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Abstract

We study the variational problem

SF
ε (Ω) =

1

ε2∗
sup

{∫
Ω

F (u) : u ∈ D1,2(Ω), ‖∇u‖2 ≤ ε

}
,

where Ω ⊂ Rn, n ≥ 3, is a bounded domain, 2∗ = 2n
n−2

and F satisfies 0 ≤ F (t) ≤ αt2
∗

and

is upper semicontinuous. We show that to second order in ε the value SF
ε (Ω) only depends on

two ingredients. The geometry of Ω enters through the Robin function τΩ (the regular part of
the Green’s function) and F enters through a quantity w∞ which is computed from (radial)
maximizers of the problem in Rn. The asymptotic expansion becomes

SF
ε (Ω) = ε2∗SF

(
1− n

n− 2
w2
∞ min

Ω

τΩ ε2 + o(ε2)

)
.

Using this we deduce that a subsequence of (almost) maximizers of SF
ε (Ω) must concentrate at a

harmonic center of Ω, i.e., |∇uε|2
ε2

∗
⇀ δx0 , where x0 ∈ Ω is a minimum point of τΩ.
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1 Introduction

Let Ω be a domain in Rn, n ≥ 3. We continue the investigation of the variational problem

sup
{∫

Ω

F (u) :
∫

Ω

|∇u|2 ≤ ε2, u = 0 on ∂Ω
}

(1)

started in [9]. We are interested in the asymptotic behaviour of the solutions uε of (1) as ε → 0. The
integrand is supposed to satisfy the growth condition

0 ≤ F (t) ≤ α |t|2
∗

where 2∗ := 2n
n−2 denotes the critical Sobolev exponent. For smooth integrands every solution of (1)

satisfies the Euler Lagrange equation

−∆u = λf(u) in Ω,(2)
u = 0 on ∂Ω

with f = F ′ and a large Lagrange multiplier λ. In [9] it is shown that as ε → 0 the sequence {uε}
concentrates at a single point x0 ∈ Ω. For small ε the major part of the energy is concentrated in the
vicinity of this point. For applications like the Bernoulli free-boundary problem or the plasma problem
it is important to know the location of the concentration point.

In this paper we show that the concentration point is a minimum point of the Robin function
(the regular part of the Green’s function with equal arguments), see Theorem 17. In particular the
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concentration point does not depend on the integrand. The proof relies mostly on two ingredients. The
first is a sharp decay estimate for almost maximizers (see Lemma 22 in Section 7). The corresponding
result for exact maximizers was first obtained in [8]. The second ingredient is an approximation formula
for the capacity of small sets. We show in particular that this formula requires no regularity conditions
on Ω, if one defines the Green’s function and the Robin function in the appropriate way (see Section 2,
in particular Definition 6). Another subtle point is that we allow discontinuous integrals F in order to
include e.g. Bernoulli’s problem (maximization of volume for given relative capacity, i.e. F = χ[1,∞)).
Therefore we cannot use the usual form of the Euler Lagrange equations. Instead we use the weak
Euler Lagrange equation obtained by variation of the independent variable [8]. It involves F but no
derivatives of F .

The relevance of the critical points of the Robin function for Dirichlet problems that involve the
critical Sobolev exponent was first pointed out by Schoen [17] and Bahri [1]. Rey [16] and Han [13]
showed that as p → 2∗ the maximum points of the positive solutions of

∆u + up−1 = 0 in Ω,

u = 0 on ∂Ω

accumulate at a critical point of the Robin function. This has been conjectured by Brézis and
Peletier [4]. The simpler proof of [11] applies to all dimensions and shows that the concentration
point is a minimum point of the Robin function. Similar results for the Ginzburg-Landau functional
have been obtained by Bethuel, Brézis and Hélein [3]. The influence of the Robin function on the loca-
tion of concentration points is weaker than that of any kind of anisotropy. For instance the solutions
of

sup
{∫

Ω

G(·)F (u) :
∫

Ω

|∇u|2 ≤ ε2, u = 0 on ∂Ω
}

concentrate at a maximum point of G and not at a minimum point of the Robin function. Those of

sup
{∫

Ω

F (u) :
∫

Ω

∇u ·A(·)∇u ≤ ε2, u = 0 on ∂Ω
}

concentrate at a minimum point of det A [6]. For further references see also [7].

2 Hypotheses and generalized Sobolev inequality

Let Ω be an open subset of Rn, n ≥ 3. By Ω we denote the closure of Ω in Rn ∪ {∞}. In particular
the closure of an unbounded domain contains the point ∞.

The natural function space for variational problems of the form (1) is D1,2(Ω) defined as the closure
of C∞

c (Ω) with respect to the norm

‖∇v‖2 =
(∫

Ω

|∇v|2
)1/2

.

The results of this paper require one or more of the following hypotheses.

(Ω) Ω is a domain in Rn of dimension n ≥ 3 with Ω 6= Rn in the sense capRn(Rn \Ω) > 0. Moreover
Ω is not an exterior domain, i.e. ∞ ∈ Rn \ Ω.

(F ) The integrand F satisfies the growth condition 0 ≤ F (t) ≤ α |t|2
∗

for some constant α. It is
upper semicontinuous and F 6≡ 0 in the L1 sense.

(F+) max(F+
0 , F+

∞) < SF /S∗ with each term as defined below.

As in [9] we set

F+
0 := lim sup

t→0

F (t)
|t|2

∗ , F+
∞ := lim sup

|t|→∞

F (t)
|t|2

∗ ,

SF
ε (Ω) :=

1
ε2∗

sup
{∫

Ω

F (u) : u ∈ D1,2(Ω), ‖∇u‖2 ≤ ε

}
,

and we define the generalized Sobolev constant by

SF := SF
1 (Rn).
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For the critical power F (t) = |t|2
∗

we denote by S∗ := SF the best Sobolev constant. A simple scaling
argument leads to the generalized Sobolev inequality∫

Ω

F (u) ≤ SF ‖∇u‖2
∗

2 for u ∈ D1,2(Ω)(3)

In fact, the rescaled function us(x) := u(x/s), with s := ‖∇u‖−
2

n−2
2 , satisfies ‖∇us‖2 = 1 and∫

sΩ

F (us) = ‖∇u‖−2∗

2

∫
Ω

F (u).(4)

By the generalized Sobolev inequality we know that SF
ε (Ω) ≤ SF . Moreover SF

ε (Ω) → SF as ε → 0.
For the critical power F (t) = |t|2

∗
we have SF = SF

ε (Ω) for every ε. But typically SF
ε (Ω) decreases

as ε increases (see Theorem 17 below). An extremal for the generalized Sobolev constant or entire
extremal is a function w ∈ D1,2(Rn) with ‖∇w‖2 = 1 and

∫
Rn F (w) = SF .

We say that {uε} is a sequence of almost extremals for (1) if uε is admissible for the definition of
SF

ε (Ω) and∫
Ω

F (uε)
ε2∗

= SF
ε (Ω) + o(ε2) as ε → 0.

3 Concentration and asymptotic shape of low energy extrem
als

The main results of previous papers [9, 8] are summarized in the following two theorems.

THEOREM 1 ([9]) Suppose (Ω) and (F ). Suppose in addition that one of the following assumptions
holds: (a) F+

0 < SF /S∗ or (b) F−
0 = F+

0 or (c) Ω has finite volume. Then

1. If {uε} satisfies ‖∇uε‖ ≤ ε and ε−2∗
∫

F (uε) → SF as ε → 0, then a subsequence of {uε}
concentrates at a single point x0 ∈ Ω, i.e.

|∇uε|2

ε2

∗
⇀ δx0 ,

F (uε)
ε2∗

∗
⇀ SF δx0

in the sense of measures.

If in addiction (F+) holds then

2. For every ε > 0 the variational problem (1) has a solution uε.

3. There are points xε → x0 such that a subsequence of the rescaled functions

wε(y) := uε

(
xε + ε

2
n−2 y

)
tend to an extremal for SF , i.e. wε → w in D1,2(Rn), ‖∇w‖2 = 1, and

∫
Rn F (w) = SF .

Concerning entire extremals we have the following additional information. Let

K(r) =
1

(n− 2)|Sn−1|rn−2

denote the fundamental solution of −∆.

THEOREM 2 ([8]) Assume (F ) and let w be an extremal for SF . Then:

1. Either w > 0 or w < 0.

2. There is a ball Br0
x0

such that w agrees with the Schwarz symmetrization w∗ outside this ball.
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3. If we assume w > 0 and x0 = 0, then the function r 7→ w(r) is strictly decreasing on (r0,∞)
and

w(r) = W∞K(r)
(
1 + O(r−2)

)
,(5)

w′(r) = W∞K ′(r)
(
1 + O(r−2)

)
(6)

for r →∞, where

W 2
∞ =

2(n− 1)
n SF

∫
Rn

F (w)
K(|·|)

.

4. In particular w(r) ≤ c r2−n, F (w(r)) ≤ c r−2n, and∫
Rn\BR

0

|∇w|2 ≤ cR2−n,

∫
Rn\BR

0

F (w) ≤ cR−n

for every R > 0.

5. If F is non-decreasing on R+ and non-increasing on R− then Br0
0 = {w = maxw}.

In the following we denote by BF the class of maximizing sequences for SF consisting of radial
functions.

THEOREM 3 Suppose (F ) and set

w2
∞ :=

2(n− 1)
n SF

inf
{

lim inf
k→∞

∫
Rn

F (wk)
K(|·|)

: {wk} ∈ BF

}
.

Then

1. w∞ = 0 if and only if some sequence in BF concentrates at 0.

2. 0 < w∞ < ∞ if and only if no sequence in BF concentrates at 0 and an extremal for SF exists.

3. w∞ = ∞ if and only if every sequence in BF concentrates at ∞.

Proof. Consider an arbitrary sequence {wk} ∈ BF . By the generalized concentration-compactness
alternative [9, Theorem 9] exactly one of the following three possibilities can occur (after suitable
extraction of a subsequence):

A) Concentration at the origin: |∇wk|2
∗
⇀ δ0, F (wk) ∗

⇀ SF δ0,

B) Compactness: wk → w in D1,2(Rn), F (wk) → F (w) in L1(Rn),

C) Concentration at infinity: |∇wk|2
∗
⇀ δ∞, F (wk) ∗

⇀ SF δ∞.

If w∞ = 0 then∫
Rn

F (wk)
K(|·|)

→ 0

for some {wk} ∈ BF . This excludes B and C because SF > 0. Conversely if there is a maximizing
sequence which concentrates at the origin we choose a radial cut-off function η supported in Br

0 with
η(0) = 1. After suitable scaling as in (4) with sk → 1 the sequence {(ηwk)sk} is in BF . Thus

w2
∞ ≤ 1

K(r)

∫
Br

0

F (wk) + o(1)

which tends to 0 as r → 0. This proves 1. of Theorem 3.
If an extremal function for SF exists then w∞ < ∞ by Theorem 2. If {wk} ∈ BF concentrates at

infinity then∫
Rn

F (wk)
K(|·|)

≥ 1
K(R)

∫
Rn\BR

0

F (wk) → SF

K(R)

which tends to infinity as R →∞. Finally w∞ = ∞ excludes A and B. ©

Remark 4 If 0 < w∞ < ∞, by Theorems 1 and 2 we deduce that w2
∞ ≤ W 2

∞.

As a consequence of Theorems 2 and 3 we obtain the following compactness criterion.

COROLLARY 5 If (F ) and (F+) holds then SF admits a radial extremal w, 0 < w∞ < ∞, and
w(r)/K(r) → w∞ as r →∞.



Flucher, Garroni, Müller: Identification of concentration points 5

4 Robin function and harmonic centers

In this section Ω will be an arbitrary open subset of Rn with n ≥ 3, which satisfy (Ω). To simplify
the notation we will make the convention that in this section ∞ is not considered a boundary point.

The concentration point x0 of Theorem 1 will be identified in terms of the Robin function of Ω, i.e.
the diagonal of the regular part of the Green’s function of the Dirichlet problem in Ω for the Laplace
operator. This function has been considered in [2] in the case of domains with regular boundary. In
the following we shall give a definition which extends the one of [2] and holds for any domain, possibly
with irregular boundary, and we shall study its basic properties.

Let us denote by Kx(y) = K(|x−y|), for every x, y ∈ Rn, the fundamental solution for the negative
Laplacian. For every point x ∈ Ω∪∂Ω, let us define the regular part of the Green’s function, HΩ(x, ·),
as the solution in the sense of Perron-Wiener-Brelot (PWB) of the following Dirichlet problem

∆yHΩ(x, y) = 0 in Ω,

HΩ(x, y) = Kx(y) on ∂Ω,
(7)

i.e., HΩ(x, ·) is the infimum of all superharmonic functions u such that

lim inf
z → y
z ∈ Ω

u(z) ≥ Kx(y)

for every y ∈ ∂Ω ∪ {∞} (see [14]).
Note that the notion of PWB solution is stable under increasing sequences of resolutive boundary

data. Thus the function HΩ(x, y) is well defined also if x ∈ ∂Ω. The Green’s function of the Dirichlet
problem for the Laplacian is defined by

Gx(y) = Kx(y)−HΩ(x, y) .

The Green’s function is symmetric in Ω×Ω (see [14], Theorem 5.24), hence HΩ(x, y) = HΩ(y, x) for
every (x, y) ∈ Ω× Ω.

If x ∈ Ω the function HΩ(x, ·) coincides with the weak solution of (7) in the sense of D1,2(Ω) and
the Green’s functions agree with the solution in the sense of Stampacchia of the problem

−∆yGx(y) = δx in Ω,

Gx(y) = 0 on ∂Ω

(see [15]). In general, given a measure µ of bounded variation, we say that a function u ∈ L1(Ω) is a
solution in the sense of Stampacchia of the equation −∆u = µ, vanishing at ∂Ω if it satisfies∫

Ω

uΦdx =
∫

Ω

G(Φ)dµ(8)

for every Φ ∈ C0(Ω), where G(Φ) is the solution vanishing on ∂Ω of the equation −∆G(Φ) = Φ. The
solution in the sense of Stampacchia is unique and belongs (for bounded domains) to the space W 1,p

0 (Ω)
for every p < n

n−1 . For more general domains the truncations (−t) ∨ (t ∧ u) belong to D1,2(Ω) and∫
{|u|<t} |∇u|2 ≤ t‖µ‖. After a short calculation this yields weak Lp bounds ‖∇u‖ n

n−1 ,∞+ ‖u‖ n
n−2 ,∞ ≤

C‖µ‖, i.e. |{|∇u| > t}|t
n

n−1 ≤ C‖µ‖ and |{|u| > t}|t
n

n−2 ≤ C‖µ‖.
Moreover this notion is stable with respect to the weak convergences of measures, that is if µk is

a sequence of measures of bounded variation such that suppµk ⊂ K ⊂ Ω, for a fixed compact set K,
and µk

∗
⇀ µ then the corresponding solutions converge to the solution of (8) in W 1,p

loc (Ω) for every
p < n

n−1 .
For every x ∈ Ω ∪ ∂Ω, let us extend the function HΩ(x, ·) to a superharmonic function H̃Ω(x, ·)

defined on all Rn, as follows: for every y ∈ ∂Ω we set

H̃Ω(x, y) = lim inf
z → y
z ∈ Ω

HΩ(x, z)(9)
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and H̃Ω(x, y) = Kx(y) for every y ∈ Rn \Ω (see [14], Theorem 7.7). Finally let us extend H̃Ω(x, y) to
Rn ×Rn by setting H̃Ω(x, y) = Kx(y) for every x ∈ Rn \ Ω.

In the following definition we extend to ∂Ω the usual notions of Robin function, harmonic radius
and harmonic center.

Definition 6 (Robin function, harmonic radius, harmonic center) For every x ∈ Ω ∪ ∂Ω the
leading term of the regular part of the Green’s function

τΩ(x) := H̃Ω(x, x)

is called Robin function of Ω at the point x. The harmonic radius of Ω at x is defined by the relation
K(r(x)) = τΩ(x). A minimum point of the Robin function on Ω ∪ ∂Ω is called a harmonic center of
Ω.

The harmonic radius of the ball BR
0 is

r(x) = R− |x|2

R
.

In particular the harmonic center of a ball is its geometric center and the maximum of the harmonic
radius is the radius of the ball.

At every boundary point satisfying the Wiener regularity condition the Robin function tends to
+∞. Thus a bounded domain with regular boundary has at least one harmonic center on Ω.

We will prove in Proposition 7 that τΩ(x) is lower semicontinuous on Ω ∪ ∂Ω. Nevertheless it is
possible to show with an explicit example that this extension of the Robin function to all Ω∪∂Ω does
not agree with its lower semicontinuous envelope of τΩ

∣∣
Ω

on Ω ∪ ∂Ω (at least for n ≥ 5). For further

discussion on the relation between Wiener regularity and the condition τΩ(x) = +∞ for x ∈ ∂Ω see
the appendix.

From the lower semicontinuity of τΩ we conclude that every bounded domain, possibly with irreg-
ular boundary, has at least one harmonic center.

Fix x0 ∈ ∂Ω. Let us denote by Ωρ(x0) the set Ω ∪Bρ
x0

. For any fixed x ∈ Ω ∪ ∂Ω let HΩρ(x0)(x, ·)
be the PWB solution of the problem

∆yHΩρ(x0)(x, y) = 0 in Ωρ(x0),

HΩρ(x0)(x, y) = Kx(y) on ∂Ωρ(x0)
(10)

and let τΩρ(x0)(x) the corresponding Robin function.

PROPOSITION 7 Let x0 ∈ ∂Ω. Then, for every x, y ∈ Rn, HΩρ(x0)(x, y) converges increasingly to
HΩ(x, y) as ρ decreases to 0.

In particular τΩρ(x0)(x) converges increasingly to τΩ(x) as ρ → 0, for any x ∈ Ω ∪ ∂Ω and τΩ is
lower semicontinuous in Ω ∪ ∂Ω.

Proof. Let x0 ∈ ∂Ω. Let us fix x ∈ Ω ∪ ∂Ω and let HΩρ(x0)(x, y) be the solution of problem (10).
By the definition of PWB solution we have that HΩρ(x0)(x, y) ≤ Kx(y) for every y ∈ Ωρ(x0) and
then, by a comparison argument HΩρ(x0) is decreasing with respect to ρ. Thus HΩρ(x0)(x, ·) converges
increasingly, as ρ decreases to 0, pointwise in Ω to the PWB solution of a Dirichlet problem with
boundary value which coincides with Kx(y) at least on ∂Ω\ (Z ∪{x0}), where Z is the set of irregular
points of ∂Ω. Since the capacity of Z is zero, this implies that HΩρ(x0)(x, y) converges, as ρ → 0, to
HΩ(x, y) for every x ∈ Ω ∪ ∂Ω and y ∈ Ω.

Let us denote by H̃Ωρ(x0)(x, ·) the superharmonic extension to Rn of HΩρ(x0)(x, ·) obtained as
above. Clearly H̃Ωρ(x0)(x, ·) is also decreasing with respect to ρ. Thus it converges, as ρ → 0, to some
function H∗(·) and this function is superharmonic on Rn. We already proved that H∗(y) = HΩ(x, y)
if y ∈ Ω. Therefore H∗(y) = H̃Ω(x, y) for every y ∈ Rn \ Z and y 6= x. Then by the uniqueness of the
superharmonic extension on a set of capacity zero we obtain that H∗(y) = H̃Ω(x, y) for every y ∈ Rn.

Hence, in particular, τΩρ(x0)(x) converges to τΩ(x), as ρ → 0, for every x ∈ Ω ∪ ∂Ω.
Finally, since τΩρ(x0) are lower semicontinuous in x0 so is τΩ as an increasing limit of those functions.

Indeed if xj → x0, then

lim inf
j→∞

τΩ(xj) ≥ lim inf
j→∞

τΩρ(x0)(xj) ≥ τΩρ(x0)(x0) .

The conclusion follows taking the limit as ρ → 0. ©
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PROPOSITION 8 For every y ∈ Rn the function x 7→ H̃Ω(x, y) is superharmonic in Rn. Moreover,
(x, y) 7→ H̃Ω(x, y) is lower semicontinuous in Rn ×Rn.

Proof. Let y ∈ Rn. The function H̃Ω(·, y) is superharmonic if and only if it is lower semicontinuous
and

H̃Ω(x, y) ≥ −
∫

Bs
x

H̃Ω(t, y) dt(11)

for every x ∈ Rn and s > 0.
If y ∈ Rn \ Ω then H̃Ω(x, y) = Kx(y) for every x ∈ Rn and hence is clearly superharmonic.
If y ∈ Ω and x ∈ Rn \Ω or x ∈ Ω, then H̃Ω(x, y) agrees with Kx(y) or HΩ(x, y), respectively, and

those are superharmonic functions.
To check the superharmonicity in the remaining cases let us fix x0, y0 ∈ Ω ∪ ∂Ω and let us prove

the lower semicontinuity of H̃Ω(·, y0) in x0.
For any x ∈ Rn, let Hρ,r(x, ·) be the PWB solution of the following problem

∆yHρ,r(x, y) = 0 in Ω ∪Bρ
x0
∪Br

y0
,

Hρ,r(x, y) = Kx(y) on ∂(Ω ∪Bρ
x0
∪Br

y0
)

(12)

and let H̃ρ,r(x, ·) be its superharmonic extension to Rn as above. By Proposition 7, H̃ρ,r(x, y) converges
increasingly to H̃Ω(x, y) as ρ and r decrease to 0. In particular H̃ρ,r(x, y0) are lower semicontinuous
in x0 for any r, ρ > 0 and so is H̃Ω(x, y0).

It remains to prove condition (11) for every x0, y0 ∈ Ω ∪ ∂Ω, with either x0 ∈ ∂Ω or y0 ∈ ∂Ω. By
the symmetry of the Green’s function and the fact that, for any x ∈ Rn, H̃ρ,r(x, ·) is superharmonic
we have

H̃ρ,r(x0, y0) = Hρ,r(x0, y0) = Hρ,r(y0, x0) ≥ −
∫

Bs
x0

H̃ρ,r(y0, t) dt

= −
∫

Bs
x0
\Z

H̃ρ,r(y0, t) dt = −
∫

Bs
x0

H̃ρ,r(t, y0) dt ,

(13)

where for the last equality we used that, up to a set of capacity zero, H̃ρ,r(y0, ·) agrees with a symmetric
function. We conclude, by (13), taking the supremum in ρ and r and using the monotone convergence
of H̃ρ,r(t, y0) to H̃Ω(t, y0).

Finally, using the superharmonicity of H̃Ω(x, y) in x and y we get its lower semicontinuity in (x, y).
Indeed

lim inf
t → x z → y

t, z ∈ Ω

H̃Ω(t, z) ≥ lim inf
t → x
z → y

−
∫

Bs(t)

−
∫

Bl(z)

H̃Ω(ξ, η) dξ dη

= lim
t → x
z → y

−
∫

Bs(t)

−
∫

Bl(z)

H̃Ω(ξ, η) dξ dη = −
∫

Bs(x)

−
∫

Bl(y)

H̃Ω(ξ, η) dξ dη .

Taking the supremum in s and l, using the superharmonicity of H̃Ω we get

lim inf
t → x z → y

t, z ∈ Ω

H̃Ω(t, z) ≥ H̃Ω(x, y) .

©

In the following example we construct a bounded domain where the harmonic center is on the
boundary.
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Example 9 Let Ω0 = B1
0 and let τΩ0 be the corresponding Robin function. The harmonic center for

Ω0 is 0 and τΩ0 is strictly convex. The idea is to construct a sequence of small balls centered in the
first axis, with radii which go to zero, in a way that the set obtained from Ω0 by subtracting a finite
number of them has its unique harmonic center in the same axis.

Let us fix real positive number 0 < x1 < 1, let us denote r1 = |x1|/2 and let ε1 > 0 be such that
0 < ε1 < minΩ0\B

r1
0

τΩ0 −minB
r1
0

τΩ0 . With a little abuse of notation we shall denote by xk the points
of coordinates (xk, 0, . . . , 0), with xk ∈ R. Fix 0 < α < 1/2. Let ρ1 > 0 and denote Ω1 = Ω0 \Bρ1

x1
. It is

easy to check that τΩ1 converges uniformly to τΩ0 in Ω0 \B
ρα
1

x1 and the same is true for the derivatives.
Thus we can choose ρ1 small enough such that τΩ1 is strictly convex on Ω0 \B

ρα
1

x1 , B
ρα
1

x1 ∩Br1
0 = ∅ and

we have
τΩ0(x) ≤ τΩ1(x) ≤ τΩ0(x) +

ε1

2
∀x ∈ Ω0 \B

ρα
1

x1 .

This implies that the harmonic center, x0
1, of Ω1 is unique, belongs to Br1

0 , and, arguing by symmetry,
belongs to the first axis. Let us denote it by x0

1 = (x0
1, 0, . . . , 0).

By induction we can construct four sequences {xn}, {ρn}, {x0
n}, and {εn} such that, with the

notation Ωn = Ω0 \ (∪n
i=1B

ρi
xi

) and rn = |xn − x0
n−1|/2, we have

1) 0 < εn < minΩn−1\Brn

x0
n−1

τΩn−1 − τΩn−1(x
0
n−1);

2) B
ρα

n
xn ∩ (Bρn−1

xn−1
∪Brn

x0
n−1

) = ∅;

3) τΩn−1(x) ≤ τΩn
(x) ≤ τΩn−1(x) +

εn

2
for every x ∈ Ωn−1 \B

ρα
n

xn ;

4) τΩn
(x) is strictly convex in Ωn−1 \B

ρα
n

xn .
Moreover xn = (xn−1 − x0

n−1)/2, {xn} is decreasing and x0
n = (x0

n, . . . , 0) is the unique harmonic
center of τΩn

. Clearly the sequence {xn} converges to some x. Hence {x0
n} converges to x.

Finally, by Proposition 7, τΩn
(x) converges to τΩ∞(x) for every x ∈ Ω∞, with Ω∞ = Ω0\(∪∞i=1B

ρi
xi

).
Moreover, since {τΩn

} is an increasing sequence, x is the harmonic center of Ω∞ and by construction
belongs to the boundary of Ω∞.

PROPOSITION 10 Let Ω∗ be the ball of radius RΩ centered in zero and such that |Ω∗| = |Ω|. Then
r(x) ≤ RΩ for every x ∈ Ω ∪ ∂Ω.

Proof. If x ∈ Ω the inequality is proved in [2], Corollary 14. If x ∈ ∂Ω, we apply the result of [2]
to the set Ωρ = Ω ∪ Bρ

x and we obtain rΩρ(x) ≤ RΩρ for every ρ > 0, where rΩρ(x) is the harmonic
radius of Ωρ in x. Thus K(rΩρ(x)) ≥ K(RΩρ), that is τΩρ(x) ≥ K(RΩρ). As ρ → 0 the radius RΩρ

converges to RΩ and, by Proposition 7, τΩρ
(x) converges to τΩ(x). This concludes the proof.

©

Remark 11 An equivalent formulation of the previous assertion is

|Ω| ≥ |Br(x)| = |{K > τΩ(x)}| ∀ ∈ Ω .(14)

In the case τΩ(x) < +∞, we have x ∈ {Gx > t} := Ωt
x. If we apply (14) to Ωt

x and observe that

GΩt
x,x = Gx − t

whence τΩt
x
(x) = t + τΩ(x), we obtain

|{Gx > t}| ≥ |{K > t + τΩ(x)}| .

A simple comparison argument shows that r(x) ≥ dist(x, ∂Ω). If x ∈ Ω, near the singularity the
Green’s function can be expanded as:

Gx(y) = K(|y − x|)− τΩ(x) + O(|y − x|).(15)

It has the following properties.

PROPOSITION 12 ([2, 11]) For fixed x ∈ Ω the Dirichlet Green’s function Gx satisfies:
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1. For every t > 0 one has∫
{Gx<t}

|∇Gx|2 = t.

2. As t → ∞ we have B
r−
x ⊂ {Gx > t} ⊂ B

r+
x with r± = r ± O(rn) and r defined by t =

K(r)− τΩ(x).

Proof. The proof of 1 follows by the fact that Gx ∧ t belongs to D1,2 and coincides with t in a
neighborhood of x. By an approximation argument one can show that it is possible to take Gx ∧ t
as a test function for −∆Gx = δx which yields immediately the result. Assertion 2 follows by the
expansion (15). ©

This implies that the capacity of a small ball is asymptotically given by

capΩ(Br
x) =

1
K(r)− τΩ(x) + O(r)

= capRn(Br
0) + cap2

Rn(Br
0) (τΩ(x) + O(r))(16)

as r → 0. In the radial case

capBR
0
(Br

0) =
1

K(r)−K(R)
.(17)

LEMMA 13 Let Ak be a sequence of compact sets such that |Ak| = |B1
0 | and capRn(Ak) converges

to capRn(B1
0) as k →∞. Then, up to a subsequence, there exists a sequence {xk} such that Ak − xk

converges to B1
0 in L1. Moreover if uk and u denote the capacitary potential of Ak and B1

0 respectively,
then uk(xk + ·) converges to u strongly in D1,2(Rn).

Proof. Up to a subsequence we have that uk converges weakly in D1,2(Rn). Using the concentration
compactness alternative, we can exclude splitting by the fact that uk is a maximizing sequence for
the volume functional. Since |{uk ≥ 1}| = |Ak| = |B1

0 | vanishing and concentration are not possible.
Hence there exists a sequence xk in Rn such that uk(· + xk) is compact in D1,2(Rn), then up to

a subsequence it converges to some function u strongly in D1,2(Rn) and so in L2∗(Rn). This implies
that |{u > 1−η}| ≥ lim inf |{uk ≥ 1}| = |B1

0 | for every η > 0 and hence, since
∫
Rn |∇u|2 = capRn(B1

0),
{u ≥ 1} is a ball of radius 1 and u is its capacitary potential. Clearly the sequence xk can be chosen
in a way that {u ≥ 1} = B1

0 .
©

As consequence of this lemma we have the following proposition which state essentially that if the
capacity of a set A approach the capacity of its symmetrization, then A is almost a ball.

PROPOSITION 14 There exist ω : R+ → R, with limδ→0+ ω(δ) = 0 with the following property.
Let A be a subset of Rn with positive measure and define ρ > 0 by |A| = |Bρ

0 |. Suppose that

capRn(A)
capRn(Bρ

0 )
≤ 1 + δ .

Then there exist y ∈ Rn such that
|A∆Bρ

y |
|Bρ

y |
≤ ω(δ) .

Proof. Without loss of generality we can assume that ρ = 1. Suppose by contradiction that for every
y ∈ Rn there exist ω0(y) and |Ak|, with |Ak| = |B1

0 |, such that capRn(Ak) → capRn(B1
0) and

inf
k
|Ak∆B1

y | ≥ ω0(y)(18)

Then Lemma 13 gives a contradiction. ©

Remark 15 Let Ak ⊂ Ω is a sequence of compact sets with |Ak| → 0 and

lim sup
k→∞

1
capRn(A∗

k)
− 1

capΩ(Ak)
< +∞ .(19)
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Since |Ak| → 0, as k →∞, we have that capRn(A∗
k) → 0, as k →∞. So that, by (19) we have that

lim
k→∞

capΩ(Ak)
capRn(A∗

k)
= 1

Then, as capRn(Ak) ≤ capΩ(Ak) and capRn(A∗
k) ≤ capRn(Ak), we get

lim
k→∞

capΩ(Ak)
capRn(Ak)

= 1(20)

By a rescaling argument applying Lemma 13 we have that the sequence of the capacitary potentials
of the sets Ak/|Ak|

1
n is compact up to a translation. Thus, denoting by uk the capacitary potential

of Ak in Ω, it is easy to check that there exists a point x ∈ Ω such that

|∇uk|2

capΩ(Ak)
∗
⇀ δx,

in the sense of measures.

With the following lemma we obtain an asymptotic expansion for the capacity of concentrating
sets in terms of the Robin function.

LEMMA 16 (Asymptotic expansion of capacity)

(i) Let x0 ∈ Ω ∪ ∂Ω and let Ak be a sequence of subsets of Ω such that |Ak| > 0 and

1
|Ak|

XAk

∗
⇀ δx0 .

Then

lim inf
k→∞

1
capRn(A∗

k)
− 1

capΩ(Ak)
≥ τΩ(x0) .(21)

(ii) Suppose now that Ω bounded and let Ak ⊆ Ω, with |Ak| > 0 and |Ak| → 0 then

lim inf
k→∞

1
capRn(A∗

k)
− 1

capΩ(Ak)
≥ min

Ω
τΩ .

Proof. Let us prove (21) first in the case x0 ∈ Ω.
By an approximation argument it is not restrictive to assume that the Ak are compact. Moreover

we may assume that the liminf in (21) is a limit. By the assumption of concentration |Ak| → 0 as
k → ∞ and we may assume that (19) holds true, otherwise the result is trivial. Thus by Remark 15
we have that there exists a point x ∈ Ω such that

|∇uk|2

capΩ(Ak)
∗
⇀ δx,(22)

in the sense of measures, where uk is the capacitary potential of Ak in Ω. In the case (i), since Ak

concentrates at x0, we can obtain that x = x0. We shall prove that the rescaled functions

vk =
uk

capΩ(Ak)

converge to the Green’s function. Let us denote by µk the capacitary distribution of Ak, i.e., the non
negative Radon measure with support in Ak such that −∆uk = µk in the sense of H−1(Ω). Let us
prove that λk = µk/capΩ(Ak) converges to δx0 in the weak sense of measures. Test −∆vk = λk with
ϕuk, for ϕ ∈ C∞

0 (Ω), and use that uk = 1 on A− k to obtain∫
Ω

ϕ dλk =
∫

Ω

ϕ
|∇uk|2

capΩ(Ak)
dx +

∫
Ω

∇ϕ
uk∇uk

capΩ(Ak)
dx = T k

1 + T k
2 .(23)

By (22) T k
1 converges to ϕ(x0), while T k

2 converges to zero. Indeed by Hölder inequality we have, for
every ρ > 0,

T k
2 ≤

( ∫
Ω\Bρ

x0

|∇uk|2

capΩ(Ak)
) 1

2
( ∫

Ω\Bρ
x0

uk
2∗

capΩ(Ak)
2∗
2

) 1
2∗
( ∫

Ω\Bρ
x0

|∇ϕ|n
) 1

n + Cρ .
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By the arbitrariness of ρ we obtain that T k
2 converges to zero. Hence λk

∗
⇀ δx0 . As discussed above

this implies that vk converges strongly in W 1,p
loc (Ω) (W 1,p

0 (Ω) for bounded domains), for every p < n
n−1

to the Green’s function Gx0 , i.e., the solution in the sense of Stampacchia of −∆Gx0 = δx0 . Moreover
for every t > 0 we have that

∫
Ω
|∇(vk ∧ t)|2 =

∫
{vk<t} |∇vk|2 ≤ t. In view of Proposition 12 1 this

implies that vk ∧ t converges to Gx0 ∧ t strongly in D1,2(Ω).
Let us prove now that

lim
k→∞

capRn({vk > t}) = capRn({Gx0 > t})(24)

for a.e. t ∈ R. Indeed for a given δ > 0, denote Dδ
k = {|vk ∧ 2t−Gx0 ∧ 2t| > δ}. Since

capRn(Dδ
k) ≤ C

‖∇(vk ∧ 2t)−∇(Gx0 ∧ 2t)‖22
δ2

we have that capRn(Dδ
k) converges to zero as k →∞. Therefore, since {vk > t} ⊆ {Gx0 > t− δ}∪Dδ

k

and {vk > t} ∪Dδ
k ⊇ {Gx0 > t + δ},

capRn({Gx0 > t + δ})− capRn(Dδ
k) ≤ capRn({vk > t}) ≤ capRn({Gx0 > t− δ}) + capRn(Dδ

k).

The conclusion follows since the monotone function t 7→ capRn({Gx0 > t}) is continuous for a.e. t.
To conclude the proof let us fix s > 0 and set Bk = {vk > s} = {uk > s capΩ(Ak)}. Since Bk is a

level set of the capacitary potential of Ak we have

1
capΩ(Ak)

=
1

capBk
(Ak)

+
1

capΩ(Bk)
=

1− s capΩ(Ak)
capΩ(Ak)

+ s .

Indeed taking uk ∧ t and (uk ∨ t) − t as test functions in −∆uk = µk, we obtain t2capΩ(Bk) =∫
{uk<t} |∇uk|2 = t capΩ(Ak) and (1− t)2capBk

(Ak) =
∫
{uk>t} |∇uk|2 = (1− t)capΩ(Ak). Moreover

1
capRn(A∗

k)
≥ 1

capRn(Ak)
≥ 1

capBk
(Ak)

+
1

capRn(Bk)
.

So that, taking into account (24), we obtain

lim inf
k→∞

1
capRn(A∗

k)
− 1

capΩ(Ak)
≥ lim inf

k→∞

1
capRn(Bk)

− 1
capΩ(Bk)

≥ 1
capRn({Gx0 > s})

− s

for a.e. s ∈ R. Proposition 12 (2), implies that

1
capRn({Gx0 > s})

≥ K(r+(s) + O(r)) ≥ (s + τΩ(x0))(1 + O(s
n−1
2−n ))

and taking the limit s →∞, we obtain assertion (i) for x0 ∈ Ω.
If x0 ∈ ∂Ω, by the previous step applied to Ωρ(x0) = Ω ∪Bρ(x0), with ρ > 0, we obtain

lim inf
k→∞

1
capRn(A∗

k)
− 1

capΩρ(x0)(Ak)
≥ τΩρ(x0)(x0) .(25)

Since Ω ⊂ Ωρ(x0) implies capΩρ(x0)(Ak) ≤ capΩ(Ak), we obtain (21) taking the limit as ρ → 0 and
using Proposition 7.

In order to treat case (ii) it is enough to note that, from (22), we can proceed as in the previous
case assuming that x ∈ Ω and obtain

lim inf
k→∞

1
capRn(A∗

k)
− 1

capΩ(Ak)
≥ τΩ(x) ≥ min

Ω
τΩ .

We recover the general case x ∈ Ω arguing as above. ©
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5 Localization of concentration points

The main result of this paper is the second order expansion of SF
ε with respect to ε. It turns out that

the second nontrivial term depends on the value of the Robin function at the concentration point.
This allows us to identify the concentration point. We recall the definition of w∞ given in Theorem 3

w2
∞ :=

2(n− 1)
n SF

inf
{

lim inf
k→∞

∫
Rn

F (wk)
K(|·|)

: {wk} ∈ BF

}
.

THEOREM 17 (Identification of concentration points) Assume that Ω is bounded and (F ).
Let w∞ be defined as in Theorem 3 and suppose that 0 < w∞ < ∞.

1. If the sequence {ũε} ⊂ D1,2(Ω) satisfies ‖∇ũε‖2 ≤ ε and concentrates at x in the sense of
Theorem 1 then∫

Ω

F (ũε) ≤ ε2∗SF

(
1− n

n− 2
w2
∞τ(x) ε2 + o(ε2)

)
as ε → 0.

2. If {uε} is a sequence of almost extremals we have∫
Ω

F (uε) = ε2∗SF

(
1− n

n− 2
w2
∞ min

Ω
τΩ ε2 + o(ε2)

)
.

3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.

τ(x0) = min
Ω

τΩ

with x0 as in Theorem 1.

If w∞ = 0 then SF
ε (Ω) = SF for every ε > 0. Conversely, if SF

ε (Ω) = SF − o(ε2) and minΩ τΩ > 0
then w∞ = 0.

Remark 18 By Proposition 10 we have

min
Ω

τΩ ≥ min
Ω
∗

τΩ∗ =
1

capRn(Ω∗)

so that the assumption Ω bounded implies minΩ τΩ > 0. The result stated in Theorem 3 is still true if
we replace the assumption (Ω) with a weaker assumption which allows also unbounded domains and
still implies minΩ τΩ > 0.

Theorem 17 can be extended to unbounded domains. In this case one extends the Robin function
to ∞ by

τΩ(∞) := lim
ρ→0

lim
R→∞

inf
x, y ∈ Rn

|x| ≥ R, |x− y| ≤ ρ

H̃Ω(x, y)(26)

and one requires that τΩ(∞) > 0. This is the precise statement of the condition that the complement
of Ω is not too small near ∞.

Note that with the above definition τΩ is lower semicontinuous at ∞. One crucial technical ingre-
dient in the proof for unbounded domains is the following counterpart of Proposition 7, namely

τΩ(∞) = lim
ρ→0

lim
R→∞

inf
|x|≥R

τΩ∪Bρ(x)(x) .

Details of this argument will appear elsewhere.

We apply Theorem 17 to two examples already studied in [9].
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Example 19 [Volume functional] For

F (t) :=


0 (t < 1),

1 (t ≥ 1),

we have
∫
Ω

F (u) = |{u ≥ 1}|. The corresponding Euler Lagrange equation is Bernoulli’s free-boundary
problem [10]. Up to translation entire extremals are given by

w(r) =


K(r) (r > R),

1 (r ≤ R)

with R such that∫
Rn

|∇w|2 = capRn(BR
0 ) =

1
K(R)

= 1,

SF =
∫
Rn

F (w) =
∣∣BR

0

∣∣ .
In particular w∞ = 1 by Theorem 2. Application of Theorem 17 yields

sup
{
|A| : capΩ(A) ≤ ε2

}
=

ε2∗

(n(n− 2))
n

n−2 |B1
0 |

2
n−2

(
1− n

n− 2
min

Ω
τΩ ε2 + o(ε2)

)
.

The corresponding formula in two dimensions is quite different. Already the leading term depends on
the geometry, namely on the value of the harmonic radius ρ at the concentration point:

sup
{
|A| : capΩ(A) ≤ ε2

}
=

π maxΩ ρ2

exp (4π/ε2)
(1 + o(1))

as shown in [5].

Example 20 [Plasma problem] As a further illustration of Theorem 17 we consider F (t) = (t− 1)2+
in three dimensions. See [12] for the physical context. Up to translation entire extremals are given by

w(r) =


R
r (r > R),

1 + R
πr sin

(
πr
R

)
(r ≤ R)

with R = (6π)−1. This leads to w∞ = 2/3 and SF =
∫
Rn F (w) = (108π4)−1. By Theorem 17 we have:∫

Ω

(uε − 1)2+ =
ε6

108 π4

(
1− 4

3
min

Ω
τΩ ε2 + o(ε2)

)
.

6 Lower bound

We begin with a short overview of the proof. We first establish a lower bound for SF
ε (Ω) by the usual

transplantation argument (Step 1, this section).
To prove the upper bounds we essentially use two facts about sequences uε which are almost opti-

mal, i.e., optimal up to O(ε2). First uε behaves like the Green’s function away from the concentration
point (at least after symmetrization, Step 2). This observation will allow us to exploit capacity esti-
mates like (21). Secondly the rescaled functions wε(x) = uε(xε + ε

2
n−2 x) converge in D1,2(Rn) to a

maximizer w for SF . This is easily established under the additional assumption (F+) which restricts
the behavior of F near 0 and near ∞. Without this assumption the situation is more subtle as the
example F (t) = |t|2∗ demonstrates. In this case SF

ε (Ω) = SF and maximizing sequences concentrates
on a scale much shorter than ε

2
n−2 .

In Step 2 below we show that the assumption w∞ > 0, which rules out concentration of maximizing
sequences for SF , prevents such behavior. We also use the decay and capacity estimates to show that
the length scale of the concentrating sequence uε can not be much larger that ε

2
n−2 . Once the length
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scale ε
2

n−2 is established, a routine application of concentration compactness yields compactness of wε

(Step 3).
The upper bound then essentially follows from the capacity estimates. One subtle point is that we

need to show that all relevant level sets (including those whose volume goes to infinity in the rescaled
variables) concentrate at the same point (Step 4). Another subtlety is that it is not known whether the
maximizers for SF are unique or whether they at least have all the same decay rate W∞ (see Theorem
2). We show that those w that arise as limits of the rescaled sequence wε must have the optimal decay
rate W∞ = w∞. The desired upper bounds and the identification of concentration points follow easily
(Steps 5-7).

To prove the lower bound we recall that by Theorems 2 and 3 there exists a radial maximizer w
for SF and we may assume w > 0 and that the limit W∞ := limr→∞ w(r)/K(r) exists. The lowest
possible value for W∞ is w∞ and we consider a corresponding maximizer w.

Step 1

SF
ε (Ω) ≥ SF

(
1− n

n− 2
w2
∞ min

Ω
τΩ ε2 + o(ε2)

)
as ε → 0.

Proof. Let z ∈ Ω be a harmonic center for Ω. In particular τΩ(z) < +∞ and the harmonic radius
r(z) is strictly positive. For a radial function U ∈ D1,2(Br(z)

0 ) we define its harmonic transplantation
to (Ω, z) as follows (see [2]). Let GB,0 denote the Green’s function of B

r(z)
0 with pole at zero, write

U as ϕ ◦ GB,0 and let u := ϕ ◦ Gz ∈ D1,2(Ω). It is easy to see that this transformation preserve the
Dirichlet integral. Moreover the following inequality holds∫

Ω

F (u) ≥
∫

B
r(z)
0

F (U) .(27)

This inequality is proved in [2] in the case that z 6∈ ∂Ω. The general case z ∈ Ω, τΩ(z) < +∞, follows
by the coarea formula and the estimate of the level sets of the Green’s function given by Remark 11.

Therefore by (27) we have SF
ε (Ω) ≥ SF

ε (Br(z)
0 ). Now we set

rε := ε−
2

n−1 r(z), Rε := ε−
2

n−2 r(z).

and we define the comparison functions Wε ∈ D1,2(BRε
0 ) by Wε = w in Brε

0 and ∆Wε = 0 in BRε
0 \Brε

0 .
Since

∫
Rn\Br

0
F (w) = O(r−n) (Theorem 2) we have∫

BRε
0

F (Wε) ≥
∫
Rn

F (w)−
∫
Rn\Brε

0

F (w) = SF −O(r−n
ε ) = SF − o(ε2).

To establish the assertion errors of this order can be ignored. Using the formula for the capacity of
balls (17) we can estimate the Dirichlet integral from above by

‖∇Wε‖22 = 1−
∫
Rn\Brε

0

|∇w|2 +
∫

BRε
0 \Brε

0

|∇Wε|2

≤ 1− w(rε)2
(
capRn(Brε

0 )− capBRε
0

(Brε
0 )
)

= 1− w(rε)2
(
K(rε)−1 − (K(rε)−K(Rε))−1

)
= 1 +

(
w(rε)
K(rε)

)2

K(Rε)(1 + o(1))

= 1 + w2
∞τΩ(z)ε2 + o(ε2)

since K(Rε) = ε2τΩ(z) (Definition 6). Moreover the ratio K(Rε)/K(rε) tends to zero. We scale Wε

with s ≤ 1 such that ‖∇W s
ε ‖2 = 1. By the scaling property (4) and the above estimate we obtain

SF
ε (Br(z)

0 ) ≥ SF
ε (Bsr(z)

0 ) ≥
∫

BsRε
0

F (W s
ε )

= ‖∇Wε‖
− 2n

n−2
2

∫
BRε

0

F (Wε) ≥ SF

(
1− n

n− 2
w2
∞τΩ(z)ε2 + o(ε2)

)
.

Since τΩ(z) = minΩ τΩ this concludes the proof. ©
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Remark 21 This in particular implies that SF
ε (Ω) ≥ SF − Cε2. From this we can deduce that, if

{uε} is a sequence of almost maximizers, then

1
ε2∗

∫
Ω

F (uε) ≥ SF − Cε2 .

It is easy to see that for each z ∈ Ω, with τΩ(z) < ∞, the above construction yields a sequence
which concentrates at z, satisfies ‖∇uε‖ = ε and

1
ε2∗

∫
Ω

F (uε) ≥ SF

(
1− n

n− 2
w2
∞τΩ(z)ε2 + o(ε2)

)
.

7 Upper bound and identification of concentration points

Let D1,2
∗ be the set of all function u in D1,2(Rn) such that u ≥ 0, u is radially symmetric and

decreasing. For sake of simplicity let us assume that condition (F) is satisfied with α = 1.

LEMMA 22 (Decay estimates for radial low energy extremals) For c > 0 there exists posi-
tive constants c0, γ0, with 0 < γ0 < 1, and ε0 that only depend on the dimension n, on SF and c with
the following properties.

If (F) holds (with α = 1) and 0 < ε < ε0 and if u ∈ D1,2
∗ satisfies∫

Rn

F (u) ≥ (SF − cε2)‖∇u‖2
∗

2 ,(28)

then there exist ρ > 0 and u∞ > 0, such that

u(r) ≤ c0ρ
n−2

2 ‖∇u‖2 K(r) for 1 ≤ r

ρ
≤ ε−

2
n−2 ,(29) ∫

Rn\Br
0

|∇u|2 ≤ c0ρ
n−2‖∇u‖22 K(r) for 1 ≤ r

ρ
≤ ε−

2
n−2 ,(30) ∫

Rn\Br
0

|u|2
∗

≤ S∗c
2∗
2

0 ρn‖∇u‖2
∗

2 K(r)
2∗
2 for 1 ≤ r

ρ
≤ ε−

2
n−2 ,(31)

|u(r)− u∞K(r)| ≤ c0ρ
n−2

2 ‖∇u‖2 K(r)

(
ρ

r
+ ε

(
r

ρ

)n−2
2
)

for 1 ≤ r

ρ
≤ ε−

2
n−2 ,(32)

and ρ is characterized as the greatest radius which satisfies the condition∫
Rn\Bρ

0

|∇u|2 = γ0‖∇u‖22.(33)

Moreover we have

c−1
0 ≤ u∞

ρ
n−2

2 ‖∇u‖2
≤ c0 .(34)

Proof. It is sufficient to prove the assertion under the assumptions ρ = 1 and ‖∇u‖2 = 1. Indeed
if u satisfies (28) so does uρ(y) = u(ρy). Thus ũ = uρ/‖∇uρ‖2 satisfies (28) if F is replaced by
F̃ (t) = F (‖∇uρ‖2t)/‖∇uρ‖2

∗

2 . Thus the assertions for u follows from those for ũ by unscaling.
Let us denote now

γ(R) :=
∫
Rn\BR

0

|∇u|2 .

We compare u to the function U ∈ D1,2(Rn) defined by U = u in BR
0 and ∆U = 0 in Rn \BR

0 . Then∫
Rn

|∇U |2 =
∫

BR
0

|∇u|2 + u(R)2capRn(BR
0 ) = 1− γ(R) +

u(R)2

K(R)
.

By (28) and application of the generalized Sobolev inequality to the function min(u, u(R)) we obtain

SF (1− Cε2) ≤
∫
Rn

F (u) ≤
∫
Rn

F (U) + SF γε(R)
n

n−2 .
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Therefore∫
Rn

F (U) ≥ SF
(
1− cε2 − γ(R)

n
n−2
)
.

On the other hand by the generalized Sobolev inequality we have∫
Rn

F (U) ≤ SF

(
1− γ(R) +

u(R)2

K(R)

) n
n−2

and then, since u(R)2/K(R) ≤ γ(R) ≤ γ0 < 1, we get∫
Rn

F (U) ≤ SF

(
1− Cγ(R) + C

u(R)2

K(R)

)
.

Combining the upper and the lower bound we obtain

γ(R) ≤ u(R)2

K(R)
+ Cγ(R)

n
n−2 + cε2.(35)

In absence of the last two terms u would be harmonic outside BR
0 and u(2R)−22−nu(R) = 0. We will

see that this difference is small if (35) holds. By the Cauchy-Schwarz inequality and the formula for
K(r) we can estimate

γ(R)− γ(2R) =
∣∣Sn−1

∣∣ ∫ 2R

R

rn−1 |u′|2

≥
∣∣Sn−1

∣∣
(∫ 2R

R
u′
)2

(∫ 2R

R
r1−n

) ≥ (u(R)− u(2R))2

(K(R)−K(2R))
.

Together with γ(2R) ≥ u2(2R)/K(2R) (cf. (17)) and the estimate (1 − x)2/(1 − λ) + x2/λ ≥ 1 +
c(λ)(x− λ)2 we obtain

γ(R) ≥ u(R)2

K(R)

(
(1− u(2R)/u(R))2

(1− 22−n)
+

(u(2R)/u(R))2

22−n

)

≥ u(R)2

K(R)

(
1 + C

(
u(2R)
u(R)

− 22−n

)2
)

with C > 0. Combining the above with (35) we deduce(
u(2R)
u(R)

− 22−n

)2

≤ C
K(R)
u(R)2

(
γ(R)

n
n−2 + ε2

)
(36)

after cancellation of the leading term.
Let us estimate now the decay of u by iteration. Let ai := u(2i)

K(2i) . We claim that there exists
α ∈ (0, n−2

n ) and a positive constant c2 such that

ai ≤ c22iα, if 2i ≤ ε−
2

n−2 .(37)

For i = 0 the assertion follow from the estimate u2(1) ≤ γ0K(1). To proceed by induction we distin-
guish two cases. Since u is decreasing, if ai ≤ 22−nc2 then ai+1 ≤ c2. If ai ≥ 22−nc2 then

K(2i)
u(2i)2

ε2 ≤ a−2
i K(2i)−1ε2 ≤ c c−2

2 .

Multiplying (35) by K(2i)
u(2i)2 γ(2i)

n
n−2 and taking into account that for sufficiently small γ0 the term

cγ(R)
n

n−2 can be absorbed into the left hand side we deduce that

K(2i)
u(2i)2

γ(2i)
n

n−2 ≤ γ
2

n−2
0 (C + c−2

2 ).
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Thus (36) yields with a sufficiently large choice of c2 and a sufficiently small choice of γ0

ai+1

ai
≤ 2n−2(22−n + Cγ

1
n−2
0 + C c−1

2 ) ≤ 2α

and hence (37) is proved.
Since u is decreasing we deduce from (37) and (35) that

u(R) ≤ CR2−n+α,

γ(R) ≤ CR2−n+2α + Cε2 ≤ CR2−n+2α,

γ(R)
n

n−2 ≤ CR−n+2∗α

for 1 ≤ R ≤ ε
−2

n−2 . Multiplying (36) by fracu(R)2K(2R) we obtain∣∣∣∣ u(2R)
K(2R)

− u(R)
K(R)

∣∣∣∣ ≤ C(R
2∗α−2

2 + εR
n−2

2 )(38)

Since 2∗α = 2n
n−2α < 2, we obtain by iteration of this estimate

u(2i)
K(2i)

− u(1)
K(1)

≤ c(1 + ε(2i)
n−2

2 ) ≤ C .

This implies (29), and (30) follows from (35). In view of (29) and (30) the estimates immediately
preceding (38) hold with α = 0 and (38) becomes∣∣∣∣ u(2R)

K(2R)
− u(R)

K(R)

∣∣∣∣ ≤ c(R−1 + εR
n−2

2 ).(39)

If we fix j such that 2j ≤ ε−
2

n−2 ≤ 2j+1 and we define u∞ = u(2[j/2])/K(2[j/2]), then iterative
application of (39) with R = 2i, i = [j/2], . . . j yields

|u(2i)− u∞| ≤ c(2−[j/2] + ε2
n−2

2 i) ≤ cε2
n−2

2 i,

while application for i = [j/2], . . . 1 gives |u(2i) − u∞| ≤ c2−i. Combining these two estimates we
obtain (32) for every R = 2i ≤ ε−

2
n−2 .

To deduce (32) for all r ∈ [1, ε−
2

n−2 ] it suffices to observe that similarly to (36) one can derive the
estimate (

u(λR)
u(R)

− λ2−n

)2

≤ c
K(R)
u(R)2

(
γ(R)

n
n−2 + o(ε2)

)
for all λ ∈ [2, 4].

It only remains to prove (34). The upper bound follows from (29) and (32), applied with r = ρ.
Suppose that the lower bound was false. Then there exists εk converging to zero and a function

uk = uεk
∈ D1,2

∗ that satisfy (28) to (33) with u, u∞ and ε replaced by uk, uk,∞ and εk and with
‖∇uk‖2 = 1, ρk = ρ = 1. Moreover uk,∞ → 0. Since the uk are non negative radially decreasing
it follows from the Sobolev embedding theorem that, up to a subsequence, uk converge to some u0

uniformly on [1,+∞). This implies, together with (32), that

u0(r) ≤ c0K(r)r−1(40)

for every r ≥ 1. It follows from (35) and the choice of γ0 that

γk(R) ≤ C

(
u2

k(R)
K(R)

+ ε2
k

)
(41)

and thus

lim
k→∞

γk(R) ≤ C
u2

0(R)
K(R)

≤ CR−n ,(42)

uniformly for R ∈ [1,∞). Thus (38) applied to uk in combination with (42) and the uniform conver-
gence of uk implies∣∣∣∣u0(2R)

K(2R)
− u0(R)

K(R)

∣∣∣∣ ≤ cK(R)
1

n−2

(
u0(R)
K(R)

) n
n−2

.
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If we let ai = u0(2
i)

K(2i) , then we have

|ai+1 − ai| ≤ C2−ia
n

n−2
i(43)

and, in view of (40), ai ≤ C2−i. It follows that ai = 0 for every i. Indeed let δ > 0 be sufficiently
small and let i0 be the largest integer such that ai0 ≥ δ. Then, for every l ≥ i0 such that C2−l < 1,
(43) implies

al ≤
∞∑

j=l+1

C2−ja
n

n−2
j ≤ C2−lδ

n
n−2 < δ

which is a contradiction. Hence u0 = 0 on [1,+∞) and thus by (41)∫
Rn\B1(0)

|∇uk|2dx = γk(1) → 0 .

This contradicts the definition of ρk. Thus the lower bound in (34) must hold and the proof of
Lemma 22 is finished.

©

We now begin with the proof of Theorem 17 (1).
Let {uε} ⊆ D1,2(Ω) be a sequence with ‖∇uε‖ ≤ ε which concentrates at x0 ∈ Ω, i.e. |∇uε|2

ε2
∗
⇀ δ0.

We may assume∫
Rn

F (uε) ≥ (SF − Cε2)‖∇uε‖2
∗

2

(for suitable large C) since otherwise the assertion is trivial. In particular the Schwarz symmetrizations
{u∗ε} as well as the rescaled sequence w∗

ε(r) = u∗ε(ε
2

n−2 r) satisfy the assumption of Lemma 22. We
obtain that there exist ρε and u∞,ε such that u∗ε(r) = u∞,εK(r)(1 + o(1)) for ρε � r � ρεε

−2/n−2

and ρε is characterized by

ρε = sup

{
ρ > 0 :

∫
Bρ

0

|∇u∗ε|2

ε2
= (1− γ0)

‖∇u∗ε‖22
ε2

}
(44)

with 0 < γ0 < 1.

Step 2 We have c ε
2

n−2 ≤ ρε ≤ C ε
2

n−2 , c > 0.

Proof. Let us first prove that ρε → 0. Since |uε|2
∗

ε2∗ concentrates at x0 one easily checks that |u∗ε |
2∗

ε2∗

concentrates at zero. Thus ε−2∗F (u∗ε) ≤ α
|u∗ε |

2∗

ε2∗ concentrates at zero, in fact ε−2∗F (u∗ε)
∗
⇀ SF δ0, since∫

Rn ε−2∗F (u∗ε) =
∫
Ω

ε−2∗F (uε) → SF . Hence part 2 of Theorem 12 of [9], applied to u∗ε shows that

|∇u∗ε|
2

ε2

∗
⇀ δ0,(45)

since otherwise u∗ε/ε → v0 in L2∗ which contradicts concentration of u∗ε/ε. Now (45) and the definition
of ρε imply ρε → 0.

Suppose now that ρε � ε
2

n−2 , i.e. Rε := ρεε
− 2

n−2 → 0. By (30) we have, for every rε → 0 such
that Rε � rε � Rεε

− 2
n−2 ∫

Rn\Brε
0

|∇w∗
ε |

2 ≤ C

(
Rε

rε

)n−2

→ 0

and then |∇w∗
ε |

2 concentrates at zero, which is in contradiction with Theorem 3.
It remains to prove that ρε ≤ Cε

2
n−2 . Let rε → 0 such that rεε

2
n−2 /ρε → 0 and ρε/rε → 0 (for

instance we can choose rε = ρ
1
n
ε ). Define Aε = {uε > u∞,εK(rε)} and A∗

ε = Br̃ε
0 . By (32), for every r,

with ρε ≤ r ≤ ρεε
− 2

n−2 , we get

|u∗ε(r)− u∞,εK(r)| ≤ c0ρ
n−2

2
ε ‖∇u∗ε‖2K(r)

(
ρε

r
+ ε

(
r

ρε

)n−2
2
)

,
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and by (34) and the fact that ρε ≥ Cε
2

n−2 we obtain∣∣∣∣ u∗ε(r)
u∞,εK(r)

− 1
∣∣∣∣ ≤ C

(
ρε

r
+ ε

(
r

ρε

)n−2
2
)
≤ C

(ρε

r
+ r

n−2
2

)
.

Since ρε � rε � ρεε
− 2

n−2 and rε → 0 we have∣∣∣∣ u∗ε(rε)
u∞,εK(rε)

− 1
∣∣∣∣ ≤ C

(
ρε

rε
+ r

n−2
2

ε

)
= o(1) .

As, by definition, u∗ε(r̃ε) = u∞,εK(rε) we obtain that r̃ε/rε → 1, and in particular |Aε| = |Br̃ε
0 | → 0.

Since Aε is a superlevel set of uε we have∫
A∗ε

|∇u∗ε|
2 ≤

∫
Aε

|∇uε|2 .

Let Uε : Rn → R denote the harmonic extension of u∗ε outside of A∗
ε. Taking into account Lemma 16

(ii), (34) and the identities capRn(A∗
ε) = capRn(Br̃ε

0 ) = 1

K(r̃ε)
we deduce that

1
ε2

∫
Rn

|∇Uε|2 =
1
ε2

∫
Aε

|∇uε|2 +
1
ε2

∫
Rn\A∗ε

|∇Uε|2

≤ 1− 1
ε2

∫
Ω\Aε

|∇uε|2 +
1
ε2

∫
Rn\A∗ε

|∇Uε|2

≤ 1− 1
ε2

u2
∞,εK(rε)2[capΩ(Aε)− capRn(A∗

ε)]

≤ 1− 1
ε2

u2
∞,εK(rε)2K(r̃ε)−2 min

Ω
τΩ

≤ 1− Cρn−2
ε min

Ω
τΩ(1 + o(1)) .

(46)

On the other hand, by the lower bound (Step 1), by (31) and by the fact that r̃ε ≈ rε we get

1
ε2∗

∫
Rn

F (Uε) ≥ 1
ε2∗

∫
Aε

F (uε)

=
1

ε2∗

∫
Ω

F (uε)−
1

ε2∗

∫
Ω\Aε

F (uε)

≥ SF (1− Cε2)− 1
ε2∗

∫
Rn\Br̃ε

0

F (u∗ε)

≥ SF (1− Cε2)− C

(
ρε

rε

)n

.

So that if rε = ρ
1/n
ε we have

1
ε2∗

∫
Rn

F (Uε) ≥ SF (1− Cε2 − Cρn−1
ε ) .

Combining this with the upper bound for ‖∇Uε‖ and the generalized Sobolev inequality we deduce

(1− Cε2 − Cρn−1
ε ) ≤ (1− Cρn−2

ε min
Ω

τΩ)
2∗
2

and then
Cρn−2

ε (min
Ω

τΩ − Cρε) ≤ Cε2

which implies ρε ≤ Cε
2

n−2 . ©
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Step 3 (Convergence of rescaled maximizing sequences) There exists a sequence xε → x0

such that the rescaled functions wε(z) = uε(xε+ε
2

n−2 z) converge strongly in D1,2(Rn) to some function
w, which is an extremals for SF .

Proof. This is a standard application of the concentration compactness alternative. Let vε(x) =
uε(ε

2
n−2 x). Concentration is excluded since concentration of vε implies concentration of the sym-

metrized sequence v∗ε which would imply w∞ = 0 (see Theorem 3), contradicting the hypothesis.
Splitting is excluded by the strict convexity of the function λ → λ2∗/2 and the fact that vε is maxi-
mizing for SF . Finally vanishing is excluded by the estimate

|{vε > δ}| ≥ Cδ
n

n−2 ∀ε > 0 , ε2 � δ � 1 .(47)

This estimate follows from (32), (34) and the fact that ρε ≈ ε
2

n−2 which yields u∗ε(r) ≈ u∞,εK(r) ≈
ε2K(r) ≈ (ε

2
n−2 r)2−n for ρε � r � ρεε

− 2
n−2 , whence v∗ε (R) ≈ R2−n for 1 � R � ε−

2
n−2 .

To see that (47) exclude vanishing first note that vanishing of |∇vε|2 implies vanishing of |vε|2
∗
.

Indeed using the n-harmonic capacity potential ϕr
R(x) = log(|x−a|/R)

log(r/R) extended by 1 in Br
a and by 0 in

BR
a we get the estimates(

1
S∗

∫
Br

a

|vε|2
∗

) 2
2∗

≤
∫

BR
a

|∇(ϕr
Rvε)|2

≤
∫

BR
a

|∇vε|2 + ω(r/R)
∫
Rn

|∇vε|2

with ω(t) → 0 as t → 0 (see [9], Lemma 8 for the details). Now consider a cover of Rn by the translated
unit cubes Qz = z + (0, 1)n, z ∈ Zn, and let λε

z = |{vε > δ} ∩Qz|, µε
z = |{vε > δ/2} ∩Qz|. Vanishing

of |vε|2
∗

implies that supz∈Zn(λε
z + µε

z) → 0 as ε → 0. In particular the function (vε − δ
2 )+ vanishes

on a set of volume fraction 1− µε
z ≥ 1/2 on each cube Qz, provided ε < ε0. Hence a suitable version

of the Poincaré inequality (see e.g. [9], Lemma 28) yields

(λε
z)

2
2∗

(
δ

2

)2

≤

(∫
Qz

(
vε −

δ

2

)2∗

+

) 2
2∗

≤ C

∫
Qz

|∇vε|2 .

Since
∑

z λε
z = |{vε > δ}| ≥ C(δ) > 0 we deduce∫
Rn

|∇vε|2 ≥ (max
z

λε
z)

1− 2
2∗ C(δ) →∞

as ε → 0, which yields a contradiction.
Thus by the concentration compactness alternative, there exists a sequence {aε} ⊂ Rn such that

(a subsequence of) vε(·+aε) is compact in D1,2(Rn) and taking xε = ε
2

n−2 aε we obtain the assertion.
©

Step 4 (Concentration of level sets) There exists η0 > 0 such that the following holds. If uε

concentrates at x0 ∈ Ω and tε/ε2 →∞ and tε ≤ η0, then {uε > tε} concentrates at x0.

Proof. Let wε as in the previous step. Fix t > 0 and let ρt,ε such that |Bρt,ε

0 | = |{wε > t}|. By (32)
and Step 2 we deduce that

|{wε > t}| ≈ t−
n

n−2 , ρt,ε ≈ t−
1

n−2(48)

for every t such that ε2 � t � 1. Let us prove that

capRn({wε > t})
capRn(Bρt,ε

0 )
≤ 1 + C

(
ε2

t
+ t

2
n−2

)
.(49)

Indeed let w̃ε be the harmonic extension of w∗
ε outside of B

ρt,ε

0 . Then by (31)∫
Rn

F (w̃ε) ≥
∫

B
ρt,ε
0

F (w∗
ε) ≥ SF − Cε2 − C

∫
Rn\Bρt,ε

0

|wε|2
∗

≥ SF − Cε2 − Cρ−n
t,ε
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and ∫
Rn

|∇w̃ε|2 =
∫

B
ρt,ε
0

|∇w̃ε|2 + t2capRn(Bρt,ε

0 )

≤
∫
{wε>t}

|∇wε|2 + t2ρn−2
t,ε capRn(B1

0)

≤ 1−
∫
{wε<t}

|∇wε|2 + t2ρn−2
t,ε capRn(B1

0) .

The combination of these two estimates with the generalized Sobolev inequality gives∫
{wε<t}

|∇wε|2 − t2ρn−2
t,ε capRn(B1

0) ≤ C(ε2 + ρ−n
t,ε ) ≤ C(ε2 + tt

2
n−2 ) .(50)

Since
capRn({wε > t}) ≤ 1

t2

∫
{wε<t}

|∇wε|2 ,

we obtain (49) from (50) and (48). Now (49) may be rewritten as

capRn({wε > t})
capRn(Bρt,ε

0 )
≤ 1 + δ(η0) if

1
η0
≤ t ≤ η0 .(51)

Applying Proposition 14 we get that there exist zt,ε such that

|{wε > t}∆B(zt,ε, ρt,ε)|
|B(zt,ε, ρt,ε)|

≤ δ′(η0) .(52)

Let us prove now that if ε2/η0 ≤ t < t′ ≤ η0, then

|zt,ε − zt′,ε| ≤ Cρt,ε(53)

Suppose first that t ≥ t′/2. By (32) we have

|{wε > t} ∩ {wε > t′}|
|{wε > t}|

=
|{wε > t′}|
|{wε > t}|

≥ c0 > 0 .

Combining this with (52) we obtain

|B(zt,ε, ρt,ε) ∩B(zt′,ε, ρt′,ε)|
|B(zt,ε, ρt,ε)|

≥ c0 − 2δ′(η0) > 0

if δ′ is sufficiently small (which can be achieved by choosing η0 sufficiently small). Hence

|zt,ε − zt′,ε| ≤ ρt,ε + ρt′,ε ≤ 2ρt,ε(54)

and the assertion is proved under the additional assumption t ≥ t′/2. To obtain the general case let
j ∈ IN be such that 2−jt′ ≥ t ≥ 2−j−1t′, define ti = 2−it′ for i = 0, . . . , j and tj+1 = t, and apply (54)
to ti and ti+1. Since ct−

1
n−2 ≤ ρt,ε ≤ Ct−

1
n−2 , summation over i leads to a geometric series and (53)

follows.
Now we know that wε converges to a maximizer w for SF and by Theorem 2 we have that there

exists r0 > 0 such that w = w∗ on Rn \Br0
0 and w∗(r) is strictly decreasing for r ≥ r0. Thus choosing

η0 so small enough such that η0 < w∗(r0), we have

|{wε > η0}∆{w > η0}| → 0(55)

and {w > η0} = Br
0 . Hence zη0,ε → 0. Therefore by (53) we deduce

lim sup
ε→0

|ztε,ε|
ρtε,ε

≤ C if
ε2

η0
≤ tε ≤ η0 .

Now by (52)
|{uε > tε}∆B(xε + ε

2
n−2 ztε,ε, ε

2
n−2 ρtε,ε)|

|{uε > tε}|
→ 0 .

Finally the assumption tε/ε2 → ∞ implies that ε
2

n−2 ρtε,ε → 0 and xε + ε
2

n−2 ztε,ε → x0. Hence
{uε > tε} concentrates at x0. ©
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Step 5 (Upper bound for sequences concentrating at x0) Let w be the limit of (a subsequence
of) wε as above and recall that

W 2
∞ =

2(n− 1)
n SF

∫
Rn

F (w)
K(|·|)

(see Theorem 2). Then

SF
ε (Ω) ≤ SF

(
1− n

n− 2
W 2
∞τΩ(x0)ε2 + o(ε2)

)
as ε → 0.

Proof. For uε as above and Uε as in Step 2 we have
1

ε2∗

∫
Rn

F (Uε) ≥
1

ε2∗

∫
Ω

F (uε)−
1

ε2∗

∫
Ω\Aε

F (uε) ≥
1

ε2∗

∫
Ω

F (uε)− o(ε2)

where we used ρε ≈ ε
2

n−2 . Moreover by (46)
1
ε2

∫
Rn

|∇Uε|2 ≤ 1− 1
ε2

u2
∞,εK(rε)2[capΩ(Aε)− capRn(Aε)]

where Aε = {uε > u∞,εK(rε)}, rε = ε
2

n−2 ρε. We know that wε converges to a maximizer w for SF

and by Theorem 2 we have w = w∗ on Rn \ Br0 and w∗(R) = W∞K(R)(1 + o(1)) as R → ∞. We
claim that u∞,ε/ε2 converges to W∞ as ε →∞. Indeed for ε2 � t � 1 as in (55), |{w∗

ε > t}| = |{wε >

t}| → |{w > t}| and (32) yields, with ρε ≈ ε
2

n−2 and r = ε
2

n−2 R,∣∣∣w∗
ε(R)− u∞,εK(ε

2
n−2 R)

∣∣∣ ≤ c0ε
2 K(ε

2
n−2 R)

(
ρε

ε
2

n−2 R
+ ε

(
ε

2
n−2 R
ρε

)n−2
2
)

for ρε

≤ ε
2

n−2 R ≤ ε
−2

n−2 ρε

(56)

or ∣∣∣w∗
ε(R)− u∞,ε

ε2
K(R)

∣∣∣ ≤ c0 K(R)
(

1
R

+ εR
n−2

2

)
for 1 � R � ε

−2
n−2 .

Thus

|{w∗
ε > t}| = c̃

(u∞,ε

ε2

) n
n−2

t−
n

n−2

(
1 + O(t +

ε2

t
)
)

,

where c̃ is a universal constant. Similarly the asymptotic behaviour of w yields

|{w > t}| = c̃W
n

n−2
∞ t−

n
n−2 (1 + o(1))

as t →∞, with the same constant c̃. Thus (55) proves the claim by taking ε → 0 and t →∞.
Moreover, by Step 4, we have that Aε concentrates at x0 and hence, by Lemma 16 (i) we obtain

1
ε2

∫
Rn

|∇Uε|2 ≤ 1−W 2
∞K(rε)2capRn(A∗

ε)
2τΩ(x0)ε2(1 + o(1))

= 1−W 2
∞τΩ(x0)ε2 + o(ε2) .

Using the generalized Sobolev inequality (3) we conclude
1

ε2∗

∫
Rn

F (uε) ≤ 1
ε2∗

∫
Rn

F (Uε) + o(ε2) ≤ SF
(
1−W 2

∞τΩ(x0)ε2 + o(ε2)
) n

n−2 + o(ε2)(57)

which proves part 1 of Theorem 17. ©
Step 6 (Asymptotic expansion for maximizing sequences)
By Theorem 1 every maximizing sequence {uε} concentrates at some point x0 ∈ Ω. Thus by part

1 of Theorem 17
1

ε2∗

∫
Rn

F (uε) ≤ SF

(
1− n

n− 2
W 2
∞τΩ(x0)ε2 + o(ε2)

)
.

In view of the lower bound established in Step 1 and the inequality W∞ ≥ w∞ (see Remark 4),
equality holds and we must have W∞ = w∞, i.e., the rescaled sequences wε can only converge to those
maximizers of SF which attain the optimal value of W∞.

Step 7 (Identification of concentration points)
From part 2 and the estimate (57) which holds for all sequences concentrating at x0, it follows

immediately that maximizing sequences must concentrate at a minimum of τΩ.
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Appendix: Regularity Criterion for the Robin function

We saw that if the set Ω is regular in the sense of Wiener then the Robin function τΩ is +∞ on the
boundary. This is a kind of regularity for the function τΩ; indeed it assures that it attains its minimum
at an interior point of Ω. It is well known that a point x0 ∈ ∂Ω is regular for the Dirichlet problem if
and only if the following property holds true

(W)

W (x0, R) =
∫ R

0

capRn(Ωc ∩ (B2ρ
x0
\Bρ

x0
))

ρn−2

dρ

ρ
= +∞

for some R > 0.

By this criterion we deduce that a boundary point is regular if the complement of Ω around this
point is not too small. We will see that to assure that τΩ is infinity at a boundary point the complement
of Ω can be even ”smaller” than what is prescribed by (W). Indeed we will prove the following result.

THEOREM 23 Let x0 ∈ ∂Ω. Then τΩ(x0) is finite if and only if

I(x0, R) =
∫ R

0

capRn(Ωc ∩ (B2ρ
x0
\Bρ

x0
))

ρ2n−4

dρ

ρ
< +∞

for some R > 0.

LEMMA 24 Let f(ρ) be an integrable function and fix R > 0. Then there exist R0 and R1 in
(R/2, R) such that

1
R0

∞∑
i=0

f(R02−i) ≤
∫ R

0

f(ρ)
ρ

dρ ≤ 1
R1

∞∑
i=0

f(R12−i) .

If f is continuous, then R0 = R1.

Proof. Let define F (λ) =
∑

i≥1
f(λ2−i)

λ with λ ∈ (R/2, R). The result follows immediately by the fact
that ∫ R

R
2

F (λ)dλ =
∫ R

0

f(ρ)
ρ

dρ .

©

Let x0 ∈ ∂Ω and let ρ > 0. Let rρ(x0, ·) be the solution of the following Dirichlet problem
−∆rρ(x0, ·) = 0 in Rn \ (Ωc ∩ (B2ρ

x0
\Bρ

x0
))

rρ(x0, y) = K(|x0 − y|) if y ∈ ∂(Ωc ∩ (B2ρ
x0
\Bρ

x0
))

rρ(x0, y) → 0 as y →∞.

(58)

We shall consider the function rρ(x0, ·) extended to Rn by setting rρ(x0, y) = K(|x0 − y|) if y ∈
Ωc ∩ (B2ρ

x0
\Bρ

x0
) and by lower semicontinuity on ∂Ωc ∩ (B2ρ

x0
\Bρ

x0
).

LEMMA 25 Let rρ(x0, ·) be the solution of (58), then

K(2)2
capRn(Ωc ∩ (B2ρ

x0
\Bρ

x0
))

ρ2n−4
≤ rρ(x0, x0) ≤ K(1)2

capRn(Ωc ∩ (B2ρ
x0
\Bρ

x0
))

ρ2n−4
.(59)

Proof. Let uρ be the capacitary potential of Ωc ∩ (B2ρ
x0
\ Bρ

x0
) in Rn and let µρ be its capacitary

distribution. We have

K(2ρ)uρ(x) ≤ rρ(x0, x) ≤ K(ρ)uρ(x) .(60)

By the fact that

uρ(x) =
∫

∂(Ωc∩(B2ρ
x0\B

ρ
x0 ))

K(|x− y|)dµρ(61)

we get
K(2ρ)capRn(Ωc ∩ (B2ρ

x0
\Bρ

x0
)) ≤ uρ(x0) ≤ K(ρ)capRn(Ωc ∩ (B2ρ

x0
\Bρ

x0
))

which concludes the proof together with (60). ©
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We denote by Hr the regular part of the Green’s functions of Ω ∪ Br
x0

, with r > 0, and let τr be
the corresponding Robin function.

Proof of Theorem 23. We will prove Theorem 23 by means of an upper bound and a lower bound
of τΩ(x0) in terms of I(x0, R).

Step 1. (the upper bound) Let x0 ∈ ∂Ω and let us fix R > 0. Then

τΩ(x0) ≤ K(1)2RI(x0, R) + τR(x0) .(62)

Let rρ(x0, ·) be the solution of problem (58). Since rρ(x0, ·)+H2ρ(x0, ·) is harmonic in the set Ω∪Bρ
x0

and greater than K(|x0−·|) on its boundary, for every ρ > 0 we have Hρ(x0, ·) ≤ rρ(x0, ·)+H2ρ(x0, ·)
in Ω ∪Bρ

x0
, so that in particular

τρ(x0) ≤ rρ(x0, x0) + τ2ρ(x0)(63)

By iteration and taking into account that τρ(x0) converges to τΩ(x0) as ρ → 0, we get that for any
fixed ρ > 0

τΩ(x0) ≤
∞∑

i=0

r2−iρ(x0, x0) + τ2ρ(x0) .(64)

By Lemma 25 we have

τΩ(x0) ≤ K(1)2
∞∑

i=0

capRn(Ωc ∩ (B2−i+1ρ
x0

\B2−iρ
x0

))
(2−iρ)2n−4

+ τ2ρ(x0) .(65)

The conclusion follows by applying Lemma 24 to the function f(ρ) = capRn(Ωc ∩ (B2ρ
x0
\Bρ

x0
))ρ4−2n,

using (65) with ρ = R1 (where R1 is given by Lemma 24), and that τ2R1 ≤ τR.

Step 2. (the lower bound) Let x0 be a boundary point such that W (R, x0) < +∞ for some R
(and then for all), then

I(R, x0) ≤
C

R
(2R W (2R, x0) + 1)τΩ(x0) ,(66)

where C is a positive constant depending only on n.

Let us denote by Ci(r) the set B2−i+1r
x0

\B2−ir
x0

. For any h ∈ IN , let Sh
r (x) =

∑h
i=0 r2−ir(x0, x) and

let Sr(x) =
∑

i≥0 r2−ir(x0, x). We shall estimate the function Sr(x) on ∂Ω. More precisely we will
prove that

Sh
r (x) ≤ Sr(x) ≤ C K(1)(2R W (2R, x0) + 1)K(|x− x0|) ∀ x ∈ ∂(Ωc ∩B2r

x0
)(67)

for every r < R. If (67) is true, since Sh
r (x) is harmonic in Rn \ (Ωc ∩ (B2r

x0
\B2−hr

x0
)) and in particular

in Ω ∪B2−hr
x0

, the same estimate holds on ∂(Ω ∪B2−hr
x0

). This implies in particular

Sh
r (x) ≤ C K(1)(2R W (2R, x0) + 1)H2−hr(x0, x) ∀ h ∈ IN ∀ x ∈ Ω .

Thus, since by Proposition 7 H2−nr(x0, x) converges to H̃Ω(x0, x) as n →∞, we have

Sr(x0) ≤ C K(1)(2R W (2R, x0) + 1)τΩ(x0) ∀ r < R .

We conclude the proof using Lemma 25 and Lemma 24 as in the previous step.
It remains to prove (67). Let ρ > 0. Let us fix x ∈ ∂Ck(ρ); so that in particular 2−kρ ≤ |x− x0| ≤

2−k+1ρ. Let i ∈ IN be such that i > k + 1, using (60) and the integral representation (61), we have

r2−iρ(x0, x) ≤ K(2−iρ)K(2−k+1ρ− 2−iρ)capRn(Ωc ∩ Ci(ρ))

≤ 2n−2K(1)2(2−kρ)2−n(2−iρ)2−ncapRn(Ωc ∩ Ci(ρ))

≤ 2n−2K(1)K(|x− x0|)capRn(Ωc ∩ Ci(ρ)) .

(68)
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Similarly we can estimate r2−iρ(x0, x) for i < k − 1 and we obtain that there exists a constant C
depending only on n such that

Sρ(x) ≤ C K(1)K(|x− x0|)

( ∞∑
i=0

(2−iρ)2−ncapRn(Ωc ∩ Ci(ρ)) + 1

)
.

Now, by Lemma 24, for any r < R there exists r1 ∈ (r, 2r) such that

Sr1(x) ≤ C K(1)K(|x− x0|) (r1W (r1, x0) + 1) ≤ C K(1)K(|x− x0|) (2R W (2R, x0) + 1) .

Finally we get (67) taking into account that Sρ(x) is increasing in ρ.
©
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