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Abstract. A class of free-discontinuity problems is approximated in the

sense of Γ-convergence by a sequence of non-local integral functionals.

1. Introduction. The Mumford-Shah functional has been introduced
in [6] to model some problems in image segmentation. A weak version of
this functional, from the study of which it is possible to obtain “classical”
solutions, is

F (u) =
∫

Ω

|∇u|2 dx+ 2λHn−1(S(u)), u ∈ SBV (Ω) , (1.1)

where S(u) is the set of discontinuity points of u, Hn−1 denotes the (n− 1)-
dimensional Hausdorff measure, and SBV (Ω) is the space of special functions
of bounded variation on the open set Ω ⊂ Rn (see De Giorgi and Ambrosio
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[4]). Variational approximations of functionals of this type, depending on
a volume and a surface energy, by functionals defined on spaces of Sobolev
functions are motivated by computational and evolution problems.

While the lack of convexity of F forbids its approximation by simple local
functionals, in [1] it has been shown that the Mumford-Shah functional (1.1)
is the variational limit as ε→ 0+ of the non-local functionals

Fε(u) =
1
ε

∫
Ω

f(ε−
∫
Bε(x)

|∇u|2 dy) dx, u ∈ H1(Ω) , (1.2)

under the assumptions that f is continuous, increasing, and

lim
t→0+

f(t)
t

= 1, lim
t→+∞

f(t) = λ. (1.3)

A simple relaxation argument, which is straightforward in the one-dimensio-
nal case, shows that we can drop all hypotheses on f , considering in its
place the lower semicontinuous increasing envelope f (i.e., the greatest lower
semicontinuous and increasing function not greater than f), and obtain the
same result. Furthermore, from a comparison argument it is clear that if
limt→+∞ f(t) = +∞ then we obtain in the limit just the Dirichlet integral.

Purpose of this work is to show that more general surface energies can be
obtained by non-local approximation as above, considering functionals of the
form

Fε(u) =
1
ε

∫
Ω

fε(ε−
∫
Bε(x)

|∇u|2 dy) dx, u ∈ H1(Ω), (1.4)

with varying integrands fε. More precisely, we show that lower semicontin-
uous functionals of the form

F (u) =
∫

Ω

|∇u|2 dx+
∫
S(u)

ϕ(u+(x)−u−(x)) dHn−1 , u ∈ SBV (Ω) , (1.5)

where u± are the traces of u on both sides of S(u), can be obtained as Γ-limits
of functionals (1.4), with ϕ computable from (fε). The examples of non-
trivial ϕ in Section 3 justify the generality of recent integral representation
results (see [2]).

In order to avoid the technicalities of the higher dimensional case, for
which we refer to [1], we treat only the one-dimensional case, which contains
all the original features of the approximation procedure.



2. Limits of non-local functionals. We recall that a family (Fε)ε>0

of functionals Fε : L1
loc(R) → [0,+∞] is said to Γ-converge to a functional

F : L1
loc(R) → [0,+∞] (with respect to the L1

loc-convergence) as ε → 0+

if for every u ∈ L1
loc(R) and for every sequence (εj) of positive numbers

decreasing to 0, the two conditions hold:
(i) (lower semicontinuity inequality) for all sequences (uj) converging to u

in L1
loc(R) we have F (u) ≤ lim infj Fεj (uj);

(ii) (existence of a recovery sequence) there exists a sequence (uj) converg-
ing to u in L1

loc(R) such that F (u) ≥ lim supj Fεj (uj).
We refer to [3] for an exposition of the main properties of Γ-convergence,

and to [1] for the relevance of such an approximation in the framework of
free-discontinuity problems.

We recall moreover that the space SBVloc(R) is defined as the space of
functions u ∈ L1

loc(R) whose distributional derivative Du can be written
as Du = f L1 +

∑
t∈S(u) atδt (here L1 denotes the Lebesgue measure, and

δt the Dirac mass at t) for some f ∈ L1(R), a (at most countable) set
S(u) ⊂ R and a sequence of real numbers (at)t∈S(u) with

∑
t |at| < +∞. It

is easy to see that for such functions the left hand-side and right hand-side
approximate limits u−(t), u+(t) exist at every point, that in the notation
above S(u) = {t ∈ R : u−(t) 6= u+(t)}, and that at = u+(t) − u−(t). This
notation describes a particular case of a SBV -functions space as introduced
by De Giorgi and Ambrosio [4].

In what follows, fixed a non-decreasing function g : [0,+∞) → [0,+∞)
with

g(0) = 0, inf{g(x) : x > 0} =: cg > 0 , (2.1)

we will consider a new function ϕ defined by

ϕ(z) = inf
{∫ +∞

−∞
g
(∫ x+1

x−1

|u′(t)|2 dt
)
dx : u(−∞) = 0, u(+∞) = z

}
(2.2)

where the infimum is taken over all functions in H1
loc(R). The meaning

of the conditions at ±∞ is understood as the existence of the corresponding
limits. Actually, it suffices to consider functions u with derivatives of compact
support. In fact, if we define

wu(t) :=
∫ t+1

t−1

|u′(x)|2 dx, G(u) :=
∫ +∞

−∞
g(wu(t)) dt, (2.3)

and G(u) < +∞ then |suppwu| ≤ c−1
g G(u), and also |suppu′| ≤ c−1

g G(u)−
2. Note that suppu′ cannot contain more than |suppwu|/2 points of mu-
tual distance greater than 2, so that it is not restrictive to assume, up to
eliminating some bounded intervals where u is constant, that

suppwu ⊆ [0, c−1
g ϕ(z) + 1] . (2.4)



Hence, we can suppose that u(x) = 0 for x < 1, and u(x) = z for x > c−1
g ϕ(z).

Note moreover, considering as test function uz(t) = sign z
(

(0∨|z|t)∧|z|
)

,
that

ϕ(z) ≤
∫ +∞

−∞
g
(∫ x+1

x−1

|u′z(t)|2 dt
)
dx ≤ 3 g(z2) ,

so that we can assume that

suppwu ⊆ [0, 3c−1
g g(z2) + 1], (2.5)

in place of (2.4).
The following theorem is the main result of the paper. It provides a

construction of a family (Fε) Γ-converging to the functional (1.5).

Theorem 2.1. Let g : [0,+∞) → [0,+∞) be a lower semicontinuous
increasing function satisfying (2.1). Define

fε(ξ) =
{
ξ if 0 ≤ ξ ≤ cg
g(εξ) if ξ > cg,

and

Fε(u) =
1
ε

∫ +∞

−∞
fε(
∫ x+ε

x−ε
|u′(t)|2dt) dx, u ∈ H1

loc(R)

(extended to +∞ on L1
loc(R) \H1

loc(R)). Then the Γ-limit in L1
loc(R) of Fε

as ε→ 0+ exists, and it equals

Fϕ(u) := 2
∫ +∞

−∞
|u′|2 dx+

∑
x∈S(u)

ϕ(u+(x)− u−(x)), u ∈ SBVloc(R),

(extended to +∞ on L1
loc(R) \ SBVloc(R)) where ϕ is defined by (2.2).

Proof. Let (εj) decrease to 0, and uj → u in L1
loc(R). With a slight abuse

of notation we set Fj := Fεj . We have to check that

Fϕ(u) ≤ lim inf
j

Fj(uj). (2.6)

For each j ∈ N, define ψj(x) = fεj

(∫ x+εj

x−εj
|u′j(t)|2 dt

)
, so that

Fj(uj) =
∫ +∞

−∞

1
εj
ψj(x) dx =

∑
k∈Z

∫ 2kεj+εj

2kεj−εj

1
εj
ψj(x) dx =

1
εj

∫ εj

−εj
Ψj(x) dx,



where Ψj(x) :=
∑
k∈Z

ψj(x+ 2kεj). By the Mean Value Theorem, we can find

tj ∈ (−εj , εj) such that

Fj(uj) ≥ 2Ψj(tj) = 2
∑
k∈Z

fεj

(∫ (2k+1)εj

(2k−1)εj

|u′j(t− tj)|2 dt
)
.

Since the translation by tj does not affect neither the value Fj(uj) nor the
limit u, we can suppose tj = 0 for all j. Hence

Fj(uj) ≥ 2
∑
k∈Z

fεj

(∫ (2k+1)εj

(2k−1)εj

|u′j(t)|2 dt
)
.

Define

ξj(k) :=
∫ (2k+1)εj

(2k−1)εj

|u′j(t)|2 dt, k ∈ Z,

Gj := {k ∈ Z : 2ξj(k) ≤ cg}, Bj := {k ∈ Z : 2ξj(k) > cg}.

Note that for all x ∈ R \ (2εjBj + [−2εj , 2εj ]) we have

∫ x+εj

x−εj
|u′j(t)|2 dt ≤ cg.

Moreover, fεj (ξj(k)) ≥ cg/2 for all k ∈ Bj , so that

#(Bj) ≤
2
cg

∑
k∈Bj

fεj (ξj(k)) ≤ 1
cg

sup
j
Fj(uj).

Hence, we can suppose that #(Bj) = N , independent of j. If we write
Bj = {k1

j , . . . , k
N
j } with k1

j < k2
j < . . . < kNj , then we can suppose that

there exist indices i1, i2 such that εjkij → −∞ for i < i1, εjkij → +∞ for
i > i2, and 2εjkij → xi ∈ R for i1 ≤ i ≤ i2. Let S = {xi : i1 ≤ i ≤ i2}
(which is not empty if i1 ≤ i2). Since

Fj(uj) ≥
1
εj

∫
R\(2εjBj+[−2εj ,2εj ])

∫ x+εj

x−εj
|u′j(t)|2 dt dx

≥ 2
∫
R\(2εjBj+[−2εj ,2εj ])

|u′j(t)|2 dt



(the last inequality is obtained by changing the integration order), we have
that fixed η > 0 there exists j(η) such that the sequence (uj)j≥j(η) is equi-
bounded in H1([− 1

η ,
1
η ] \ (S + [−η, η])), and

∫
[− 1

η ,
1
η ]\(S+[−η,η])

|u′j |2 dt ≤
∑
k∈Gj

∫ (2k+1)εj

(2k−1)εj

|u′j |2 dt

for j ≥ j(η). It follows that u ∈ SBVloc(R), S(u) ⊂ S, and

∫ +∞

−∞
|u′|2 dt ≤ lim inf

j

∑
k∈Gj

∫ (2k+1)εj

(2k−1)εj

|u′j |2 dt .

By the local nature of the arguments in the proofs below it will not be
restrictive to suppose x1 = . . . = xN = 0. Moreover, we can suppose that uj
is constant in [(2k1

j −3)εj , (2k1
j −1)εj ] and in [(2kNj +1)εj , (2kNj +3)εj ]. This

is not restrictive, up to substituting uj by a function vj constant on these
intervals, with v′j = u′j elsewhere, and coinciding with uj for t < (2k1

j − 3)εj .
Clearly Fj(vj) ≤ Fj(uj), and still vj → u since

‖uj − vj‖∞ ≤
∫ +∞

−∞
|u′j − v′j | dt ≤ cg

√
εj

(using Hölder’s inequality). We can split Fj(uj) into three integrals, and we
have then

Fj(uj) ≥ 2
∫ (2k1

j−2)εj

−∞
|u′j |2 dt+ 2

∫ −∞
(2kN

j
+2)εj

|u′j |2 dt

+
1
εj

∫ (2kNj +2)εj

(2k1
j
−2)εj

fεj

(∫ x+εj

x−εj
|u′j |2 dt

)
dx.

As for the last term, we can suppose that uj is monotone on the interval
[(2k1

j −2)εj , (2kNj +2)εj ] and constant on the intervals [(2k−1)εj , (2k+1)εj ]
with k ∈ Gj , k1

j < k < kNj , up to substituting uj by a function vj enjoying
these properties which makes the value Fj(vj) decrease and does not affect
the limit u, using the same argument as above. Hence, we can also suppose
that ki+1

j −kij ≤ 2 for i = 1, . . . , N −1 so that kNj −k1
j ≤ 2N +2. Finally, by

a translation argument it is not restrictive to suppose that uj(0) = 0 = u−(0)
for all j (we tacitly use the continuous representatives of Sobolev functions
throughout the paper).



Define for all K > 0, z ∈ R

ϕKε (z) = inf
{∫ K

0

fε

(1
ε

∫ x+1

x−1

|v′|2 dt
)
dx : v(0) = 0, v(K) = z

}
. (2.7)

By the lower semicontinuity of fε the function ϕKε is itself lower semicontin-
uous. Note that fεj (·/εj) converges increasingly to g; hence, ϕKεj converges
increasingly to

ϕK(z) = inf
{∫ K

0

g
(∫ x+1

x−1

|v′|2 dt
)
dx : v(0) = 0, v(K) = z

}
.

It is easy to check that ϕK(z) = ϕ(z) for K large, and that ϕ(z) ≥ 2cg if
z 6= 0.

Let K ≥ 4N + 4 be fixed. Define now

vj(x) =

{
uj(x+ (2k1

j − 2)εj) if x ≤ 0

uj(x+ (2kNj + 2)εj) if x > 0.

Note that

1
εj

∫ (2kNj +2)εj

(2k1
j
−2)εj

fεj

(∫ x+εj

x−εj
|u′j |2 dt

)
dx ≥ ϕKεj (v

+
j (0)− v−j (0)),

using v(t) = uj(t/εj) as test function in (2.7), and performing a change of
variables. Moreover, since we suppose N ≥ 1 (otherwise there is nothing to
prove), we have

1
εj

∫ (2kNj +2)εj

(2k1
j
−2)εj

fεj

(∫ x+εj

x−εj
|u′j |2 dt

)
dx ≥ 2 g

(∫ 2k1
jεj+εj

2k1
j
εj−εj

|u′j |2 dt
)
≥ 2cg,

so that

Fj(uj) ≥ 2
∫ +∞

−∞
|v′j |2 dx+ ϕKεj (v

+
j (0)− v−j (0)) ∨ 2cg.

Note that vj → u in L1
loc, and v+

j (0)− v−j (0)→ u+(0)− u−(0).
Since ϕKj is a sequence of lower semicontinuous functions converging in-

creasingly to ϕ we have ϕ(z) ≤ lim infj ϕKεj (zj) for all zj → z. Hence,

lim inf
j

Fj(uj) ≥ lim inf
j

2
∫ +∞

−∞
|v′j |2 dt+ lim inf

j
ϕKεj (v

+
j (0)− v−j (0))

≥ 2
∫ +∞

−∞
|u′|2 dt+ ϕ(u+(0)− u−(0)) = Fϕ(u),



that is (2.6).
It remains now to find a recovery sequence for Fϕ(u) when u ∈ SBVloc(R),

u′ ∈ L2(R) and #(S(u)) < +∞. It is not restrictive to suppose S(u) = {0}
since all the arguments are local. Moreover, we can suppose u−(0) = 0,
u+(0) = z. Fix K such that ϕ(z) = ϕK(z). For all ε > 0 there exists
ũε ∈ H1

loc(R) such that ũε(x) = 0, for x ≤ 0, ũε(x) = z, for x ≥ Kε, and

1
ε

∫ +∞

−∞
fε

(∫ x+ε

x−ε
|ũε|2 dt

)
dx = ϕKε (z).

Define then

uε(x) =


u(x+ 2ε) if x ≤ −2ε
ũε(x) if − 2ε < x < Kε+ 2ε
u(x− 2ε−Kε) if x ≥ Kε+ 2ε.

We have uε → u, and lim
ε→0+

Fε(uε) = 2
∫ +∞

−∞
|u′|2 dt + lim

ε→0+
ϕKε (z) = Fϕ(u),

as required.

Remark 2.2. (i) It is clear from the proof that in the statement of
Theorem 2.1 we can define fε also as

fε(ξ) =
{
ξ if 0 ≤ ξ ≤ C
g(εξ) if ξ > C,

for any C ≤ cg;
(ii) In the one-dimensional case, we can recover Theorem 3.1 of [1] as a

corollary of our Theorem 2.1. In fact, let f be a function as in the Introduc-
tion, and let f̃(t) = 2f(t/2). The functionals Fε in (1.2) can be rewritten
as

Fε(u) =
1
2

∫ +∞

−∞
f̃
(∫ x+ε

x−ε
|u′|2 dt

)
dx.

For fixed η > 0 let 0 < C ≤ 1 satisfy

(1− η)t ≤ f̃(t) ≤ (1 + η)t if 0 ≤ t ≤ C,

2(λ− η) ≤ f̃(t) if t ≥ 1/C.

Define, for σ > 0

gσ(t) =


0 if t = 0
(1− η)C if 0 < t ≤ σ
2(λ− η) if t > σ,

g+(t) =
{

0 if t = 0
2λ if t > 0,



fσε (t) =
{

(1− η)t if 0 ≤ t ≤ C
gσ(εt) if t > C,

f+
ε (t) =

{
(1 + η)t if 0 ≤ t ≤ C
2(1 + η)λ if t > C,

We have, if ε < C/σ, fσε ≤ f̃ ≤ f+
ε . We can apply Theorem 2.1 to

F+
ε (t) =

1
ε

∫ +∞

−∞

1
(1 + η)

f+
ε (
∫ x+ε

x−ε
|u′(t)|2dt) dx,

(using the observation (i) above) and

Fσε (t) =
1
ε

∫ +∞

−∞

1
(1− η)

fσε (
∫ x+ε

x−ε
|u′(t)|2dt) dx,

obtaining jump energy densities ϕ+ and ϕση , respectively. Since

4λ = ϕ+(z) = inf
{∫ +∞

−∞
g+
(∫ x+1

x−1

|u′(t)|2 dt
)
dx : u(−∞) = 0, u(+∞) = z

}
= sup

η>0
sup
σ>0

inf
{∫ +∞

−∞
gσ
(∫ x+1

x−1

|u′(t)|2 dt
)
dx : u(−∞) = 0, u(+∞) = z

}
= sup

η>0
sup
σ>0

ϕση (z)

and
(1− η)

2
Fσε ≤ Fε ≤

(1 + η)
2

F+
ε ,

we get by comparison the functional in (1.1) as the Γ-limit of the functionals
Fε.

3. Estimates for the jump energy density. The jump energy density
in the Γ-limit does not seem to be explicitly computable in general. We are
able to give some estimates and an explicit calculation in some particular
cases. We begin by computing ϕ when g is affine on (0,+∞).

Proposition 3.1. If

g(t) =
{
at+ b if t > 0
0 if t = 0

then

ϕ(z) =
{

2
√

2ab|z|+ 2b if z 6= 0
0 if z = 0.



Proof. Let z 6= 0 and let w(t) =
∫ t+1

t−1
|u′|2 dx, where u(x) is a function such

that u(−∞) = 0 and u(+∞) = z. We can assume that the support of w is
bounded and that suppw = [0, T ], with T ≥ 2. Thus∫ +∞

−∞
g(w(t)) dt = a

∫ +∞

−∞

∫ t+1

t−1

|u′|2 dx dt+ bT = 2a
∫ T−1

1

|u′|2 dx+ bT .

Then we have that

ϕ(z) = min
T≥2

inf
{

2a
∫ T−1

1

|u′|2 dx+ bT : u(1) = 0 , u(T − 1) = z
}

= min
T≥2
{ 2a
T − 2

z2 + bT} = 2
√

2ab|z|+ 2b ,

as required.

Proposition 3.2. Let ϑ : R → R be a subadditive lower semicontinuous
function, increasing on [0,+∞), with ϑ(0) = 0. Let g(t) = 1

2ϑ(
√

2t) for
t ≥ 0. Then ϕ(z) ≥ ϑ(|z|).

Proof. It suffices to consider z > 0. Let u be an increasing H1
loc-function

with u(x) = 0 for x ≤ 0, u(x) = z for x ≥ T . Using the same “discretization
argument” as in the first part of the proof of Theorem 2.1 (with εj = 1), we
can suppose that∫ +∞

−∞
g(
∫ x+1

x−1

|u′|2 dt) dx ≥ 2
[T/2]+1∑
k=0

g(
∫ 2k+1

2k−1

|u′|2 dt).

Now, clearly we have∫ 2k+1

2k−1

|u′|2 dt ≥ (u(2k + 1)− u(2k − 1))2

2
,

so that

g(
∫ 2k+1

2k−1

|u′|2 dt) =
1
2
ϑ
(√

2
∫ 2k+1

2k−1

|u′|2 dt
)
≥ 1

2
ϑ(u(2k + 1)− u(2k − 1)).

Hence, by the subadditivity of ϑ and the fact that u is increasing,∫ +∞

−∞
g(
∫ x+1

x−1

|u′|2 dt) dx ≥
[T/2]+1∑
k=0

ϑ(u(2k + 1)− u(2k − 1))

≥ ϑ
([T/2]+1∑

k=0

(
u(2k + 1)− u(2k − 1)

))
= ϑ(z) ,

as desired.



Remark 3.3. Let ϑ be any increasing positive function and let g be defined
as in Proposition 3.2. Then ϕ(z) ≤ 2ϑ(|z|). To show this, it suffices to take
u(t) = sign z

(
(0 ∨ |z|t/2) ∧ |z|

)
as test function in the definition of ϕ. If ϑ

is concave, the same test function gives ϕ(z) ≤ 2ϑ(2|z|/3), after applying
Jensen’s inequality.

From Proposition 3.2 and Remark 3.3 we obtain that we can construct
functions ϕ with prescribed growth, as precised in the following proposition.

Proposition 3.4. Let ϑ : R → R be a subadditive lower semicontinuous
function, increasing on [0,+∞), with ϑ(0) = 0. Let g(t) = 1

2ϑ(
√

2t) for
t ≥ 0. Then ϑ(|z|) ≤ ϕ(z) ≤ 2ϑ(|z|).

Remark 3.5. From Propositions 3.2 and 3.1 we can compute ϕ in the case
g(z) =

√
|z|. In fact, from Proposition 3.2 applied with ϑ(t) =

√
2 t we get

ϕ(z) ≥
√

2 |z|. On the other hand, we have for all α > 0 g(z) ≤ 1
2
√
α
z +

√
α

2 .

Hence, using Proposition 3.1, ϕ(z) ≤
√

2 |z| +
√
α. By the arbitrariness of

α > 0 we get ϕ(z) ≤
√

2 |z|. The same argument applies to g(z) = c ∧
√
|z|,

obtaining ϕ(z) = 2c ∧
√

2|z|.
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