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labels.

1. Introduction

Diagrams from tension tests on bars of macroscopically homogeneous materials typ-
ically exhibit a behaviour that can be described as follows. Let l denote the length of
the specimen at rest, and d its elongation. If we plot the stress σ as a function of d we
notice that it is increasing up to a certain critical value of the elongation, and then it
decreases, up to a final threshold where fracture occurs (see, e.g., [7], Chapter 2).

This behaviour is usually explained by assuming that, when the stress reaches a crit-
ical value (maximum tensile stress), a confined fracture zone appears. As a consequence,
the body is gradually unloaded as the damage increases. This phenomenon can be the-
oretically analyzed by means of a model, where the softening of the material due to the
damage within the fracture zone is taken into account (see, e.g., [15]). It can be assumed
that the width of the fracture zone is initially zero (see [16]), so that it is represented by
a point x0 in the reference configuration (0, l). If w denotes the additional deformation
within this zone, it is assumed that the stress transmitted can be expressed as g(w), for
some decreasing function g . If σ = f(ε) is the stress-strain relation in the undamaged
region, the equilibrium condition is given by f(ε) = g(w). This leads to a variational
principle, with an energy given by

(1.1)
∫ l

0

F (u̇(x)) dx+G([u](x0)) .

where F and G are the primitives of f and g , respectively, u represents the displace-
ment, which is thought to be smooth except at x0 , and [u](x0) = u(x0+)−u(x0−) is the
jump of u at x0 . The equilibrium configuration corresponding to the elongation d has
a displacement u which minimizes (1.1) among all functions which satisfy the boundary
conditions u(0) = 0 and u(l) = d .

This model, and in particular the fact that the damaged zone has width zero in
the reference configuration, can be justified starting from a simple discrete model with
concentrated masses. We will study the properties of the equilibria for the discrete
problem, and then we will obtain the variational model described by (1.1) as the number
of concentrated masses tends to infinity.

In the discrete model the bar is identified with a system of n + 1 equally spaced
material points interacting through an array of n non-linear springs connecting neigh-
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bouring points. We suppose that the force due to each spring depends on its relative
elongation ε following a law σ = ψn(ε).

In order to obtain the qualitative behaviour described at the beginning of the intro-
duction, we assume that there exist two constants εult

n and εfracn , with 0 < εult
n < εfracn ,

such that ψn is increasing on (−∞, εult
n ] , ψn is decreasing on [εult

n , εfracn ] , and vanishes
on [εfracn ,+∞). This means that each spring has a (non-linear) elastic behaviour up to
the critical value εult

n of the relative elongation (ultimate strain), and that a softening
phenomenon occurs between this value and the fracture threshold εfracn . In addition we
assume as usual that ψn(0) = 0, and ψn(ε)→ −∞ as ε→ −∞ .

Let xin , i = 0, . . . , n , denote the locations of the material points in the reference
configuration, and let uin denote the corresponding (longitudinal) displacements. If λn
is the distance of two neighbouring points and u̇in = (uin − ui−1

n )/λn is the relative
elongation of the ith spring, the energy of the system is

(1.2) En({uin}) =
n∑
i=1

λnΨn(u̇in) ,

where Ψn is the primitive of ψn vanishing at 0. The displacement {uin} corresponding
to an equilibrium configuration in this discrete model is a stationary point for En with
appropriate boundary conditions.

We will prove (Theorems 2.2 and 2.3) that, if {uin} is an absolute minimum or a
strict local minimum (i.e., a stable equilibrium) of the energy En , possibly perturbed by
an external force, then there exists at most one index j such that u̇jn > εult

n . Therefore
the softening phenomenon occurs at most in one spring. This “strain localization” (see
[4] and [14]) is in accordance with the experimental data for concrete, which show that
the width of the fracture zone is of the same order of the aggregate size.

In order to justify the continuous model (1.1) we consider the variational limit of
the functionals (1.2) as n tends to +∞ . Since we are interested in a model allowing for
softening and fracture, we assume that the ultimate strains εult

n and the ultimate stresses
σult
n := ψn(εult

n ) = maxψn are equibounded.
To describe the energies intervening in the limit model, we have to use the space

BV (0, l) of functions of bounded variation in (0, l). Given u ∈ BV (0, l), its distributional
derivative u′ can be written as

u′ = u̇dx+
∑
x∈Su

[u](x)δx + u′c ,
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where u̇ is the ordinary derivative of u , Su is the set of essential discontinuity points of
u , δx is the Dirac mass concentrated at x , while the measure u′c , called the Cantor part
of u′ , is a non-atomic measure on (0, l), which is singular with respect to the Lebesgue
measure. The jump term [u](x) represents a singular strain which, in the reference
configuration, is concentrated at the point x , while the measure u′c can be considered
as a diffuse singular strain.

We will show (Theorem 3.1) that (up to a subsequence) the functionals En Γ-
converge to a functional of the form

F(u) =
∫ l

0

Φ(u̇) dx+ σultu′c(0, l) +
∑
Su

G([u]) ,

defined on functions u ∈ BVloc(0, l) with [u] ≥ 0 in Su and u′c ≥ 0 in (0, l). This con-
vergence result implies that the minimum values of En for a given elongation d converge
to the minimum value of F with the same elongation, and (a suitable interpolation of)
the corresponding displacements converge (up to a subsequence) to a displacement which
minimizes F (Theorem 5.1). A similar result holds if external loads are added (Theorem
5.4).

In order to illustrate the relationship between the sequence {ψn} and the functions
Φ and G which appear in the functional F , we introduce two sequences of functions
which describe the different behaviour of ψn in its increasing and decreasing branches,
respectively. Let fn be any increasing function coinciding with ψn on (−∞, εult

n ] , and
let gn be the rescaled function

gn(w) = ψn(
w

λn
+ εult

n ) w ≥ 0 .

The need of a different scale in the fracture zone was discussed in [18]. As the functions
fn and gn are monotonic, it is not restrictive to assume that, up to a subsequence, they
converge pointwise to two functions f and g , respectively. Then the constant σult and
the functions G and Φ are defined as follows: σult = g(0+), while G and Φ are the
primitives, vanishing at 0, of g and min{f, σult} , respectively.

In Sections 6 and 7, we will consider the simplified functional E defined on all
piecewise smooth functions u as

(1.3) E(u) =
∫ l

0

F (u̇) dx+
∑
Su

G([u]),
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where F is the primitive of f vanishing at 0. We will show that F and E have the same
local minimizers with prescribed Dirichlet boundary conditions, and that this remains
true if we add a dead load (Theorem 7.2). The Γ-convergence result mentioned above
implies therefore that the minimum values of En for given elongation and external load
converge to the minimum value of E with the same elongation and load, and (a suitable
interpolation of) the corresponding displacements converge (up to a subsequence) to a
displacement which minimizes E . This approximation property provides a justification
of the choice of an energy E of the form (1.3) for a continuous model allowing for damage
and fracture, and shows that such functionals are the only ones that can be obtained
by a limiting procedure starting from a discrete model with non-linear springs with the
qualitative properties described above.

We perform a detailed analysis of the stationary points of E(u) −
∫ l
0
hu dx , where

h is the density of an external force. We show in particular that a minimum energy
configuration exists for every elongation d (Theorem 7.6). Moreover, we prove that for
every stationary point there exists σ such that

f(u̇) +H = σ in (0, l) \ Su , g([u]) +H = σ in Su ,

where H is a primitive of h (Theorem 6.2). In this case all strict local minimizers
(which correspond to stable equilibria) have at most one jump point (Theorem 7.5). As
a consequence we recover that the damaged zone for stable equilibria in the continuous
limit is concentrated in a single point, and this justifies the use of the functional (1.1).
Similar results in the case h = 0, but with a more general g , can be found in [11].

In the last section, we analyze the scale effect in the model, under monotonicity
assumptions on l f−1 + g−1 . For simplicity, we describe here the special case when f is
linear on R and g is affine on the interval [0, wfrac] , and vanishes for values exceeding
the fracture threshold wfrac . If εult is the relative elongation defined by the condition
f(εult) = σult , then the behaviour of stable stationary points is different in the case when
l εult < wfrac or wfrac < l εult . Notice that the alternative depends only on the length l

of the bar. In the case l εult < wfrac , three distinct regimes are possible, depending on d .
For d < l εult the only solution has no jumps (elastic regime); for l εult < d < wfrac we
have a solution with a jump and non-zero strain (damaged regime); if d > wfrac the only
solution has one jump point x0 with [u](x0) = d , and u̇(x) = 0 for x 6= x0 (fractured
regime). If wfrac < l εult only two stable regimes are possible: the elastic regime for
d < l εult and the fractured one for d > wfrac . Thus, for wfrac < d < l εult two stable
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solutions are possible, and in addition there is at least one unstable stationary solution.
In particular, if we let d increase continuously from 0 to a value larger than l εult , a
discontinuous transition from the elastic to the fractured regime takes place at some
value of d between wfrac and l εult , and no softening phenomenon occurs in the process.
This analysis explains some scale effects observed in fracture mechanics. In particular
it agrees with the observation that the fracture tends to be brittle if the length of the
specimen is large enough.

2. The Discrete Model

In the discrete model we consider a bar of length l > 0 as a system of n+ 1 masses
located at the points xin = i λn , i = 0, ..., n , equally spaced in the interval [0, l] , with
mutual distance λn = l/n . In this section we keep n fixed and we study the properties
of the equilibrium configurations. In Sections 3, 4 and 5 we shall study the limits of the
minimum energy configurations as n tends to infinity.

We consider only the problem of longitudinal displacements. We model the be-
haviour of this system of n+ 1 material points as depending on an array of n non-linear
springs connecting neighbouring points. We suppose that the tension σ due to each
spring depends on its relative elongation ε following a constitutive relation σ = ψn(ε),
where ψn: R→ [−∞,+∞) is continuous and satisfies

(2.1) lim
ε→−∞

ψn(ε) = −∞ .

We assume there exist three constants εmin
n , εult

n , and εfracn , with −∞ ≤ εmin
n < 0 <

εult < εfracn ≤ +∞ , such that ψn(ε) = −∞ for ε ≤ εmin
n (incompenetrability), ψn is

increasing on (εmin
n , εult

n ] (elastic behaviour), ψn(0) = 0 (stress-free reference configura-
tion), ψn is positive and decreasing on [εult

n , εfracn ) (softening regime), and ψn(ε) = 0
for ε ≥ εfracn (fracture). The constant εult

n is the ultimate strain (i.e., the maxi-
mum strain in the elastic regime), while εfracn is the fracture strain. The constant
σult
n := ψn(εult

n ) = maxψn is ultimate tensile stress (i.e., the maximum possible ten-
sion of the springs).

Let Ψn: R→ [0,+∞] be defined by

(2.2) Ψn(ε) :=
∫ ε

0

ψn(s) ds,
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so that we have Ψ′n(ε) = ψn(ε) in (εmin
n ,+∞) = {ψn 6= −∞} . If uin denotes the

longitudinal displacement of the point xin , then the internal energy of the system is
given by

(2.3) En({uin}) :=
n∑
i=1

λnΨn(u̇in) ,

where u̇in = (uin − ui−1
n )/λn is the relative elongation of the ith spring, connecting xi−1

n

to xin . Note that u̇in coincides with the constant derivative of the affine interpolation
between ui−1

n and uin on the interval [xi−1
n , xin] .

Suppose now that an external force λnh
i
n is acting on the material point xin for

i = 1, . . . , n− 1. The total force acting on xin is then

(2.4) ψn(u̇i+1
n )− ψn(u̇in) + λnh

i
n ,

and the total energy of the system is given by

(2.5) Ehn({uin}) :=
n∑
i=1

λnΨn(u̇in)−
n−1∑
i=1

λnh
i
nu

i
n .

An equilibrium configuration of the system with prescribed displacements u0
n = 0 and

unn = d is then a stationary point of the constrained problem

(2.6) min{Ehn({uin}) : u0
n = 0, unn = d} .

The necessary and sufficient condition for stationarity is precisely that the force given
by (2.4) is zero for i = 1, . . . , n− 1.

For i = 2, . . . , n let Hi
n := λnh

1
n + · · · + λnh

i−1
n be the resultant of the external

forces acting on the first i− 1 points. If we set H1
n := 0, the stationarity can be written

in the following form: there exists a constant σn such that

(2.7) ψn(u̇in) +Hi
n = σn for i = 1, . . . , n .

Since H1
n = 0, the previous formula shows that σn ≤ σult

n . For future use we note that
the energy (2.5) can be written as

(2.8) Ehn({uin}) =
n∑
i=1

λnΨn(u̇in) +
n∑
i=1

λnH
i
nu̇

i
n −Hn

nd .

We want now to study the properties of the local minima of the constrained problem
(2.6), which correspond to stable equilibria of the system. We begin with a lemma.
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Lemma 2.1. Let {uin} be a local minimum of the constrained problem (2.6). Suppose
that there are two distinct indices j and k such that u̇jn > εult

n and u̇kn > εult
n . Then

u̇jn > εfracn and u̇kn > εfracn . Moreover Hj
n = Hk

n .

Proof. Let us prove that u̇kn > εfracn . Suppose, by contradiction, that εult
n < u̇kn ≤ εfracn .

Since ψn is non-increasing on [εult
n ,+∞) and decreasing on [εult

n , εfracn ] , we have

(2.9) Ψn(u̇jn + ε)−Ψn(u̇jn) + Ψn(u̇kn − ε)−Ψn(u̇kn) <
(
ψn(u̇jn)− ψn(u̇kn)

)
ε

for ε > 0 small enough. Let {vin} be defined by the equalities v0
n = 0, v̇jn = u̇jn + ε ,

v̇kn = u̇kn − ε , and v̇in = u̇in for all other indices i . As a consequence of these equalities
we have vnn = unn = d . Since {uin} is a local minimum, if ε > 0 is small enough we have
Ehn({uin}) ≤ Ehn({vin}). Using (2.8) we obtain

(2.10)
Ψn(u̇jn + ε) + Ψn(u̇kn − ε) +Hj

n(u̇jn + ε) +Hk
n(u̇kn − ε)

≥ Ψn(u̇jn) + Ψn(u̇kn) +Hj
nu̇

j
n +Hk

nu̇
k
n .

The stationarity condition (2.7) gives Hj
n − Hk

n = ψn(u̇kn) − ψn(u̇jn), so that (2.10)
contradicts (2.9). This proves that u̇kn > εfracn .

The proof for u̇jn is analogous. The equality Hj
n = Hk

n follows from the stationarity
condition (2.7) and from the fact that ψn(u̇jn) = ψn(u̇kn) = 0.

Theorem 2.2. Let {uin} be a strict local minimum of the constrained problem (2.6).
Then there is at most one index j such that u̇jn > εult

n .

Proof. If there are two distinct indices j and k such that u̇jn > εult
n and u̇kn > εult

n ,
then by Lemma 2.1 we have u̇jn > εfracn , u̇kn > εfracn , and Hj

n = Hk
n . Since Ψn is

constant in (εfracn ,+∞), we can prove that {uin} is not a strict local minimum by using
the configuration {vin} introduced in the proof of Lemma 2.1, which, for ε > 0 small
enough, does not change the energy Ehn .

Theorem 2.3. Assume that d > l εmin
n (or d = l εmin

n and Ψn(εmin
n ) < +∞). Then

the constrained problem (2.6) attains its absolute minimum, and for every minimum
point {uin} there is at most one index j such that u̇jn > εult

n . For this index j we have
Hj
n = miniHi

n . Conversely, for every j such that Hj
n = miniHi

n there exists a minimum
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point of (2.6) such that u̇in ≤ εult
n for every i 6= j .

Proof. Since by (2.8) the energy Ehn can be written in the form

n∑
i=1

λnΨn(u̇in) +
n∑
i=1

λn(Hi
n −min

k
Hk
n + 1)u̇in + (min

k
Hk
n − 1−Hn

n )d ,

it follows easily from (2.1) and (2.2) that every minimizing sequence for problem (2.6) is
bounded, and this implies that the absolute minimum is achieved.

If there are two distinct indices j and k such that u̇jn > εult
n and u̇kn > εult

n , then by
Lemma 2.1 we have u̇jn > εfracn , u̇kn > εfracn , and Hj

n = Hk
n . Let {vin} be the configuration

defined by the equalities v0
n = 0, v̇jn = u̇jn+u̇kn−εult

n , v̇kn = εult
n , and v̇in = u̇in for all other

indices i . Clearly we have vnn = d . As Hj
n = Hk

n and Ψn(ε) = Ψn(εfracn ) > Ψn(εult
n ) for

ε ≥ εfracn , we conclude that Ehn({vin}) < Ehn({uin}), which contradicts the minimality of
{uin} . Therefore there is at most one index j such that u̇jn > εult

n .

If there exists another index k such that Hj
n > Hk

n , then we consider the new
configuration {zin} defined by z0

n = 0, żjn = u̇kn , żkn = u̇jn , and żin = u̇in for all other
indices. This configuration satisfies znn = d and has smaller energy than {uin} . This
contradicts the minimality of {uin} and shows that Hj

n = miniHi
n . Conversely, if k is

another index such that Hk
n = miniHi

n , then the configuration {zin} defined above has
the same energy as {uin} . Therefore it is a minimum point of (2.6) such that żin ≤ εult

n

for every i 6= k .

When hin = 0 for i = 1, . . . , n− 1 we obtain the following well known result.

Proposition 2.4. Let {uin} be an absolute minimum, or a strict local minimum, of
the functional En with the constraints u0

n = 0 and unn = d . Then one of the following
conditions is satisfied:

(a) u̇in = d/l ≤ εult
n for i = 1, . . . , n ;

(b) there exist a constant ε < εult
n and an index j such that u̇jn > εult

n , ψn(u̇jn) = ψn(ε) ,
and u̇in = ε for every i 6= j .

Proof. The result follows easily from the stationarity condition (2.3) and from Theo-
rems 2.2 and 2.3.
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3. Limits of Discrete Models

To study the limits of the discrete models introduced in Section 2 as the number
of particles tends to infinity, we will use the space BV (0, l) of functions of bounded
variation, which is defined as the set of functions u ∈ L1(0, l) such that the distributional
derivative u′ is a bounded Radon measure on (0, l). It is easy to see that for such
functions the left and right essential limits u(x−) and u(x+) exist at every point. If we
define [u](x) := u(x+) − u(x−) and Su := {x ∈ (0, l) : u(x−) 6= u(x+)} , then we can
write

u′ = u̇dx+
∑
x∈Su

[u](x)δx + u′c ,

where u̇ is the ordinary derivative of u , which is defined almost everywhere on (0, l),
δx is the Dirac mass concentrated at x , while the measure u′c , called the Cantor part
of u′ , is a non-atomic measure on (0, l), which is singular with respect to the Lebesgue
measure. The measure

u′s :=
∑
x∈Su

[u](x)δx + u′c

is the singular part of the measure u′ with respect to the Lebesgue measure.
The space SBV (0, l) of special functions of bounded variation is defined as the space

of those functions u ∈ BV (0, l) such that u′c is identically zero. The space considered
here is the one-dimensional case of a more general class of spaces introduced by De Giorgi
and Ambrosio in [10].

We adopt the standard notation of measure theory. In particular, if µ is a signed
measure, then µ+ , µ− , and |µ| are the positive part, the negative part, and the total
variation of µ , respectively. If E is a set, its characteristic function χE is defined by
χE(x) = 1 for x ∈ E and χE(x) = 0 for x /∈ E .

Since we shall frequently use truncations, for a , b ∈ [−∞,+∞] we set a ∧ b :=
min{a, b} , a ∨ b := max{a, b} , a+ := a ∨ 0, and a− := −(a ∧ 0).

To study the asymptotic behaviour of the minimum points of a sequence of func-
tionals we shall use the notion of Γ-convergence, for which we refer to [9]. We recall that
a sequence {Fn} of functionals Fn:L1(0, l) → [0,+∞] is said to Γ-converge in L1(0, l)
to a functional F :L1(0, l) → [0,+∞] if for every u ∈ L1(0, l) the following conditions
hold:
(i) (lower semicontinuity inequality) for every sequence {un} converging to u in L1(0, l)

we have F(u) ≤ lim infn Fn(un);
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(ii) (existence of a recovery sequence) there exists a sequence {un} converging to u in
L1(0, l) such that F(u) ≥ lim supn Fn(un).
In order to apply Γ-convergence to our asymptotic analysis, we have to consider the

discrete energies En as defined on L1(0, l). For this purpose, for every n we consider
the space An of all continuous functions u on [0, l] which are affine on [xi−1

n , xin] for all
i . For every function un ∈ An we set uin = u(xin) and u̇in = (uin − ui−1

n )/λn , so that
u̇in is the constant value of the derivative of un in (xi−1

n , xin). We consider the energy
functional En defined on L1(0, l) by

(3.1) En(un) =
∫ l

0

Ψn(u̇n) dx =
n∑
i=1

λnΨn(u̇in) = En({uin})

for un ∈ An , and by En(un) = +∞ for un /∈ An . It is clear that all minimum problems
for En with prescribed boundary conditions are equivalent to the corresponding minimum
problems for En , in the sense that they have the same minimum values and the minimum
points of En are the affine interpolations of the minimum points of En .

Our asymptotic analysis is very general, and will be done under weaker assumptions
than those considered in the previous section. Therefore we are not allowed to use
the simple structure of the minimizers of problem (2.6), which is valid only under the
assumptions considered in Section 2.

We do not require ψn to be continuous; we assume only that ψn(0) = 0 and that
ψn is non-negative on [0,+∞), non-decreasing on (−∞, εult

n ] , and non-increasing on
[εult
n ,+∞), with 0 < εult

n < +∞ . These weaker assumptions include also the case of
plastic behaviour, which corresponds to intervals where ψn is constant. In order to pass
to the limit in the minimum problems, we assume that (2.1) holds uniformly with respect
to n . Moreover we assume that there exist ε∗ < +∞ and σ∗ < +∞ such that εult

n ≤ ε∗
and σult

n = ψn(εult
n ) = maxψn ≤ σ∗ for every n . These hypotheses imply that there

exists a non-decreasing continuous function ψ∗: R → R such that ψn(ε) ≤ ψ∗(ε) and
ψ∗(ε) → −∞ as ε → −∞ . Therefore the functions Ψn defined by (2.2) satisfy the
inequality

(3.2) Ψn(ε) ≥ Ψ∗(ε) for every ε ≤ 0 ,

where Ψ∗ is the primitive of ψ∗ vanishing at 0 and, consequently,

(3.3) lim
ε→−∞

Ψ∗(ε)
|ε|

= +∞ .

We are now in a position to state the main theorem of this section.
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Theorem 3.1. There exists a subsequence, still denoted by {En} , which Γ-converges to
a functional F :L1(0, l)→ [0,+∞] such that

(3.4) F(u) =
∫ l

0

Φ(u̇) dx+ σultu′c(0, l) +
∑
Su

G([u]) ,

if u ∈ BVloc(0, l) and u′s ≥ 0 in (0, l) , while F(u) = +∞ for all other functions
u ∈ L1(0, l) . In (3.4) the function Φ: R→ [0,+∞] is convex and lower semicontinuous,
the function G: [0,+∞)→ [0,+∞) is concave and continuous, Φ(0) = G(0) = 0 , σult =
G′(0+) ≤ σ∗ , Φ(ε)/|ε| → +∞ as ε → −∞ , Φ(ε) < +∞ for ε ≥ 0 , and Φ′(ε) = σult

for ε ≥ ε∗ . Moreover, every functional of the form (3.4) can be obtained as Γ-limit of
{En} for a suitable choice of {ψn} .

In Sections 4 and 5 we shall use this result to obtain the convergence of the minimum
points of the constrained problems (2.6).

We shall see in Remark 6.6 that σult is the maximum stress allowed in the continuous
model (ultimate tensile stress).

Remark 3.2. Note that Φ(ε)/ε → σult as ε → +∞ . Therefore, if σult > 0, there
exist two constants A > 0 and B ≥ 0 such that Φ(ε) ≥ A|ε| − B for every ε ∈ R

and, consequently, F(u) < +∞ implies u ∈ BV (0, l). Indeed, if F(u) < +∞ , then
(3.4) implies that u̇ ∈ L1(0, l), |u′c|(0, l) < +∞ , and

∑
Su
G([u]) < +∞ . As G is

non-decreasing and G′(0+) = σult > 0, we have G(1) > 0, so that there is only a finite
number of points x with [u](x) > 1. As G is concave and G(0) = 0, we have G([u](x)) ≥
G(1)[u](x) for every x such that 0 ≤ [u](x) ≤ 1. Consequently

∑
Su

[u] < +∞ .
If σult = 0, then G(w) = 0 for every w ≥ 0 and Φ(ε) = Φ(ε ∧ 0). Therefore the

functional F becomes

F(u) =
∫ l

0

Φ(u̇ ∧ 0) dx ,

if u ∈ BVloc(0, l) and u′s ≥ 0, while F(u) = +∞ otherwise. This is the one-dimensional
case of the energy functional for masonry-like structures studied in [17], [12], [2], and
[3].

To prove Theorem 3.1 and to obtain an explicit dependence of Φ, σult , and G on the
sequence {ψn} , it is convenient to consider separately the behaviour of ψn in the half-
lines (−∞, εult

n ] and [εult
n ,+∞). To this aim for every n we introduce a non-decreasing
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function fn: R→ [−∞,+∞] satisfying

(3.5) fn(ε) = ψn(ε) for all ε ≤ εult
n .

Note that fn ≥ ψn on the whole R , and fn ≥ σult
n = ψn(εult

n ) = maxψn on [εult
n ,+∞).

We also consider the rescaled function gn: [0,+∞)→ [0,+∞) defined by

(3.6) gn(w) := ψn(
w

λn
+ εult

n )

so that

(3.7) ψn(ε) =

 fn(ε) if ε ≤ εult
n ,

gn(λn(ε− εult
n )) if ε ≥ εult

n .

Finally, we define Fn: R→ [0,+∞] and Gn: [0,+∞)→ [0,+∞) by

(3.8) Fn(ε) :=
∫ ε

0

fn(s) ds , Gn(w) :=
∫ w

0

gn(s) ds .

Thus it follows that

(3.9) Ψn(ε) =


Fn(ε) if ε ≤ εult

n ,

Fn(εult
n ) +

1
λn
Gn(λn(ε− εult

n )) if ε ≥ εult
n .

Since the functions fn are non-decreasing and the functions gn are non-increasing,
by Helly’s theorem there exist two subsequences, still denoted by {fn} and {gn} , such
that {fn} converges pointwise to a non-decreasing function f : R→ [−∞,+∞] and {gn}
converges pointwise to a non-increasing function g: [0,+∞)→ [0,+∞).

As fn(εult
n ) = ψn(εult

n ) = gn(0) ≤ σ∗ , the monotonicity of fn and gn yields fn(ε) ≥
gn(w) for ε ≥ ε∗ and w ≥ 0, while σ∗ ≥ gn(w) for w ≥ 0. This implies f(ε) ≥ g(0+)
for ε ≥ ε∗ and σ∗ ≥ g(0+). We define σult := g(0+) and

(3.10) F (ε) :=
∫ ε

0

f(s) ds , G(w) :=
∫ w

0

g(s) ds ,

for ε ∈ R and w ≥ 0. Let εmin = inf{ε ∈ R : f(ε) > −∞} and εmax = sup{ε ∈ R :
f(ε) < +∞} . Since f is non-increasing and f(0) = 0, we have εmin ≤ 0 ≤ εmax and
F (ε) < +∞ for every ε ∈ (εmin, εmax). It is easy to see that Fn → F uniformly on
compact sets of (εmin, εmax) and that Gn → G uniformly on compact sets of [0,+∞).
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Finally we define

(3.11) F (ε) :=
∫ ε

0

f(s) ∧ σultds .

Note that F (ε) = F (ε) for ε ≤ εult and F (ε) = F (εult)+σult(ε−εult) for ε ≥ εult , where
εult = sup{ε ∈ R : f(ε) < σult} . Since f(ε) ≥ σult for ε ≥ ε∗ , we have εult ≤ ε∗ < +∞ .
Moreover, by (3.5) we have f(ε) ≤ ψ∗(ε) for ε ≤ 0, so that

(3.12) F (ε) = F (ε) ≥ Ψ∗(ε) for ε ≤ 0 .

Let E :L1(0, l)→ [0,+∞] be the functional defined by

(3.13) E(u) =
∫ l

0

F (u̇) dx+
∑
Su

G([u]) ,

if u ∈ SBVloc(0, l) and [u] ≥ 0, and equal to +∞ otherwise. We shall consider also the
functional E :L1(0, l)→ [0,+∞] defined by

(3.14) E(u) =
∫ l

0

F (u̇) dx+ σultu′c(0, l) +
∑
Su

G([u]) ,

if u ∈ BVloc(0, l) and u′s ≥ 0, and equal to +∞ otherwise. As in Remark 3.2 we can
prove that, if σult > 0, then F(u) < +∞ implies u ∈ BV (0, l). Using the arguments of
[5] it is possible to prove that E is the lower semicontinuous envelope of E in L1(0, l).
We shall prove in Sections 6 and 7 that for a wide class of boundary value problems the
functionals E and E have the same stationary points and the same minimizers.

Theorem 3.1 is an immediate consequence of the following result, which shows also
that the functions Φ and G which appear in (3.4) are the functions F and G defined
by (3.11) and (3.10) respectively.

Theorem 3.3. Suppose that {fn} converges to f pointwise in R and {gn} converges
to g pointwise in [0,+∞) . Then {En} Γ-converges to E in L1(0, l) .

Proof. We begin by proving the lower semicontinuity inequality. Let {un} be a sequence
which converges to u in L1(0, l). We want to show that lim infn En(un) ≥ E(u). It is
not restrictive to suppose that {un} converges to u a.e. in [0, l] and that the sequence



14 A. BRAIDES, G. DAL MASO, A. GARRONI

{En(un)} has a finite limit, so that, in particular, un ∈ An for n large enough. Let us
prove that

(3.15) sup
n

∫ l

0

(u̇n)−dx < +∞ , sup
n

∫ l−δ

δ

(u̇n)+dx < +∞ ,

for every 0 < δ < l/2. The former inequality in (3.15) follows from (3.1), (3.2), and
(3.3). To prove the latter inequality, we fix two points a and b , with 0 < a < δ and
l − δ < b < l , such that {un(a)} and {un(b)} converge to a finite limit. Then we have

(3.16)
∫ 1−δ

δ

(u̇n)+dx ≤
∫ b

a

(u̇n)+dx = un(b)− un(a) +
∫ b

a

(u̇n)−dx .

Since the right hand side is bounded, the proof of (3.15) is complete. From (3.15) it
follows that u ∈ BVloc(0, l) (see, e.g., [13], Theorem 1.9).

For every n let In ⊂ {1, . . . , n} be the set of indices such that u̇in ≤ εult
n and let

Jn = {1, . . . , n} \ In , i.e., the set of indices such that u̇in > εult
n . We define a new

function vn on (0, l] , which is still affine on each open interval (xi−1
n , xin), but may be

discontinuous at some of the points xin . On the intervals (xi−1
n , xin] with i ∈ In we set

vn = un . On the intervals (xi−1
n , xin] with i ∈ Jn the affine function vn is defined by

the conditions v̇n = εult
n and vn(xin) = uin . Since un and vn are affine on the intervals

(xi−1
n , xin] , by an elementary computation we obtain∫ xj

n

xi
n

|vn − un| dx ≤
λn
2

∫ xj
n

xi
n

(u̇n)+dx ,

for 0 ≤ i < j ≤ n . As {un} converges to u in L1(0, l), by (3.15) the previous inequalities
imply that {vn} converges to u in L1

loc(0, l). Passing to a subsequence, we may assume
that {vn} converges to u a.e. on (0, l), and the same argument used for {un} shows
that {vn} is bounded in BVloc(0, l).

For every n we have

(3.17)

En(un) =
∑
i∈In

λnFn(u̇in) + λn#Jn Fn(εult
n ) +

∑
i∈Jn

Gn(uin − ui−1
n − λnεult

n )

=
∫ l

0

Fn(v̇n) dx+
∑
Svn

Gn([vn]) .

where #A denotes the number of the elements of A . For each k > 0 let fkn(ε) :=
(−k) ∨ (fn(ε) ∧ k), let F kn be its primitive vanishing at 0, and let

Gkn(w) :=

Gn(w) +
w

k
for w ≥ 0,

−kw for w ≤ 0.
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Then by (3.17) for every 0 < δ < l/2 and for every k > 0

En(un) +
1
k

∑
Svn∩(δ,l−δ)

[vn] ≥
∫ l−δ

δ

F kn (v̇n) dx+
∑

Svn∩(δ,l−δ)

Gkn([vn]) .

Note that ∑
Svn∩(δ,l−δ)

[vn] ≤ sup
n
|v′n|(δ, l − δ) = c(δ) < +∞ .

By Theorem 3.4 and Corollary 3.5 of [1] we have

lim inf
n→+∞

En(un) +
c(δ)
k

≥
∫ l−δ

δ

F k(u̇) dx+
∑

Su∩(δ,l−δ)

Gk([u]) + σult(u′c)
+(δ, l − δ) + k (u′c)

−(δ, l − δ) ,

where F k and Gk are the primitives vanishing at 0 of the functions

fk(ε) := (−k) ∨
(
(f(ε) ∧ σult) +

1
k

)
,

gk(w) :=

 (g(w) +
1
k

) ∧ σult for w ≥ 0,

−k for w ≤ 0,

respectively. Taking the limit as k → +∞ and then as δ → 0 we obtain that u′s ≥ 0 in
(0, l) and

lim inf
n→+∞

En(un) ≥
∫ l

0

F (u̇) dx+
∑
Su

G([u]) + σultu′c(0, l) .

Let E ′′ be the Γ-limsup in L1(0, l) of the sequence {En} (see [9], Definition 4.1).
To conclude the proof of the Γ-convergence it remains to show that for every function
u ∈ BV (0, l) with u′s ≥ 0 we have E ′′(u) ≤ E(u); i.e., there exists a sequence {un} of
functions in An which converges to u in L1(0, l) such that lim supn En(un) ≤ E(u).

Let us define

F̃n(ε) :=
∫ ε

0

fn(s) ∧ σ∗ ds, F̃ (ε) :=
∫ ε

0

f(s) ∧ σ∗ ds.

Then F̃n ≥ Ψn , F̃ ≥ F , and F̃n → F̃ uniformly on compact sets of (εmin,+∞).
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Let us consider first a function u ∈ SBV (0, l) such that #Su < +∞ , [u] ≥ 0 in
Su , and ε1 ≤ u̇ ≤ ε2 a.e. in (0, l), with εmin < ε1 < ε2 < +∞ . If Su = Ø, we choose
un to be the affine interpolation of u on {x0

n, . . . , x
n
n} and we get

lim sup
n→+∞

En(un) ≤ lim
n→+∞

n∑
i=1

F̃n

(u(xin)− u(xi−1
n )

λn

)
≤
∫ l

0

F̃ (u̇) dx ,

where the last inequality follows from the uniform convergence of {F̃n} in the interval
[ε1, ε2] and from Jensen’s inequality. Since u ∈ W 1,∞(0, l) in this case, it is easy to see
that {un} converges to u in W 1,1(0, l).

If Su 6= Ø, by the local character of our arguments it is not restrictive to assume
that Su contains exactly one point x0 ∈ (0, l). Hence, we can write u = v + w , where
v is a Lipschitz function in [0, l] and w = [u](x0)χ(x0,l) . Let vn and wn be the affine
interpolations of the values of v and w on the points {xin} . It is easy to see that {vn}
converges to v in W 1,1(0, l) and {wn} converges to w in L1(0, l). Note that we have
ε1 ≤ v̇n ≤ ε2 a.e. in (0, l). We define un = vn + wn , which turns out to be the affine
interpolation of the values of u on the points {xin} .

Let in be the integer such that x0 ∈ [xnin−1, x
n
in

) and let In and Jn be defined as
in the first part of the proof. Then in ∈ Jn for n large enough and, being Ψn ≤ F̃n ,
from Jensen’s inequality we obtain

En(un) =
∑
i 6=in

λnΨn

(v(xin)− v(xi−1
n )

λn

)
+ λn Fn(εult

n )

+Gn(v(xinn )− v(xin−1
n ) + [u](x0)− λnεult

n )

≤
∫ l

0

F̃n(v̇) dx+ λn Fn(εult
n ) +Gn(v(xinn )− v(xin−1

n ) + [u](x0)) .

From the uniform convergence of F̃n and Gn we obtain that

lim sup
n→+∞

En(un) ≤
∫ l

0

F̃ (u̇) dx+G([u](x0)) .

Since this argument can be adapted to every function u ∈ SBV (0, l) such that
#Su < +∞ , [u] ≥ 0 in Su , and ε1 ≤ u̇ ≤ ε2 a.e. in (0, l), with εmin < ε1 < ε2 < +∞ ,
for these functions we obtain

(3.18) E ′′(u) ≤
∫ l

0

F̃ (u̇) dx+
∑
Su

G([u]) .
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Let us consider now the general case of a function u ∈ SBV (0, l) with positive jumps.
It is not restrictive to suppose that u̇ ≥ εmin a.e. in (0, l), otherwise the right hand side
of (3.18) is +∞ . Let Su = {x1, x2, . . .} and let εk → εmin such that F (εk) < +∞ . Let
uk be the unique function in SBV (0, l) which satisfies uk(0+) = u(0+) and

u′k =
(
(u̇ ∨ εk) ∧ k

)
dx+

k∑
j=1

[u](xj)δxj
.

Since uk satisfies the conditions required in the previous step, by the lower semicontinuity
of the Γ-limsup (see [9], Proposition 6.8) we have

E ′′(u) ≤ lim inf
k→+∞

E ′′(uk) ≤
∫ l

0

F̃ (u̇) dx+
∑
Su

G([u]) .

If σult > 0, then 0 < G′(0+) = σult ≤ σ∗ and hence also F̃ ′ ∧ σult = f ∧ σult a.e.
on [0,+∞). Therefore we can apply the relaxation results of [6] to obtain that E is the
lower semicontinuous envelope in L1(0, l) of the functional Ẽ defined by

Ẽ(u) =
∫ l

0

F̃ (u̇) dx+
∑
Su

G([u]) ,

if u ∈ SBV (0, l) and [u] ≥ 0, and by Ẽ(u) = +∞ for all other functions u ∈ L1(0, l).
By the lower semicontinuity of E ′′ this implies again that E ′′ ≤ E , as required.

If σult = 0, we can argue by comparison. Let Ekn , k > 0, be the functionals with
integrands ψn + 1

kχ(0,+∞) . If u ∈ BV (0, l) then by the previous step we have

E ′′(u) = Γ- lim sup
n→+∞

En(u) ≤ Γ- lim sup
n→+∞

Ekn(u) ≤
∫ l

0

F (u̇ ∧ 0) dx+
1
k

(u′)+(0, l) ,

and by the arbitrariness of k we get E ′′(u) ≤ E(u). If u ∈ BVloc(0, l) and E(u) < +∞ ,
then u̇∧ 0 ∈ L1(0, l) by (3.3) and (3.12); consequently the functions uj = (−j)∨ (u∧ j)
belong to BV (0, l) and E(uj)→ E(u); hence by the lower semicontinuity of E ′′ we get

E ′′(u) ≤ lim inf
j→+∞

E ′′(uj) ≤ lim
j→+∞

E(uj) = E(u),

as required.
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Remark 3.4. Suppose that {ψn} , {fn} , and {gn} satisfy all properties considered in
this section, except the almost everywhere convergence. Using the compactness proper-
ties of monotone functions and the previous theorem it is easy to prove that the sequence
{En} Γ-converges if and only if {gn(w)} converges to g(w) for a.e. w > 0, σult = g(0+),
and {fn(ε) ∧ σult} converges to f(ε) ∧ σult for a.e. ε ∈ R .

4. Dirichlet Boundary Conditions

In order to study the convergence of the solutions of minimum problems for the
discrete energies En with prescribed displacements at the boundary points x = 0 and
x = l , we have to investigate the behaviour of some functionals which take these boundary
conditions into account .

Let d ∈ R ; we consider the functionals Edn:L1(0, l)→ [0,+∞] defined by Edn(un) =
En(un), if u ∈ An , un(0) = 0, un(l) = d , and by Edn(u) = +∞ for every other function of
L1(0, l). We assume that ψn , fn , and gn satisfy all the hypotheses of the previous section
and that {fn} converges to f pointwise on R and {gn} converges to g pointwise on
[0,+∞). For every u ∈ BV (0, l) and for every x ∈ [0, l] we set [u](x) = u(x+)−u(x−),
where we put u(0−) = 0 and u(l+) = d . Then we define Sdu = {x ∈ [0, l] : [u](x) 6= 0}
and we extend the measures u′ and u′s to [0, l] by setting

(4.1) u′ = u̇ dx+
∑
x∈Sd

u

[u](x) δx + u′c , u′s =
∑
x∈Sd

u

[u](x) δx + u′c .

Note that, if v ∈ BVloc(R) is the extension of u defined by v(x) = 0 for x ≤ 0 and
v(x) = d for x ≥ l , then u′ and u′s are the restrictions to [0, l] of the distributional
derivative v′ and of its singular part v′s . Note also that for every u ∈ BV (0, l) we have

(4.2) u′([0, l]) =
∫ l

0

u̇ dx+
∑
Sd

u

[u] + u′c(0, l) = d

and that u is uniquely determined by the measure u′ on [0, l] .

Let Ed:L1(0, l)→ [0,+∞] be the functional defined by

(4.3) Ed(u) =
∫ l

0

F (u̇) dx+
∑
Sd

u

G([u]) = E(u) +G(u(0+)) +G(d− u(l−)) ,
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if u ∈ SBV (0, l) and [u] ≥ 0 in [0, l] (in particular, u(0+) ≥ 0 and u(l−) ≤ d), while
Ed(u) = +∞ for all other functions of L1(0, l). Moreover we consider the functional
Ed:L1(0, l)→ [0,+∞] defined by

(4.4) Ed(u) =
∫ l

0

F (u̇) dx+σultu′c(0, l) +
∑
Sd

u

G([u]) = E(u) +G(u(0+)) +G(d−u(l−)) ,

if u ∈ BV (0, l) and u′s ≥ 0 in [0, l] (in particular, u(0+) ≥ 0 and u(l−) ≤ d), while
Ed(u) = +∞ for all other functions of L1(0, l). Using the arguments of [5] it would be
possible to show that Ed is the lower semicontinuous envelope of Ed in L1(0, l), but
this property will never be used in this paper. In this section we show that the sequence
{Edn} Γ-converges to Ed in L1(0, l). In the next section we shall prove the convergence of
minimizers. In Sections 6 and 7 we shall show that Ed and Ed have the same minimizers,
and that this is still true if we add a term corresponding to a dead load.

Remark 4.1. Note that also in the case σult = 0 the functionals Ed and Ed are infinite
on BVloc(0, l) \ BV (0, l), in contrast with E and E . This is explained by the fact that
BVloc functions satisfying E(u) < +∞ , and the boundary conditions u(0+) ≥ 0 and
u(l−) ≤ d are indeed in BV (0, l).

Theorem 4.2. If d > l εmin , then the sequence {Edn} Γ-converges to Ed in L1(0, l) .

Proof. Let us preliminarily note that the result stated in Theorem 3.3 holds on every
interval I ⊂ R . Namely, let

En(u, I) =


∫
I

Ψn(u̇) dx if u ∈ An(I),

+∞ if u ∈ L1(I) \ An(I),

where An(I) is the space of all continuous functions u: I → R which are affine on
the intervals [xi−1

n , xin] ∩ I , with xin = λni , i ∈ Z . Then repeating the arguments of
Theorem 3.3 we have that

(4.5) E(u, I) = Γ- lim
n→∞

En(u, I) in L1(I) ,

where
E(u, I) =

∫
I

F (u̇) dx+ σultu′c(I) +
∑
Su

G([u]) ,
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if u ∈ BVloc(I) and u′s ≥ 0 in I , while E(u, I) = +∞ for all other functions of L1(I).

In order to prove the lower semicontinuity inequality for {Edn} , let un ∈ An with
un(0) = 0, un(d) = d , and un → u in L1(0, l). Define the auxiliary functions

vn(x) =

{ 0 for x ≤ 0,
un(x) for 0 ≤ x ≤ l,
d for l ≤ x,

v(x) =

{ 0 for x ≤ 0,
u(x) for 0 ≤ x ≤ l,
d for l ≤ x.

Let us fix two constants α and β with α < 0 < l < β . If we apply (4.5) with I = (α, β),
we get in particular

lim inf
n→+∞

En(un) = lim inf
n→+∞

∫ β

α

Ψn(v̇n) dx ≥ E(v, (α, β)) = Ed(u) ,

as required.

In order to prove the limsup inequality, we choose u such that Ed(u) < +∞ ,
u(0+) > 0, and u(l−) < d . As above let us extend u to the function v defined in
(α, β). Then by (4.5) there exists a sequence {un} , with un ∈ An(α, β), which con-
verges to v in L1(α, β), such that

(4.6) lim
n→+∞

∫ β

α

Ψn(u̇n) dx = E(v, (α, β)) .

Let us fix two points a and b such that 0 < a < b < l , a /∈ Su , b /∈ Su , un(a) →
u(a) = u(a−) = u(a+) > 0, and un(b) → u(b) = u(b−) = u(b+) < d . Using the lower
semicontinuity inequality given by (4.5) for the intervals I = (α, a) and I = (b, β), from
(4.6) we obtain by difference

(4.7) lim sup
n→+∞

∫ b

a

Ψn(u̇n) dx ≤
∫ b

a

F (u̇) dx+
∑

Su∩(a,b)

G([u]) + σultu′c(a, b) .

Define vn ∈ An by

vn(xin) =


0 if i < jn − 1,
un(a) if i = jn − 1,
un(xin) if jn − 1 < i ≤ kn − 1,
un(b) if i = kn,
d if i > kn,

where jn and kn are the indices such that a ∈ [xjn−1
n , xjnn ) and b ∈ [xkn−1

n , xkn
n )
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We have vn(0) = 0 and vn(l) = d for n large enough. Moreover {vn} converges
to ua,b := uχ(a,b) + dχ(b,l) . Note that Ψn(v̇n(x)) ≤ Ψn(u̇n(x)) for almost every x ∈
(xjn−1
n , xkn

n ).

For δ > 0 and for n large enough we obtain

∫ l

0

Ψn(v̇n) dx ≤ λnΨn

(un(a)
λn

)
+
∫ xkn

n

xjn−1
n

Ψn(u̇n) dx+ λnΨn

(d− un(b)
λn

)
≤
∫ b+δ

a−δ
Ψn(u̇n) dx+ 2λnFn(εult

n ) +Gn(un(a)) +Gn(d− un(b)) ,

and taking the limit as n→ +∞ , by (4.7) and the arbitrarines of δ > 0,

lim sup
n→+∞

∫ l

0

Ψn(v̇n) dx ≤ E(u, (a, b)) +G(u(a)) +G(d− u(b)) = Ed(ua,b).

We have then Γ- lim supn Edn(ua,b) ≤ Ed(ua,b); letting a → 0 and b → l , by the lower
semicontinuity of the Γ-limsup we eventually deduce Γ- lim supn Edn(u) ≤ Ed(u).

If Ed(u) < +∞ and u(0+) = 0 or u(l−) = d , the inequality d > l εmin implies that
there exists a sequence {uj} converging to u uniformly in [0, l] such that

∫ l
0
F (u̇j) dx→∫ l

0
F (u̇) dx , |u′j − u′|(0, l) → 0, uj(0+) > 0, and uj(l−) < d . By the previous step we

have Γ- lim supn Edn(uj) ≤ Ed(uj) for every j . Passing to the limit as j → +∞ , by the
lower semicontinuity of the Γ-limsup we eventually obtain Γ- lim supn Edn(u) ≤ Ed(u), as
required.

5. Boundary Value Problems with External Forces

In this section we consider the limit, as n tends to infinity, of the minimum points
of the problems (2.6) involving an external force {λnhin} . We assume that ψn , fn , gn ,
f and g satisfy all hypotheses of the Section 4. Let h̃n ∈ L∞(0, l) be the piecewise
constant function defined by h̃n(x) = hin for xi−1

n < x ≤ xin , i = 1, . . . , n , where we set
hnn = 0. We assume that the sequence {h̃n} converges in L1(0, l) to a function h .

We are now in a position to state our main convergence result for energy minimizing
configurations with prescribed displacements at the boundary.
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Theorem 5.1. Assume that d > l εmin . For every n let {uin} be a minimum point of
problem (2.6) and let un be the affine interpolation of {uin} on the points {xin} . Then the
sequence {un} is bounded in BV (0, l) and a subsequence of {un} converges in L1(0, l)
to a minimum point u of the problem

(5.1) min
{
Ed(u)−

∫ l

0

hu dx : u ∈ BV (0, l)
}
.

Moreover the minimum values of (2.6) converge to the minimum value of (5.1).

To prove the theorem we need the following lemmas.

Lemma 5.2. For every n let vn ∈ An with vn(0) = 0 and vn(l) = d . Suppose that the
sequence

{
Ehn({vin})

}
is bounded. Then the sequence {v̇n} is bounded in L1(0, l) .

Proof. As |vin| = |
∫ xi

n

0
v̇ndx| ≤

∫ l
0
|v̇n| dx , we have

(5.2)
n−1∑
i=1

λnh
i
nv

i
n ≤

∫ l

0

|h̃n| dx
∫ l

0

|v̇n| dx .

Since {h̃n} is bounded in L1(0, l) and
{
Ehn({vin})

}
is bounded, it follows from (3.2),

(2.5), and (5.2) that there exist two constants A and B such that

(5.3)
∫ l

0

Ψ∗(v̇n ∧ 0) dx ≤ A
∫ l

0

|v̇n| dx+B .

Since
∫ l
0
(v̇n)+dx = d +

∫ l
0
(v̇n)−dx , we have

∫ l
0
|v̇n| dx ≤ d + 2

∫ l
0
(v̇n)−dx , so that, by

(5.3) and (3.3) the sequences {(v̇n)−} and {v̇n} are bounded in L1(0, l).

Lemma 5.3. For every n let vn ∈ An . Suppose that {vn} converges in L1(0, l) to a
function v and that {v̇n} is bounded in L1(0, l) . Then

(5.4) lim
n→+∞

n−1∑
i=1

λnh
i
nv

i
n =

∫ l

0

hv dx .

Proof. Let ṽn ∈ L∞(0, l) be the piecewise constant function defined by ṽn(x) = vin for
xi−1
n < x ≤ xin , i = 1, . . . , n . It is clear that

(5.5)
n−1∑
i=1

λnh
i
nv

i
n =

∫ l

0

h̃nṽndx .
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We want to prove that {ṽn} converges to v in L1(0, l). Since vn is piecewise affine, by
an elementary computation we obtain∫ l

0

|ṽn − vn| dx =
λn
2

n∑
i=1

|vin − vi−1
n | ≤ λn

2

∫ l

0

|v̇n| dx .

As {λn} tends to 0 and {v̇n} is bounded in L1(0, l), we conclude that {ṽn − vn}
converges to 0 in L1(0, l), so that {ṽn} converges to v in L1(0, l). Since {vn} is
bounded in L∞(0, l), the same property holds for {ṽn} . Therefore (5.4) follows from
(5.5) and from the convergence of {h̃n} .

Proof of Theorem 5.1. Let us prove that the sequence
{
Ehn({uin})

}
is bounded. If

d ≥ 0, we define w0
n = 0 and win = d for i = 1, . . . , n . Then, by minimality,

Ehn({uin}) ≤ Ehn({win}) ≤ λnFn(εult
n ) +Gn(d)− d

∫ l

0

h̃ndx ≤ σ∗(ε∗λn + d)− d
∫ l

0

h̃ndx .

Since the sequence {h̃n} is bounded in L1(0, l), the previous inequalities prove that{
Ehn({uin})

}
is bounded. If l εmin < d < 0, we define zin = xind/l . Then, by minimality,

Ehn({uin}) ≤ Ehn({zin}) ≤ l Fn(d/l) + d

∫ l

0

|h̃n| dx .

Since εmin < d/l < 0, the sequence {Fn(d/l)} converges to F (d/l), and
{
Ehn({uin})

}
is

bounded also in this case.
By Lemma 5.2 the sequence {u̇n} is bounded in L1(0, l). Therefore there exists a

subsequence, still denoted by {un} , which converges in L1(0, l) to a function u . Since
Ehn({uin}) = Edn(un)−

∑
i λnh

i
nu

i
n , from Theorem 4.2 and Lemma 5.3 we obtain that

(5.6) Ed(u)−
∫ l

0

hu dx ≤ lim inf
n→+∞

Ehn({uin}) .

Let v ∈ L1(0, l) with Ed(v) < +∞ . By Theorem 4.2 there exists a sequence
{vn} converging to v in L1(0, l) such that Ed(v) = limn Edn(vn). By Lemma 5.2, ap-
plied with hin = 0, the sequence {v̇n} is bounded in L1(0, l), so that, by Lemma 5.3,
Ed(v)−

∫ l
0
hv dx = limnE

h
n({vin}). By minimality we have Ehn({vin}) ≥ Ehn({uin}), and,

consequently,

(5.7) Ed(v)−
∫ l

0

hv dx ≥ lim sup
n→+∞

Ehn({uin}) .
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From (5.6) and (5.7) we obtain that u is a minimum point of (5.1) and that

Ed(u)−
∫ l

0

hu dx = lim
n→+∞

Ehn({uin}) .

Since this result does not depend on the subsequence, we conclude that the minimum
values of (2.6) converge to the minimum value of (5.1).

Theorem 5.1 can be easily extended to the more general minimum problem

(5.8) min
{
Ed(u) +

∫ l

0

b(x, u) dx : u ∈ BV (0, l)
}
,

where b: [0, l]×R → R is a Carathéodory function, i.e., b(x,w) is measurable in x and
continuous in w , and

(5.9)
∫ l

0

max
|w|≤r

|b(x,w)| dx < +∞ for every r ∈ [0,+∞) .

For every integer n > 1 and for every i = 1, . . . , n− 1 let bin: R→ R be a function such
that

(5.10) bin(w) ≥ −ain|w| for every w ∈ R ,

where the coefficients ain ≥ 0 satisfy the inequality

(5.11)
n−1∑
i=1

λna
i
n ≤ A

with a constant A < +∞ independent of n . Assume that

(5.12) lim
n→+∞

n−1∑
i=1

λnb
i
n(vin) =

∫ l

0

b(x, v) dx

whenever the affine interpolations vn of {vin} converge to v in L1(0, l) as n→ +∞ and
their derivatives v̇n are bounded in L1(0, l).

Condition (5.12) is satisfied, for instance, when b is continuous and bin(w) = b(xin, w).
Another interesting case is when b(x,w) = |w − h(x)|p , with h ∈ Lp(0, l) and p ≥ 1.
Then (5.12) is satisfied by bin(w) = |w − hin|p , provided h is the Lp(0, l)-limit of the
piecewise constant functions h̃n associated with {hin} (the definition of h̃n is given at
the beginning of the section). In both cases the proof can be obtained as in Lemma 5.3.
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Theorem 5.4. Assume that conditions (5.9)–(5.12) are satisfied and that d > l εmin .
For every n let {uin} be a minimum point of the problem

(5.13) min
{
En({uin}) +

n−1∑
i=1

λnb
i
n(uin) : u0

n = 0, unn = d
}
,

and let un be the affine interpolation of {uin} on the points {xin} . Then the sequence
{un} is bounded in BV (0, l) and a subsequence of {un} converges in L1(0, l) to a min-
imum point u of problem (5.8). Moreover the minimum values of (5.13) converge to the
minimum value of (5.8).

Proof. It is enough to adapt the proof of Theorem 5.1.

6. Stationary Configurations for the Continuous Model

In this section we study in detail the properties of the stationary points for the
functionals Ed and Ed considered in the previous sections. In order to simplify the
exposition we make some additional continuity and monotonicity assumptions on the
functions f and g .

We suppose that f : R→ [−∞,+∞] and g: [0,+∞)→ [0,+∞) are continuous and
that f(0) = 0 and g(0) = σult > 0. Moreover we assume that f is non-decreasing on
R and increasing on (εmin, εmax) := {|f | < +∞} , while g is non-increasing on [0,+∞)
and decreasing on [0, wfrac) := {g > 0} . Finally, we assume that

lim
ε→−∞

f(ε) = −∞ and lim
ε→+∞

f(ε) > σult,

so that there exists a unique εult > 0 such that f(εult) = σult . Note that, by continuity,
f(εmin) = −∞ if εmin) > −∞ .

Let h ∈ L1(0, l) and let H be its primitive vanishing at 0. The function h plays
the role of the density of an external force, while H(x) is the total force acting on the
segment between 0 and x . Using integration by parts the minimum problem (5.1) can
be written as

min
{
Ed(u) +

∫
[0,l]

Hu′ −H(l)d : u ∈ BV (0, l)
}
,

where
∫
[0,l]

Hu′ denotes the integral of the continuous function H with respect to the
measure u′ defined in (4.1), which takes into account the boundary conditions u(0−) = 0
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and u(l+) = d . Similarly, the minimum problem

min
{
Ed(u)−

∫ l

0

hu dx : u ∈ SBV (0, l)
}
,

can be written as

min
{
Ed(u) +

∫
[0,l]

Hu′ −H(l)d : u ∈ SBV (0, l)
}
.

In order to study the properties of the solutions of these minimum problems we
introduce the functionals EdH :SBV (0, l) → (−∞,+∞] and EdH :BV (0, l) → (−∞,+∞]
defined by

(6.1) EdH(u) = Ed(u) +
∫

[0,l]

Hu′ , EdH(u) = Ed(u) +
∫

[0,l]

Hu′ ,

where Ed and Ed are the functionals defined in (4.3) and (4.4).
We recall the definition of stationary point.

Definition 6.1. Let U be a vector space, and let F :U → (−∞,+∞] be a function.
We say that a point u ∈ U is a (lower) stationary point for F in U if F(u) < +∞ and

(6.2) lim inf
t→0+

F(u+ tv)−F(u)
t

≥ 0

for every v ∈ U .

The next theorems establish the Euler conditions which are necessary and sufficient
for the stationarity of EdH in SBV (0, l) and of EdH in BV (0, l).

Theorem 6.2. A function u ∈ SBV (0, l) is a stationary point for EdH in SBV (0, l) if
and only if there exists a constant σ such that the following conditions are satisfied:
(i) −∞ ≤ σ ≤ σult +H in (0, l) ;
(ii) F (u̇) < +∞ a.e. in (0, l) ;

(iii) [u] ≥ 0 in [0, l] ;
(iv) f(u̇) +H = σ a.e. in (0, l) ;
(v) g([u]) +H = σ in Sdu .
In this case we have u̇ < εult a.e. in {σ < σult+H} and u̇ = εult a.e. in {σ = σult+H} .
If σ > −∞ , then there exists a constant εu > εmin such that u̇ ≥ εu a.e. in (0, l) , and
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(ii) follows from (i) and (iv). The case σ = −∞ occurs if and only if F (εmin) < +∞ ,
d = l εmin , and u(x) = εminx for a.e. x ∈ (0, l) .

Proof. Assume that u is stationary point for EdH in SBV (0, l). Then (ii) and (iii) follow
from the fact that EdH(u) < +∞ and from (4.3).

To prove (iv), we want to show that the function z = f(u̇) +H is constant a.e. on
(0, l). If not, there exist two constants c1 < c2 such that both sets E1 := {z ≤ c1} and
E2 := {z ≥ c2} have positive measure. Note that f(u̇) is bounded from above in E1 ,
and this implies that f(u̇ + η) is bounded from above in E1 for η small enough. In a
similar way we prove that f(u̇−η) is bounded from below in E2 for η small enough. Let
ψ ∈ W 1,1

0 (0, l) be the function defined by ψ̇ = |E2|χE1 − |E1|χE2 a.e. in (0, l). Then,
using the monotonicity of f , for every t > 0 we have

EdH(u+ tψ)− EdH(u)
t

=
∫
E1

F (u̇+ t|E2|)− F (u̇)
t

dx

+
∫
E2

F (u̇− t|E1|)− F (u̇)
t

dx+ |E2|
∫
E1

H dx− |E1|
∫
E2

H dx

≤ |E2|
∫
E1

(
f(u̇+ t|E2|) +H

)
dx− |E1|

∫
E2

(
f(u̇− t|E1|) +H

)
dx .

By the unilateral boundedness of f(u̇± η) in E1 and E2 , and by the monotone conver-
gence theorem we obtain

lim sup
t→0+

EdH(u+ tψ)− EdH(u)
t

≤ |E1||E2|(c1 − c2) < 0 ,

which contradicts the stationarity of u (Definition 6.1). Hence, z is constant a.e. in
(0, l), i.e., there exists a constant σ ∈ [−∞,+∞] such that (iv) holds. This implies
f(u̇) < σult a.e. in {σ < σult + H} , so that u̇ < εult in the same set by the strict
monotonicity of f . Moreover f(u̇) = σult a.e. in {σ = σult + H} , so that u̇ = εult a.e.
in the same set.

If σ = −∞ , then (iv) gives f(u̇) = −∞ a.e. in (0, l); since EdH(u) < +∞ , this
implies u̇ = εmin a.e. in (0, l) and F (εmin) < +∞ . As H is bounded, (iv) implies that
f(u̇) is bounded if σ ∈ R ; consequently f(u̇ + η) is bounded if η is a small constant
and u̇ ≥ εu a.e. in (0, l) for a suitable a constant εu > εmin .

To prove (i) and (v) we fix x0 ∈ [0, l] and we consider the function ψ ∈ SBV (0, l)
defined by ψ(x) = −x/l , if x < x0 , and by ψ(x) = (l−x)/l , if x > x0 . Using v = u+ψ
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in Definition 6.1, by the monotone convergence theorem we obtain from (iv)

(6.3)

0 ≤ lim
t→0+

EdH(u+ tψ)− EdH(u)
t

=
∫ l

0

(f(u̇) +H)ψ̇ dx+ g([u](x0)) +H(x0)

= σ

∫ l

0

ψ̇ dx+ g([u](x0)) +H(x0)

= g([u](x0)) +H(x0)− σ .

If x0 /∈ Sdu , then g([u](x0)) = σult , so that σ ≤ σult +H(x0). By the arbitrariness of x0

and the continuity of H this implies (i).

If x0 ∈ Sdu , we can take v = u − ψ in Definition 6.1. Since [u − tψ](x0) > 0 for
t > 0 small enough, (6.3) gives 0 ≤ −g([u](x0)) −H(x0) + σ , which, together with the
opposite inequality, proves (v). This shows also that Sdu = Ø if σ = −∞ . Since in this
case we have u̇ = εmin a.e. in (0, l), we conclude that u(x) = εminx for a.e. x ∈ (0, l)
and that d = l εmin .

If σ > −∞ , by (i) and (iv) we have εu ≤ u̇ ≤ εult a.e. in (0, l) for some constant
εu > εmin , and this implies (ii).

Conversely, let us assume that u satisfies (i)–(v) and let v ∈ SBV (0, l). Using (iv)
and the convexity of F we get

(6.4)
EdH(u+ t(v − u))− EdH(u) ≥ t

∫ l

0

(f(u̇) +H)(v̇ − u̇) dx

+
∑
Sd

u∪Sd
v

(
G([u] + t[v − u])−G([u]) + tH[v − u]

)
.

By (iv) we have f(u̇) + H = σ a.e. in (0, l), while (i) and (iv) give g([u]) + H = σ

in Sdu and g([u]) + H ≥ σ in [0, l] . If EdH(u + t(v − u)) < +∞ for some t > 0, then
[v − u] = (1/t)[u+ t(v − u)] ≥ 0 in Sdv \ Sdu . Therefore

(
g([u]) +H

)
[v − u] ≥ σ[v − u] in

Sdu ∪ Sdv . By the dominated convergence theorem we obtain from (6.4)

lim inf
t→0+

EdH(u+ t(v − u))− EdH(u)
t

≥ σ
∫ l

0

(v̇ − u̇) dx+ σ
∑
Sd

u∪Sd
v

[v − u] = 0 ,

where the last equality follows from (4.2).
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Theorem 6.3. A function u ∈ BV (0, l) is a stationary point for EdH in BV (0, l) if
and only if there exists a constant σ such that the following conditions are satisfied:
(i) −∞ ≤ σ ≤ σult +H in (0, l) ;
(ii) F (u̇) < +∞ a.e. in (0, l) ;

(iii) u′s ≥ 0 in [0, l] ;
(iv)

(
f(u̇) ∧ σult

)
+H = σ a.e. in (0, l) ;

(v) g([u]) +H = σ in Sdu ;
(vi) suppu′c ⊂ {σ = σult +H} .
In this case we have u̇ < εult and f(u̇) +H = σ a.e. in {σ < σult +H} , while u̇ ≥ εult

a.e. in {σ = σult + H} . If σ > −∞ , then there exists a constant εu > εmin such that
u̇ ≥ εu a.e. in (0, l) , and (ii) follows from (i) and (iv). The case σ = −∞ occurs if and
only if F (εmin) < +∞ , d = l εmin , and u(x) = εminx for a.e. x ∈ (0, l) .

Remark 6.4. Let u be a stationary point for EdH in BV (0, l). If σ < σult + minH ,
then {σ < σult +H} = [0, l] and {σ = σult +H} = Ø, so that u′c = 0 and, consequently,
u ∈ SBV (0, l). If σ = σult + minH , then {σ = σult + H} = {H = minH} , so that
suppu′c ⊂ {H = minH} ; moreover, since g(w) < σult for w > 0, condition (vi) implies
that Sdu ∩ {H = minH} = Ø.

Proof of Theorem 6.3. Assume that u is a stationary point for EdH in BV (0, l). Then
(ii) and (iii) follow from the fact that EdH(u) < +∞ and from (4.4). Conditions (iv) and
(v) can be proved as in Theorem 6.2, replacing f(ε) by f(ε)∧σult . Condition (i) follows
from (iv) and from the continuity of H .

In order to prove (vi), we define U = {σ < σult + H} and ψ(x) = u′c(U)(x/l) −
u′c(U ∩ (0, x)). Using v = u+ ψ in Definition 6.1, from (iv) we obtain

0 ≤ lim
t→0+

EdH(u+ tψ)− EdH(u)
t

=
u′c(U)
l

∫ l

0

((
f(u̇) ∧ σult

)
+H

)
dx− σultu′c(U)−

∫
U

Hu′c

= (σ − σult)u′c(U)−
∫
U

Hu′c =
∫
U

(σ − σult −H)u′c ≤ 0 .

Since σ − σult − H < 0 on U and u′c is a non-negative measure by (iii), we conclude
that u′c(U) = 0, which implies (vi).

Conversely, if u satisfies (i)–(vi), the arguments used in Theorem 6.2 prove that u
is a stationary point for EdH in BV (0, l) and that the final assertions of the theorem are
true.
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Remark 6.5. From Theorems 6.2, 6.3, and Remark 6.4 it follows that every stationary
point for EdH in BV (0, l) with σ < σult + minH is stationary for EdH in SBV (0, l).
Conversely, every stationary point for EdH in SBV (0, l) is stationary for EdH in BV (0, l).

Remark 6.6. In the model described by the energy EdH the term f(u̇) represents the
stress due to the deformation gradient u̇ in the undamaged region [0, l] \ Sdu , while for
x ∈ Sdu the term g([u](x)) represents the stress transmitted through the damaged region
that in the reference configuration is represented by the point x , and in the deformed
configuration is given by the interval [u(x−), u(x+)] (strain concentrated at x). This
shows that σult is the maximum possible stress for an equilibrium configuration, i.e., the
ultimate tensile stress.

In the model described by the relaxed energy EdH , which is the energy obtained
as Γ-limit of the discrete energies, the term f(u̇) ∧ σult represents the stress due to
the macroscopic deformation gradient u̇ , while g([u]) represents the stress transmitted
through the damaged regions where we have concentration of the strain (which are rep-
resented by Sdu in the reference configuration). Condition (vi) in Theorem 6.3 leads to
consider the Cantor part u′c as a singular strain, which is not concentrated on points in
the reference configuration, but lives on a set of Lebesgue measure zero through which
the stress σult is transmitted. Also for this model σult is the maximum possible stress
for the elastic part of the bar (described by u̇), for the damaged part with concentrated
strain (described by [u]), and for the part with a singular, but non-concentrated, strain
(described by u′c ).

Remark 6.7. When H = 0 it is easy to give an elementary description of all stationary
points of Ed in SBV (0, l) based on Theorem 6.2. In this case σ represents the constant
tension of the bar at equilibrium.

(a) If d < l εmin , then Ed(u) = +∞ for every u ∈ SBV (0, l), so that there are no
stationary points.

(b) If d = l εmin , then u is stationary if and only if F (εmin) < +∞ and u(x) = εminx

for a.e. x ∈ (0, l); in this case σ = −∞ .

(c) If l εmin < d ≤ 0, then u is stationary if and only if u(x) = ε0x for a.e. x ∈ (0, l),
with ε0 = d/l ; in this case σ = f(ε0) and −∞ < σ ≤ 0 (with σ < 0 for d < 0).

(d) If d > 0, then u is stationary if and only if u ∈ SBV (0, l) and one of the following
conditions is satisfied, where #Sdu denotes the number of elements of Sdu :
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(d1) u(x) = ε0x for a.e. x ∈ (0, l), with ε0 = d/l ≤ εult ; in this case σ = f(ε0) and
0 < σ ≤ σult (with σ = σult only if d = l εult );

(d2) #Sdu = k , 1 ≤ k < +∞ , and there exist two constants ε0 and w0 such that
0 < ε0 < εult , 0 < w0 < wfrac , f(ε0) = g(w0), u̇ = ε0 a.e. in (0, l), [u] = w0

in Sdu , and lε0 + kw0 = d ; in this case σ = f(ε0) = g(w0) and 0 < σ < σult

(d3) 1 ≤ #Sdu < +∞ , u̇ = 0 a.e. in (0, l), [u] ≥ wfrac in Sdu , and
∑
Sd

u
[u] = d ; in

this case σ = 0.
It is clear that case (d3) may occur only if d ≥ wfrac . In case (d2) the point

(ε0, w0) is a stationary for the function lF (ε) + kG(w) on the manifold {(ε, w) ∈ R2 :
w > 0, lε+ kw = d} .

Conversely, if d > 0, k = 1, 2, . . . , and (ε0, w0) is a stationary point of the function
lF (ε) + kG(w) on that manifold, then by the Lagrange multipliers rule we have f(ε0) =
g(w0), and by Theorem 6.2 any function u ∈ SBV (0, l) with u̇ = ε0 a.e. in (0, l),
#Sdu = k , and [u] = w0 in Sdu is stationary for Ed in SBV (0, l).

7. Minimum Energy Configurations for the Continuous Model

In this section we study in detail the properties of local and absolute minima for the
functionals EdH and EdH introduced in (6.1). We always assume that f , g , h , and H

satisfy all conditions of the previous section. We recall the definition of local minimum
with respect to the strong topology of BV (0, l).

Definition 7.1. Let U be a subset of BV (0, l), and let F :U → [−∞,+∞] be a
functional. We say that a function u ∈ U is a local minimum for F in U if F(u) < +∞
and there exists η > 0 such that F(u) ≤ F(v) for every v ∈ U satisfying |u′−v′|([0, l]) <
η , where u′ and v′ are the measures on [0, l] defined by (4.1) taking the boundary
conditions into account. We say that u is a strict local minimum if we have F(u) < F(v)
if v is as above and v 6= u .

Theorem 7.2. A function u is a local minimum (respectively, a strict local minimum,
or an absolute minimum) for EdH in BV (0, l) if and only if it is a local minimum (re-
spectively, a strict local minimum, or an asolute minimum) for EdH in SBV (0, l) . In
this case we have u̇ ≤ εult a.e. in (0, l) and EdH(u) = EdH(u) . In particular, all local
minima of EdH belong to SBV (0, l) .

To prove the theorem we need the following lemma.
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Lemma 7.3. If u is a local minimum for EdH in SBV (0, l) and #Sdu > 1 , then
[u] > wfrac in Sdu and H is constant in Sdu .

Proof. Suppose that x1 6= x2 are two points in Su , denote wi = [u](xi), and suppose
that w2 ≤ wfrac . Since g is decreasing on [0, wfrac] we have that

(7.1)
∫ w1+λ

w1

g(s) ds−
∫ w2

w2−λ
g(s) ds <

(
g(w1)− g(w2)

)
λ

for 0 < λ < w2 . Let ψ be the function defined by ψ = χ(x1,x2) , if x1 < x2 , and by
ψ = −χ(x2,x1) , if x2 < x1 , and let v = u+λψ . As u is a local minimum, we can suppose
that λ is small enough as to have EdH(u) ≤ EdH(v). This implies

G(w1) +G(w2) +H(x1)w1 +H(x2)w2

≤ G(w1 + λ) +G(w2 − λ) +H(x1)(w1 + λ) +H(x2)(w2 − λ) .

By Theorem 6.2(v) we get

(
G(w1 + λ)−G(w1)

)
+
(
G(w2 − λ)−G(w2)

)
≥ λ

(
g(w1)− g(w2)

)
,

which contradicts (7.1). This proves that [u] > wfrac in Sdu . Therefore g([u]) = 0 in Sdu ,
and Theorem 6.2(v) implies that H is constant in Sdu .

Proof of Theorem 7.2. Let u be a local minimum for EdH in BV (0, l). Then u is a
stationary point for EdH in BV (0, l). We want to prove that u ∈ SBV (0, l). Suppose, by
contradiction, that u′c 6= 0. By Theorem 6.3 and Remark 6.4 we have σ = σult + minH ,
u̇ < εult a.e. in {H > minH} , suppu′c ⊂ {H = minH} , and Sdu ∩ {H = minH} = Ø.

Let 0 < λ < 1 and let x0 ∈ {H = minH} . Let v ∈ BV (0, l) be such that
v′ = u′ − λu′c + λu′c(0, l) δx0 in [0, l] . Then the concavity of G , which is strict on
[0, wfrac] , gives EdH(v) < EdH(u), so that the definition of local minimum is violated for
λ small enough. This contradition shows that u ∈ SBV (0, l). In the same way we can
prove that u̇ ≤ εult a.e. in (0, l), by choosing w ∈ SBV (0, l) such that

v′ = u′ − λ(u̇− εult)+dx+ λ
(∫ l

0

(u̇− εult)+dx
)
δx0 in [0, l] ,

with λ > 0 small enough. Hence u ∈ SBV (0, l), EdH(u) = EdH(u), and consequently u

is a local minimum for EdH in SBV (0, l).
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Conversely, let u be a local minimum for EdH in SBV (0, l). From Theorem 6.2 we
obtain u̇ ≤ εult a.e. in (0, l), hence EdH(u) = EdH(u). Let v ∈ BV (0, l) with EdH(v) <
+∞ . We construct a function z ∈ SBV (0, l) such that z is close to v and EdH(z) ≤
EdH(v). The function z is defined by

z′ = v′ − (v̇ − εult)+dx− v′c + αδx0 = (v̇ ∧ εult)dx+
∑
x∈Sd

v

[v](x)δx + αδx0

in [0, l] , where α =
∫ l
0
(v̇ − εult)+dx + v′c(0, l) and x0 is a point in (0, l) \ Sv such that

H(x0)α ≤
∫ l
0
H(v̇ − εult)+dx+

∫ l
0
Hv′c . After elementary calculation we obtain

EdH(z) ≤ EdH(v) +G(α)− σultα+H(x0)α−
∫ l

0

H(v̇ − εult)+dx−
∫ l

0

Hv′c ,

and the right hand side is non-positive by the choice of x0 and by the (strict) concavity
of G , which leads to the inequality G(α) ≤ σultα (which is strict for α > 0). Therefore
EdH(z) ≤ EdH(v). If |v′ − u′|([0, l]) < η , it is easy to see that |z′ − v′|([0, l]) < 2η , since
u̇ ≤ εult a.e. in (0, l) and u′c = 0 in (0, l). Therefore |z′−u′|([0, l]) < 3η . Since u is a local
minimum for EdH in SBV (0, l), if η is small we have EdH(u) = EdH(u) ≤ EdH(z) ≤ EdH(v),
which proves that u is a local minimum for EdH in BV (0, l).

The proof for strict local minima and for absolute minima is similar.

Remark 7.4. Since the existence of an absolute minumum for EdH in BV (0, l) was
proved in Theorem 5.1 when d > l εmin (and is trivial when d = l εmin ), we deduce that,
under the same conditions, the functional EdH has an absolute minimum in SBV (0, l),
even though it is not lower semicontinuous.

Theorem 7.5. If u is a strict local minimum of EdH in SBV (0, l) , then #Sdu ≤ 1 .

Proof. If u is a local minimum for EdH and #Su > 1, Lemma 7.3 shows that [u] > wfrac

and H is constant in Sdu , therefore EdH(u) = EdH(v) for every function of the form
v = u + λχ(x1,x2) , where x1, x2 ∈ Sdu , x1 < x2 , and λ > 0 is sufficiently small. This
shows that u is not a strict local minimum.

We conclude this section by studying the properties of the absolute minimizers
of EdH .
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Theorem 7.6. Assume that d > l εmin (or d = l εmin and F (εmin) < +∞). Then
the functional EdH attains its absolute minimum on SBV (0, l) , and for each minimum
point u we have #Sdu ≤ 1 , Su ⊂ {H = minH} , and u̇ ≤ εult a.e. in (0, l) . Moreover,
given x0 ∈ {H = minH} , there exists a minimum point u for which Sdu ⊂ {x0} , i.e.,
u ∈W 1,1((0, x0) ∪ (x0, l)) .

Proof. Let x0 be a minimum point of H in [0, l] . For every u ∈ SBV (0, l), with
EdH(u) < +∞ , we consider the function v ∈ SBV (0, l) which satisfies v̇ = u̇∧ εult a.e. in
(0, l) and v′s = αδx0 in [0, l] , where α =

∑
Sd

u
[u]+

∫ l
0
(u̇− εult)+dx . By the subadditivity

of G and by the inequality∫
{u̇>εult}

(F (u̇)− F (εult)) dx = σult

∫ l

0

(u̇− εult)+dx ≥ G
(∫ l

0

(u̇− εult)+dx
)
,

it is easy to check that

EdH(v) ≤ EdH(u) +
∫
{u̇>εult}

(F (εult)− F (u̇)) dx+G
(∫ l

0

(u̇− εult)+dx
)
≤ EdH(u) .

Note that the first inequality is strict if #Sdu > 1, or if Sdu \ {H = minH} 6= Ø, or if
u̇ > εult on a set of positive measure. This shows that every minimum point satisfies
#Sdu ≤ 1, Su ⊂ {H = minH} , and u̇ ≤ εult a.e. in (0, l). Moreover it proves that for
every minimum point v there exists a minimum point u with Su ⊂ {x0} .

We now give a new proof of the existence of the minimum, which is independent
of and easier than the proof given in Theorem 5.1 and Remark 7.4. If d = l εmin and
F (εmin) < +∞ , the function u(x) = εminx is the only function for which EdH(u) < +∞ ,
so it is the unique minimizer of EdH .

Let us assume that d > l εmin and let us fix x0 ∈ {H = minH} . It is suf-
ficient to prove the existence of a minimum of EdH in the space of functions u ∈
SBV (0, l) with Su ⊂ {x0} and u̇ ≤ εult a.e. in (0, l), i.e., in the space of functions
u ∈ W 1,1((0, x0) ∪ (x0, l)) such that u̇ ≤ εult a.e. in (0, l). To prove the compactness
of a minimizing sequence {un} it is therefore sufficient to remark that the sequence
{vn} ⊂W 1,1(0, l) defined by v(0) = 0 and v̇n = u̇n is weakly pre-compact in W 1,1(0, l)
by (3.12) and (3.3), and the sequence [un](x0) = d −

∫ l
0
v̇n dx is bounded. The lower

semicontinuity of the functional EdH on W 1,1((0, x0) ∪ (x0, l)) implies that the limit of
every minimizing sequence is an absolute minimum.

In the case H = 0 it is easy to give an elementary description of all local minima of
Ed in SBV (0, l).
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Remark 7.7. When d ≤ 0, by Remark 6.7 the function u(x) = ε0x , with ε0 =
d/l , is the unique stationary point, provided F (ε0) < +∞ . By the existence result
(Theorem 7.6) we conclude that this function u is the unique absolute minimum. As a
consequence of these facts, u is the only strict local minimum.

We consider now the case d > 0.

Theorem 7.8. Let d > 0 and let u ∈ SBV (0, l) . Then u is a local minimum of Ed in
SBV (0, l) if and only if one of the following conditions is satisfied:
(a) there exist three constants ε0 , w0 , and x0 such that 0 ≤ ε0 ≤ εult , w0 ≥ 0 ,

0 ≤ x0 ≤ l , u(x) = ε0x + w0χ(x0,l)(x) for a.e. x ∈ (0, l) , and (ε0, w0) is a local
minimum of the function lF (ε) + G(w) on the manifold K(d) = {(ε, w) ∈ R2 :
w ≥ 0, lε+ w = d} ;

(b) u̇ = 0 a.e. in (0, l) , 1 < #Sdu < +∞ , [u] > wfrac in Sdu , and
∑
Sd

u
[u] = d .

The function u is an absolute (respectively, a strict local) minimum of Ed in SBV (0, l)
if and only if (a) holds and (ε0, w0) is an absolute (respectively, a strict local) minimum
of the function lF (ε) +G(w) on K(d) .

Proof. Suppose that u is a local minimum of Ed in SBV (0, l). By Remark 6.7 the set Sdu
is finite or empty, and there exists a constant ε0 such that 0 ≤ ε0 ≤ εult and u̇ = ε0 a.e.
in (0, l). If Sdu has more than one point, by Lemma 7.3 we have [u] > wfrac in Sdu , hence
σ = 0 in Theorem 6.2, so that u̇ = 0 a.e. in (0, l) and (b) is proved. If Sdu has at most
one point x0 , we have u(x) = ε0x+w0χ(x0,l)(x) for a.e. x ∈ (0, l), with w0 = [u](x0), so
that Ed(u) = lF (ε0)+G(w0). If (ε, w) satisfies lε+ w = d and w ≥ 0, then the function
v(x) = ε x+wχ(x0,l)(x) belongs to SBV (0, l) and Ed(v) = lF (ε) +G(w), therefore the
local minimality of u implies the local minimality of (ε0, w0) and (a) is proved.

Conversely, assume (a). Let v ∈ SBV (0, l) with Ed(v) < +∞ . We set ε =
(1/l)

∫ l
0
v̇ dx , w =

∑
Sv

[v] , and z(x) = ε x + wχ(x0,l)(x). We have then, using Jensen’s
inequality and the subadditivity of G ,

lF (ε) +G(w) ≤
∫ l

0

F (v̇) dx+
∑
Sv

G([v]) = Ed(v) .

If |v′ − u′|([0, l]) < η , it is easy to see that |ε− ε0| < η/l and |w − w0| < η . Since
(ε0, w0) is a local minimum of the function lF (ε) +G(w) on K(d), if η > 0 is small we
have

Ed(u) = lF (ε0) +G(w0) ≤ lF (ε) +G(w) ≤ Ed(v) ,
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which proves that u is a local minimum for Ed in SBV (0, l).
If (b) holds, there exists a constant η > 0 such that [u] > wfrac + η in Sdu . Then

for every v ∈ SBV (0, l) with |v′ − u′|(0, l) < η we have Sdu ⊂ Sdv and [v] > wfrac in Sdu .
As G(w) = G(wfrac) for every w ≥ wfrac we obtain

Ed(u) = #SduG(wfrac) ≤
∫ l

0

F (v̇) dx+
∑
Sd

v

G([v]) = Ed(v) ,

so that u is a local minimum for Ed in SBV (0, l).
The proof for absolute minima and for strict local minima is analogous. The only

difference is that we use Theorems 7.5 and 7.6 to exclude (b).

Corollary 7.9. If 0 < d < l εult , then the function u(x) = ε0x , with ε0 = d/l , is a
strict local minimum.

Proof. Since G′(0) = g(0) = σult = f(εult) > f(ε0), we have G(w) > f(ε0)w for
w > 0 small enough. If l ε + w = d and w > 0 is small, by convexity we obtain
lF (ε) +G(w) > lF (ε0) + lf(ε0)(ε− ε0) + f(ε0)w = lF (ε0). This shows that (ε0, 0) is a
strict local minimum of the function lF (ε) +G(w) on K(d), and the conclusion follows
from Theorem 7.8.

Corollary 7.10. If d > wfrac , then for every x0 ∈ [0, l] the function u(x) = dχ(x0,l)(x)
is a strict local minimum.

Proof. As F (ε) > 0 for ε 6= 0 and G(w) = G(wfrac) for w ≥ wfrac , if d > wfrac it is
easy to see that (0, d) is a strict local minimum of the function lF (ε) +G(w) on K(d).
The conclusion follows from Theorem 7.8.

8. Scale Effects

In this section we examine some assumptions which provide an easy characterization
of all local minima of Ed in SBV (0, l). These conditions are influenced by the length l

of the bar. For the sake of clarity we limit our analysis to the pure displacement problem
H = 0.

We still assume that f and g satisfy all properties of Section 6. Let f−1: [0, σult]→
[0, εult] and g−1: [0, σult]→ [0, wfrac] be the inverse functions of the restrictions f |[0,εult]
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and g|[0,wfrac] respectively. Since all strict local minima have at most one jump point
(Theorem 7.5), it is useful to determine the stationary points without jumps and those
with exactly one jump. By Remark 6.7 the only stationary point without jumps corre-
sponding to the stress σ ∈ [0, σult] is the function u(x) = f−1(σ)x , so that d = lf−1(σ),
while the stationary points with one jump at x0 ∈ [0, l] are characterized by u̇ = f−1(σ)
a.e. in [0, l] and [u](x0) = g−1(σ), so that d = lf−1(σ) + g−1(σ).

Since, usually, only the elongation d is given and the stress σ is unknown, the
analysis of the problem is simplified if there is only one σ such that lf−1(σ)+g−1(σ) = d .
This happens if and only if the function σ 7→ lf−1(σ) + g−1(σ) is stricty monotone. In
the next propositions we shall see that in this case we have an elementary description of
all strict local minima of Ed in SBV (0, l) for all admissible values of d .

Proposition 8.1. Assume that the function σ 7→ lf−1(σ) + g−1(σ) is decreasing on
[0, σult] and, consequently, l εult < wfrac .

(i) If l εmin < d ≤ l εult (or if d = l εmin and F (εmin) < +∞), then the function
u0(x) = ε0x , with ε0 = d/l , is the unique local minimum of Ed in SBV (0, l) ;
moreover u0 is the only stationary point and, consequently, it is the strict absolute
minimum.

(ii) If l εult < d ≤ wfrac , let σ0 be the unique solution in [0, σult) of the equation
lf−1(σ0) + g−1(σ0) = d , and let ε0 = f−1(σ0) and w0 = g−1(σ0) (in particular
0 ≤ ε0 < εult and 0 < w0 ≤ wfrac , with equality only if d = wfrac ); then u is a
local minimum of Ed in SBV (0, l) if and only if there exists x0 ∈ [0, l] such that
u(x) = ε0x+w0χ(x0,l)(x) for a.e. x ∈ (0, l) ; all these functions are absolute minima
and strict local minima, and they are the only stationary points with #Sdu ≤ 1 .

(iii) If d > wfrac , then u is a strict local minimum of Ed in SBV (0, l) if and only if there
exists x0 ∈ [0, l] such that u(x) = dχ(x0,l)(x) for a.e. x ∈ (0, l) . These functions
are the only absolute minima; moreover they are the only stationary points with
#Sdu ≤ 1 .

Proof. The case d ≤ 0 is considered in Remark 7.7. Assume that d > 0, let u be a
stationary point of Ed in SBV (0, l), and let σ ≥ 0 be the constant given by Theorem 6.2.

(a) If Sdu = Ø, by Remark 6.7 we have u(x) = ε0x , with 0 < ε0 = d/l ≤ εult , so that
d ≤ l εult < wfrac .

(b) If #Sdu = k ≥ 1, then two cases are possible: either 0 < σ < σult or σ = 0.

(b1) If 0 < σ < σult , then u satisfies condition (d2) of Remark 6.7 with ε0 = f−1(σ)
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and w0 = g−1(σ), so that lf−1(σ) + kg−1(σ) = d ; under our monotonicity
assumptions, each function σ 7→ lf−1(σ) + kg−1(σ) is decreasing on (0, σult)
and its image is (l εult, k wfrac), so that l εult < d < kwfrac .

(b2) If σ = 0, then u satisfies condition (d3) of Remark 6.7, so that d ≥ wfrac >

l εult .

From (a) and (b) it follows that, if 0 < d ≤ l εult , then the only stationary point
is the function u0(x) = ε0x , with ε0 = d/l . By the existence result (Theorem 7.6) this
stationary point is the unique (strict) absolute minimum.

If l εult < d < wfrac , we deduce from (a) and (b) that 0 < σ < σult and that
every stationary point u has at least a jump point and [u] < wfrac in Sdu , so that
#Sdu = 1 if u is a local minimum (Lemma 7.3). Conversely, if u is a stationary point
with #Sdu ≤ 1, then (a) gives #Sdu = 1 and Remark 6.7 provides three constants ε0 , w0 ,
and x0 , with 0 < ε0 < εult , 0 < w0 < wfrac , 0 ≤ x0 ≤ l , such that f(ε0) = g(w0) = σ ,
l ε0 +w0 = d , and u(x) = ε0x+w0χ(x0,l)(x). This shows that σ = σ0 . Moreover (ε0, w0)
is a stationary point of the function lF (ε)+G(w) on the manifold K(d) = {(ε, w) ∈ R2 :
w ≥ 0, lε+ w = d} . From our monotonicity assumptions we deduce that f(ε)−g(d− lε)
is positive if ε0 < ε ≤ d/l and negative if ε < ε0 . Therefore ε0 is the unique absolute
minimum of of the function lF (ε) +G(d− l ε) on [0, d/l] , and this implies that (ε0, w0)
is the strict absolute minimum of the function lF (ε) +G(w) on the manifold K(d). By
Theorem 7.8 we conclude that u is a strict local minimum and an absolute minimum of
Ed in SBV (0, l).

If d > wfrac , by Theorem 7.5 every strict local minimum is a stationary point with
at most one jump. From (a) and (b) we deduce that every stationary point u with
#Sdu ≤ 1 has exactly one jump and σ = 0, so by condition (d3) of Remark 6.7 there
exists x0 ∈ [0, l] such that u(x) = dχ(x0,l)(x). Since these functions have the same
energy, they are absolute minima by Theorem 7.6.

Remark 8.2. If wfrac < d ≤ 2wfrac , from the proof of the previous proposition and
from Theorem 7.8 it follows that the functions u(x) = dχ(x0,l)(x) are the only local
minima of Ed in SBV (0, l). If d > 2wfrac , there are other local minima. For instance,
the function u(x) = (d/2)χ(x1,l)(x) + (d/2)χ(x2,l)(x) is a local minimum for every x1 ,
x2 ∈ [0, l] .

Proposition 8.3. Assume that the function σ 7→ lf−1(σ) + g−1(σ) is increasing on
[0, σult] and, consequently, wfrac < l εult .
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(i) If l εmin < d < wfrac (or if d = l εmin and F (εmin) < +∞), then the function
u0(x) = ε0x , with ε0 = d/l , is the unique local minimum of Ed in SBV (0, l) ;
moreover u0 is the only stationary point and, consequently, it is the strict absolute
minimum.

(ii) If d = wfrac , then the function u0(x) = ε0x , with ε0 = d/l , is the unique local
minimum of Ed in SBV (0, l) and the strict absolute minimum. The other stationary
points are the functions vx0(x) = dχ(x0,l)(x) , with x0 ∈ [0, l] .

(iii) If wfrac < d < l εult , then the functions u0(x) = ε0x , with ε0 = d/l , and vx0(x) =
dχ(x0,l)(x) , with x0 ∈ [0, l] , are the only strict local minima of Ed in SBV (0, l) .
Let σ0 be the unique solution in [0, σult] of the equation lf−1(σ0) + g−1(σ0) = d ,
let ε0 = f−1(σ0) , w0 = g−1(σ0) , and let x0 ∈ [0, l] ; then the function zx0(x) =
ε0x+w0χ(x0,l)(x) is a stationary point which is not a local minimum. There are no
other stationary points with #Sdu ≤ 1 .

(iv) If d = l εult , then the functions vx0(x) = dχ(x0,l)(x) , with x0 ∈ [0, l] , are the only
strict local minima of Ed in SBV (0, l) and the only absolute minima. The function
u0(x) = εultx is the only other stationary point with #Sdu ≤ 1 .

(v) If d > l εult , then the functions vx0(x) = dχ(x0,l)(x) , with x0 ∈ [0, l] , are the only
strict local minima of Ed in SBV (0, l) and the only absolute minima; there are no
other stationary points with #Sdu ≤ 1 .

Proof. The characterization of all stationary points with #Sdu ≤ 1 is proved as in the
previous proposition. This leads immediately to (i) and (v).

The minimality of u0 in (ii) and (iii) follows from Corollary 7.9, while the minimality
of vx0 in (iii) and (iv) follows from Corollary 7.10.

To prove that vx0 is not a local minimum in (ii) we observe that our monotonicity
assumptions imply that f(ε) < g(wfrac − l ε) for 0 < ε < wfrac/l , so that G(wfrac) >
lF (ε) +G(wfrac− l ε) for 0 < ε < wfrac/l and, consequently, vx0 is not a local minimum
by Theorem 7.8.

To prove that zx0 is not a local minimum in (iii) we observe that our monotonicity
assumptions imply that f(ε) − g(d − l ε) is positive for 0 < ε < ε0 and is negative for
ε0 < ε < d/l . Therefore lF (ε0) +G(d− l ε0) > lF (ε) +G(d− l ε) for 0 < ε < d/l and,
consequently, zx0 is not a local minimum by Theorem 7.8.

To prove that u0 is not a local minimum in (iv) we observe that our monotonicity
assumptions imply that f(ε) > g(l εult − l ε) for 0 < ε < εult , so that lF (εult) >

lF (ε) + G(d − l ε) for 0 < ε < εult and, consequently, u0 is not a local minimum by
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Theorem 7.8.

The statements about absolute minima in (ii) and (iv) follow easily from the exis-
tence result (Theorem 7.6).

Remark 8.4. From (ii) and (iv) we have lF (wfrac/l) < G(wfrac) = G(l εult) < lF (εult).
Therefore there exists a unique critical value dcr , with wfrac < dcr < l εult , such that
lF (dcr/l) = G(wfrac). Using Theorem 7.8, we can improve (iii) as follows: for wfrac <

d < dcr the function u0 is the strict absolute minimum, while the functions vx0 are not
absolute minima; for dcr < d < l εult the functions vx0 are absolute minima, while u0 is
not an absolute minimum; for d = dcr both functions u0 and vx0 are absolute minima.

Remark 8.5. Under the assumptions of the previous proposition, if wfrac < d ≤
2wfrac < l εult , then one can prove, using Theorem 7.8, that there are no local minima
different from the strict local minima mentioned in (iii). If 2wfrac < d < l εult , the
example given in Remark 8.2 shows that there are other local minima.

Let us define

l∗ = sup{l ≥ 0 : σ 7→ lf−1(σ) + g−1(σ) is decreasing} ,

l∗ = inf{l > 0 : σ 7→ lf−1(σ) + g−1(σ) is increasing} .

As f−1 is increasing and g−1 is decreasing, we have 0 ≤ l∗ ≤ l∗ ≤ +∞ , and the function
σ 7→ lf−1(σ) + g−1(σ) is decreasing for l < l∗ and increasing for l > l∗ . It is easy to see
that l∗ = l∗ if and only if l∗ = l∗ = wfrac/εult and g(w) = f(εult − (εult/wfrac)w) for
every w ∈ [0, wfrac] . Note that this condition is always satisfied if f |[0,εult] and g|[0,wfrac]

are affine. If f |[0,εult] and g|[0,wfrac] are continuously differentiable and their derivatives
are never zero, then 0 < l∗ ≤ l∗ < +∞ .

We have seen in Propositions 8.1 and 8.3 that the behaviour of the local minima is
different in the two cases l < l∗ and l > l∗ . Notice that, for given constitutive relations
f and g , the alternative depends only on the length l of the bar. This fact explains some
scale effects observed in fracture mechanics. In particular it explains the observation that
the fracture tends to be brittle if the length of the specimen is large enough. Figures 1
and 2 show the qualitative dependence of the tension σ on the elongation d in the cases
l < l∗ and l > l∗ respectively.
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Fig. 1. The case 0 < l < l∗ , i.e., lf−1 + g−1 decreasing.

Fig. 2. The case l∗ < l < +∞ , i.e., lf−1 + g−1 increasing.
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Note that, if we increase d continuously, in the case l < l∗ the stress σ corresponding
to the unique stable solution varies continuously. In the case l > l∗ it is not possible to
select, for every elongation d , a stable solution whose stress σ depends on d continuously.
This phenomenon was called the cusp catastrophe in [8] and is used to explain the
behaviour of brittle fractures.

Remark 8.6. In the discrete case, a description of the strict local minimizers of En
similar to Propositions 8.1 and 8.3 can be easily obtained if we assume the strict mono-
tonicity of the function σ 7→ (l − λn)f−1

n (σ) + g−1
n (σ). In the spirit of Proposition 2.4,

the role of Sdu is played by the set of indices i such that u̇in > εult
n .
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