variable.
Assume that f satisfies the following growth condition:

(H) (weak growth condition) There exist two functions α, β : [0, +∞) → [0, +∞),
with α a continuous, increasing function such that limt→∞ α(t) = +∞ and β
locally bounded, such that

α(|ξ|) ≤ f(x, ξ) ≤ β(|ξ|) for every ξ ∈ RN , a.e. x ∈ (0, 1)N .
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Therefore for any convex bounded open set Ω ⊂ RN , the sequence Fε : W 1,∞(Ω) →
[0, +∞),

Fε(u) = ess sup
x∈Ω

f
(x

ε
, Du(x)

)

,

Γ(L∞)-converges to the functional F hom : W 1,∞(Ω) → [0, +∞) defined by

F hom(u) := ess sup
x∈Ω

fhom(Du(x)) , (4.1)

where fhom : RN → [0, +∞) is the level convex function given by the cell-problem
formula

fhom(ξ) := inf

{

ess sup
x∈(0,1)N

f(x, ξ + Du(x)) : u ∈ W 1,∞
# ((0, 1)N )

}

(4.2)

for all ξ ∈ RN .

Let us remark that the growth conditions (H) is quite general. It for instance
include the cases when the function f satisfies non standard growth conditions of
the type: C1|ξ|p ≤ f(x, ξ) ≤ C2(1 + |ξ|q), with q > p, a.e. x ∈ Ω. When f satisfies
the estimate from below with a function α like in condition (H), we say that f is
uniformly coercive in the second variable.

We will prove Theorem 4.1 in two steps. The Γ-liminf inequality (Proposi-
tion 4.2) will be obtained as a consequence of the Lp approximation of the supre-
mal functional and of the homogenization result for integral functionals. For the
Γ-limsup inequality (Proposition 4.4) we will use an homogenization result for un-
bounded integral functionals (see [12]) which we will state in a convenient form in
Theorem 4.3. The latter is where the convexity of the set Ω is needed.

Proposition 4.2 Let f : RN ×RN → [0, +∞) be a Borel function, 1-periodic in
the first variable and lower semicontinuous and level convex in the second variable.
Moreover assume that f satisfies condition (H) of Theorem 4.1. For any bounded
open set Ω ⊂ RN and for all u ∈ W 1,∞(Ω) we have

Γ(L∞)- lim inf
ε→0

Fε(u) ≥ F hom(u) .

Proof. Clearly it is enough to prove that for every uε → u in L∞ as ε → 0,
uε, u ∈ W 1,∞(Ω),

ess sup
x∈Ω

fhom(Du(x)) ≤ lim inf
ε→0

ess sup
x∈Ω

f
(x

ε
, Duε(x)

)

. (4.3)

Without loss of generality we may assume that supε ess supΩ f(x
ε , Duε(x)) < +∞.

We will prove it in three steps:
Step 1. First assume that f satisfies the “standard” growth condition (iii), i.e.

C1|ξ| ≤ f(x, ξ) ≤ C2(1 + |ξ|)

11



for every ξ ∈ RN and a.e. x ∈ RN . Under this assumption we have the standard
homogenization result for the functional Fp,ε as defined by (3.1). By the fact that
Fp,ε Γ-converges to F hom

p we have

(
∫

Ω

fhom
p (Du(x)) dx

)1/p

≤ lim inf
ε→0

(
∫

Ω

fp
(x

ε
, Duε(x)

)

dx

)1/p

≤ L(Ω)1/p lim inf
ε→0

Fε(uε)

for each p > 1. Then (4.3) follows taking the limit as p →∞ and using (3.6).
Step 2. Assume now that f(x, ·) is locally bounded from above a.e. x ∈ RN and
satisfies

|ξ| ≤ f(x, ξ) a.e. x ∈ RN ,

i.e. it satisfies condition (H) with α(t) = |t|. For every M > 0, let φM (x, ξ) be
defined by

φM (x, ξ) = f(x, ξ) ∧
[

M ∨
1

2
(1 + |ξ|)

]

.

It is easy to check that, if M > 1, then φM (x, ξ) satisfies

1

2
|ξ| ≤ φM (x, ξ) ≤ M(1 + |ξ|)

and it is level convex in the second variable. Indeed, for every λ > 0 we have

{ΦM (x, ξ) ≤ λ} = {f(x, ξ) ≤ λ} ∪
{

M ∨
1

2
(1 + |ξ|) ≤ λ

}

and
{

M ∨
1

2
(1 + |ξ|) ≤ λ

}

=







∅ if λ < M

{|ξ| ≤ 2λ− 1} if λ ≥ M .

By the coerciveness of f we have that {f(x, ξ) ≤ λ} ⊂ {|ξ| ≤ λ} and then we deduce
that

{ΦM (x, ξ) ≤ λ} =







{f(x, ξ) ≤ λ} if λ < M

{|ξ| ≤ 2λ− 1} if λ ≥ M

and hence {ΦM (x, ξ) ≤ λ} is convex. Thus applying Step 1, we have

ess sup
x∈Ω

φhom
M (Du(x)) ≤ lim inf

ε→0
ess sup

x∈Ω
φM

(x

ε
, Duε(x)

)

, (4.4)

where

φhom
M (ξ) = inf

{

ess sup
x∈Ω

φM (x, ξ + Du(x)) : u ∈ W 1,∞
# ((0, 1)N)

}

.

The idea is that for M big enough inequality (4.4) reduces to (4.3). In fact on one
hand φM (x, ξ) ≤ f(x, ξ) for a.e. x ∈ RN , and hence

lim inf
ε→0

ess sup
x∈Ω

φM

(x

ε
, Duε(x)

)

≤ lim inf
ε→0

ess sup
x∈Ω

f
(x

ε
, Duε(x)

)

. (4.5)

12



On the other hand let us prove that for M big enough

ess sup
x∈Ω

fhom(Du(x)) = ess sup
x∈Ω

φhom
M (Du(x)) . (4.6)

Let M0 = supx∈Ω |Du(x)|. By the fact that f is locally bounded, there exists a
constant C0, depending on M0, such that for every M > 0

φhom
M (ξ) ≤ fhom(ξ) ≤ C0 ∀ ξ : |ξ| ≤ M0 .

Fix 0 < ε < 1 and ξ, with |ξ| ≤ M0. For any M > 0 there exists a function
uM,ξ ∈ W 1,∞

# ((0, 1)N ) such that

ess sup
x∈Ω

φM (x, DuM,ξ(x) + ξ) < φhom
M (ξ) + ε ≤ C0 + ε .

By the coerciveness of φM we deduce that ess supΩ |ξ+DuM,ξ| ≤ 2(C0+ε) < 2C0+2
and thus there exists a constant C1 > 0 such that f(x, ξ + DuM,ξ(x)) ≤ C1 . It
is clearly enough to choose M > C1 in order to obtain f(x, ξ + DuM,ξ(x)) =
φM (x, ξ + DuM,ξ(x)). Then by the definition of uM,ξ we have

fhom(ξ) ≤ φhom
M (ξ) + ε ,

for every |ξ| ≤ M0 and M > C1, and hence

fhom(Du(x)) ≤ φhom
M (Du(x)) ∀ x ∈ Ω .

The conclusion follows by taking the supremum in x in the last inequality and by
the fact that the reverse inequality is trivially satisfied.
Step 3. The general case follows applying the previous step to the function
α−1(f(x, ξ)).

ut

The proof of the Γ-limsup inequality follows from a repeated application of the
homogenization result for unbounded convex integral functionals due to Carbone et
al. ([12]), which we state in the following particular case.

Theorem 4.3 (Theorem 3.10, [12]) Let Ω be a convex bounded subset of RN and
let C(x) be a 1-periodic measurable set function such that C(x) is a closed convex
set for any x ∈ Ω and there exists R > 0 such that

C(x) ⊂ BR(0) a.e. x ∈ Ω . (4.7)

Let Gε : W 1,∞(Ω) → [0, +∞] be defined by

Gε(u) :=

∫

Ω

1C( x
ε
)(Du(x)) dx .

Therefore Gε Γ(L∞)-converges, as ε goes to zero, to the homogeneous functional

Ghom(u) :=

∫

Ω

ghom(Du(x)) dx ,

13



where, for ξ ∈ RN ,

ghom(ξ) := inf

{
∫

(0,1)N

1C(x)(ξ + Du(x)) dx : u ∈ W 1,∞
# ((0, 1)N )

}

. (4.8)

In the following proposition we prove the Γ-limsup inequality.

Proposition 4.4 Let f : RN ×RN → [0, +∞] be a Borel function, 1-periodic in
the first variable and satisfying conditions (i), (ii) and (H). For any convex open
bounded set Ω ⊂ RN and u ∈ W 1,∞(Ω), we have

Γ(L∞)- lim sup
ε→0

Fε(u) ≤ F hom(u) .

Proof. Fix ū ∈ W 1,∞(Ω) and let M = ess supΩ fhom(Dū). Our aim is to find a
sequence (uε)ε such that uε → ū in L∞(Ω) as ε → 0, and lim supε→0 Fε(uε) ≤ M .

For every x ∈ Ω let us define C(x) := {ξ ∈ RN : f(x, ξ) ≤ M} and C∞ := {ξ ∈
RN : fhom(ξ) ≤ M}. Since f(x, ·) is level convex, the set C(x) is convex for a.e.
x ∈ Ω and, thanks to condition (H) (the coercivity of f), it satisfies property (4.7)
of Theorem 4.3, with R = α−1(M). Thus, we have that

Γ(L∞)- lim
ε→0

Gε(u) =

∫

Ω

ghom(Du(x)) dx, (4.9)

where, for ξ ∈ RN , ghom(ξ) is defined by (4.8).
The key remark is that ghom(ξ) = 1C∞(ξ) for all ξ ∈ RN . To prove this it is enough
to show that

ghom(ξ) = 0 ⇐⇒ 1C∞(ξ) = 0

and this can be deduced by the definitions of ghom, C(x), fhom and C∞. Indeed,

ghom(ξ) = 0 ⇐⇒ ∃u ∈ W 1,∞
# ((0, 1)N ) :

∫

(0,1)N

1C(x)(ξ + Du(x)) dx = 0,

⇐⇒ ∃u ∈ W 1,∞
# ((0, 1)N ) : f(x, ξ + Du(x)) ≤ M for a.e. x ∈ Ω,

⇐⇒ ∃u ∈ W 1,∞
# ((0, 1)N ) : ess sup

x∈Ω
f(x, ξ + Du(x)) ≤ M.

By Remark 3.1 the last condition is equivalent to fhom(ξ) ≤ M , i.e. 1C∞(ξ) = 0.
Thus by (4.9) we have that there exists a sequence (uε)ε ⊂ W 1,∞(Ω) such that
uε → ū in L∞(Ω), as ε → 0, and

lim sup
ε→0

Gε(uε) ≤

∫

Ω

1C∞(Dū(x))dx = 0 .

In particular, there exists ε0 > 0 such that, for every ε ≤ ε0, Gε(uε) = 0, i.e.

1C(x
ε )(Duε(x)) = 0 a.e. x ∈ Ω,

i.e. ess sup
x∈Ω

f(x
ε , Duε(x)) ≤ M which implies Fε(uε) ≤ M and then

lim sup
ε→0

Fε(uε) ≤ F hom(ū) .

ut
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Proof of Theorem 4.1. The thesis follows from Proposition 4.2 and Proposition
4.4. ut

5 Homogenization for continuous f on general

domains

In this section we will see that the homogenization result can be proved for general
domains if we require some continuity on the function f (see condition (HC)). In
this case we can mimic, up to certain extent, the “standard” strategy for the proof
of the Γ-limsup inequality in the homogenization of integral functionals, without
applying the result in Theorem 4.3 to the level sets of the function f , as we did in
the previous section.

We will require for the function f(x, ξ) the following continuity condition:

(HC) For every M > 0 there exists a function ωM : [0, +∞) → [0, +∞) such that
ωM (t) → 0 as t → 0+ and

|f(x, ξ)−f(x, η)| ≤ ωM (|ξ−η|) a.e. x ∈ (0, 1)N , for every ξ , η ∈ BM (0) .

We will see that under this assumption we can prove the homogenization result
for a rich class of domains. Let us recall the definition of a rich family of open sets.

Definition 5.1 Let A be the family of the open subsets of RN . Let R be a subset of
A. We say that R is rich in A if for every {At}t∈R ⊂ A with At ⊂⊂ As whenever
t < s, the set {t : At /∈ R} is at most countable.

The proof of homogenization result for all the domains in rich family of open
sets passes through the representation of the homogenized functional on regular
domains. Namely we will first prove the result for all the domains which satisfy one
of the following properties:

(C2) Ω is of class C2, i.e. the boundary of Ω, ∂Ω, is locally the graph of a C2

function.

(S) Ω is strongly star-shaped.

The main result of this section is the following.

Theorem 5.2 Let f : RN ×RN → [0, +∞) be a Borel function, 1-periodic in the
first variable and level convex in the second one. Assume that f satisfies the growth
condition (H) together with the continuity condition (HC). Then there exists a rich
class A′ ⊂ A such that for every Ω ∈ A′, Fε(·, Ω) Γ(L∞)-converges to F hom(·, Ω).
Moreover any bounded open set Ω ⊂ RN satisfying either (C2) or (S) belongs to A′.
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Proof. With a little abuse of notation we will write Fε(u, Ω) and F hom(u, Ω) in
order to stress the dependence of the functionals on the domain. The proof of the
Γ-liminf inequality is given by Proposition 4.2. Thus it only remains to prove the
Γ-limsup inequality, i.e.

F ′′(u, Ω) := Γ(L∞)- lim sup
ε→0

Fε(u, Ω) ≤ F hom(u, Ω) . (5.1)

We will prove this upper bound by means of various steps.
Step 1. (Affine functions) Let u = ξ · x, with ξ ∈ RN . By definition of fhom(ξ)
there exists a function v ∈ W 1,∞

] ((0, 1)N) such that

fhom(ξ) = ess sup
x∈(0,1)N

f(x, Dv(x) + ξ) .

Let us define uε(x) = εv
(

x
ε

)

+ ξ · x. Then Duε(x) = Dv
(

x
ε

)

+ ξ and for every ε > 0

ess sup
Ω

fhom(Du) = fhom(ξ) = ess sup
x∈(0,ε)N

f
(x

ε
, Dv

(x

ε

)

+ ξ
)

= ess sup
x∈Ω

f
(x

ε
, Duε(x)

)

.

Thus uε is a recovery sequence for u(x) = ξ · x and this implies that the Γ-limsup
inequality holds for affine functions and for every open set Ω.
Step 2. (A fundamental estimate for the Γ-limsup) Let A ⊆ Ω be an open subset
of Ω and let A1, A2 be a polyhedral partition of A. Denote by Aδ

i , i = 1, 2, the set
{x ∈ Ω : dist(x, Ai) < δ} and by Sδ

1,2 the set Aδ
1 ∩ Aδ

2 ∩ A. Let ϕδ be a cut-off

function between A1 and A2 on Sδ
1,2, i.e. ϕδ = 1 on A1 \ Sδ

1,2, ϕδ = 0 on A2 \ Sδ
1,2,

0 ≤ ϕδ ≤ 1, ϕ ∈ C1(A) and |Dϕδ | ≤
2
δ . We now prove that for fixed ui ∈ W 1,∞(Aδ

i )
there exists M > 0, M = M(||u1 − u2||L∞(Sδ

1,2
), supi F ′′(ui, A

δ
i )) such that

F ′′(wδ , A) ≤ F ′′(u1, A
δ
1) ∨ F ′′(u2, A

δ
2) + sup

Sδ
1,2

ωM (|(u1 − u2)||Dϕδ |) (5.2)

where wδ = ϕδu1+(1−ϕδ)u2. Indeed, let (uε
1)ε and (uε

2)ε be the recovery sequences
for u1 and u2 in Aδ

1 and Aδ
2 respectively, i.e. uε

i converges to ui in L∞(Aδ
i ) and

lim sup
ε→0

Fε(u
ε
i , A

δ
i ) ≤ F ′′(ui, A

δ
i ) .

In particular, thanks to condition (H), there exists a positive constant M1 =
α−1(supi F ′′(ui, A

δ
i )) such that ||Duε

i ||L∞(Aδ
i
) ≤ M1 for ε small enough. Let wδ

ε =

ϕδu
ε
1 + (1− ϕδ)u

ε
2. As ε goes to zero wδ

ε converges to wδ , then

F ′′(wδ , A) ≤ lim inf
ε→0

sup
A

f
(x

ε
, Dwδ

ε

)

. (5.3)

By the level convexity of f and by condition (HC), for ε small enough we have that

sup
A

f
(x

ε
, Dwδ

ε

)

= sup
A1\Sδ

1,2

f
(x

ε
, Duε

1

)

∨ sup
A2\Sδ

1,2

f
(x

ε
, Duε

2

)

16



∨ sup
Sδ

1,2

f
(x

ε
, ϕδDuε

1 + (1− ϕδ)Duε
2 + (uε

1 − uε
2)Dϕδ

)

≤ sup
Aδ

1

f
(x

ε
, Duε

1

)

∨ sup
Aδ

2

f
(x

ε
, Duε

2

)

+ sup
Sδ

1,2

ωM (|uε
1 − uε

2||Dϕδ |)

where M = 2M1+
4
δ ||u1−u2||L∞(Sδ

1,2
). Since |uε

1−uε
2| converges uniformly to |u1−u2|

in Sδ
1,2 as ε → 0, in view of the continuity of ωM and by using (5.3) we get (5.2).

Step 3. (Upper bound for C1 functions through piecewise affine approximation)
We now prove that the Γ-limsup inequality (5.1) holds for every (regular) open set
Ω ⊂ RN and for every u ∈ C1(Ω). Fix u ∈ C1(Ω) and fix n ∈ N. Then there exists
a piecewise affine function

un(x) =
∑

i

(ξn
i x + cn

i )χAn,i
,

where (An,i)i is a regular triangularization of Ω of side ln sufficiently small such
that

‖un − u‖W 1,∞(Ω) ≤
2

n
(5.4)

and

|ξn
i − ξn

j | <
1

n
∀i , j such that An,i ∩ An,j 6= ∅ . (5.5)

For every n ∈ N let us fix δ = δ(ln) such that Aδ
n,i ∩ Aδ

n,j 6= ∅ if and only if

An,i ∩ An,j 6= ∅. Now we want to apply the estimate (5.2) to the functions un
i =

ξn
i x + cn

i in the sets An,i and Aδ
n,i. Denote by

Sδ
n,i,j := Aδ

n,i ∩Aδ
n,j ∩ An,i ∩ An,j

for all i and j such that An,i ∩ An,j 6= ∅, otherwise define Sδ
n,i,j = ∅. Let ϕδ

n,i,j be

a cut-off function in Sδ
n,i,j and let wn

δ be the function obtained by gluing all the

functions un,i through ϕδ
n,i,j . Note that if we define Mi,j := 2α−1(F ′′(un

i , Aδ
n,i) ∨

F ′′(un
j , Aδ

n,j)) + 4
δ ||u

n
i − un

j ||L∞(Sδ
n,i,j

), then there exists M ∈ R such that M >

supi,j Mi,j and it does not depend on n. In fact, by Step 1 and by definition of un,
we have that

Mi,j ≤ 2α−1(fhom(ξn
i ) ∨ fhom(ξn

j )) +
4

δ

δ

n

≤ 2α−1(F hom(un, Ω)) +
4

n
,

which converges to 2α−1(F hom(u, Ω)), thanks to the continuity of F hom. Then, by
applying (5.2) and by Step 2, we get

F ′′(wn
δ , Ω) ≤

∨

i

F ′′(un,i, A
δ
n,i) + C sup

i,j
sup

Sδ
n,i,j

ωM (|un,i − un,j ||Dϕδ
i,j |)

≤
∨

i

fhom(ξn
i ) + C sup

i,j
sup

Sδ
n,i,j

ωM (|ξn
i − ξn

j |)

≤ ess sup
Ω

fhom(Dun) + CωM (
1

n
)
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where the constant C depends on the dimension of the space (namely C is the
maximum number of simplexes that can meet at a point). Finally, since ||wn

δ −
u||∞ ≤ 1

n , by using the lower semicontinuity of F ′′ and the continuity of fhom we
get the Γ-limsup inequality for C1 functions.
Step 4. (The inner regularization on W 1,∞ functions) For every u ∈ W 1,∞(Ω) we
denote by F ′′−(u, ·) the inner regularization of the increasing set function F ′′(u, ·),
i.e. for every open set E

F ′′−(u, E) = sup{F ′′(u, E′) : E′ ⊂⊂ E} .

In this step we prove that

F ′′−(u, Ω) ≤ ess sup
Ω

fhom(Du) (5.6)

Since fhom is continuous, then F hom is continuous with respect to the W 1,∞ norm.
Fix u ∈ W 1,∞(Ω). Let Ω′ ⊂⊂ Ω and for any δ > 0, let ϕδ be a mollifier, with
∫

Ω ϕδ dx = 1, and define the function uδ = u∗ϕδ in Ω′ for every δ < dist(Ω′,RN \Ω).
Then uδ ∈ C∞(Ω′) and converges to u uniformly in Ω′. Since Duδ(y) =

∫

RN ϕδ(x−
y)Du(x) dx the values of Duδ belong to the convex hull of the values assumed by
Du, then by the step 3 and the level convexity of fhom we have

F ′′−(uδ, Ω
′) ≤ F ′′(uδ , Ω

′) ≤ ess sup
Ω′

fhom(Duδ) ≤ ess sup
Ω

fhom(Du) .

Taking the limit as δ → 0 and by using the inner regularity of F ′′
−, we obtain (5.6)

for every u ∈ W 1,∞(Ω).
Step 5. (C2 and star-shaped domains) In this step we will prove that if Ω satisfies
either condition (S) or condition (C2), then

F ′′(u, Ω) ≤ ess sup
Ω

fhom(Du) (5.7)

for every u ∈ W 1,∞(Ω), i.e. the Γ-limsup inequality.
Assume first Ω satisfying (S). The proof in this case is standard. We repeat it

here for the sake of completeness. Without any loss of generality we may assume
that Ω is strongly star-shaped with respect to x0 = 0. Then for every t > 1 the set
tΩ = {tx : x ∈ Ω} strictly contains Ω, i.e. tΩ ⊃⊃ Ω. For each u ∈ W 1,∞(Ω), let
ut(x) = tu(x/t). Since Dut = Du by the definition of the inner regularization and
Step 4 we have

F ′′(ut, Ω) ≤ F ′′−(ut, tΩ) ≤ ess sup
tΩ

fhom(Dut) = ess sup
Ω

fhom(Du) .

The conclusion follows by taking the limit as t → 1 and using the lower semiconti-
nuity of F ′′.

To conclude this part, let us consider the case of Ω satisfying condition (C2).
The idea is again to construct a “regular” map Φ which maps Ω into a set Ω′, with
Ω ⊂⊂ Ω′.

Let d(x) = dist(x, Ω)− dist(x,Rn \Ω). Since Ω is of class C2 there exists σ > 0
such that the function d(x) is also C2 in {x : −σ < d(x) < σ}. Let us denote by
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Ωσ the set {x : d(x) < σ}. Clearly Ωσ ⊃⊃ Ω. For any 0 < η < 1 we define the map
Φ : Ω → Ωση by

Φη(x) = x + η(σ + d(x))+Dd(x) .

Since DΦη(x) = I + η(σ + d(x))+D2d(x) + ηDd(x) ⊗Dd(x)χ(−σ,+∞)(d(x)), for η
small enough Φ is bi-lipschitz. Now fix u ∈ W 1,∞(Ω), we can define the function
vη(x) = u(Φ−1

η (x)) for any x ∈ Ωση . It is easy to see that vη ∈ W 1,∞(Ωση) and
that it converges to u as η → 0 strongly in W 1,∞(Ω). As above we have

F ′′(vη , Ω) ≤ F ′′−(vη , Ωση) ≤ ess sup
x∈Ωση

fhom(DΦ−1
η (x)Du(Φ−1

η (x)))

= ess sup
x∈Ω

fhom
(

(DΦη(x))−1Du(x)
)

.

The conclusion follows taking the limit as η → 0 and using the lower semicontinuity
of the Γ-limsup. Then the Γ-limsup inequality is proved and hence we that

F ′′−(u, Ω) = F ′′(u, Ω) = ess sup
Ω

fhom(Du) ∀u ∈ W 1,∞(Ω)

for every Ω satisfying (C2) or (S).
Step 6. (Sub-supremality of the inner regularization) By the previous step we
have that for every u ∈ W 1,∞(Ω), the inner regularization of F ′′(u, ·) is finitely
sub-supremal, i.e.

F ′′−(u, A ∪B) ≤ F ′′−(u, A) ∨ F ′′−(u, B) . (5.8)

Fix A, B ⊆ Ω and let A′ ⊂⊂ A and B′ ⊂⊂ B, with A′ and B′ satisfying (C2). Thus
for every open set C ⊆ A′ ∪ B′ satisfying (C2) we have

F ′′−(u, C) = ess sup
C

fhom(Du) ≤ ess sup
A′∪B′

fhom(Du) ≤ F ′′(u, A′) ∨ F ′′(u, B′) .

Taking the supremum in A′, B′ and C we get (5.8). As a consequence, if Ω =
⋃∞

i=1 Ai, Ai ∈ A, then

F ′′−(u, Ω) =

∞
∨

i=1

F ′′−(u, Ai) (5.9)

for all u ∈ W 1,∞(Ω). In fact, by the inner regularity of F ′′
−, there exists Vε ⊂⊂

Ω such that F ′′−(u, Ω) ≤ F
′′

−(u, Vε) + ε. Then there exists a finite subset J ⊂ N

such that Vε ⊂⊂
⋃

j∈J Aj and by using the finite sub-supremality, we have that

F ′′−(u, Ω) ≤
∨

j∈J F ′′−(u, Aj) + ε ≤
∨∞

i=1 F ′′−(u, Ai) + ε, i.e. the property (5.9).
Step 7. Since every open set Ω can be covered with a countable family of balls Bn,
thanks to the countable supremality of F ′′

− and thanks to Step 5 , we have that

F ′′−(u, Ω) =
∨

n

F ′′−(u, Bn) =
∨

n

ess sup
Bn

fhom(Du) = ess sup
Ω

fhom(Du)

for every u ∈ W 1,∞(Ω). Now since F ′′(u, Ω) is lower semicontinuous in u with
respect to the uniform topology and is increasing with respect to Ω, by Proposition
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15.15 in [15] we can conclude that it coincides with its inner regularization on a rich
family of open sets, and hence we deduce that

{Ω ∈ A : F ′′(u, Ω) = ess sup
Ω

fhom(Du) ∀u ∈ W 1,∞(Ω)}

is rich in A. ut

6 Some examples

Using the cell-problem formula we can compute the limit functional in some par-
ticular cases. We first show that in the 1-dimensional case it is easy to deduce a
necessary condition in order to be a solution to the cell-problem formula.

Using the cell-problem formula we can compute the limit functional in some
particular cases. We first show that in the 1-dimensional case it is easy to deduce
a necessary condition in order to be a solution to the cell-problem formula.

Remark 6.1 (Euler equation) Let a ∈ L∞(R2) be 1-periodic and let g : R → R+

be coercive, level convex and 1-homogeneus. We consider a function f : R2 → R

of the form f(x, ξ) = a(x) + g(ξ) or of the form f(x, ξ) = a(x)g(ξ). Note that
f(x, 0) = minξ∈R f(x, ξ) for every x ∈ [0, 1] and fhom(ξ) ≥ ess sup(0,1) f(x, 0). In

particular fhom(0) = ess sup(0,1) f(x, 0) and u = 0 is a solution of the cell-problem
formula.

Fix ξ ∈ R and let u ∈ W 1,∞((0, 1)) be the solution of the corresponding cell-
problem formula, i.e. u(0) = 0, u(1) = ξ and ess sup(0,1) f(x, u′) = fhom(ξ). If

fhom(ξ) > ess sup(0,1) f(x, 0), then u must satisfy

f(x, u′(x)) = fhom(ξ) a.e. x ∈ (0, 1) . (6.1)

In order to show this, note that as a consequence of the level convexity and the
continuity of g we have that for every x ∈ (0, 1) and for every M > f(x, 0) there
exists aM (x) < 0 < bM (x) such that

CM (x) := {f(x, t) ≤ M} = [aM (x), bM (x)]

and {f(x, t) < M} = (aM (x), bM (x)). Now fix M = fhom(ξ) and assume by
contradiction that there exists a subset I of (0, 1), with L(I) > 0, such that
f(x, u′(x)) < M . Thus aM (x) < u′(x) < bM (x) for a.e. x ∈ I . Let ξ > 0 (the case
ξ < 0 is analogous) and define the function v with v(0) = 0 and v′(x) = bM (x) if
x ∈ I and v′(x) = u′(x) otherwise in (0, 1). Clearly, since L(I) > 0 and v′ > u′

in I we have that v(1) = ξ + δ, for some positive δ, and by the choice of v′ we
also have that f(x, v′) = M for every x ∈ (0, 1). We can conclude considering the
function w(x) = ξ

ξ+δ v(x). This is admissible in the computation of fhom(ξ) and by
the 1-homogenity of g, the conclusion follows easily. In fact, in the first case we
have

ess sup
Ω

a(x)g(w′) =
ξ

ξ + δ
ess sup

Ω
a(x)g(v′) =

ξ

ξ + δ
fhom(ξ) < fhom(ξ)
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while in the second one

ess sup
Ω

(

a(x) + g(w′)
)

≤ ess sup
Ω

( ξ

ξ + δ
(a(x) + g(v′)) +

δ

ξ + δ
a(x)

)

= ess sup
Ω

( ξ

ξ + δ
fhom(ξ) +

δ

ξ + δ
a(x)

)

=
ξ

ξ + δ
fhom(ξ) +

δ

ξ + δ
ess sup

Ω
a(x) < fhom(ξ).

Both the previuous inequalities are in contradiction with the definition of f hom(ξ)
and then (6.1) is proved.

We now use the previous remark to explicitly compute some 1-dimensional ex-
ample.

Example 6.2 Let α : R → R be a 1-periodic bounded Borel function and let
f(x, ξ) := α(x) + |ξ|. Upon a translation we can suppose that α(x) > 0. Clearly
such a function satisfies the conditions in Remark 6.1. Let us denote by ᾱ =
ess sup(0,1) α(x). With fixed ξ ∈ R, let u(x) be a solution of the corresponding

cell-problem formula. If |ξ| > ᾱ−
∫ 1

0
α dx, then

fhom(ξ) = ess sup
(0,1)

(α(x) + |u′(x)|) ≥ α(x) + |u′(x)| a.e. x ∈ (0, 1)

and, integrating this inequality, we have fhom(ξ) > ᾱ. By Remark 6.1, we obtain
that u must satisfy

|u′(x)| = fhom(ξ)− α(x)

and then fhom(ξ) = |ξ| +
∫ 1

0
α dx. In the case ξ = ᾱ −

∫ 1

0
α dx, testing the cell-

problem formula with u′(x) = ᾱ − α(x), one can check that fhom(ξ) = ᾱ. Finally
it easy to see that

fhom(ξ) =

{

|ξ|+
∫ 1

0 α dx if |ξ| > ᾱ−
∫ 1

0 α dx

ᾱ if |ξ| ≤ ᾱ−
∫ 1

0
α dx.

Example 6.3 Let a : R → R be a 1-periodic Borel function, 0 < α ≤ a(x) ≤ β <
+∞. Define f(x, t) := a(x)|t| for every (x, t) ∈ R2.

The function f satisfies the assumptions in Remark 6.1 and f(x, 0) = 0 for every
x ∈ (0, 1). This implies that fhom(ξ) = 0 if and only if ξ = 0. Thus, in order to
compute fhom(ξ), with ξ 6= 0, let u be a solution of the corresponding cell-problem
formula and by (6.1) we get

|u′(x)| =
fhom(ξ)

a(x)
a.e. x ∈ (0, 1) . (6.2)

By the minimality of u, it is easy to see that it must have constant sign and thus,
by simply integrating (6.2), we have

fhom(ξ) =

(
∫ 1

0

1

a(x)
dx

)−1

|ξ| ∀ ξ ∈ R . (6.3)
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In the particular case of a two phase mixture, i.e. a(x) = αχI + β(1−χI), with
I ⊆ (0, 1) and L(I) = θ ∈ (0, 1), we have

fhom(ξ) =
1

θ
α + (1−θ)

β

|ξ| ∀ ξ ∈ R .

Already in this simple case of 1-dimensional homogenization, the two examples
above shows similarities with different kind of problems. The result in the first
example resemble very much a problem of homogenization of Hamilton-Jacobi, while
the second example shows a behaviour very similar to that observed in quadratic
integral homogenization.

Remark 6.4 Note that the expression (6.3) for fhom can also be deduced by using
the Lp approximation proved in Lemma 3.2. Indeed using the cell-problem formula
for integral homogenization we get

(fhom
p )1/p(ξ) =

(
∫ 1

0

(

a(x)
)p/(1−p)

dx

)(1−p)/p

|ξ|

and hence we obtain (6.3) taking the limit as p →∞.

Remark 6.5 In [11] through a dual formulation is proved that the Γ(L∞)-limit of
a sequence of the form

ess sup
x∈Ω

fε(x, u(x)) u ∈ L∞(Ω) (6.4)

is still a supremal functional and an explicit representation formula for the en-
ergy density is given in terms of a conjugation argument. In particular in the
1-dimensional case this result can be applied to the sequence

Fε(u) := ess sup
x∈(0,1)

f
(x

ε
, u′(x)

)

u ∈ W 1,∞((0, 1)) (6.5)

and gives an alternative representation formula for fhom(ξ).

We conclude the paper by recalling that 2-dimensional examples with a two-
phase mixture (see [17]) highlight the fact that supremal functionals are very sensi-
tive to conditions imposed on very small sets, differently from integral functionals.
In [17] Example 3.9, there has been constructed, for arbitrary θ ∈ (0, 1), a function
a : (0, 1)2 → {α, β}, with 0 < α < β < +∞ and L({x ∈ (0, 1)2 : a(x) = α}) = θ,
such that the homogenization of

ess sup
Ω

a
(x

ε

)

|Du|

only feels the stronger phase, i.e.

fhom(ξ) = β|ξ| ∀ ξ ∈ R2 ,

even if the phase β is very small.
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