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Abstract

We study the variational problem

SF
ε (Ω) =

1

ε2∗
sup

{∫
Ω

F (u) :

∫
Ω

|∇u|2 ≤ ε2, u = 0 on ∂Ω

}
,

in possibly unbounded domains Ω ⊂ Rn, where n ≥ 3, 2∗ = 2n
n−2

and F satisfies 0 ≤ F (t) ≤ α|t|2
∗

and is upper semicontinuous. Extending earlier results for bounded domains we show that (almost)
maximizers of SF

ε (Ω) concentrate at a harmonic center, i.e. a minimum point of the Robin function
τΩ (the regular part of the Green function restricted to the diagonal). Moreover we obtain the
asymptotic expansion

SF
ε (Ω) = SF

(
1− n

n− 2
w2
∞ min

Ω

τΩ ε2 + o(ε2)

)
where SF and w∞ depend only on F but not on Ω and can be computed from radial maximizers
of the corresponding problem in Rn. The crucial point is to find a suitable definition of τΩ(∞).
Interestingly the correct definition may be different from the lower semicontinuous extension of
τΩ|Ω\{∞} to ∞, at least for n ≥ 5.
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1 Introduction

Let Ω be a domain in Rn, n ≥ 3. Consider the variational problem

sup
{

1
ε2∗

∫
Ω

F (u) :
∫

Ω

|∇u|2 ≤ ε2, u = 0 on ∂Ω
}

,(1)

where the integrand is supposed to satisfy the growth condition

0 ≤ F (t) ≤ α |t|2
∗

for some α > 0 and 2∗ := 2n
n−2 denotes the critical Sobolev exponent. For smooth integrands every

solution of (??) satisfies the Euler Lagrange equation

−∆u = λf(u) in Ω,(2)
u = 0 on ∂Ω

with f = F ′ and a large Lagrange multiplier λ. In [?] Flucher and Müller studied the asymptotic
behaviour of the solutions uε of (??) as ε → 0 and they proved (at least for domains of finite volume)
that a suitably rescaled sequence of (almost) maximizers uε always concentrates at a single point x0

of Ω (after possible extraction of a subsequence). More precisely

|∇uε|2

ε2

∗
⇀ δx0 and

F (uε)
ε2∗

∗
⇀ SF δx0(3)

1
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where SF is a constant depending only on F .
For applications such as Bernoulli free-boundary problem or the plasma problem it is important

to know the location of the concentration point. For bounded domains it was shown in [?] that
concentration occurs at a harmonic center, i.e. at a minimum point of the Robin function τΩ (the
regular part of the Green function of Ω restricted to the diagonal). Moreover the supremum SF

ε (Ω) in
(??) has the asymptotic expansion

SF
ε (Ω) = SF

(
1− n

n− 2
w2
∞min

Ω
τΩ ε2 + o(ε2)

)
.

In this paper we extend these results to unbounded domains (see Theorems ?? and ?? below).
The crucial point is that in this case concentration may occur at ∞. Thus we need to define τΩ

also at ∞. This is done in Definition ?? below. The definition ensures that τΩ : Ω → R ∪ {+∞} is
lower semicontinuous (here and in the following we consider the closure of Ω in Rn ∪ {∞}, the one
point compactification of Rn). Interestingly τΩ(∞) may, however, be strictly lower than the lower
semicontinuous extension of τΩ|Ω\{∞} to ∞ (see Example ??).

The relevance of the critical points of the Robin function for Dirichlet problems that involve the
critical Sobolev exponent was first pointed out by Schoen [?] and Bahri [?]. Rey [?] and Han [?] showed
that as p → 2∗ the maximum points of the positive solutions of

∆u + up−1 = 0 in Ω,

u = 0 on ∂Ω

accumulate at a critical point of the Robin function. This has been conjectured by Brézis and
Peletier [?]. The simpler proof of [?] applies to all dimensions and shows that the concentration
point is a minimum point of the Robin function. Similar results for the Ginzburg-Landau functional
have been obtained by Bethuel, Brézis and Hélein [?]. For further discussions on concentration effects
and the relevant literature see also [?].

To minimize technicalities we consider mostly the Bernoulli free boundary value problem, i.e. the
maximization of volume for given (small) capacity. This corresponds to the integrand F (t) = χ{t≥1}.

The main technical difficulty for general integrands is that one essentially has to work with the
level sets of the maximizer u∞ of problem

SF = sup
{∫

Rn

F (u) : ‖∇u‖L2 ≤ 1
}

(4)

rather then those of the Green function.
Since u∞ approaches the Green function of Rn as |x| → ∞ the arguments are similar but technically
more involved.
The tools to overcome these technical difficulties, however, are essentially the same as for the bounded
domains [?] and we review them briefly in the appendix.

Another subtlety arises in unbounded domains if F (t) has critical growth near the origin. Then
maximizing sequences for problem (??) become arbitrarily flat. In this case we need to impose the
condition τΩ(∞) > 0 to assure that maximizing sequences for (??) still concentrate at a single point,
after suitable translation. The condition τΩ(∞) > 0 requires, roughly speaking, that Rn \ Ω is not
to small at ∞ and holds e.g. for cylinders like domains Ω = {(x′, xn) ∈ Rn : |x′| ≤ f(xn)} with f
continuous and lim inft→±∞ f(t) < +∞ (but possibly lim supt→±∞ f(t) = +∞).
Equivalent conditions and their consequences are also discussed in the appendix.

2 Hypotheses, generalized Sobolev inequality and concentra-
tion

Let Ω be an open subset of Rn, n ≥ 3. By Ω we denote the closure of Ω in Rn ∪ {∞}. In particular
the closure of an unbounded domain contains the point ∞.

The natural function space for variational problems of the form (??) is the space D1,2(Ω) defined
as the closure of C∞

c (Ω) with respect to the norm

‖∇v‖2 =
(∫

Ω

|∇v|2
)1/2

.
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We shall study the behaviour, as ε → 0, of following variational problem

SV
ε (Ω) :=

1
ε2∗

sup
{
|A| : A open subset of Ω , capΩA ≤ ε2

}
,(5)

where capΩA denote the harmonic capacity of A with respect to Ω, i.e.

capΩA = inf
{∫

Ω

|∇u|2 dx : u ∈ D1,2(Ω) , u ≥ 1 a.e. in A

}
.(6)

This infimum is achived by a function u called the capacitary potential of A with respect to Ω. Thus
problem (??) can be equivalently written as

SV
ε (Ω) :=

1
ε2∗

sup
{
| {u ≥ 1} | : u ∈ D1,2(Ω), ‖∇u‖2 ≤ ε

}
,

so that it can be seen as a particular case of problem (??), when F (t) = χ{t≥1}.
We require the following very weak assumption for the domain Ω

Ω is a domain in Rn of dimension n ≥ 3 with Ω 6= Rn in the sense that capRn(Rn \ Ω) > 0.(7)

Define the generalized Sobolev constant by

SV := SV
1 (Rn).

By taking into account that the capacity of a ball of radius r is given by capRnBr = (n−2)|Sn−1|rn−2

we easily compute SV = ((n − 2)|Sn−1|)n/(2−n). Since capRn(ρA) = ρn−2capRnA and capRnA ≤
capΩA we have SV

ε (Ω) ≤ SV . A simple scaling argument leads to the isoperimetric inequality for the
capacity

|A| ≤ SV (capΩA)2
∗/2(8)

Moreover SV
ε (Ω) → SV as ε → 0 (see e.g. [?]). By this fact together with the generalized concentration

compactness alternative proved in the same paper, one can easily deduce the following concentration
result.

Theorem 1 Let Aε be a sequence of extremals for problem (??), i.e. capΩ(Aε) = ε2 and |Aε| → SV

as ε → 0, and let uε be the corresponding capacitary potential with respect to Ω. Then there exists
x0 ∈ Ω such that

|∇uε|2

ε2

∗
⇀ δx0 ,

χAε

ε2∗
∗
⇀ SV δx0(9)

in the sense of measures.

Note that in order to obtain the concentration result it is enough to require that Ω satisfy
capRn(Rn \ Ω) > 0. This assumption essentially excludes only the case Ω = Rn.

Remark 2 In the result above the concentration at ∞ has to be understood as∫
Ω\BR

|∇uε|2

ε2
→ 1 and

|Aε \BR|
ε2∗

→ SV ∀R ≥ 0 .

This convergence does not assure a priori that the sets Aε concentrate at a single point, up a suitable
translation. We will see in the sequel (see Proposition ??) that for the volume functional this result
is always true. In the general case of problem (??) a further assumption on the set Ω has to be made
(see Appendix).

As a consequence of the concentration compactness alternative we have the following lemma.

Lemma 3 ([?], Lemma 13) Let Ak be a sequence of compact sets such that |Ak| = |B1
0 | and capRn(Ak)

converges to capRn(B1
0) as k →∞. Then, up to a subsequence, there exists a sequence {xk} such that

the characteristic function of Ak − xk converges to the characteristic function of B1
0 in L1. Moreover

if uk and u denote the capacitary potential of Ak and B1
0 respectively, then uk(xk + ·) converges to u

strongly in D1,2(Rn).
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Proposition 4 If capRn (Aε)

|Aε|
n−2

n

→ SV and |Aε| → 0, then there exist xε and rε → 0 such that

|Aε \B(xε, rε)|
|Aε|

→ 0

Proof. This result can be obtained as a direct consequence of Lemma ??, arguing by contradiction.
©

Remark 5 If {Aε} is a sequence of extremals, then it satisfies (??), and therefore satisfies the as-
sumption of Proposition ??. In particular if (??) holds with x0 = ∞, then there exists a sequence
xε →∞ such that

|∇uε(· − xε)|2

ε2

∗
⇀ δ0,

χ{Aε−xε}

ε2∗
∗
⇀ SV δ0(10)

3 Robin function for unbounded domains

In this section Ω will be an arbitrary open subset of Rn with n ≥ 3, which satisfies (??). The
concentration point x0 of Theorem ?? will be identified in terms of the Robin function of Ω, i.e. the
diagonal of the regular part of the Green function of the Dirichlet problem in Ω for the −∆ = −

∑
∂2

∂x2
i

.
This function has been considered in the context of concentration phenomena in [?] for domains with
regular boundary. In [?] this definition has been extended to any domain, possibly with irregular
boundary, and its main properties have been studied in the case of bounded domains.

In this section we shall summarize the definitions and the results given in [?] and we will extend
them to the case of unbounded domains. In particular, since the concentration point, for some domains,
could be at ∞ we need a good definition of the Robin function at ∞ and a accurate study of its
behaviour near ∞.

Let us denote by Kx(y) = K(|x − y|), for every x, y ∈ Rn, the fundamental solution for −∆, i.e.
K(r) = cnr2−n, with cn = ((n − 2)|Sn−1|)−1. For every point x ∈ Ω \ {∞}, let us define the regular
part of the Green function, HΩ(x, ·), as the solution in the sense of Perron-Wiener-Brelot (PWB) of
the following Dirichlet problem

∆yHΩ(x, y) = 0 in Ω,

HΩ(x, y) = Kx(y) on ∂Ω,
(11)

i.e., HΩ(x, ·) is the infimum of all superharmonic functions u such that

lim inf
z → y
z ∈ Ω

u(z) ≥ Kx(y)

for every y ∈ ∂Ω (see [?]). If Ω is an external domain, then we require in addition that

lim inf
z →∞
z ∈ Ω

u(z) ≥ 0 .

Note that the notion of PWB solution is stable under increasing sequences of admissible boundary
data. Thus the function HΩ(x, y) is well defined also if x ∈ ∂Ω \ {∞}. The Green function of the
Dirichlet problem for −∆ is defined by

Gx(y) = Kx(y)−HΩ(x, y) .

The Green function is symmetric in Ω × Ω (see [?], Theorem 5.24); hence HΩ(x, y) = HΩ(y, x) for
every (x, y) ∈ Ω× Ω.

If x ∈ Ω then the function HΩ(x, ·) coincides with the weak solution of (??) in the sense of D1,2(Ω).
For every x ∈ Ω ∪ ∂Ω \ {∞}, let us extend the function HΩ(x, ·) to a superharmonic function

H̃Ω(x, ·) defined on all Rn, as follows: for every y ∈ ∂Ω \ {∞} we set

H̃Ω(x, y) = lim inf
z → y
z ∈ Ω

HΩ(x, z)(12)
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and H̃Ω(x, y) = Kx(y) for every y ∈ Rn \ Ω (see [?], Theorem 7.7). Finally let us extend H̃Ω(x, y) to
Rn×Rn by setting H̃Ω(x, y) = Kx(y) for every x ∈ Rn\Ω. It has been proved in [?], Proposition 8, that
for every y ∈ Rn the function x 7→ H̃Ω(x, y) is superharmonic in Rn and, moreover, (x, y) 7→ H̃Ω(x, y)
is lower semicontinuous in Rn ×Rn.

We are now in a position to recall the definition of the Robin function, the harmonic radius and
the harmonic center given in [?] and to extend it to ∞.

Definition 6 (Robin function, harmonic radius, harmonic center) For every x ∈ Ω ∪ ∂Ω \
{∞} the leading term of the regular part of the Green function

τΩ(x) := H̃Ω(x, x)

is called Robin function of Ω at the point x. The harmonic radius of Ω at x is defined by the relation
K(r(x)) = τΩ(x). The Robin function at infinity is defined as

τΩ(∞) := lim
ρ→0

lim
R→∞

inf
x, y ∈ Rn

|x| ≥ R, |x− y| ≤ ρ

H̃Ω(x, y)(13)

A minimum point of the Robin function on Ω is called a harmonic center of Ω.

In this way τΩ : Ω ⊂ Rn ∪ {∞} → R becomes a lower semicontinuous function. Nonetheless τΩ(∞)
may be strictly below the largest lower semicontinuous extension of τΩ, at least for n ≥ 5 as shown
by the example below. A similar phenomenon can arise at other boundary points.

Example 7 We will construct an unbounded domain Ω such that τΩ(∞) < lim infx→∞ τΩ(x). It will
also provide an example of a set for which the extremals concentrate at ∞. The set Ω will be given
by taking the whole space Rn and subtracting a sequence of small balls that accumulate at ∞. First
make a partition of Rn by considering the annuli Ck = B2k(0)\B2k−1(0). In each annulus we consider
small balls of radius rk with centers (xi

k) in a lattice of side dk. We will choose later two suitable
sequences {dk} and {rk} such that dk, rk → 0 and rk << dk.

Set Ω = Rn \∪k ∪xi
k
∈Ck

Brk
(xi

k). Let us denote by ui
k the capacitary potential of the ball Brk

(xi
k).

Thus ui
k(x) = K(|x − xi

k|)/K(rk). Let us now take any sequence xk → ∞. To estimate τΩ(xk) from
below we may assume that xk ∈ Ck and that for any k the distance between xk and the closest ball is
of order dk. Then in particular the Robin function of Ω in the point xk can be estimated from below
by the capacitary potential of such a ball scaled by K(dk), namely

τΩ(xk) = H̃Ω(xk, xk) ≥ K(dk)ui
k(xk) ≈ K2(dk)

K(rk)
≈

rn−2
k

d2n−4
k

.(14)

Finally let us fix 0 < ρ < 1 and let us estimate from above the infimum of H̃Ω(xk, y) for |xk−y| = ρ.
We will estimate H̃Ω(xk, y) by considering separately the contribution of the balls contained in each
annulus Ch for h 6= k, that of the balls in the annulus Ck \Bρ(xk) and finally the contribution of the
balls in Bρ(xk). Now the capacity of the balls contained in each annulus Ch is of order rn−2

k 2hn/dn
h

(i.e., the capacity of a ball times the number of balls). Then the contribution of Ch is given by the
total capacity of the balls contained in it multiplied by the fundamental solution computed on the
distance between xk and Ch that we very roughly estimate with 1. Similarly we deal with the balls in
Ck\Bρ(xk). The contribution of the balls in Bρ(xk) can be estimated first considering the contribution
of the balls in Bρ/2(y) which gives a term of the form

K(ρ/2)rn−2
k

∫ ρ/2

0

K(s)sn−1

dn
k

ds

and then the contribution of the balls in Bρ(xk) \Bρ/2(y) which similarly can be estimated by

K(ρ/2)rn−2
k

∫ ρ

0

K(s)sn−1

dn
k

ds.

Then

inf
|xk−y|=ρ

H̃Ω(xk, y) ≤ C
∑
h6=k

2hn rn−2
h

dn
h

+ CK(ρ)22kn rn−2
k

dn
k

+ Cρ2K(ρ)
rn−2
k

dn
k

.(15)



Garroni, Müller: Identification of concentration points in unbounded domains 6

Choosing dk = 2−αk, rk = 2−βk and n > 4 we easily find values β > α > 0 such that τΩ(∞) < ∞
while lim infx→∞ τΩ(x) = +∞. Actually, this construction provides also an example of a set where the
concentration occurs at ∞. Indeed a more accurate estimate in (??) shows that under the condition
rk << 2−kndn

k we have τΩ(∞) = 0.

If x ∈ Ω, the Green function can be expanded near the singularity as:

Gx(y) = K(|y − x|)− τΩ(x) + O(|y − x|).(16)

It has the following properties.

Proposition 8 ([?, ?, ?]) For fixed x ∈ Ω the Dirichlet Green’s function Gx satisfies:

1. For every t > 0 one has∫
{Gx<t}

|∇Gx|2 = t.

2. As t → ∞ we have B
r−
x ⊂ {Gx > t} ⊂ B

r+
x with r± = r ± O(rn) and r defined by t =

K(r)− τΩ(x).

3. For every x ∈ Ω \ {∞}, with τΩ(x) < ∞, we have

|{Gx > t}| ≥ |{K > t + τΩ(x)}|

Proof. The proof of Part ?? and ?? are recalled in [?], Proposition 12, while Part ?? is proved in [?],
Remark 11 as a consequence of Proposition 10. ©

The proposition above implies that for x ∈ Ω the capacity of a small ball is asymptotically given
by

capΩ(Br
x) =

1
K(r)− τΩ(x) + O(r)

= capRn(Br
0) + cap2

Rn(Br
0) (τΩ(x) + O(r))(17)

as r → 0. In the radial case we have

capBR
0
(Br

0) =
1

K(r)−K(R)
.(18)

The key point is that an asymptotic expansion similar to (??) holds for arbitrary small sets which
concentrate at single point. The following estimate for the capacity has been proved in [?], Lemma 16.

Lemma 9 (Asymptotic expansion of capacity) Let x0 ∈ Ω∪∂Ω \ {∞} and let Ak be a sequence
of subsets of Ω such that |Ak| > 0 and

1
|Ak|

XAk

∗
⇀ δx0 .

Then

lim inf
k→∞

1
capRn(A∗k)

− 1
capΩ(Ak)

≥ τΩ(x0) .(19)

An important tool in the proof of this result is Proposition ?? below. It provides an approximation
of τΩ with a sequence of Robin functions obtained approximating Ω with larger domains, and permits
to restrict the analysis in Lemma ?? only to interior points.

Fix x0 ∈ ∂Ω \ {∞}. Let us denote by Ωρ(x0) the set Ω ∪Bρ
x0

. For any fixed x ∈ Ω ∪ ∂Ω \ {∞} let
HΩρ(x0)(x, ·) be the PWB solution of the problem

∆yHΩρ(x0)(x, y) = 0 in Ωρ(x0),

HΩρ(x0)(x, y) = Kx(y) on ∂Ωρ(x0)
(20)

and let τΩρ(x0)(x) the corresponding Robin function.
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Proposition 10 ([?], Proposition 7) Let x0 ∈ ∂Ω \ {∞}. Then, for every x, y ∈ Rn, HΩρ(x0)(x, y)
converges increasingly to HΩ(x, y) as ρ decreases to 0.

In particular τΩρ(x0)(x) converges increasingly to τΩ(x) as ρ → 0, for any x ∈ Ω ∪ ∂Ω \ {∞} and
τΩ is lower semicontinuous in Ω ∪ ∂Ω \ {∞}.

Our next goal is to establish that a similar approximation result can be proved for τΩ(∞).

Proposition 11 The following equality holds

τΩ(∞) = lim
ρ→0

lim
R→∞

inf
|x|≥R

τΩ∪Bρ(x)(x) .

In order to prove Proposition ?? we need the following lemma.

Lemma 12 Let x ∈ Rn, α ∈ (0, 1
2 ), ρ ∈ (0, 1) and r = 2ρα. If

τΩ∪Bρ(x)(x) < 22−nK(1)ρ−α(n−2) = K(r)(21)

then

inf
y,z∈B2r(x)

H̃Ω(y, z) ≤ τΩ∪Bρ(x)(x) + K(1)42−nρ(1−2α)(n−2) .(22)

Proof. Let T = τΩ∪Bρ(x)(x). By assumption H̃Ω∪Bρ(x)(x, x) = T < K(r), with r = 2ρα. Thus by the
superharmonicity of H̃Ω∪Bρ(x)(x, ·) we get

−
∫

∂Br(x)

H̃Ω∪Bρ(x)(x, z) dz ≤ H̃Ω∪Bρ(x)(x, x) = T(23)

Hence there exists a subset S of ∂Br(x) such that S has positive (n − 1)-dimensional measure and
such that

H̃Ω∪Bρ(x)(x, z) ≤ T ∀ z ∈ S .(24)

If z ∈ ∂Br(x) \ Ω ∪Bρ(x), then by (??) H̃Ω∪Bρ(x)(x, z) = K(|x− z|) = K(r) > T . This is also true if
z ∈ ∂Ω ∩ ∂Br(x) is a regular boundary point of Ω in the sense of Wiener. Since the set of irregular
points of the boundary of an n-dimensional domain has zero capacity, and in particular zero (n− 1)-
dimensional measure, we infer that S ∩ Ω has positive (n− 1)-dimensional measure. In particular we
may fix z ∈ Ω ∩ ∂Br(x) such that (??) holds.

Again by the superharmonicity of H̃Ω∪Bρ(x) we have that

−
∫

∂B r
2
(x)

H̃Ω∪Bρ(x)(y, z) dy ≤ H̃Ω∪Bρ(x)(x, z) ≤ T(25)

Thus, as above, we may find y ∈ Ω ∩ ∂B r
2
(x) such that

H̃Ω∪Bρ(x)(y, z) ≤ T(26)

Now let M = maxξ∈Bρ(x) K(|z − ξ|) ≤ K( r
2 ) = K(1)(ρα)2−n and consider the function

f(ξ) = H̃Ω∪Bρ(x)(ξ, z) + M

(
|ξ − x|

ρ

)2−n

then f is superharmonic in Rn and harmonic in Ω \ B. Moreover f(ξ) ≥ K(|ξ − z|) if ξ ∈ ∂(Ω \ B).
Hence HΩ\B(ξ, z) ≤ f(ξ) for every ξ ∈ Ω \B. Since y ∈ Ω \B we may take ξ = y and we obtain

HΩ(y, z) ≤ HΩ\B(z, y) ≤ H̃Ω∪Bρ(x)(y, z) + M

(
|y − x|

ρ

)2−n

≤ T + K(1)42−nρ(1−2α)(n−2) ,

which concludes the proof. ©
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Proof of Proposition ??. Let us first prove that

lim
ρ→0

lim
R→∞

inf
|x|≥R

τΩ∪Bρ(x)(x) ≤ τΩ(∞) .

Let τ(R, ρ) = inf |x|≥R inf |x−y|<ρ H̃Ω(x, y), and τ(ρ) = limR→∞ τ(R, ρ). By definition τΩ(∞) =
limρ→0 τ(ρ). By the harmonicity of HΩ∪Bρ(x)(x, y) we have

τΩ∪Bρ(x)(x) = −
∫

Bρ(x)

HΩ∪Bρ(x)(x, y) dy ≤ −
∫

Bρ(x)

H̃Ω(x, y) dy .(27)

Since H̃Ω(x, y) ≥ τ(R,
√

ρ) for every |x− y| ≤ √
ρ and |x| ≥ R, by the Harnack inequality applied to

H̃Ω(x, y)− τ(R,
√

ρ) in connection with (??) we get

τΩ∪Bρ(x)(x) ≤ τ(R,
√

ρ) + C

(
min

y∈Bρ(x)
H̃Ω(x, y)− τ(R,

√
ρ)

)
.

By taking the infimum on |x| ≥ R we obtain

inf
|x|≥R

τΩ∪Bρ(x)(x) ≤ τ(R,
√

ρ) + C (τ(R, ρ)− τ(R,
√

ρ)) .

and we conclude taking the limit as R →∞ and then ρ → 0.
Conversely, let τ̃(∞) = limρ→0 limR→∞ inf |x|≥R τΩ∪Bρ(x)(x). Assume that τ̃(∞) < ∞. Then there

exist ρk → 0 and xk →∞ such that

lim
k→∞

τΩ∪Bρk
(xk)(xk) = τ̃(∞) .

In particular assumption (??) in Lemma ?? holds for k sufficiently large. Thus, by Lemma ??, there
exist rk = 2ρα

k → 0 and zk, yk →∞, with |zk − yk| ≤ 2rk → 0, such that

lim sup
k→∞

HΩ(yk, zk) ≤ τ̃(∞)

and then in particular we have

lim
ρ→0

lim
R→∞

inf
x, y ∈ Rn

|x| ≥ R, |x− y| ≤ ρ

H̃Ω(x, y) ≤ τ̃(∞) .

Thus τΩ(∞) ≤ τ̃(∞), which concludes the proof. ©

As an immediate consequence of Proposition ?? we obtain the following result.

Corollary 13 For any sequence {ρk}, with ρk > 0 and ρk → 0 as k → ∞, there exists a sequence
{xk} in Rn with xk →∞ such that

lim
k→∞

τΩ∪Bρk
(xk)(xk) = τΩ(∞) .

We now establish a more precise comparison between H̃Ω and τΩ(∞).

Corollary 14 For any sequence {ρk}, with ρk > 0 and ρk → 0 as k →∞, let {xk} be a sequence in
Rn with xk →∞ such that

lim
k→∞

inf
|xk−y|≤ρk

H̃Ω(xk, y) = τΩ(∞) .

Then we also have
lim

k→∞
τΩ∪Bρk

(xk)(xk) = τΩ(∞) .

Proof. Let us denote Ωk = Ω ∪Bρk
(xk). By Proposition ?? we always have that

lim sup
k→∞

τΩk
(xk) ≥ τΩ(∞)
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On the other hand by the harmonicity of HΩk
(xk, y) in Bρk(xk) we have

τΩk
(xk) = HΩk

(xk, xk) = −
∫

Bρk
(xk)

HΩk
(xk, y) dy ≤ −

∫
Bρk

(xk)

H̃Ω(xk, y) dy =(28)

= inf
|xk−y|≤√ρk

H̃Ω(xk, y) +−
∫

Bρk
(xk)

(
HΩk

(xk, y)− inf
|xk−z|≤√ρk

H̃Ω(xk, z)
)

dy .

By the assumption and the definition of τΩ(∞) we have also that

inf
|xk−y|≤√ρk

H̃Ω(xk, y) = τΩ(∞) + o(1) .

Thus applying the weak Harnack inequality to the function HΩk
(xk, y)− inf

|xk−z|≤√ρk

H̃Ω(xk, z), which

is superharmonic and positive on B2ρk
(xk), we get

τΩk
(xk) ≤ inf

|xk−y|≤√ρk

H̃Ω(xk, y)

+ C

(
inf

|xk−z|≤ρk

HΩk
(xk, y)− inf

|xk−z|≤√ρk

H̃Ω(xk, z)
)

= τΩ(∞) + o(1) .

©

We now prove the asymptotic formula for small sets concentrating at ∞.

Lemma 15 Let Ak be a sequence of sets which concentrates at ∞ in the sense that |Ak| > 0 and
suppose that there exists a sequence xk →∞, such that

χAk−xk

|Ak|
∗
⇀ δ0 .

Then

lim inf
k→∞

1
capRn(A∗k)

− 1
capΩ(Ak)

≥ τΩ(∞) .(29)

Proof. We may assume τΩ(∞) > 0 since otherwise there is nothing to show. Note also that the
assumptions imply |Ak| → 0. Thus we may suppose that capΩAk → 0 since otherwise the left hand
side of (??) is ∞. We first assume that τΩ(∞) < +∞. Let uk be the capacitary potential of Ak − xk

and let
µk = − 1

capΩ(Ak)
∆uk {Ω− xk} .

As in the proof of Lemma 16 in [?] we obtain µk
∗
⇀ δ0 and ‖µk‖M(Rn\Bρ) → 0 for every ρ > 0. We

will construct a superharmonic function wk which satisfies wk ≥ 1 on Ak − xk and we will estimate
‖∆wk‖M to estimate capRn(Ak).

Fix ρ > 0 and let µ1
k = µk Bρ, µ2

k = µk − µ1
k → 0 in M(Rn). We have

uk(x) = capΩ(Ak)
∫
Rn

GΩ−xk
(x, y) dµk(y) ,

and define

ui
k(x) = capΩ(Ak)

∫
Rn

G{Ω−xk}(x, y) dµi
k(y) ,

vi
k(x) = capΩ(Ak)

∫
Rn

K(x− y) dµi
k(y) , i = 1 , 2 .

Since xk →∞, the definition of τΩ(∞) and the convergence of µ2
k imply that for every δ > 0 there

exist ρ0(δ) > 0 and k0(δ, ρ) such that for all ρ < ρ0(δ) and k ≥ k0

v1
k − u1

k

capΩ(Ak)
=

∫
Ω

H̃Ω(xk + x, xk + y) dµ1
k ≥ τΩ(∞)− δ(30)
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for every x such that |x| < 2ρ.
On the other hand since ‖µk‖M = 1 we have

u1
k(x) ≤ v1

k(x) ≤ capΩ(Ak)K(|x| − ρ) ≤ capΩ(Ak)K(ρ)(31)

if |x| ≥ 2ρ. If uk(x) ≥ 1 and |x| ≥ 2ρ then

u2
k(x) ≥ 1− u1

k(x) ≥ 1− capΩ(Ak)K(ρ)(32)

Let αk = (τΩ(∞)− δ)capΩ(Ak) and βk = K(ρ)capΩ(Ak), and

wk =
1

1 + αk
v1

k +
1

1− βk
v2

k =
1

1 + αk
vk +

(
1

1− βk
− 1

1 + αk

)
v2

k .(33)

From the first identity, in connection with (??) and (??) we see that wk ≥ 1 on Ak − xk. Indeed
this follows immediately from (??) for |x| ≥ 2ρ since v2

k ≥ u2
K . For |x| < 2ρ estimate (??) and the

condition uk ≥ 1 on Ak − xk give

wk ≥
u1

k + αk

1 + αk
+

1
1− βk

u2
k ≥ 1 +

(
1

1− βk
− 1

1 + αk

)
u2

k ≥ 1 .

Now the second identity in (??) (in connection with the minimality of the capacitary distribution)
yields

capRn(Ak) ≤ ‖∆wk‖M ≤
[

1
1 + αk

+
(

1
1− βk

− 1
1 + αk

)
‖µ2

k‖
]

capΩ(Ak) .

Taking the limit as k →∞ and ρ → 0 we easily deduce the assertion for τΩ(∞) < ∞.
If τΩ(∞) = ∞ we replace in (??) the term τΩ(∞)− δ by 1

δ and proceed as before.
©

In connection with Lemma ?? and the lower semicontinuity of τΩ in Ω we deduce immediately the
following corollary.

Corollary 16 Suppose that τΩ(∞) > 0. Then infΩ τΩ = minΩ τΩ > 0 and for all sets Ak ⊂ Ω, with
|Ak| → 0

lim inf
k→∞

1
capRn(A∗k)

− 1
capΩ(Ak)

≥ min
Ω

τΩ .(34)

4 Localization of concentration points

The main result of this paper is the second order expansion of SF
ε with respect to ε. It turns out that

the second nontrivial term depends on the value of the Robin function at the concentration point.
This allows us to identify the concentration point. We say that {Aε} is a sequence of almost extremals
for (??) if Aε is admissible for the definition of SV

ε (Ω) and

|Aε|
ε2∗

= SV
ε (Ω) + o(ε2) as ε → 0.

Theorem 17 (Identification of concentration points) 1. If the sequence {Aε} satisfies capΩAε =
ε2 and concentrates at x ∈ Ω in the sense of Theorem ?? then

|Aε| ≤ ε2∗SV

(
1− n

n− 2
τΩ(x) ε2 + o(ε2)

)
as ε → 0.

2. If {Aε} is a sequence of almost extremals we have

|Aε| = ε2∗SV

(
1− n

n− 2
min

Ω
τΩ ε2 + o(ε2)

)
.
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3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.

τ(x0) = min
Ω

τΩ

with x0 as in Theorem ??.

Remark 18 If τΩ(x) = ∞ the inequality in Part 1 is understood as

lim
ε→0

ε−2

(
|Aε|
ε2∗

− SV

)
= −∞ .

Proof of Theorem ??. Let us first prove Part 1. In view of Proposition ?? we can apply Lemma ??
if x ∈ Ω \ {∞} or Lemma ?? if x = ∞. Taking into account that capRnA∗ε = (|Aε|/SV )2/2∗ and
capΩAε = ε2 we deduce that

lim inf
ε→0

1
ε2

(
SV ε2∗

|Aε|

) 2
2∗

− 1

 ≥ τΩ(x)

and this proves Part 1 since 2
2∗ = n−2

n .
Since every maximizing sequence concentrates by Theorem ??, the assertion in Part 1 implies one

inequality in Part 2. If minΩ τΩ is attained at x 6= ∞, then the reverse inequality is an easy consequence
of Proposition ??, Parts ?? and ??. Indeed if Aε = {Gx > ε−2} then capΩAε = ε2 and

|Aε| ≥ |{K >
1
ε2

+ τΩ(x)}| .(35)

Thus computing the right hand side of (??) we get the required inequality.
Let us finally consider the case that minΩ τΩ is attained only at x = ∞. In this case we may

not apply directly the transplantation argument, but we must apply it to the level sets of the Green
function of Ω with singularities in suitable points xε approaching ∞. We claim that it is possible to
choose xε →∞ such that

|{Gxε
>

1
ε2
}| ≥ |{K >

1
ε2

+ τΩ(∞) + o(1)}| .(36)

This will give us the result as above, taking Aε = {Gxε
> ε−2}.

In order to prove (??) let ρε > 0 be such that K(ρε) = 1/ε2 (i.e. ρε = [K(1)ε2]1/(n−2)) and let
Rε > 0 be such that Rε << ρ2

ε. By the definition of τΩ(∞) we may find a sequence xε → 0 such that

inf
|xε−y|≤Rε

H̃Ω(xε, y) = τΩ(∞) + o(1)(37)

Let τΩε
be the Robin function of the set Ωε = Ω ∪BRε

(xε). By Corollary ?? we have also

lim
ε→0

τΩε
(xε) = τΩ(∞) .(38)

By applying the usual transplantation argument (see Proposition ??, Part ??) to the Green function
of Ωε we have

|{GΩε
(xε, y) >

1
ε2
}| ≥ |{K(|xε − y|) >

1
ε2

+ τΩ(∞) + o(1)}|(39)

Thus it remains to prove that

|{GΩ(xε, y) >
1
ε2
}| ≥ |{GΩε

(xε, y) >
1
ε2

+ o(1)}|+ ε2∗o(ε2) .(40)

This will be done exploiting that far from xε the difference H̃Ω(xε, y) − H̃Ωε
(xε, y) is small (see

estimate (??) below) while close to xε the difference between the level sets of GΩε
and the levels sets

of GΩ is controlled by the set where H̃Ω(xε, ·) is very big, which is small (see (??)).
First we claim that there exists a constant C > 0 such that

0 ≤ H̃Ω(xε, y)− H̃Ωε
(xε, y) ≤ C

(
Rε

ρ2
ε

)n−2

(41)
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for every ρ2
ε ≤ |y − xε| ≤ ρε.

In order to to prove estimate (??) let rε(y) be the solution of the following problem
∆rε(y) = 0 in (Ωc ∩BRε

(xε))c,

rε(y) = K(|xε − y|) on ∂(Ωc ∩BRε
(xε))c and rε → 0 as |y| → ∞.

(42)

It is easy to check that

rε(y) ≤ H̃Ω(xε, y) ≤ H̃Ωε
(xε, y) + rε(y) .(43)

Since rε is harmonic outside the ball BRε(xε), using a Poisson-type integral representation we get

rε(y) =
1

|Sn−1|Rε

∫
∂BRε (xε)

|xε − y|2 −R2
ε

|z − y|n
rε(z) dHn−1(z)

for |y − xε| > Rε. Thus by (??) we have

H̃Ω(xε, y)− H̃Ωε
(xε, y) ≤ C

(
Rε

ρ2
ε

)n−2

−
∫

∂BRε (xε)

rε(z) dHn−1(z)(44)

≤ C

(
Rε

ρ2
ε

)n−2

−
∫

∂BRε (xε)

H̃Ω(xε, z) dHn−1(z)

for any ρ2
ε ≤ |y − xε| ≤ ρε. Finally taking into account the superharmonicity of H̃Ω(xε, ·) and using

the weak Harnack inequality we obtain

−
∫

∂BRε (xε)

H̃Ω(xε, z) dHn−1(z) ≤ −
∫

BRε (xε)

H̃Ω(xε, z) dz ≤ C inf
|xε−y|<Rε

H̃Ω(xε, y) ≤ C(τΩ(∞) + o(1))

which in view of (??) gives (??).
Since {GΩ(xε, y) > 1/ε2} ⊆ Bρε(xε), as an immediate consequence of (??) we have that

|{GΩ(xε, y) >
1
ε2
} \Bρ2

ε
(xε)| ≥ |{GΩε(xε, y) >

1
ε2

+ o(1)} \Bρ2
ε
(xε)| .(45)

Finally it is easy to check that

|{GΩ(xε, y) >
1
ε2
} ∩Bρ2

ε
(xε)| ≥ |{GΩε

(xε, y) >
1
ε2
} ∩Bρ2

ε
(xε)|+ ε2∗o(ε2) .(46)

Indeed this follows from the fact that, since K(|xε − y|) ≥ 1/ε4 in Bρ2
ε
(xε), we have

{GΩ(xε, y) >
1
ε2
} ∩Bρ2

ε
(xε) ⊆ ({K(|xε − y|) >

1
ε2
} \ {H̃Ω(xε, y) >

1
ε4
− 1

ε2
}) ∩Bρ2

ε
(xε) .

Since
|{H̃Ω(xε, y) >

1
2ε4

} ∩Bρ2
ε
(xε)| ≤ 2ε4

∫
B

ρ2
ε

H̃Ω ≤ Cε4ρ2n
ε ≤ Cε22∗+4

we deduce

|{GΩ(xε, y) >
1
ε2
} ∩Bρ2

ε
(xε)| ≥ |{GΩε

(xε, y) >
1
ε2
} ∩Bρ2

ε
(xε)| − Cε2∗ε2∗+4 .

Now estimate (??) follows from (??) and (??). Together with (??) this concludes the proof.
©

Appendix: General integrands

We finally consider the general problem

SF
ε (Ω) :=

1
ε2∗

sup
{∫

Ω

F (u) : u ∈ D1,2(Ω), ‖∇u‖2 ≤ ε

}
,
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where 0 ≤ F (t) ≤ α|t|2∗ , for some α > 0, and F is upper semicontinuous. In this general case a
further subtlety in unbounded domains may arise if the integrand F has critical growth at the origin,
i.e. if F+

0 = lim supt→0
F (t)
t2∗

= SF

S∗ (SF is defined in (??) and S∗ is the best Sobolev constant, i.e.∫
Ω
|u|2∗ ≤ S∗‖∇u‖2∗2 ). In this case the maximizers of the radial problem in Rn may become arbitrarily

flat (think e.g. of the case F (t) = SF

S∗ t2
∗
, for t ∈ [0, δ]) and, in order to prove the concentration without

the assumption that |Ω| is finite, we also need an estimate for the capacity of large sets (see Lemma
?? below). Hence, in this case we shall make the additional assumption

τΩ(∞) > 0

which essentially says that Rn \ Ω is not too small at infinity. An equivalent characterization is the
following.

Proposition 19 The condition τΩ(∞) > 0 is equivalent to requiring that there exists a constant
C0 > 0 such that

HΩ(x, y) ≥ C0 min{1, |x− y|2−n}(47)

Proof. Clearly, by the definition of τΩ(∞), we have that (??) implies τΩ(∞) > 0. To prove the
opposite implication we first remark that to have (??) satisfied it is enough to know that there exist
ρ0 > 0 and C0 > 0 such that

H̃Ω(x, y) ≥ C0 ∀ |x− y| ≤ ρ0 .(48)

Indeed for any x ∈ Ω the function C0Kx(·)/K(ρ0) is harmonic in Ω \ Bρ0(x) smaller than H(x, ·) on
∂Bρ0(x). Thus by the comparison principle H(x, y) ≥ C0Kx(y)/K(ρ0) for any y ∈ Ω \Bρ0(x), which,
together with (??), gives (??). Finally we have that τΩ(∞) > 0 implies (??). Indeed by the definition
of τΩ(∞) we may find ρ0 > 0 and R0 > ρ0 such that

H̃Ω(x, y) ≥ C0 ∀ |x− y| ≤ ρ0 and |x| > R0 .

Thus the conclusion follows from the fact that a superharmonic non negative function either is zero
or is strictly positive. This implies HΩ(x, y) has a strictly positive minimum in BR0 × BR0 and thus
(??) (after possibly adjusting the value of C0). ©

Remark 20 The condition τΩ(∞) > 0 implies minΩ τΩ > 0. Indeed by definition τΩ(∞) > 0 implies
min{|x|>R} τΩ > τΩ(∞)/2 for some R > 0 and then, arguing as above we also have minΩ τΩ > 0.

We now use the assumption τΩ(∞) > 0 to prove the counterpart of Lemma ?? for large sets.

Lemma 21 Assume τΩ(∞) > 0. Then for any ρ > 0 there exists a constant Cρ > 0 such that

capΩ(A)− capRn(A∗) ≥ CρcapRn(A∗)

for every subset A of Ω such that |A| ≥ |B1|.

Proof. By a scaling argument we may assume that ρ = 1. Moreover we may reduce to the case
|A| = |B1|. Indeed for R ≥ 1 we have

H 1
R Ω(x, y) = Rn−2HΩ(Rx,Ry) ≥ C0 min{Rn−2, |x− y|2−n} ≥ C0 min{1, |x− y|2−n} ,

thus if Ω satisfies (??) also the rescaled set 1
RΩ, with R ≥ 1, does.

We now proceed by contradiction. Let Ak ⊆ Ωk be a sequence such that |Ak| = |B1| and
capΩk

Ak → capRnB1, with Ωk satisfying (??).
Since capRnB1 ≤ capRnAk ≤ capΩk

Ak, we also have that capRnAk → capRnB1. Thus by
Lemma ?? we have that after a translation (note that (??) is translation invariant) the characteristic
function of Ak converges to the characteristic function of B1. Let uk be the capacitary potential of
Ak in Ωk. In particular {

−∆uk = µk ≥ 0 in Ωk

uk = 0 on ∂Ωk,

where µk is the capacitary distribution,
∫
Ωk

dµk = capΩk
Ak and suppµk ⊆ Ak.
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By Lemma ?? we also have that the sequence uk converges strongly in D1,2(Rn) to the capacitary
potential u of B1 in Rn and that µk converges weakly in the sense of measures to the corresponding
capacitary distribution µ, with suppµ ⊆ ∂B1 and

∫
Rn dµ = capRnB1.

Since, using the Green function of Ωk, we have

uk(x) =
∫
Rn

GΩk
(x, y) dµk =

∫
Rn

Kx(y) dµk −
∫
Rn

HΩk
(x, y) dµk ≤∫

Rn

Kx(y) dµk − C0

∫
Rn

min{1, |x− y|2−n} dµk ,

taking x ∈ B1 and passing to the limit as k →∞ we get

u(x) ≤
∫
Rn

Kx(y) dµ− C

∫
∂B1

dµ = u(x)− CcapRnB1

which is a contradiction. ©

In the following SF := SF
1 (Rn) will denote the generalized Sobolev constant, i.e.∫

Rn

F (u) dx ≤ SF

(∫
Rn

|∇u|2 dx

) 2∗
2

for every u ∈ D1,2.
Using the previous Lemma we can prove the concentration result without any further assumption,

except τΩ(∞) > 0.

Theorem 22 Assume τΩ(∞) > 0. Let {uε} be a sequence of maximizing sequence for problem (??),
i.e. ε−2∗

∫
Ω

F (uε) dx → SF and ‖∇uε‖2 ≤ ε. Then

1. the sequence {uε} concentrates at a single point x0 ∈ Ω in the following sense

|∇uε|2

ε2

∗
⇀ δx0 ,

F (uε)
ε2∗

.(49)

2. If x0 = ∞, then there exists a sequence xε → ∞ such that uε(· − xε) concentrates at 0 in the
sense of Part 1.

Sketch of proof. As for the analogous theorem proved in [?] (Theorem 3) (under additional assump-
tions either on F or on Ω), the proof of Part 1 follows by the generalized concentration-compactness
alternative proved in [?] (Theorem 12), applied to the sequence vε = uε/ε. By this result we know
that either vε is compact or it concentrates at a single point in the sense of (??). To exclude the
compactness assume that vε → v0 6= 0 and for any t > 0 denote Aε,t = {vε > t}. Let vε be the
harmonic extension of v∗ε outside A∗ε,t, where v∗ε denote the radial decreasing rearrangement of vε and
A∗ε,t = {v∗ε > t}. It is easy to check that∫

Rn

|∇vε|2 ≥ 1− ct2(capΩAε,t − capRnA∗ε,t) .(50)

Thus the proof is exactly the same as the one given in [?] in the case |Ω| finite, upon noticing that
since v0 6= 0, for t small enough, lim infε→0 |Aε,t| ≥ |{v0 > t}| ≥ c > 0 and then by Lemma ??

capΩAε,t − capRnA∗ε,t ≥ C > 0

The proof of Part 2 can be also obtained by contradiction. We shall give a sketch of it.
If Part 2 does not hold then there exists ρε ≥ c > 0 such that

1
ε2

∫
Rn\Bρε

|∇u∗ε|2 dx = γ0
1
ε2

∫
Rn

|∇u∗ε|2 dx

where u∗ε is the radial symmetrization of uε. Let δε → 0 be such that

δ2
ε = SF − 1

ε2

∫
Ω

|∇uε|2 dx .
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By the decay estimate for radial maximizing sequences given in [?] (Lemma 22), there exists a constant
uε,∞ such that

u∗ε(r) ≈ uε,∞K(r) if 1 ≤ r

ρε
≤ δ

− 2
n−2

ε

where
c−1
0 ερ

n−2
2

ε ≤ uε,∞ ≤ c0ερ
n−2

2
ε .

Choose rε and tε such that ρε/rε → 0, with rε/ρε << δ
−2/(n−2)
ε , and tε = uε,∞K(rε). Then rε ≥ c > 0

and |{u∗ε > tε}| = |Brε
| ≥ C > 0. Let uε be the harmonic extension of u∗ε outside of the set {u∗ε > tε}.

Using Lemma ??, we have

1
ε2

∫
Rn

|∇uε|2dx ≤ 1− c
1
ε2

t2ε(capΩ{uε > tε} − capRn{u∗ε > tε}) ≤ 1− c

(
ρε

rε

)n−2

.

Again by the decay estimates in [?] (Lemma 22, formula (31)) we get

1
ε2∗

∫
{u∗ε≤tε}

F (u∗ε) dx ≤ C

(
ρε

rε

)
.

Thus by the generalized Sobolev inequality

−δ2
ε + SF ≤ 1

ε2∗

∫
Rn

F (u∗ε) dx +
1

ε2∗

∫
{u∗ε≤tε}

F (u∗ε) dx ≤ SF − C

(
ρε

rε

)n−2

+ C

(
ρε

rε

)
and then

δ2
ε

(
rε

ρε

)n−2

≥ c > 0

which is a contradiction.
©

Remark 23 If lim supt→0 F (t)/|t|2∗ = F+
0 < SF /S∗, where S∗ denotes the best Sobolev constant, the

concentration result stated in Theorem ?? is proved in [?], Theorem 3, without any further assumption
on the domain Ω.

Now for general integrands the concentration point can be identified as in [?] by means of an
asymptotic expansion of SF

ε (Ω) for any domain which satisfies τΩ(∞) > 0.
Let BF be the class of all radial maximizing sequences for SF and define

w2
∞ :=

2(n− 1)
n SF

inf
{

lim inf
k→∞

∫
Rn

F (wk)
K(|·|)

: {wk} ∈ BF

}
.

Theorem 24 Suppose that 0 < w∞ < ∞ and τΩ(∞) > 0 or F+
0 < SF /S∗.

1. If the sequence {ũε} ⊂ D1,2(Ω) satisfies ‖∇ũε‖2 ≤ ε and concentrates at x ∈ Ω in the sense of
Theorem ?? then∫

Ω

F (ũε) ≤ ε2∗SF

(
1− n

n− 2
w2
∞τ(x) ε2 + o(ε2)

)
as ε → 0.

2. For any x ∈ Ω there exist uε ∈ D1,2(Ω) such that ‖∇uε‖2 = ε and

lim inf
ε→0

1
ε2

[
1

ε2∗

∫
Ω

F (uε)− SF

(
1− n

n− 2
w2
∞τ(x) ε2

)]
≥ 0 .(51)

3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.

τ(x0) = min
Ω

τΩ

with x0 as in Theorem ??.
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Sketch of proof. The proof of Part 1, which in the case of volume functional (Theorem ??) follows
directly from the asymptotic formula for the capacity of small sets, in this case is the most complicated.
Nevertheless it is exactly the same proof given in [?], Theorem 17 Part 1, for bounded domains, using
Lemma ?? instead of Lemma ??, if the concentration occurs at ∞. Similarly, if x 6= ∞ Part 2 can be
proved using harmonic transplantation exactly as in the case of bounded domains (see [?], Theorem 17
Part 1).

Thus we will only consider Part 2 in the case x = ∞.
Also in this case the main idea is to use transplantation. As for the case of the volume functional

the main difficulty is that we must consider a sequence {xε} approaching infinity, but in this general
case this must be done very carefully. Indeed an additional difficulty lies in the fact that we must
estimate all the level sets of the Green function, not only that corresponding to 1.

We will just give the main steps of the proof without any detail.
For any given sequence xε we will denote by Gxε the Green function of Ω with singularity at xε,

while for any given sequence ρε will denote by Gρε,xε
the Green function of the domain Ω ∪ Bρε

(xε)
with singularity at xε.

We fix a (radial) maximizer w of SF in Rn, with optimal decay, i.e., w(r) = w∞K(r)(1+ o(r)) for
r > R0. We write w = ϕ◦K and define wε(x) = (ϕ◦K)(ε−

2
n−2 x) = (ϕε ◦K)(x), where ϕε(t) = ϕ(ε2t).

Then ‖∇wε‖2 = ε and
∫
Rn F (ϕε ◦ K) = SF . The candidate for uε is uε = ϕε ◦ Gxε

, for a suitable
choice of xε.

The usual transplantation arguments give

1
ε2∗

∫
Ω

F (uε) ≥
∫ ∞

0

Cn(F ◦ ϕ)(t)
(

ε−2∗ |{Gxε
>

t

ε2
}|

)2 n−1
n

(52)

where Cn is the isoperimetric constant.
The main idea, as in the proof of Theorem ??, is to substitute the Green function Gε with Gρε,xε

for a suitable choice of ρε and xε which permit to approach τΩ(∞). To this end fix δ > 0 and denote

ωε(t) =
|{Gρε,xε

> t
ε2 + δ} \ {Gxε

> t
ε2 }|

|{Gxε
> t

ε2 }|
.(53)

Using a comparison argument as in the proof of Theorem ??, formula (??), we may estimate ωε. In
particular it is possible to prove that for any sequence tε →∞ we can find a sequence of radii ρε → 0
such that

lim
ε→0

sup
t∈[0,tε]

ωε(t)
ε2

= 0 .(54)

Now let us fix tε such that

lim
ε→0

1
ε2

∫
{K>tε}

F (ϕ ◦K) = 0(55)

then there exists a sequence ρε such that (??) holds. Corresponding to this ρε, by Proposition ??, we
may find a sequence xε such that τΩ∪Bρε (xε)(xε) ≤ τΩ(∞) + δ. Thus by Part 3 of Proposition ?? we
have

|{Gρε,xε
>

t

ε2
+ δ}| ≥ |{K >

t

ε2
+ τΩ(∞) + 2δ}| .(56)

Then using that Gρε,xε
≤ K we obtain by explicit computation(

ε−2∗

ε |{Gxε
>

t

ε2
}|

)2 n−1
n

≥ |{K > t + ε2(τΩ(∞) + 2δ)}|2
n−1

n − C|{K > t}|2
n−1

n ωε(t) .(57)

Finally, let Bε be the ball of center 0 and radius Rε such that K(Rε) = ε2(τΩ(∞) + 2δ), and let
GBε

= K −K(Rε) be the corresponding Green function with pole in 0. By an explicit computation,
by changing variables in the integral and taking into account the definition of w∞, we get∫

Bε

F (ϕ ◦GBε
) = SF (1− n

n− 2
w2
∞(τΩ(∞) + 2δ)ε2) + o(ε2) .(58)
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Moreover by the radial symmetry of GBε and by (??) and (??) we have

1
ε2∗

(
1
ε2

∫
Ω

F (uε)−
∫

Bε

F (ϕ ◦GBε)
)
≥ SF sup

t∈[0,tε]

ωk(t)
ε2

ε

− C
1
ε2

k

∫
{K>tε}

F (ϕ ◦K) .(59)

The conclusion follows taking the limit as ε → 0 and using (??), (??) and (??), and the arbitrariness
of δ.
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