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Abstract
We study the variational problem

sE@) = E%sup {/ F(u) : u € D"(Q), |Vulz < 5} ,
Q

where Q@ C R", n > 3, is a bounded domain, 2* = % and F satisfies 0 < F(t) < at®” and

is upper semicontinuous. We show that to second order in e the value S (©2) only depends on
two ingredients. The geometry of 2 enters through the Robin function 7o (the regular part of
the Green’s function) and F enters through a quantity we, which is computed from (radial)
maximizers of the problem in R". The asymptotic expansion becomes

sy =& s (1 -

2 . 2 2
ws, minToe” +o(e”) | .
n-— Q

Using this we deduce that a subsequence of (almost) maximizers of SZ(£2) must concentrate at a

. . v 2 % = . .. .
harmonic center of €, i.e., ‘;;;l — 0z, Where zp €  is a minimum point of 7q.
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1 Introduction

Let 2 be a domain in R™, n > 3. We continue the investigation of the variational problem

(1) sup{/QF(u) : /Q\Vu\2§52, u=0 on 69}

started in [9]. We are interested in the asymptotic behaviour of the solutions u. of (1) as € — 0. The
integrand is supposed to satisfy the growth condition

0 < Ft) < altf*

where 2% := % denotes the critical Sobolev exponent. For smooth integrands every solution of (1)
satisfies the Euler Lagrange equation
(2) —Au = Af(uw) in

v = 0 on 00

with f = F’ and a large Lagrange multiplier A. In [9] it is shown that as ¢ — 0 the sequence {u.}
concentrates at a single point zg € Q. For small ¢ the major part of the energy is concentrated in the
vicinity of this point. For applications like the Bernoulli free-boundary problem or the plasma problem
it is important to know the location of the concentration point.

In this paper we show that the concentration point is a minimum point of the Robin function
(the regular part of the Green’s function with equal arguments), see Theorem 17. In particular the
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concentration point does not depend on the integrand. The proof relies mostly on two ingredients. The
first is a sharp decay estimate for almost maximizers (see Lemma 22 in Section 7). The corresponding
result for exact maximizers was first obtained in [8]. The second ingredient is an approximation formula
for the capacity of small sets. We show in particular that this formula requires no regularity conditions
on (2, if one defines the Green’s function and the Robin function in the appropriate way (see Section 2,
in particular Definition 6). Another subtle point is that we allow discontinuous integrals F' in order to
include e.g. Bernoulli’s problem (maximization of volume for given relative capacity, i.e. F' = X[1,o0))-
Therefore we cannot use the usual form of the Euler Lagrange equations. Instead we use the weak
Euler Lagrange equation obtained by variation of the independent variable [8]. It involves F' but no
derivatives of F.

The relevance of the critical points of the Robin function for Dirichlet problems that involve the
critical Sobolev exponent was first pointed out by Schoen [17] and Bahri [1]. Rey [16] and Han [13]
showed that as p — 2* the maximum points of the positive solutions of

Au+uP™t = 0 in Q,
u = 0 on 909

accumulate at a critical point of the Robin function. This has been conjectured by Brézis and
Peletier [4]. The simpler proof of [11] applies to all dimensions and shows that the concentration
point is a minimum point of the Robin function. Similar results for the Ginzburg-Landau functional
have been obtained by Bethuel, Brézis and Hélein [3]. The influence of the Robin function on the loca-
tion of concentration points is weaker than that of any kind of anisotropy. For instance the solutions

of
sup{/QG(-)F(u) : /Q|Vu|2§€2, w=0 on (’)Q}

concentrate at a maximum point of G and not at a minimum point of the Robin function. Those of

sup{/QF(u) : /QVu-A(-)Vu§E2, u=0 on 8(2}

concentrate at a minimum point of det A [6]. For further references see also [7].

2 Hypotheses and generalized Sobolev inequality

Let © be an open subset of R, n > 3. By Q we denote the closure of  in R U {co}. In particular
the closure of an unbounded domain contains the point co.

The natural function space for variational problems of the form (1) is D'?(Q) defined as the closure
of C2°(Q) with respect to the norm

1/2
iwola = ([ 1ve2)
Q

The results of this paper require one or more of the following hypotheses.

() Qis adomain in R™ of dimension n > 3 with  # R™ in the sense capg» (R™\ ) > 0. Moreover
2 is not an exterior domain, i.e. co € R\ .

(F) The integrand F' satisfies the growth condition 0 < F(t) < « |t|2* for some constant «. It is
upper semicontinuous and F # 0 in the L' sense.

(FT) max(F,", F+) < SF/S* with each term as defined below.

As in [9] we set

F(t F(t
Ff := limsup (2) , Ff = limsup (2*),
t—0 |t [t|—oo [t
1
SEQ) = 62*Sup{/QF(u) cu € DY2(Q), |[Vullz < E},

and we define the generalized Sobolev constant by

SF = SF®Rm).
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For the critical power F(t) = |t|2* we denote by S* := S the best Sobolev constant. A simple scaling
argument leads to the generalized Sobolev inequality

(3) Fu) < ST|Vu|Z for ue D“?(Q)
Q

2
In fact, the rescaled function u®(z) := u(x/s), with s := ||Vul|, "%, satisfies ||Vu®||2 =1 and

(4) /QF<uS> = |Vl / Fu).

By the generalized Sobolev inequality we know that S (Q) < S¥. Moreover SI'(Q) — S as e — 0.

For the critical power F(t) = \t|2* we have ST = SF(Q) for every . But typically SF(Q) decreases
as ¢ increases (see Theorem 17 below). An extremal for the generalized Sobolev constant or entire
extremal is a function w € DM?(R™) with ||[Vwl|z =1 and [g, F(w) = S¥.

We say that {u.} is a sequence of almost extremals for (1) if u. is admissible for the definition of
SF(Q) and

fQ F(ue)

= SE(Q) +o(e?) as e — 0.

3 Concentration and asymptotic shape of low energy extrem
als

The main results of previous papers [9, 8] are summarized in the following two theorems.

THEOREM 1 ([9]) Suppose () and (F'). Suppose in addition that one of the following assumptions
holds: (a) Fyt < ST /S* or (b) Fy = Fy or (¢) Q has finite volume. Then

1. If {uc} satisfies ||Vue| < € and 5;2* [ F(u:) — ST as e — 0, then a subsequence of {u.}
concentrates at a single point xg € €2, i.e.

|Vue|2 R
e2

Fus)

F
= ST 6y,

0z

in the sense of measures.
If in addiction (FT) holds then

2. For every € > 0 the variational problem (1) has a solution u..

3. There are points x. — xg such that a subsequence of the rescaled functions
2
we(y) = ue (xs +en-2 y)

tend to an extremal for S¥, i.e. w. — w in DM?(R"), [|[Vwllz =1, and [g, F(w) = S*.

Concerning entire extremals we have the following additional information. Let

1
K= =g

denote the fundamental solution of —A.
THEOREM 2 ([8]) Assume (F) and let w be an extremal for ST'. Then:

1. Either w > 0 or w < 0.

2. There is a ball By such that w agrees with the Schwarz symmetrization w* outside this ball.
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3. If we assume w > 0 and o = 0, then the function r — w(r) is strictly decreasing on (1o, 00)

and
(5) w(r) = WeK(r) (1 + O(rfg)) ,
(6) w'(r) = WoK'(r)(1+ 0(7’72))

for r — oo, where

2 _ 2(n —1) F(w)
Vo = Z05F Ja K()

4. In particular w(r) < cr?=", F(w(r)) < cr=?", and

/ Vw]®> < ¢R*™, / Flw) < c¢R™
R™\Bg R™\BE

for every R > 0.
5. If F is non-decreasing on R and non-increasing on R~ then Bigo = {w =maxw}.

In the following we denote by B the class of maximizing sequences for S¥ consisting of radial
functions.

THEOREM 3 Suppose (F) and set

2 2(n-1), . F(wy) P
Woo = oo inf hkrgloréf R c{wi} e B 5.

Then

1. wee = 0 if and only if some sequence in BY concentrates at 0.
2. 0 < wee < 00 if and only if no sequence in BY concentrates at 0 and an extremal for S¥ exists.
3. Weo = 00 if and only if every sequence in BY concentrates at co.

Proof. Consider an arbitrary sequence {wy} € BY. By the generalized concentration-compactness
alternative [9, Theorem 9] exactly one of the following three possibilities can occur (after suitable
extraction of a subsequence):

A) Concentration at the origin: |Vuwy|* = 6o, F(wy) = S¥4,
B) Compactness: wy — w in DV2(R"), F(wy) — F(w) in L'(R"),
C) Concentration at infinity: |Vw,|> = 0o, F(wy) = SFds.
If woe = 0 then
F(wg)
re K(|)
for some {wy} € BY. This excludes B and C because S¥ > 0. Conversely if there is a maximizing

sequence which concentrates at the origin we choose a radial cut-off function 1 supported in By with
n(0) = 1. After suitable scaling as in (4) with s; — 1 the sequence {(nwy)**} is in BY. Thus

9 1
ws, < K(T‘)/BF(wk)+0(1)

r
0

— 0

which tends to 0 as » — 0. This proves 1. of Theorem 3.
If an extremal function for S exists then ws, < oo by Theorem 2. If {wy} € BY concentrates at
infinity then

F(wg 1 S
RO 2 R o T R
which tends to infinity as R — oo. Finally we, = 0o excludes A and B. O
Remark 4 If 0 < we, < 00, by Theorems 1 and 2 we deduce that w2, < WZ.
As a consequence of Theorems 2 and 3 we obtain the following compactness criterion.

COROLLARY 5 If (F) and (F*) holds then ST admits a radial extremal w, 0 < ws, < 00, and
w(r)/K(r) — weo as 1 — o0.
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4 Robin function and harmonic centers

In this section 2 will be an arbitrary open subset of R™ with n > 3, which satisfy (). To simplify
the notation we will make the convention that in this section co is not considered a boundary point.

The concentration point xg of Theorem 1 will be identified in terms of the Robin function of €2, i.e.
the diagonal of the regular part of the Green’s function of the Dirichlet problem in Q for the Laplace
operator. This function has been considered in [2] in the case of domains with regular boundary. In
the following we shall give a definition which extends the one of [2] and holds for any domain, possibly
with irregular boundary, and we shall study its basic properties.

Let us denote by K, (y) = K(|Jz—y|), for every x,y € R", the fundamental solution for the negative
Laplacian. For every point € QU IS, let us define the regular part of the Green’s function, Hq(z, -),
as the solution in the sense of Perron-Wiener-Brelot (PWB) of the following Dirichlet problem

AyHQ(xvy) =0 in Qv
(7)
HQ(l',y) = Kw(y) on 897

i.e., Hqo(x,-) is the infimum of all superharmonic functions u such that

liminf u(z) > K.(y)
2=y
z €

for every y € 0Q U {oco0} (see [14]).

Note that the notion of PWB solution is stable under increasing sequences of resolutive boundary
data. Thus the function Hq(x,y) is well defined also if z € 9. The Green’s function of the Dirichlet
problem for the Laplacian is defined by

G:(y) = Ku(y)— Ha(z,y).

The Green’s function is symmetric in Q x Q (see [14], Theorem 5.24), hence Hq(x,y) = Hq(y, z) for
every (z,y) € Q x Q.

If z € Q the function Hq(z,-) coincides with the weak solution of (7) in the sense of D*?(Q) and
the Green’s functions agree with the solution in the sense of Stampacchia of the problem

- AyG,(y) =6, inQ,
Gz(y) =0 on 02

(see [15]). In general, given a measure p of bounded variation, we say that a function u € L(Q) is a
solution in the sense of Stampacchia of the equation —Aw = p, vanishing at 9€ if it satisfies

(8) /Q ubds — /Q G(®)dp

for every ® € C°(Q2), where G(®) is the solution vanishing on 99 of the equation —AG(®) = ®. The
solution in the sense of Stampacchia is unique and belongs (for bounded domains) to the space Wy ? ()
for every p < --. For more general domains the truncations (—t) V (¢ A u) belong to D'?(2) and

f{lu\<t} |Vu|? < t]ju. After a short calculation this yields weak LP bounds ||[Vul|| o o + ||ul| o o <

n—1° n—2>° —

Cllul, i.e. {IVul > tHE=T < Cllul and [{lul > tHt=2 < Clul.
Moreover this notion is stable with respect to the weak convergences of measures, that is if pg is
a sequence of measures of bounded variation such that suppur C K C €, for a fixed compact set K,
and i, = g then the corresponding solutions converge to the solution of (8) in W,P(Q) for every
p <

n
n—1"
For every x € QU 99, let us extend the function Hq(x,-) to a superharmonic function Hg(z,-)
defined on all R"™, as follows: for every y € 09 we set

(9) Hq(xz,y) = liminf Hq(z,2)
z—y
z €
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and Hq(z,y) = K, (y) for every y € R™\ Q1 (see [14], Theorem 7.7). Finally let us extend Hq(z,y) to
R" x R" by setting Hq(x,y) = K,(y) for every x € R"\ Q.
In the following definition we extend to 92 the usual notions of Robin function, harmonic radius

and harmonic center.

Definition 6 (Robin function, harmonic radius, harmonic center) For every x € QU 0N the
leading term of the reqular part of the Green’s function

To(z) = ﬁg(x,x)

is called Robin function of € at the point x. The harmonic radius of € at x is defined by the relation
K(r(z)) = tq(z). A minimum point of the Robin function on QU 0 is called a harmonic center of

The harmonic radius of the ball Bé% is

2

_ el

7
In particular the harmonic center of a ball is its geometric center and the maximum of the harmonic
radius is the radius of the ball.

At every boundary point satisfying the Wiener regularity condition the Robin function tends to
400. Thus a bounded domain with regular boundary has at least one harmonic center on §2.

We will prove in Proposition 7 that 7q(x) is lower semicontinuous on 2 U 9. Nevertheless it is
possible to show with an explicit example that this extension of the Robin function to all QU dQ does
not agree with its lower semicontinuous envelope of 7q; on QU 9Q (at least for n > 5). For further

r(z) = R

discussion on the relation between Wiener regularity arizd the condition mq(x) = +oo for z € 9N see
the appendix.

From the lower semicontinuity of 7q we conclude that every bounded domain, possibly with irreg-
ular boundary, has at least one harmonic center.

Fix xo € 9Q. Let us denote by Q,(zo) the set QU Bf . For any fixed z € QU N let Ho () (; )
be the PWB solution of the problem

AyHQp(azo)(‘T7y) =0 in Qp(xo),
(10)
Hﬂp(m’o)(x7y) = KCE(Z/) on an(.’Eo)

and let g, (z,)() the corresponding Robin function.

PROPOSITION 7 Let zg € 02. Then, for every z,y € R", Hq, (2)(,y) converges increasingly to
Hq(x,y) as p decreases to 0.

In particular Tq,(2,)(x) converges increasingly to To(x) as p — 0, for any x € QU N and 1q is
lower semicontinuous in € U 0S).

Proof. Let zo € 0. Let us fix z € QU IQ and let Hq (4,)(7,y) be the solution of problem (10).
By the definition of PWB solution we have that Hgq (4, (7,y) < K.(y) for every y € Q,(xo) and
then, by a comparison argument Hgq (4, is decreasing with respect to p. Thus ng(zo)(x, -) converges
increasingly, as p decreases to 0, pointwise in €2 to the PWB solution of a Dirichlet problem with
boundary value which coincides with K, (y) at least on 90\ (ZU{x¢}), where Z is the set of irregular
points of 9. Since the capacity of Z is zero, this implies that HQp(zo)(x,y) converges, as p — 0, to
Hq(z,y) for every x € QU OQ and y € Q.

Let us denote by .EIQP(J;O)(Z', -) the superharmonic extension to R"™ of Hgq (4,)(,) obtained as

above. Clearly ITIQp(IO)(z, -) is also decreasing with respect to p. Thus it converges, as p — 0, to some
function H*(-) and this function is superharmonic on R"™. We already proved that H*(y) = Hq(x,y)
if y € Q. Therefore H*(y) = Hg (z,y) for every y € R™\ Z and y # . Then by the uniqueness of the
superharmonic extension on a set of capacity zero we obtain that H*(y) = ﬁgz(x, y) for every y € R™.

Hence, in particular, 7o (,,)(2) converges to To(z), as p — 0, for every z € QU 9.

Finally, since 7 (4,) are lower semicontinuous in zg so is 7o as an increasing limit of those functions.
Indeed if z; — x, then

liminf 7o (z;) > hjrilgOlf T, (20) (T5) = Ta, (z0) (T0) -

J—00

The conclusion follows taking the limit as p — 0. O
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PROPOSITION 8 For everyy € R™ the function x — Hg (x,y) is superharmonic in R™. Moreover,
(x,y) — Haq(x,y) is lower semicontinuous in R™ x R™.

Proof. Let y € R™. The function ﬁg(, y) is superharmonic if and only if it is lower semicontinuous
and

(11) Hq(z,y) > . Hq(t,y)dt
for every x € R™ and s > 0.
If y € R"\ Q then Hq(z,y) = K.(y) for every z € R™ and hence is clearly superharmonic.
IfycQandz € R\ Qorz € Q, then Hq (z,y) agrees with K, (y) or Hq(x,y), respectively, and
those are superharmonic functions.
To check the superharmonicity in the remaining cases let us fix zo,yo € QU 9Q and let us prove
the lower semicontinuity of Hq(-,yo) in .
For any x € R", let H, ,(x,-) be the PWB solution of the following problem

AyH, (z,y)=0 inQUBL UB;

Yo’

(12)
Hy (z,y) = K:(y) ond(QUBL UBy )

and let H o (T, ) be its superharmonic extension to R™ as above. By Proposition 7, H o.r(T,y) converges
increasingly to HQ(:E y) as p and r decrease to 0. In particular H »,r(2,y0) are lower semicontinuous

in zg for any r,p > 0 and so is Hg(ar,yo).
It remains to prove condition (11) for every xg,yo € Q U 99, with either xg € 9Q or yo € 9Q. By

the symmetry of the Green’s function and the fact that, for any z € R", H ».r(T, ) is superharmonic
we have

Hp,r(x[)ayO) = Hp,r(xmyO) = Hp,r(y()wTO) Z][ E[ ,r(y07t) dt
B3
(13) “

- ][ (o, t) dt — ][ (b o) dt
B;O\Z 20

where for the last equality we used that, up to a set of capacity zero, H o.r (Yo, ) agrees with a symmetric
function. We conclude, by (13), taking the supremum in p and r and using the monotone convergence
of HPT(t Yo) to Hg(t Yo)- N

Finally, using the superharmonicity of Hq(z,y) in « and y we get its lower semicontinuity in (z,y).
Indeed

liminf  Hq(t,z) > liminf ][ Hq(&,n)dEdn
B.(t)) Bi(2)

t—rz—y t—x
t,z € z—y
~ lm Fio(€.n) d¢dn = | Ha(€.n) ds di.
t— g YBs(t)/Bi(2) Bs(z)/ Bi(y)
z—y

Taking the supremum in s and [, using the superharmonicity of ﬁg we get

lim inf Hq(t, 2) > Ho(z,y) .
t—xz—yY
t,z €Q

O

In the following example we construct a bounded domain where the harmonic center is on the
boundary.
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Example 9 Let Qy = B} and let 7, be the corresponding Robin function. The harmonic center for
Qp is 0 and 7q, is strictly convex. The idea is to construct a sequence of small balls centered in the
first axis, with radii which go to zero, in a way that the set obtained from 2y by subtracting a finite
number of them has its unique harmonic center in the same axis.

Let us fix real positive number 0 < z7 < 1, let us denote r1 = |z1|/2 and let &1 > 0 be such that
0<er < minQO\Bgl Qo — mintl Tq,. With a little abuse of notation we shall denote by xj, the points

of coordinates (xy,0,...,0), with 2 € R. Fix 0 < a < 1/2. Let p; > 0 and denote Q1 = Qg \ B! It is
easy to check that 7, converges uniformly to 7o, in €\ By and the same is true for the derivatives.

Thus we can choose p; small enough such that 7, is strictly convex on Qg \ Bgf, Bgf NBy* =0 and

we have - .
Tae (2) < 7o, (z) < 1, (z) + 51 Vo € Qo \ Bo! .

This implies that the harmonic center, 29, of € is unique, belongs to Bj', and, arguing by symmetry,
belongs to the first axis. Let us denote it by 2§ = (29,0,...,0).

By induction we can construct four sequences {z,}, {pn}, {22}, and {e,} such that, with the
notation Q, = Qo \ (U, B) and r,, = |&, — 20 _|/2, we have

. 0 .
1) 0<e, <ming, \pn T,y — T0u_1 (Tn_1);
x

n—1

2) BY» N (Bt UBT ) =0
: n—1
3) tq,_,(x) < T1q,(x) <T1q,_, () + % for every z € Q,,_1 \ng;

4) 1q, () is strictly convex in Q,_1 \ B,@E.

Moreover z,, = (x,_1 — 22_1)/2, {x,} is decreasing and 20 = (2%, ...,0) is the unique harmonic

center of 7q, . Clearly the sequence {z,,} converges to some Z. Hence {22} converges to T.

Finally, by Proposition 7, 7q,, (x) converges to 7q__ () for every 2 € Qu, with Qo = Qo\ (U2, B2?).
Moreover, since {7, } is an increasing sequence, T is the harmonic center of ., and by construction
belongs to the boundary of Q..

PROPOSITION 10 Let Q* be the ball of radius Rq centered in zero and such that |Q*| = |Q|. Then
r(z) < Rq for every x € QU 0NQ.

Proof. If z € Q the inequality is proved in [2], Corollary 14. If 2 € 0%, we apply the result of [2]
to the set Q, = QU B2 and we obtain rq,(z) < Rq, for every p > 0, where rq,(z) is the harmonic
radius of €, in x. Thus K(rq,(z)) > K(Rq,), that is 7q,(z) > K(Rq,). As p — 0 the radius Rq,
converges to Rg and, by Proposition 7, 7, () converges to 7q(z). This concludes the proof.

O

Remark 11 An equivalent formulation of the previous assertion is
(14 192 B9 = [{K > (@)} Veq.
In the case Tq(z) < 400, we have z € {G, >t} := QL. If we apply (14) to Q2 and observe that
Gat o =Gy —t
whence 7ot (7) = t + To(7), we obtain
HGz >t} > {K >t +ma(z)}].

A simple comparison argument shows that r(x) > dist(z,9Q). If « € Q, near the singularity the
Green’s function can be expanded as:

(15) Go(y) = K(ly—zl)—7a@)+O(ly — ).
It has the following properties.

PROPOSITION 12 ([2, 11]) For fixed x € Q the Dirichlet Green’s function G, satisfies:
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1. For every t > 0 one has

/ VG| = t

{G.<t}

2. As t — oo we have By~ C {G, >t} C By with r+ = r £ O(r") and r defined by t =
K(r) —mq(x).

Proof. The proof of 1 follows by the fact that G, At belongs to D%? and coincides with ¢ in a
neighborhood of z. By an approximation argument one can show that it is possible to take G, At
as a test function for —AG, = ¢, which yields immediately the result. Assertion 2 follows by the
expansion (15). O

This implies that the capacity of a small ball is asymptotically given by
1

(16) Ca‘pQ(B;) = K(T) . TQ((L') + O(T’) = Capgrn (Bg) + Ca‘p%ﬁ"’ (Bg) (TQ(I') + O(T))

as r — 0. In the radial case

17 Bl) = ————.
( ) CapBé{( O) K(T) 7 K(R)

LEMMA 13 Let Ay be a sequence of compact sets such that |Ax| = |BL| and capg.(Ax) converges
to capgn (By) as k — co. Then, up to a subsequence, there exists a sequence {xy} such that Ay — xy,
converges to B in L'. Moreover if uy, and u denote the capacitary potential of Ay and B} respectively,
then uy(zy, + +) converges to u strongly in D2(R™).

Proof. Up to a subsequence we have that uy, converges weakly in D*2(R"). Using the concentration
compactness alternative, we can exclude splitting by the fact that uy is a maximizing sequence for
the volume functional. Since |{uy > 1}| = |Ax| = | B{| vanishing and concentration are not possible.
Hence there exists a sequence xj in R™ such that ug(- + x}) is compact in DY2(R™), then up to
a subsequence it converges to some function u strongly in DV?(R™) and so in L? (R"). This implies
that [{u > 1—n}| > liminf [{uy > 1}| = | Bj]| for every n > 0 and hence, since [5,, [Vu|? = capg. (By),
{u > 1} is a ball of radius 1 and w is its capacitary potential. Clearly the sequence xj, can be chosen
in a way that {u > 1} = Bj.
O

As consequence of this lemma we have the following proposition which state essentially that if the
capacity of a set A approach the capacity of its symmetrization, then A is almost a ball.

PROPOSITION 14 There ezist w : Ry — R, with lims_ g+ w(d) = 0 with the following property.
Let A be a subset of R™ with positive measure and define p > 0 by |A| = |Bf|. Suppose that

cap (4)

<1+34.
capgn (BE)

Then there exist y € R™ such that
|AABY| < w(d)
— < w(d).
|B|

Proof. Without loss of generality we can assume that p = 1. Suppose by contradiction that for every
y € R™ there exist wo(y) and |Ag|, with |Ay| = |BL], such that capg.(Ax) — capg.(B}) and

(18)  inf|ALAB,| > wo(y)
Then Lemma 13 gives a contradiction. O

Remark 15 Let A C Q is a sequence of compact sets with |Ax| — 0 and

1 1
19 limsup ~ =
19 n e (@)~ capa(Ar)

< +00.
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Since |Ax| — 0, as k — oo, we have that capgn(A4f) — 0, as k — co. So that, by (19) we have that
capg(Ax) _

k—oo capgn (Af)

Then, as capgn (Ax) < capg(Ax) and capgn(Aj) < capgn(A4x), we get

(20) i C2PaAr)

k—oo CapRrn (Ak)

By a rescaling argument applying Lemma 13 we have that the sequence of the capacitary potentials
1, . . . .
of the sets Ay /|Ag|» is compact up to a translation. Thus, denoting by uy the capacitary potential
of Ay in Q, it is easy to check that there exists a point T € €2 such that
2
[Vur|”  « 5
capo(Ar)

in the sense of measures.

With the following lemma we obtain an asymptotic expansion for the capacity of concentrating
sets in terms of the Robin function.

LEMMA 16 (Asymptotic expansion of capacity)
(i) Let xo € QU OQ and let Ay, be a sequence of subsets of 0 such that |Ag| > 0 and

1 *
X, G,
AT
Then
1 1
(21) lim inf — > 1q(x0) -

k—oo capgn(A})  capg(Ak)
(i) Suppose now that 2 bounded and let Ay C Q, with |Ax| > 0 and |Ax| — 0 then
1 1

lim inf - > minTq .
k—oo caprn(Af)  capg(Ax) Q

Proof. Let us prove (21) first in the case zg € 2.

By an approximation argument it is not restrictive to assume that the A; are compact. Moreover
we may assume that the liminf in (21) is a limit. By the assumption of concentration |[A;| — 0 as
k — oo and we may assume that (19) holds true, otherwise the result is trivial. Thus by Remark 15
we have that there exists a point Z € Q such that

V|

22) capq (Ax)

= 657

in the sense of measures, where uy, is the capacitary potential of Ay in Q. In the case (i), since Ay
concentrates at xg, we can obtain that T = xg. We shall prove that the rescaled functions

Uk

Yk capg (Ar)

converge to the Green’s function. Let us denote by i the capacitary distribution of Ay, i.e., the non
negative Radon measure with support in Ay such that —Auy = py in the sense of H~1(Q). Let us
prove that A\, = ui/capq(Ax) converges to d,, in the weak sense of measures. Test —Av, = A, with
pug, for p € C§°(Q), and use that ur, =1 on A — k to obtain

23 d\, = / dx + V de =Ty +T,.
(23) /QSO " Ja Capg Ak capg(Ay) ! ?

By (22) TF converges to ¢(zg), while T converges to zero. Indeed by Hélder inequality we have, for
every p > 0,

*

Vu |2 ug . =
Tkg/ Vuil” / 7/ Vo)™ +Cp.
2 ( o\, capQ(Ak)) ( o\, CapQ(Ak)T) ( o\, Vel ) p

[N
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By the arbitrariness of p we obtain that 7§ converges to zero. Hence A — 8,,. As discussed above
this implies that vy, converges strongly in VVllof (Q) (WO1 () for bounded domains), for every p < -
to the Green’s function G, i.e., the solution in the sense of Stampacchia of —AG,, = d,,. Moreover
for every ¢t > 0 we have that [, |[V(v; A t)> = f{vk<t} |Vug|? < t. In view of Proposition 12 1 this
implies that vy At converges to G, At strongly in D*2(Q).

Let us prove now that

(1) lim capge (v > 1) = capga (G, > 1))
for a.e. t € R. Indeed for a given § > 0, denote D = {|vx A 2t — Gy, A 2t| > §}. Since

IV (vk A 2t) = V(G A 20)]13

caprn (D) < C 5

we have that capg. (D) converges to zero as k — oo. Therefore, since {vj, >t} C {G,, >t—6}UD?
and {vg >t} U D) D {Gy, >t + 6},

capgr ({Gay >t +0}) — capga (D)) < capgs ({ve > t}) < capra({Gay >t = 0}) + capg. (DR).

The conclusion follows since the monotone function ¢ — capgn ({Gy, > ¢}) is continuous for a.e. .
To conclude the proof let us fix s > 0 and set By, = {vy > s} = {up > scapy(Ax)}. Since By is a
level set of the capacitary potential of Ay we have

1 1 N 1 _ 1 —scapq(Ax) b
capg(Ar)  capp, (Arx)  capq(Bk) capg (Ax)

Indeed taking ug At and (ug V t) —t as test functions in —Awuy = ug, we obtain t?capg(By) =
f{uk<t} |Vuk\2 = tcapg(Ax) and (1 — t)2caka (Ag) = f{uk>t} \Vuk|2 = (1 — t)capq (Ag). Moreover

1 1 1 1
> > + .
caprn(Af) ~ capgrn(Ar) ~ capp, (Ax)  capgrn(DBk)

So that, taking into account (24), we obtain

1 1 1 1
lim inf — > liminf — >
k—oo capgn(A})  capg(Ak) — k—oo capga(Br)  capq(Br) — capge({Gay > s})

for a.e. s € R. Proposition 12 (2), implies that

CapR"({éz oD = K(r4(s) + O(r)) = (s + (20)) (1 + O(s7))

and taking the limit s — oo, we obtain assertion (i) for zo € €.
If g € 092, by the previous step applied to Q,(x¢) = QU B,(x0), with p > 0, we obtain

1
(25) lim inf

- > Ta (z,)(To) -
k—oo capgn(Af) capr(mO)(Ak) > TQ, (wo) (T0)

Since Q2 C Q,(zo) implies capg (5,)(Ak) < capg(Ak), we obtain (21) taking the limit as p — 0 and
using Proposition 7.

In order to treat case (ii) it is enough to note that, from (22), we can proceed as in the previous
case assuming that T € (2 and obtain

lim inf 1 ! > 70(Z) > mi
imin = - > 7(T) > minTq .
k—oo capra(A})  capg(Ak) Q

We recover the general case Z € Q arguing as above. O
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5 Localization of concentration points

The main result of this paper is the second order expansion of S with respect to ¢. It turns out that
the second nontrivial term depends on the value of the Robin function at the concentration point.
This allows us to identify the concentration point. We recall the definition of ws, given in Theorem 3

2 2(n-1), . F(wy) P
Woo = oo inf hkrriloréf R c{wi} e B 5.

THEOREM 17 (Identification of concentration points) Assume that Q is bounded and (F).
Let woo be defined as in Theorem 8 and suppose that 0 < wey, < 00.

1. If the sequence {u.} C DY2(Q) satisfies |Vic|a < € and concentrates at x in the sense of
Theorem 1 then

/QF(ﬂE) < g2 gr (1 - ﬁ 2w§07(x) e + 0(52)>

as € — 0.

2. If {uc} is a sequence of almost extremals we have

/F(ua) = 2 5F (1— ngo min 7q 52—|—0(€2)).
Q n—2 Q

3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.

T(zg) = mﬁin TQ

with xo as in Theorem 1.

If we = 0 then SI' () = S for every e > 0. Conversely, if SF'(Q) = S¥ — o(¢?) and ming o > 0
then ws = 0.

Remark 18 By Proposition 10 we have

. . 1
min7g 2> minTox = ——————
o o capgn (%)
so that the assumption €2 bounded implies ming 7q > 0. The result stated in Theorem 3 is still true if
we replace the assumption (2) with a weaker assumption which allows also unbounded domains and
still implies ming 70 > 0.

Theorem 17 can be extended to unbounded domains. In this case one extends the Robin function
to oo by

(26) To(00) := lim lim inf Hq(z,y)
p—0 R—oo -'L',y c Rn

and one requires that 7q(oo) > 0. This is the precise statement of the condition that the complement
of € is not too small near oc.

Note that with the above definition 7 is lower semicontinuous at oco. One crucial technical ingre-
dient in the proof for unbounded domains is the following counterpart of Proposition 7, namely

To(00) = ;ii% B}Lmoo \zi|nsz TQUB, () (T) -

Details of this argument will appear elsewhere.

We apply Theorem 17 to two examples already studied in [9)].
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Example 19 [Volume functional] For

0 (t<1),
F(it) =
1 (t>1),
we have [, F(u) = [{u > 1}|. The corresponding Euler Lagrange equation is Bernoulli’s free-boundary
problem [10]. Up to translation entire extremals are given by

K(r) (r>R),
w(r) =
1 (r<R)
with R such that
1
/H|Vw|2 = capRn(Bé%) = m =1,
st = F(w) = |Bé%’.
R’IL

In particular ws, = 1 by Theorem 2. Application of Theorem 17 yields

.
sup {|4] : cap(4) <e?} = — 2 <1 -
(n(n—2))7 |Bj| ™2

The corresponding formula in two dimensions is quite different. Already the leading term depends on
the geometry, namely on the value of the harmonic radius p at the concentration point:

n : 2 2
e+ ole .
n_2I%DTQ o( ))

7 maxq p>

sup {[4] + capg(4) <7} = =T

(1+0(1))
as shown in [5].

Example 20 [Plasma problem| As a further illustration of Theorem 17 we consider F(t) = (t — 1)
in three dimensions. See [12] for the physical context. Up to translation entire extremals are given by

& (r > R),
w(r) =
1+ £sin(Z2) (r<R)
with R = (67) . This leads to we = 2/3 and S¥' = [, F (1087%)~1. By Theorem 17 we have:
2 el 2
Q(ua—l)+ = 10841 1- 3m§;nrge+( ).

6 Lower bound

We begin with a short overview of the proof. We first establish a lower bound for S (2) by the usual
transplantation argument (Step 1, this section).

To prove the upper bounds we essentially use two facts about sequences u. which are almost opti-
mal, i.e., optimal up to O(g?). First u. behaves like the Green’s function away from the concentration
point (at least after symmetrization, Step 2). This observation will allow us to exploit capacity esti-
mates like (21). Secondly the rescaled functions w.(z) = u.(x. + e x) converge in DV2(R™) to a
maximizer w for S¥. This is easily established under the additional assumption (FT) which restricts
the behavior of F' near 0 and near co. Without this assumption the situation is more subtle as the
example F(t) = [t|*" demonstrates. In this case S () = S¥ and maximizing sequences concentrates
on a scale much shorter than £7-2.

In Step 2 below we show that the assumption ws, > 0, which rules out concentration of maximizing
sequences for ST, prevents such behavior. We also use the decay and capacity estimates to show that
the length scale of the concentrating sequence u. can not be much larger that e7=2. Once the length
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scale €77 is established, a routine application of concentration compactness yields compactness of w.
(Step 3).

The upper bound then essentially follows from the capacity estimates. One subtle point is that we
need to show that all relevant level sets (including those whose volume goes to infinity in the rescaled
variables) concentrate at the same point (Step 4). Another subtlety is that it is not known whether the
maximizers for S¥ are unique or whether they at least have all the same decay rate W, (see Theorem
2). We show that those w that arise as limits of the rescaled sequence w, must have the optimal decay
rate Wy, = Weo. The desired upper bounds and the identification of concentration points follow easily
(Steps 5-7).

To prove the lower bound we recall that by Theorems 2 and 3 there exists a radial maximizer w
for ST and we may assume w > 0 and that the limit W, := lim, o, w(r)/K(r) exists. The lowest
possible value for W, is ws and we consider a corresponding maximizer w.

Step 1

SEQ) > sFf (1 - ngo min 7g £? + 0(52)>
n—2 Q

as € — 0.
Proof. Let z € Q be a harmonic center for Q. In particular 7o(z) < 400 and the harmonic radius

(Z))

r(z) is strictly positive. For a radial function U € D*?(B;**’) we define its harmonic transplantation

to (£, z) as follows (see [2]). Let Gp o denote the Green’s function of Bg(z) with pole at zero, write
UaspoGppandlet u:=¢poG, € DY2(Q). Tt is easy to see that this transformation preserve the
Dirichlet integral. Moreover the following inequality holds

(27) /Q Flu) > /B - F(U).

This inequality is proved in [2] in the case that z & 9Q. The general case z € Q, T7q(z) < 400, follows
by the coarea formula and the estimate of the level sets of the Green’s function given by Remark 11.

Therefore by (27) we have SI'(Q) > Sf(Bg(z)). Now we set
re = sfﬁr(z), R. = sfﬁr(z).
and we define the comparison functions W, € DV2(Bg) by W. = w in By and AW, = 0in B\ Bje.
Since fR"\B”‘ F(w) = O(r=™) (Theorem 2) we have
0

To establish the assertion errors of this order can be ignored. Using the formula for the capacity of
balls (17) we can estimate the Dirichlet integral from above by

A 17/ |Vw|2+/ Ak
R”\Bga Bé{a\Bga

1= w(r.)? (capge (BY) — cap e (B;))
=1 _'1U(T6)2 (}((Ts)_l — (K(re) _']((1%6))_1)

IN

- 1+<Il§((:i))> K(R)(1+o(1))

= 1+ wim(2)e? +o(e?)

since K(R.) = e?1q(z) (Definition 6). Moreover the ratio K(R.)/K(r.) tends to zero. We scale W,
with s <1 such that [|[VIWg||2 = 1. By the scaling property (4) and the above estimate we obtain

SF(B)) > SFBYY) > / F(W?)

sRe
By

||VW€H2_”+L2/R F(We) > SF <1— anwgoTQ(z)e2+o(52)> .
Bl -

Since 7q(z) = ming 7o this concludes the proof. O
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Remark 21 This in particular implies that S (Q) > SF — Ce2. From this we can deduce that, if
{uc} is a sequence of almost maximizers, then

1
e2

*/F(UE)ZSF—CEQ.
Q

It is easy to see that for each z € §, with Tq(2) < oo, the above construction yields a sequence
which concentrates at z, satisfies |Vu,|| = ¢ and

e [Pz 5 (1 e o)

£ n

7 Upper bound and identification of concentration points

Let D!? be the set of all function u in DY2(R") such that v > 0, u is radially symmetric and
decreasing. For sake of simplicity let us assume that condition (F) is satisfied with o = 1.

LEMMA 22 (Decay estimates for radial low energy extremals) For ¢ > 0 there exists posi-
tive constants cg, Yo, with 0 < v9 < 1, and eo that only depend on the dimension n, on S¥ and c with
the following properties.

If (F) holds (with o =1) and 0 < & < o and if u € Di'” satisfies

@) [ Fw = (87— valf

then there exist p > 0 and us, > 0, such that

(29) u(r) < cop T |VullK(r) for 1< - <em7,
p
(30) [V < VB KG) for 1L <o
R\ B p
. 2 . .
(3) [ < s Vel KOF for 15 <o,
R\ B p
—2

(32) |u(r) = uoo K(r)]

AN
Q
(=]
)
‘:
vl |
[V
<
£
I°n
©
N~—
VR
RERS)
+
)
/‘\
~——
3
N
~—
T
3
—_
IN

and p is characterized as the greatest radius which satisfies the condition
2
Gy [ 9l =Vl
R\ B

Moreover we have
Uo

(3) 'S —Gm o <o.
p = |[Vully

Proof. It is sufficient to prove the assertion under the assumptions p = 1 and ||Vu|lz = 1. Indeed

if u satisfies (28) so does u,(y) = u(py). Thus © = w,/||Vu,||. satisfies (28) if F' is replaced by

F(t) = F(IVupll2t)/ IV,
Let us denote now

3*. Thus the assertions for u follows from those for u by unscaling.

W = [ vl
R~\BL
We compare u to the function U € DV2(R™) defined by U = v in B and AU = 0 in R\ B{. Then
R 2
/ VU|? = / |Vul® + u(R)?capg. (Bf) = 1—~(R)+ UER) .
n B(I)% K(R)

By (28) and application of the generalized Sobolev inequality to the function min(u, u(R)) we obtain

ST1-Ce*) < / Fu) < F(U) + S"y.(R)7=.
n Rn
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Therefore
/ FU) > 87 (1 e (R)™3).
On the other hand by the generalized Sobolev inequality we have

R

and then, since u(R)?/K(R) < v(R) < < 1, we get

/nF(U) < SF (1—@(3)+C%2?) .

Combining the upper and the lower bound we obtain

u(R)?

35) A < T

+ Cy(R)™=2 + ce2.

In absence of the last two terms u would be harmonic outside B and u(2R) — 22 "u(R) = 0. We will
see that this difference is small if (35) holds. By the Cauchy-Schwarz inequality and the formula for
K(r) we can estimate

2R
V(R)=y(2R) = [5"7] /R =t
> |S"1|<’§Ru/) o (u(R) —u(2R)’
B (f;er—") ~ (K(R) - K(2R))

Together with v(2R) > u?(2R)/K(2R) (cf. (17)) and the estimate (1 — x)2/(1 — \) + 22/\ > 1 +
c¢(A)(z — X)? we obtain

V) > WS <(1—u<2R)/u(R)>2 +(u(2R)/u(R))2>

(1722771) 22771
u(R)>? uR) 5.\
= K@ <”C<u<R> ? ))

with C' > 0. Combining the above with (35) we deduce

0 (o) = el

after cancellation of the leading term.

Let us estimate now the decay of u by iteration. Let a; := 112((222))' We claim that there exists

o € (0,2=2) and a positive constant c; such that

(37) a; < 2 if 20 < e,

For i = 0 the assertion follow from the estimate u?(1) < 49K (1). To proceed by induction we distin-
guish two cases. Since u is decreasing, if a; < 227 "¢y then a; 11 < co. If a; > 227 "¢y then
K(2Y)
u(2)?

2 < ai_QK(Zi)*ls2 < 002_2.

Multiplying (35) by ﬁg)% 7(2i)ﬁ and taking into account that for sufficiently small ¢ the term
C’V(R)ﬁ can be absorbed into the left hand side we deduce that
K (2%

22 @iy <A 52).
U(21)27(2 ) =% (C + Co )
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Thus (36) yields with a sufficiently large choice of ¢5 and a sufficiently small choice of

ai:__l < 2n—2(22—n + C’}/(;Lj + 082_1) < oo
and hence (37) is proved.
Since u is decreasing we deduce from (37) and (35) that

uw(R) < CR*™"e,
,Y(R) S CR27n+2a 4 062 S CR27n+2oz,
vR)7= < CRe
for 1 < R<en>. Multiplying (36) by fracu(R)?>K(2R) we obtain
u(2R) ’U,(R) 2%a—2 n—2
— <
(38) K@R)  K(R) <C(R™= +4eR7)
Since 2*a = ”2_”204 < 2, we obtain by iteration of this estimate
u(@)  u(l) a2
= — <c(1 2 <C.
K@) K@) =re@) =0

This implies (29), and (30) follows from (35). In view of (29) and (30) the estimates immediately
preceding (38) hold with o = 0 and (38) becomes
u(2R)  u(R)

N A

<R +eR"T).

If we fix j such that 29 < 72 < 271 and we define us, = u(21/2)/K (20/2), then iterative
application of (39) with R = 2%, i = [j/2],... yields
[u(29) — use| < (27972 4 52%21) < 2"

while application for i = [j/2],...1 gives |u(2%) — us| < ¢27%. Combining these two estimates we
obtain (32) for every R = 20 < ¢ w3,
To deduce (32) for all r € [1, s_ﬁ} it suffices to observe that similarly to (36) one can derive the

estimate
2
(U(AR) — )\2”) < cK(R) (W(R)ﬁ + 0(52))

u(R)

for all A € [2,4].
It only remains to prove (34). The upper bound follows from (29) and (32), applied with r = p.
Suppose that the lower bound was false. Then there exists € converging to zero and a function
Uup = Ug, € D? that satisfy (28) to (33) with u, us and e replaced by uy, ug~ and e, and with
IVug|lz = 1, pr = p = 1. Moreover up o — 0. Since the wuj are non negative radially decreasing
it follows from the Sobolev embedding theorem that, up to a subsequence, uj converge to some ug
uniformly on [1,+00). This implies, together with (32), that

(40) ug(r) < coK (r)r~!

for every r > 1. It follows from (35) and the choice of v that

a)  wm o (8 g)
and thus
(12)  lim () < C§E§§ <CR™,

uniformly for R € [1,00). Thus (38) applied to uy in combination with (42) and the uniform conver-
gence of uy implies

uo(2R)  wuo(R) o (uo(R)\ "
KGR ;&R)\ < cK(R)™ <K0<R>> '




FLUCHER, GARRONI, MULLER: IDENTIFICATION OF CONCENTRATION POINTS 18

If we let a; = %((221)), then we have
(43) lais1 — ai] < C2 %]

and, in view of (40), a; < C27%. Tt follows that a; = 0 for every i. Indeed let § > 0 be sufficiently
small and let ig be the largest integer such that a;, > . Then, for every [ > iy such that 027! < 1,
(43) implies
a; < Z C’27jaj’7’%2 <0277 <6
j=l+1

which is a contradiction. Hence ug = 0 on [1, +00) and thus by (41)

/ |Vug|?de = v, (1) — 0.
R\ B1(0)

This contradicts the definition of pg. Thus the lower bound in (34) must hold and the proof of
Lemma 22 is finished.

O

We now begin with the proof of Theorem 17 (1).
J— 2 4
Let {u.} C D'2() be a sequence with ||Vu.|| < e which concentrates at z € Q, i.e. IVEL;l — dg.
We may assume

[ P = (87— vuld

(for suitable large C) since otherwise the assertion is trivial. In particular the Schwarz symmetrizations

{u} as well as the rescaled sequence w?(r) = u’ (Eﬁ r) satisfy the assumption of Lemma 22. We
obtain that there exist p. and us . such that u?(r) = ue K (r)(1 + o(1)) for p. < r < pe=2/"2
and p. is characterized by

Vui|? V|3
(44) PEZSUP{,O>O:/BP | :(1_70)52”2}

22
with 0 < vy < 1.
Step 2 We have cens <pe < Ce%, c>0.

o
uZ]

o
Proof. Let us first prove that p. — 0. Since ‘u;l* concentrates at o one easily checks that —5=

[uz]?

concentrates at zero. Thus e =2 F(u?) < a S concentrates at zero, in fact e~ F(ut) > SFsy, since
Jane P F(ut) = [,e72 F(u:) — S¥. Hence part 2 of Theorem 12 of [9], applied to u} shows that

vur® .
(45) #4507

since otherwise u’ /e — vg in L?” which contradicts concentration of u?/c. Now (45) and the definition
of pe imply p. — 0.
2 2
Suppose now that p. < 72, i.e. R := p.e” "2 — 0. By (30) we have, for every r. — 0 such

that R. < r. < Rssfﬁ
R n—2
/ |Vw:|2<C<5) -0
R"\Bg® Te

and then |Vw;k|2 concentrates at zero, which is in contradiction with Theorem 3.

It remains to prove that p. < Cem2. Let r. — 0 such that rssﬁ/pE — 0 and p./re — 0 (for
instance we can choose 1. = ,05%) Define A; = {ue > oo K (re)} and Af = B(°. By (32), for every r,
with p. <71 < pge_ﬁ, we get

Pe

n—2
n—2 5
[uZ(r) = uso e K(r)| < cope? || Vull2K(r) (PT te (7“) ) 7
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and by (34) and the fact that p. > Ce7>2 we obtain

n—2
. = _
_we) oo (T <o (P )
Uso,e K (1) r De r
Since p. € re K p567£ and r. — 0 we have

”5(7”5))_1'§C<p5+r;22)=0(1)'

Uso,e K (72 Te

As, by definition, u}(7.) = teo,. K (r:) we obtain that 7. /r. — 1, and in particular |A.| = |By| — 0.
Since A. is a superlevel set of u. we have

/ \Vu:\zg/ Vu|? .
A; AE

Let U. : R™ — R denote the harmonic extension of v} outside of A%. Taking into account Lemma 16

(ii), (34) and the identities capgn(A%) = capr.(Bj°) = ﬁ we deduce that
1 1 1
[ VU = S| [Vul+ 7/ VU, |?
€ JrRn €% JA. €% JRn\ Az
1 1
< 1-— |Vu5|2+—2/ VU, |?
3 - 9 R™\A*
46 L *
(40) < 1 ud K (r)[eapg(A:) — capg (A7)
1 ~\_2 .
< 1- E—Quzong(rst(rE) 2 mﬁmTQ

€

< 1-Cp" ?minTq(1l +o(1)).
Q

On the other hand, by the lower bound (Step 1), by (31) and by the fact that 7. &~ r. we get

1 1
e frw 2 o ] r
1 1
= o e) T ox F €
e /QF(U ) e /Q\A (te)

1
> SPa-C) - o [P

> SFau-ce)-cC <”€>n .

So that if r, = p;/" we have

1

o [ FU)zsta-c-cp.

Combining this with the upper bound for ||VU.| and the generalized Sobolev inequality we deduce
(1-Ce®—Cpr™) < (1 - Cpr 2 minTo) T
Q

and then

€

Cp"_2(min T — Cpe) < Ce?
Q

which implies p. < Cen-?. O



FLUCHER, GARRONI, MULLER: IDENTIFICATION OF CONCENTRATION POINTS 20

Step 3 (Convergence of rescaled maximizing sequences) There exists a sequence x. — xg

such that the rescaled functions w.(z) = ug(me—ksﬁz) converge strongly in DV2(R™) to some function
w, which is an extremals for ST

Proof. This is a standard application of the concentration compactness alternative. Let v.(xz) =
us(eﬁw). Concentration is excluded since concentration of v, implies concentration of the sym-
metrized sequence v} which would imply we, = 0 (see Theorem 3), contradicting the hypothesis.
Splitting is excluded by the strict convexity of the function A — A2"/2 and the fact that v. is maxi-
mizing for S¥. Finally vanishing is excluded by the estimate

(47) {ve >0} >Co72  Ve>0, 2<i<l.

This estimate follows from (32), (34) and the fact that p. ~ £77 which yields UE(r) & Uoo K (1) &
2K (r) ~ (6727)2™ for p. < 1 < p.c” -7, whence vI(R)~ R* " for l < R< =
To see that (47) exclude vanishing first note that vanishing of |Vv.|? implies vanishing of |v.|? .

Indeed using the n-harmonic capacity potential ¢’ (z) = % extended by 1 in B} and by 0 in

IN

BE we get the estimates
[ V(o
BF

1 o\
(5, )
/ Vol + w(r/R) / V.
BR R»

with w(t) — 0 ast — 0 (see [9], Lemma 8 for the details). Now consider a cover of R™ by the translated
unit cubes @, = z+ (0,1)", z € Z", and let AS = [{v. > 6} N Q,|, S = [{ve > §/2} N Q.|. Vanishing
of [v-|>" implies that sup,czn (A + pS) — 0 as £ — 0. In particular the function (v- — $); vanishes
on a set of volume fraction 1 — u€ > 1/2 on each cube @, provided ¢ < €y. Hence a suitable version
of the Poincaré inequality (see e.g. [9], Lemma 28) yields

(A)F @)2 < (/ (va— g)j) SC/QZ Vo2

Since Y, A; = [{v. > }| > C(d) > 0 we deduce

IN

/ Vo2 > (max A2 C(5) — oo
R~ Z

as € — 0, which yields a contradiction.
Thus by the concentration compactness alternative, there exists a sequence {a.} C R™ such that

(a subsequence of) v. (- +a.) is compact in DY2(R") and taking z. = £7-7a. we obtain the assertion.

O

Step 4 (Concenﬁration of level sets) There exists g > 0 such that the following holds. If u.
concentrates at xg € Q and t./e? — oo and t. < 1o, then {u. > t.} concentrates at zg.

Proof. Let w. as in the previous step. Fix ¢ > 0 and let p; . such that |By"*| = [{w. > t}|. By (32)
and Step 2 we deduce that

- 1
(48) ‘{ws > t}‘ ~t n-2, Pte R t n—2

for every t such that 2 < t < 1. Let us prove that

2 2
capgn (By"°) ¢

Indeed let W, be the harmonic extension of w? outside of Bf*. Then by (31)

/ Pl@.) > / Fw!) > ST —Ce? — ¢ . 2
n BPt,a s

> SF—C’EQ—Cp;?
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and

[ovap = [ VP e, (50)
n BPt:e

o]

IN

/{ } Vw.[* + 2 p} - *capg. (B])
we >t

IN

1- / (V.| + 2 p}' - *cappa (BY) -
{we<t}
The combination of these two estimates with the generalized Sobolev inequality gives
(50) / (Vwe|* — 2pi = 2capga (BY) < C(e% + prl) < O(® + tt72)
{we <t} l

Since

1
cappn ({we > t}) < ﬁ/ Vw.|*,
{we<t}

we obtain (49) from (50) and (48). Now (49) may be rewritten as
capgn ({we > t}) o1

— < 1446(n it —<t<n.
capgn (Bh"°) (0) Mo 0

(51)

Applying Proposition 14 we get that there exist z; . such that

Hwe > t}AB (2t ¢, pt.c)]
‘B(Zt@a pt7e)‘

Let us prove now that if €2 /ng <t < t' < 1, then

(52) < ' (o) -

(53) ‘zt,a - Zt’,a| < Cpm
Suppose first that ¢ > ¢'/2. By (32) we have

e > 130 fwe > 0] [fu > )]
>0 Hwsp =7

Combining this with (52) we obtain

|B(Zt,s7 pt,s) N B(Zt/,ea pt’,s)|
|B(zte, pt.e)|

if ¢’ is sufficiently small (which can be achieved by choosing 7y sufficiently small). Hence

> co — 26" (no) >0

(54) ‘Zt,s - Zt’,s| < Pte + P/ e < 2pt,s
and the assertion is proved under the additional assumption ¢ > ¢'/2. To obtain the general case let
j € IN be such that 277¢' >t > 27971¢' define t; = 27 for i = 0,...,j and t;41 = t, and apply (54)
to t; and ¢;41. Since ot~ w2 <pre < C’t_ﬁ7 summation over i leads to a geometric series and (53)
follows.

Now we know that w. converges to a maximizer w for S¥ and by Theorem 2 we have that there
exists 7o > 0 such that w = w* on R™\ B® and w*(r) is strictly decreasing for r > rg. Thus choosing
1o so small enough such that ny < w*(rg), we have

(55) Hwe > no}A{w > no} — 0
and {w > no} = Bjy. Hence z,, . — 0. Therefore by (53) we deduce

62

. z .
hmsupﬁgC if —<t.<mng.
e—0  Pte,e Mo

Now by (52)
2 2
{ue > t}AB(xc + 672 2, e, 672 py, )|
Hue >t}

Finally the assumption t./e? — oo implies that E%p%f — 0 and z. + sﬁzts’s — xg. Hence
{ue > t.} concentrates at x. O

— 0.
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Step 5 (Upper bound for sequences concentrating at x) Let w be the limit of (a subsequence
of ) we as above and recall that

2(n—1) F(w)
nST Jre K(I)
(see Theorem 2). Then

W2

sf) < sF <1 — %W;Tg(.fo)&'z + 0(52))

as € — 0.

Proof. For u. as above and U, as in Step 2 we have

where we used p. = £727 . Moreover by (46)

1 1
2 . |VU5|2 <1- ?uio,eK(Te)Z[capQ(Ae) — capgn (Ae)]

where A, = {us > Uoo K (1)}, 7 = En%pg. We know that w, converges to a maximizer w for S¥
and by Theorem 2 we have w = w* on R” \ B™ and w*(R) = Wo. K(R)(1+ o(1)) as R — co. We
claim that ue /2 converges to Wy, as € — oo. Indeed for €2 < t < 1 as in (55), [{w? > t}| = {w. >

t} — |[{w > t}| and (32) yields, with p. ~ en? and r =" R,

Pe

2\
w¥(R) — UOO’EK(gﬁR)‘ < cpe? K(gniz R) ( be—+e <EH2R) ) for p.

(56) eI R
§57132R§5n;—22p€
or
* Uco,e 1 n—2 2
wi(R) — 527 K(R)‘ < ¢y K(R) (R—i—sR 2 > for 1< R<en2.
Thus

% ~Uo e # __n_ 52
‘{w5>t}|:c( 52’) =] 1+O(t—|—7) ,
where ¢ is a universal constant. Similarly the asymptotic behaviour of w yields
{w >t} =eWx 2t 72 (1+0(1))

as t — oo, with the same constant ¢. Thus (55) proves the claim by taking ¢ — 0 and ¢t — oo.
Moreover, by Step 4, we have that A, concentrates at xg and hence, by Lemma 16 (i) we obtain

1
6—2/ |VUE|2 < 1- W;K(T€)2capRn(AZ)2TQ(£E())€2(1 +0(1))
Rn

= 1 - WZ27q(xo)e? + o(?).

Using the generalized Sobolev inequality (3) we conclude

60 o [ F) £ o [ FU) o) < ST (- W) +ofe?) ™ +ofe?)

which proves part 1 of Theorem 17. O

Step 6 (Asymptotic expansion for maximizing sequences) B
By Theorem 1 every maximizing sequence {u.} concentrates at some point xg € 2. Thus by part
1 of Theorem 17

1 / Flu)< ST (1 - Wfom(xok“o(e?))-

€ n—2
In view of the lower bound established in Step 1 and the inequality W, > weo (see Remark 4),

equality holds and we must have W, = wq, i.e., the rescaled sequences w, can only converge to those
maximizers of S¥ which attain the optimal value of W.

Step 7 (Identification of concentration points)
From part 2 and the estimate (57) which holds for all sequences concentrating at xo, it follows
immediately that maximizing sequences must concentrate at a minimum of 7q.
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Appendix: Regularity Criterion for the Robin function

We saw that if the set Q) is regular in the sense of Wiener then the Robin function 7 is +o0o on the
boundary. This is a kind of regularity for the function 7q; indeed it assures that it attains its minimum
at an interior point of . It is well known that a point xzg € 02 is regular for the Dirichlet problem if
and only if the following property holds true

(W) . ,
" capra (2N (BZP\ B ))) d
W(ggo,R):/ PR ( pn(2 \ ))pﬂ
0

By this criterion we deduce that a boundary point is regular if the complement of €2 around this
point is not too small. We will see that to assure that 7q is infinity at a boundary point the complement
of Q can be even ”"smaller” than what is prescribed by (W). Indeed we will prove the following result.

:+OO

for some R > 0.

THEOREM 23 Let z¢ € 9. Then 1q(xzg) is finite if and only if

B cappa (Q°N (B2 \ B” ))d
I(z0,R) = / Pro an(_f” \B2,)) ?p < 400
0

for some R > 0.

LEMMA 24 Let f(p) be an integrable function and fit R > 0. Then there exist Ry and Ry in

(R/2,R) such that
RS i " fp) 1 & .
— Ry27") < ——dp < — Ri27Y).
p sz < [y < o e
If f is continuous, then Ry = R;.

Proof. Let define F'(\) =3, % with A € (R/2, R). The result follows immediately by the fact

that R "
/@F(/\)d/\:/o f;p)dp.

O
Let zp € 9Q and let p > 0. Let r,(zo, -) be the solution of the following Dirichlet problem
—Ary(z0,-) =0 in R"\ (Q°N (B2 \ B.))
(58) ro(zo,y) = K(lwo —yl) if y € (Q°N (B \ BE,))
rp(0,y) — 0 as y — oo.

We shall consider the function r,(x¢,-) extended to R™ by setting 7,(zo,y) = K(|lzo —y|) if y €
Q°N (B2 \ BY ) and by lower semicontinuity on 9Q° N (B2 \ BE).

LEMMA 25 Let r,(zo,-) be the solution of (58), then

o capgrn (2N (B2 \ B)))
an—4

Proof. Let u, be the capacitary potential of Q°N (B2¢\ B% ) in R™ and let p, be its capacitary
distribution. We have

(60)  K(2p)uyle) < rylawo,x) < K(p)u,(a).
By the fact that

60 wl= [ Kl -y,
o(Q°N(Bzg\Bk,))

2 CaDra (2°N (B2 \ BY)))

(59) K(2) pin—4

< 7rp(wo, o) < K(1)

we get
K (2p)capg (Q° N (B34 \ BE,)) < up(wo) < K(p)capgs (2°N (B3 \ BY,))

which concludes the proof together with (60). O
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We denote by H, the regular part of the Green’s functions of QU By , with r > 0, and let 7,. be
the corresponding Robin function.

Proof of Theorem 23. We will prove Theorem 23 by means of an upper bound and a lower bound
of Tq(zo) in terms of I(zg, R).

Step 1. (the upper bound) Let xg € 9Q and let us fir R > 0. Then
(62) Ta(re) < K(1)2RI(x0, R) + Tr(0) -

Let r,(zo, -) be the solution of problem (58). Since r,(zo, -)+Ha, (%0, -) is harmonic in the set QUBZ
and greater than K (Jzo —-|) on its boundary, for every p > 0 we have H,(xzo,) < r,(z0, ")+ Hap(xo, -)
in QU B, so that in particular

(63) To(20) < 7p(x0,x0) + T2p(20)

By iteration and taking into account that 7,(zo) converges to To(xo) as p — 0, we get that for any
fixed p >0

(64) To(zo) < ngfip(xo,xo) + Top(z0) -
i=0

By Lemma 25 we have

>, capgn (02° 27"\ g2
(65) To(wo) §K(1)ZZ Pr~ (2 8(5;02”4 \ Bz, ©))
=0

+ T2p(20) -

The conclusion follows by applying Lemma 24 to the function f(p) = capg. (¢ N (B2 \ BE ))p*~2",

using (65) with p = R; (where R; is given by Lemma 24), and that 7op, < 7g.

Step 2. (the lower bound) Let zy be a boundary point such that W(R,xg) < oo for some R
(and then for all), then

(66) I(R7 xo) < %(2R W(2R,zo) + 1)7’9(5(:0) ,

where C' is a positive constant depending only on n.

i+1

Let us denote by C;(r) the set B2~ "\ Bﬁ;”’. For any h € IV, let S"(z) = 321 7y ip (20, ) and
let S.(x) = > ,5072-ir(®0, ). We shall estimate the function S, (x) on 0. More precisely we will
prove that -

(67) SHz) < Sp(x) < CK(1)(2RW (2R, 20) + DK (Jz —z0]) V2 €9(Q°NBZ)

for every r < R. If (67) is true, since S (x) is harmonic in R™\ (Q¢N (B2"\ B%U_hr)) and in particular

0

in QU Bg;h"7 the same estimate holds on 9(Q2 U Bg;hr). This implies in particular
Sh(z) < CK(1)(2RW (2R, x0) + 1)Hy-n,(20,2) VY he N Varen.
Thus, since by Proposition 7 Hy-n,.(2g, ) converges to ﬁg(ﬂco, x) as n — 0o, we have
Spr(xg) < CK(1)(2RW (2R, z9) + 1)10(20) Vr<R.

We conclude the proof using Lemma 25 and Lemma 24 as in the previous step.
It remains to prove (67). Let p > 0. Let us fix # € dC(p); so that in particular 27%p < |z — 20| <
27k+1p Let i € IN be such that i > k + 1, using (60) and the integral representation (61), we have

ro-ip(z0, ) < K(27p)K (27" p — 27 p)capg. (2 N Ci(p))
(63) < 272K (1)2(2Fp)P (2 0) Mcapgs (9° 1 Ci(p)

< 22K (1)K (|2 — 2| )eapg (2N Ci(p))
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Similarly we can estimate 79-i,(xo,2) for i < k — 1 and we obtain that there exists a constant C
depending only on n such that

Sp(z) < CK(1)K (o — o) (Z(Q_ip)z_"capan QN Cilp) + 1) :
i=0
Now, by Lemma 24, for any r < R there exists r1 € (r,2r) such that
Sr () KCKMW)K(|z — x0]) (riW(ri,zo) + 1) < CK(1)K(|x — zo]) (2RW (2R, x0) + 1) .

Finally we get (67) taking into account that S,(x) is increasing in p.
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