ON THE NON-LOCAL APPROXIMATION OF FREE-DISCONTINUITY PROBLEMS

ANDREA BRAIDES SISSA, via Beirut 4, 34013 Trieste, Italy ADRIANA GARRONI Dipartimento di Matematica, Università di Roma "La Sapienza" piazzale A. Moro 3, 00185 Roma, Italy

ABSTRACT. A class of free-discontinuity problems is approximated in the sense of Γ -convergence by a sequence of non-local integral functionals.

1. Introduction. The Mumford-Shah functional has been introduced in [6] to model some problems in image segmentation. A weak version of this functional, from the study of which it is possible to obtain "classical" solutions, is

$$F(u) = \int_{\Omega} |\nabla u|^2 \, dx + 2\lambda \, \mathcal{H}^{n-1}(S(u)), \qquad u \in SBV(\Omega) \,, \tag{1.1}$$

where S(u) is the set of discontinuity points of u, \mathcal{H}^{n-1} denotes the (n-1)dimensional Hausdorff measure, and $SBV(\Omega)$ is the space of special functions of bounded variation on the open set $\Omega \subset \mathbf{R}^n$ (see De Giorgi and Ambrosio

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

¹⁹⁹¹ Mathematics Subject Classification. 49J45, 59Q25.

Key words and phrases. $\Gamma\text{-}\mathrm{convergence},$ free-discontinuity problems, non-local functionals.

[4]). Variational approximations of functionals of this type, depending on a volume and a surface energy, by functionals defined on spaces of Sobolev functions are motivated by computational and evolution problems.

While the lack of convexity of F forbids its approximation by simple local functionals, in [1] it has been shown that the Mumford-Shah functional (1.1) is the variational limit as $\varepsilon \to 0^+$ of the non-local functionals

$$F_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f(\varepsilon \oint_{B_{\varepsilon}(x)} |\nabla u|^2 \, dy) \, dx, \qquad u \in H^1(\Omega) \,, \tag{1.2}$$

under the assumptions that f is continuous, increasing, and

$$\lim_{t \to 0^+} \frac{f(t)}{t} = 1, \qquad \lim_{t \to +\infty} f(t) = \lambda.$$
(1.3)

A simple relaxation argument, which is straightforward in the one-dimensional case, shows that we can drop all hypotheses on f, considering in its place the lower semicontinuous increasing envelope \overline{f} (*i.e.*, the greatest lower semicontinuous and increasing function not greater than f), and obtain the same result. Furthermore, from a comparison argument it is clear that if $\lim_{t\to+\infty} f(t) = +\infty$ then we obtain in the limit just the Dirichlet integral.

Purpose of this work is to show that more general surface energies can be obtained by non-local approximation as above, considering functionals of the form

$$F_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon}(\varepsilon \oint_{B_{\varepsilon}(x)} |\nabla u|^2 \, dy) \, dx, \qquad u \in H^1(\Omega), \tag{1.4}$$

with varying integrands f_{ε} . More precisely, we show that lower semicontinuous functionals of the form

$$F(u) = \int_{\Omega} |\nabla u|^2 \, dx + \int_{S(u)} \varphi(u^+(x) - u^-(x)) \, d\mathcal{H}^{n-1} \,, \quad u \in SBV(\Omega) \,, \ (1.5)$$

where u^{\pm} are the traces of u on both sides of S(u), can be obtained as Γ -limits of functionals (1.4), with φ computable from (f_{ε}) . The examples of nontrivial φ in Section 3 justify the generality of recent integral representation results (see [2]).

In order to avoid the technicalities of the higher dimensional case, for which we refer to [1], we treat only the one-dimensional case, which contains all the original features of the approximation procedure. **2. Limits of non-local functionals.** We recall that a family $(F_{\varepsilon})_{\varepsilon>0}$ of functionals $F_{\varepsilon} : L^1_{loc}(\mathbf{R}) \to [0, +\infty]$ is said to Γ -converge to a functional $F : L^1_{loc}(\mathbf{R}) \to [0, +\infty]$ (with respect to the L^1_{loc} -convergence) as $\varepsilon \to 0^+$ if for every $u \in L^1_{loc}(\mathbf{R})$ and for every sequence (ε_j) of positive numbers decreasing to 0, the two conditions hold:

(i) (lower semicontinuity inequality) for all sequences (u_j) converging to u in $L^1_{loc}(\mathbf{R})$ we have $F(u) \leq \liminf_j F_{\varepsilon_j}(u_j)$;

(ii) (existence of a recovery sequence) there exists a sequence (u_j) converging to u in $L^1_{loc}(\mathbf{R})$ such that $F(u) \geq \limsup_j F_{\varepsilon_j}(u_j)$.

We refer to [3] for an exposition of the main properties of Γ -convergence, and to [1] for the relevance of such an approximation in the framework of free-discontinuity problems.

We recall moreover that the space $SBV_{loc}(\mathbf{R})$ is defined as the space of functions $u \in L^1_{loc}(\mathbf{R})$ whose distributional derivative Du can be written as $Du = f \mathcal{L}_1 + \sum_{t \in S(u)} a_t \delta_t$ (here \mathcal{L}_1 denotes the Lebesgue measure, and δ_t the Dirac mass at t) for some $f \in L^1(\mathbf{R})$, a (at most countable) set $S(u) \subset \mathbf{R}$ and a sequence of real numbers $(a_t)_{t \in S(u)}$ with $\sum_t |a_t| < +\infty$. It is easy to see that for such functions the left hand-side and right hand-side approximate limits $u^-(t)$, $u^+(t)$ exist at every point, that in the notation above $S(u) = \{t \in \mathbf{R} : u^-(t) \neq u^+(t)\}$, and that $a_t = u^+(t) - u^-(t)$. This notation describes a particular case of a SBV-functions space as introduced by De Giorgi and Ambrosio [4].

In what follows, fixed a non-decreasing function $g: [0, +\infty) \to [0, +\infty)$ with

$$g(0) = 0, \qquad \inf\{g(x) : x > 0\} =: c_g > 0,$$
 (2.1)

we will consider a new function φ defined by

$$\varphi(z) = \inf\left\{\int_{-\infty}^{+\infty} g\left(\int_{x-1}^{x+1} |u'(t)|^2 \, dt\right) dx : u(-\infty) = 0, \ u(+\infty) = z\right\} \quad (2.2)$$

where the infimum is taken over all functions in $H^1_{loc}(\mathbf{R})$. The meaning of the conditions at $\pm \infty$ is understood as the existence of the corresponding limits. Actually, it suffices to consider functions u with derivatives of compact support. In fact, if we define

$$w_u(t) := \int_{t-1}^{t+1} |u'(x)|^2 \, dx, \qquad G(u) := \int_{-\infty}^{+\infty} g(w_u(t)) \, dt, \qquad (2.3)$$

and $G(u) < +\infty$ then $|\operatorname{supp} w_u| \le c_g^{-1} G(u)$, and also $|\operatorname{supp} u'| \le c_g^{-1} G(u) - 2$. Note that $\operatorname{supp} u'$ cannot contain more than $|\operatorname{supp} w_u|/2$ points of mutual distance greater than 2, so that it is not restrictive to assume, up to eliminating some bounded intervals where u is constant, that

$$\operatorname{supp} w_u \subseteq [0, c_g^{-1}\varphi(z) + 1].$$
(2.4)

Hence, we can suppose that u(x) = 0 for x < 1, and u(x) = z for $x > c_g^{-1}\varphi(z)$.

Note moreover, considering as test function $u_z(t) = \operatorname{sign} z\left((0 \lor |z|t) \land |z|\right)$, that

$$\varphi(z) \le \int_{-\infty}^{+\infty} g\left(\int_{x-1}^{x+1} |u'_z(t)|^2 dt\right) dx \le 3 g(z^2),$$

so that we can assume that

$$\operatorname{supp} w_u \subseteq [0, 3c_g^{-1} g(z^2) + 1], \tag{2.5}$$

in place of (2.4).

The following theorem is the main result of the paper. It provides a construction of a family (F_{ε}) Γ -converging to the functional (1.5).

Theorem 2.1. Let $g : [0, +\infty) \to [0, +\infty)$ be a lower semicontinuous increasing function satisfying (2.1). Define

$$f_{\varepsilon}(\xi) = \begin{cases} \xi & \text{if } 0 \leq \xi \leq c_g \\ g(\varepsilon\xi) & \text{if } \xi > c_g, \end{cases}$$

and

$$F_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{-\infty}^{+\infty} f_{\varepsilon}(\int_{x-\varepsilon}^{x+\varepsilon} |u'(t)|^2 dt) \, dx, \qquad u \in H^1_{loc}(\mathbf{R})$$

(extended to $+\infty$ on $L^1_{loc}(\mathbf{R}) \setminus H^1_{loc}(\mathbf{R})$). Then the Γ -limit in $L^1_{loc}(\mathbf{R})$ of F_{ε} as $\varepsilon \to 0^+$ exists, and it equals

$$F_{\varphi}(u) := 2 \int_{-\infty}^{+\infty} |u'|^2 \, dx + \sum_{x \in S(u)} \varphi(u^+(x) - u^-(x)), \qquad u \in SBV_{loc}(\mathbf{R}),$$

(extended to $+\infty$ on $L^1_{loc}(\mathbf{R}) \setminus SBV_{loc}(\mathbf{R})$) where φ is defined by (2.2).

Proof. Let (ε_j) decrease to 0, and $u_j \to u$ in $L^1_{loc}(\mathbf{R})$. With a slight abuse of notation we set $F_j := F_{\varepsilon_j}$. We have to check that

$$F_{\varphi}(u) \le \liminf_{j} F_{j}(u_{j}).$$
(2.6)

For each $j \in \mathbf{N}$, define $\psi_j(x) = f_{\varepsilon_j} \left(\int_{x-\varepsilon_j}^{x+\varepsilon_j} |u'_j(t)|^2 dt \right)$, so that

$$F_j(u_j) = \int_{-\infty}^{+\infty} \frac{1}{\varepsilon_j} \psi_j(x) \, dx = \sum_{k \in \mathbf{Z}} \int_{2k\varepsilon_j - \varepsilon_j}^{2k\varepsilon_j + \varepsilon_j} \frac{1}{\varepsilon_j} \psi_j(x) \, dx = \frac{1}{\varepsilon_j} \int_{-\varepsilon_j}^{\varepsilon_j} \Psi_j(x) \, dx,$$

where $\Psi_j(x) := \sum_{k \in \mathbb{Z}} \psi_j(x + 2k\varepsilon_j)$. By the Mean Value Theorem, we can find $t_j \in (-\varepsilon_j, \varepsilon_j)$ such that

$$F_j(u_j) \ge 2\Psi_j(t_j) = 2\sum_{k \in \mathbf{Z}} f_{\varepsilon_j} \Big(\int_{(2k-1)\varepsilon_j}^{(2k+1)\varepsilon_j} |u_j'(t-t_j)|^2 dt \Big).$$

Since the translation by t_j does not affect neither the value $F_j(u_j)$ nor the limit u, we can suppose $t_j = 0$ for all j. Hence

$$F_j(u_j) \ge 2\sum_{k \in \mathbf{Z}} f_{\varepsilon_j} \left(\int_{(2k-1)\varepsilon_j}^{(2k+1)\varepsilon_j} |u'_j(t)|^2 dt \right).$$

Define

$$\xi_j(k) := \int_{(2k-1)\varepsilon_j}^{(2k+1)\varepsilon_j} |u'_j(t)|^2 dt, \qquad k \in \mathbf{Z},$$
$$G_j := \{k \in \mathbf{Z} : 2\xi_j(k) \le c_g\}, \qquad B_j := \{k \in \mathbf{Z} : 2\xi_j(k) > c_g\}.$$

Note that for all $x \in \mathbf{R} \setminus (2\varepsilon_j B_j + [-2\varepsilon_j, 2\varepsilon_j])$ we have

$$\int_{x-\varepsilon_j}^{x+\varepsilon_j} |u_j'(t)|^2 \, dt \le c_g.$$

Moreover, $f_{\varepsilon_j}(\xi_j(k)) \ge c_g/2$ for all $k \in B_j$, so that

$$\#(B_j) \le \frac{2}{c_g} \sum_{k \in B_j} f_{\varepsilon_j}(\xi_j(k)) \le \frac{1}{c_g} \sup_j F_j(u_j).$$

Hence, we can suppose that $\#(B_j) = N$, independent of j. If we write $B_j = \{k_j^1, \ldots, k_j^N\}$ with $k_j^1 < k_j^2 < \ldots < k_j^N$, then we can suppose that there exist indices i_1, i_2 such that $\varepsilon_j k_j^i \to -\infty$ for $i < i_1, \varepsilon_j k_j^i \to +\infty$ for $i > i_2$, and $2\varepsilon_j k_j^i \to x^i \in \mathbf{R}$ for $i_1 \leq i \leq i_2$. Let $S = \{x^i : i_1 \leq i \leq i_2\}$ (which is not empty if $i_1 \leq i_2$). Since

$$F_{j}(u_{j}) \geq \frac{1}{\varepsilon_{j}} \int_{\mathbf{R} \setminus (2\varepsilon_{j}B_{j} + [-2\varepsilon_{j}, 2\varepsilon_{j}])} \int_{x-\varepsilon_{j}}^{x+\varepsilon_{j}} |u_{j}'(t)|^{2} dt dx$$
$$\geq 2 \int_{\mathbf{R} \setminus (2\varepsilon_{j}B_{j} + [-2\varepsilon_{j}, 2\varepsilon_{j}])} |u_{j}'(t)|^{2} dt$$

(the last inequality is obtained by changing the integration order), we have that fixed $\eta > 0$ there exists $j(\eta)$ such that the sequence $(u_j)_{j \ge j(\eta)}$ is equibounded in $H^1([-\frac{1}{\eta}, \frac{1}{\eta}] \setminus (S + [-\eta, \eta]))$, and

$$\int_{[-\frac{1}{\eta},\frac{1}{\eta}]\backslash (S+[-\eta,\eta])} |u_j'|^2 \, dt \leq \sum_{k \in G_j} \int_{(2k-1)\varepsilon_j}^{(2k+1)\varepsilon_j} |u_j'|^2 \, dt$$

for $j \geq j(\eta)$. It follows that $u \in SBV_{loc}(\mathbf{R}), S(u) \subset S$, and

$$\int_{-\infty}^{+\infty} |u'|^2 dt \le \liminf_j \sum_{k \in G_j} \int_{(2k-1)\varepsilon_j}^{(2k+1)\varepsilon_j} |u'_j|^2 dt$$

By the local nature of the arguments in the proofs below it will not be restrictive to suppose $x^1 = \ldots = x^N = 0$. Moreover, we can suppose that u_j is constant in $[(2k_j^1 - 3)\varepsilon_j, (2k_j^1 - 1)\varepsilon_j]$ and in $[(2k_j^N + 1)\varepsilon_j, (2k_j^N + 3)\varepsilon_j]$. This is not restrictive, up to substituting u_j by a function v_j constant on these intervals, with $v'_j = u'_j$ elsewhere, and coinciding with u_j for $t < (2k_j^1 - 3)\varepsilon_j$. Clearly $F_j(v_j) \leq F_j(u_j)$, and still $v_j \to u$ since

$$\|u_j - v_j\|_{\infty} \le \int_{-\infty}^{+\infty} |u'_j - v'_j| dt \le c_g \sqrt{\varepsilon_j}$$

(using Hölder's inequality). We can split $F_j(u_j)$ into three integrals, and we have then

$$F_{j}(u_{j}) \geq 2 \int_{-\infty}^{(2k_{j}^{1}-2)\varepsilon_{j}} |u_{j}'|^{2} dt + 2 \int_{(2k_{j}^{N}+2)\varepsilon_{j}}^{-\infty} |u_{j}'|^{2} dt + \frac{1}{\varepsilon_{j}} \int_{(2k_{j}^{1}-2)\varepsilon_{j}}^{(2k_{j}^{N}+2)\varepsilon_{j}} f_{\varepsilon_{j}} \left(\int_{x-\varepsilon_{j}}^{x+\varepsilon_{j}} |u_{j}'|^{2} dt \right) dx.$$

As for the last term, we can suppose that u_j is monotone on the interval $[(2k_j^1-2)\varepsilon_j, (2k_j^N+2)\varepsilon_j]$ and constant on the intervals $[(2k-1)\varepsilon_j, (2k+1)\varepsilon_j]$ with $k \in G_j, k_j^1 < k < k_j^N$, up to substituting u_j by a function v_j enjoying these properties which makes the value $F_j(v_j)$ decrease and does not affect the limit u, using the same argument as above. Hence, we can also suppose that $k_j^{i+1} - k_j^i \leq 2$ for $i = 1, \ldots, N-1$ so that $k_j^N - k_j^1 \leq 2N+2$. Finally, by a translation argument it is not restrictive to suppose that $u_j(0) = 0 = u^-(0)$ for all j (we tacitly use the continuous representatives of Sobolev functions throughout the paper).

Define for all $K > 0, z \in \mathbf{R}$

$$\varphi_{\varepsilon}^{K}(z) = \inf \left\{ \int_{0}^{K} f_{\varepsilon} \left(\frac{1}{\varepsilon} \int_{x-1}^{x+1} |v'|^{2} dt \right) dx : v(0) = 0, \ v(K) = z \right\}.$$
 (2.7)

By the lower semicontinuity of f_{ε} the function $\varphi_{\varepsilon}^{K}$ is itself lower semicontin-uous. Note that $f_{\varepsilon_{j}}(\cdot/\varepsilon_{j})$ converges increasingly to g; hence, $\varphi_{\varepsilon_{j}}^{K}$ converges increasingly to

$$\varphi^{K}(z) = \inf \left\{ \int_{0}^{K} g\left(\int_{x-1}^{x+1} |v'|^{2} dt \right) dx : v(0) = 0, \ v(K) = z \right\}.$$

It is easy to check that $\varphi^K(z) = \varphi(z)$ for K large, and that $\varphi(z) \ge 2c_g$ if $z \neq 0.$

Let $K \ge 4N + 4$ be fixed. Define now

$$v_j(x) = \begin{cases} u_j(x + (2k_j^1 - 2)\varepsilon_j) & \text{if } x \le 0\\ u_j(x + (2k_j^N + 2)\varepsilon_j) & \text{if } x > 0. \end{cases}$$

Note that

$$\frac{1}{\varepsilon_j} \int_{(2k_j^1 - 2)\varepsilon_j}^{(2k_j^N + 2)\varepsilon_j} f_{\varepsilon_j} \left(\int_{x - \varepsilon_j}^{x + \varepsilon_j} |u_j'|^2 \, dt \right) dx \ge \varphi_{\varepsilon_j}^K(v_j^+(0) - v_j^-(0)),$$

using $v(t) = u_j(t/\varepsilon_j)$ as test function in (2.7), and performing a change of variables. Moreover, since we suppose $N \ge 1$ (otherwise there is nothing to prove), we have

$$\frac{1}{\varepsilon_j} \int_{(2k_j^1 - 2)\varepsilon_j}^{(2k_j^N + 2)\varepsilon_j} f_{\varepsilon_j} \left(\int_{x - \varepsilon_j}^{x + \varepsilon_j} |u_j'|^2 dt \right) dx \ge 2g \left(\int_{2k_j^1 \varepsilon_j - \varepsilon_j}^{2k_j^1 \varepsilon_j + \varepsilon_j} |u_j'|^2 dt \right) \ge 2c_g,$$

so that

$$F_j(u_j) \ge 2 \int_{-\infty}^{+\infty} |v_j'|^2 \, dx + \varphi_{\varepsilon_j}^K(v_j^+(0) - v_j^-(0)) \vee 2c_g \, dx + \varphi_{\varepsilon_j}^K(v_j^+(0) - \varphi_{\varepsilon_j}^K(v_j^+(v_j^+(v_j^+(v_j^+(v_j^+(v_j^+(v_j^+(v$$

Note that $v_j \to u$ in L^1_{loc} , and $v_j^+(0) - v_j^-(0) \to u^+(0) - u^-(0)$. Since φ_j^K is a sequence of lower semicontinuous functions converging increasingly to φ we have $\varphi(z) \leq \liminf_j \varphi_{\varepsilon_j}^K(z_j)$ for all $z_j \to z$. Hence,

$$\liminf_{j} F_{j}(u_{j}) \geq \liminf_{j} 2 \int_{-\infty}^{+\infty} |v_{j}'|^{2} dt + \liminf_{j} \varphi_{\varepsilon_{j}}^{K}(v_{j}^{+}(0) - v_{j}^{-}(0))$$
$$\geq 2 \int_{-\infty}^{+\infty} |u'|^{2} dt + \varphi(u^{+}(0) - u^{-}(0)) = F_{\varphi}(u),$$

that is (2.6).

It remains now to find a recovery sequence for $F_{\varphi}(u)$ when $u \in SBV_{loc}(\mathbf{R})$, $u' \in L^2(\mathbf{R})$ and $\#(S(u)) < +\infty$. It is not restrictive to suppose $S(u) = \{0\}$ since all the arguments are local. Moreover, we can suppose $u^-(0) = 0$, $u^+(0) = z$. Fix K such that $\varphi(z) = \varphi^K(z)$. For all $\varepsilon > 0$ there exists $\tilde{u}_{\varepsilon} \in H^1_{loc}(\mathbf{R})$ such that $\tilde{u}_{\varepsilon}(x) = 0$, for $x \leq 0$, $\tilde{u}_{\varepsilon}(x) = z$, for $x \geq K\varepsilon$, and

$$\frac{1}{\varepsilon} \int_{-\infty}^{+\infty} f_{\varepsilon} \left(\int_{x-\varepsilon}^{x+\varepsilon} |\tilde{u}_{\varepsilon}|^2 \, dt \right) dx = \varphi_{\varepsilon}^K(z).$$

Define then

$$u_{\varepsilon}(x) = \begin{cases} u(x+2\varepsilon) & \text{if } x \leq -2\varepsilon \\ \tilde{u}_{\varepsilon}(x) & \text{if } -2\varepsilon < x < K\varepsilon + 2\varepsilon \\ u(x-2\varepsilon - K\varepsilon) & \text{if } x \geq K\varepsilon + 2\varepsilon. \end{cases}$$

We have $u_{\varepsilon} \to u$, and $\lim_{\varepsilon \to 0^+} F_{\varepsilon}(u_{\varepsilon}) = 2 \int_{-\infty}^{+\infty} |u'|^2 dt + \lim_{\varepsilon \to 0^+} \varphi_{\varepsilon}^K(z) = F_{\varphi}(u)$, as required.

Remark 2.2. (i) It is clear from the proof that in the statement of Theorem 2.1 we can define f_{ε} also as

$$f_{\varepsilon}(\xi) = \begin{cases} \xi & \text{if } 0 \leq \xi \leq C \\ g(\varepsilon\xi) & \text{if } \xi > C, \end{cases}$$

for any $C \leq c_g$;

(ii) In the one-dimensional case, we can recover Theorem 3.1 of [1] as a corollary of our Theorem 2.1. In fact, let f be a function as in the Introduction, and let $\tilde{f}(t) = 2f(t/2)$. The functionals F_{ε} in (1.2) can be rewritten as

$$F_{\varepsilon}(u) = \frac{1}{2} \int_{-\infty}^{+\infty} \tilde{f}\left(\int_{x-\varepsilon}^{x+\varepsilon} |u'|^2 \, dt\right) dx.$$

For fixed $\eta > 0$ let $0 < C \le 1$ satisfy

$$(1 - \eta)t \le \tilde{f}(t) \le (1 + \eta)t \text{ if } 0 \le t \le C,$$
$$2(\lambda - \eta) \le \tilde{f}(t) \text{ if } t \ge 1/C.$$

Define, for $\sigma > 0$

$$g^{\sigma}(t) = \begin{cases} 0 & \text{if } t = 0\\ (1 - \eta)C & \text{if } 0 < t \le \sigma\\ 2(\lambda - \eta) & \text{if } t > \sigma, \end{cases} \qquad g^{+}(t) = \begin{cases} 0 & \text{if } t = 0\\ 2\lambda & \text{if } t > 0, \end{cases}$$

$$f_{\varepsilon}^{\sigma}(t) = \begin{cases} (1-\eta)t & \text{if } 0 \le t \le C \\ g^{\sigma}(\varepsilon t) & \text{if } t > C, \end{cases} \quad f_{\varepsilon}^{+}(t) = \begin{cases} (1+\eta)t & \text{if } 0 \le t \le C \\ 2(1+\eta)\lambda & \text{if } t > C, \end{cases}$$

We have, if $\varepsilon < C/\sigma$, $f_{\varepsilon}^{\sigma} \leq \tilde{f} \leq f_{\varepsilon}^+$. We can apply Theorem 2.1 to

$$F_{\varepsilon}^{+}(t) = \frac{1}{\varepsilon} \int_{-\infty}^{+\infty} \frac{1}{(1+\eta)} f_{\varepsilon}^{+} (\int_{x-\varepsilon}^{x+\varepsilon} |u'(t)|^2 dt) \, dx,$$

(using the observation (i) above) and

$$F_{\varepsilon}^{\sigma}(t) = \frac{1}{\varepsilon} \int_{-\infty}^{+\infty} \frac{1}{(1-\eta)} f_{\varepsilon}^{\sigma}(\int_{x-\varepsilon}^{x+\varepsilon} |u'(t)|^2 dt) \, dx,$$

obtaining jump energy densities φ^+ and φ^σ_η , respectively. Since

$$\begin{aligned} 4\lambda &= \varphi^+(z) = \inf\left\{\int_{-\infty}^{+\infty} g^+\left(\int_{x-1}^{x+1} |u'(t)|^2 \, dt\right) dx : u(-\infty) = 0, \ u(+\infty) = z\right\} \\ &= \sup_{\eta > 0} \sup_{\sigma > 0} \inf\left\{\int_{-\infty}^{+\infty} g^\sigma\left(\int_{x-1}^{x+1} |u'(t)|^2 \, dt\right) dx : u(-\infty) = 0, \ u(+\infty) = z\right\} \\ &= \sup_{\eta > 0} \sup_{\sigma > 0} \varphi^\sigma_\eta(z) \end{aligned}$$

and

$$\frac{(1-\eta)}{2}F_{\varepsilon}^{\sigma} \le F_{\varepsilon} \le \frac{(1+\eta)}{2}F_{\varepsilon}^{+},$$

we get by comparison the functional in (1.1) as the Γ -limit of the functionals F_{ε} .

3. Estimates for the jump energy density. The jump energy density in the Γ -limit does not seem to be explicitly computable in general. We are able to give some estimates and an explicit calculation in some particular cases. We begin by computing φ when g is affine on $(0, +\infty)$.

Proposition 3.1. If

$$g(t) = \left\{ \begin{array}{ll} at+b & \mbox{if } t > 0 \\ 0 & \mbox{if } t = 0 \end{array} \right.$$

then

$$\varphi(z) = \begin{cases} 2\sqrt{2ab}|z| + 2b & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

Proof. Let $z \neq 0$ and let $w(t) = \int_{t-1}^{t+1} |u'|^2 dx$, where u(x) is a function such that $u(-\infty) = 0$ and $u(+\infty) = z$. We can assume that the support of w is bounded and that supp w = [0, T], with $T \geq 2$. Thus

$$\int_{-\infty}^{+\infty} g(w(t)) \, dt = a \int_{-\infty}^{+\infty} \int_{t-1}^{t+1} |u'|^2 \, dx \, dt + bT = 2a \int_{1}^{T-1} |u'|^2 \, dx + bT$$

Then we have that

$$\varphi(z) = \min_{T \ge 2} \inf \left\{ 2a \int_{1}^{T-1} |u'|^2 \, dx + bT : \ u(1) = 0 \,, \ u(T-1) = z \right\}$$
$$= \min_{T \ge 2} \left\{ \frac{2a}{T-2} z^2 + bT \right\} = 2\sqrt{2ab} |z| + 2b \,,$$

as required.

Proposition 3.2. Let $\vartheta : \mathbf{R} \to \mathbf{R}$ be a subadditive lower semicontinuous function, increasing on $[0, +\infty)$, with $\vartheta(0) = 0$. Let $g(t) = \frac{1}{2}\vartheta(\sqrt{2t})$ for $t \ge 0$. Then $\varphi(z) \ge \vartheta(|z|)$.

Proof. It suffices to consider z > 0. Let u be an increasing H^1_{loc} -function with u(x) = 0 for $x \leq 0$, u(x) = z for $x \geq T$. Using the same "discretization argument" as in the first part of the proof of Theorem 2.1 (with $\varepsilon_j = 1$), we can suppose that

$$\int_{-\infty}^{+\infty} g(\int_{x-1}^{x+1} |u'|^2 \, dt) \, dx \ge 2 \sum_{k=0}^{[T/2]+1} g(\int_{2k-1}^{2k+1} |u'|^2 \, dt).$$

Now, clearly we have

$$\int_{2k-1}^{2k+1} |u'|^2 dt \ge \frac{(u(2k+1) - u(2k-1))^2}{2},$$

so that

$$g(\int_{2k-1}^{2k+1} |u'|^2 dt) = \frac{1}{2} \vartheta \Big(\sqrt{2 \int_{2k-1}^{2k+1} |u'|^2 dt} \Big) \ge \frac{1}{2} \vartheta (u(2k+1) - u(2k-1)).$$

Hence, by the subadditivity of ϑ and the fact that u is increasing,

$$\int_{-\infty}^{+\infty} g(\int_{x-1}^{x+1} |u'|^2 dt) dx \ge \sum_{k=0}^{[T/2]+1} \vartheta(u(2k+1) - u(2k-1))$$
$$\ge \vartheta\Big(\sum_{k=0}^{[T/2]+1} (u(2k+1) - u(2k-1))\Big) = \vartheta(z) \,,$$

as desired.

Remark 3.3. Let ϑ be any increasing positive function and let g be defined as in Proposition 3.2. Then $\varphi(z) \leq 2\vartheta(|z|)$. To show this, it suffices to take $u(t) = \operatorname{sign} z ((0 \lor |z|t/2) \land |z|)$ as test function in the definition of φ . If ϑ is concave, the same test function gives $\varphi(z) \leq 2\vartheta(2|z|/3)$, after applying Jensen's inequality.

From Proposition 3.2 and Remark 3.3 we obtain that we can construct functions φ with prescribed growth, as precised in the following proposition.

Proposition 3.4. Let ϑ : $\mathbf{R} \to \mathbf{R}$ be a subadditive lower semicontinuous function, increasing on $[0, +\infty)$, with $\vartheta(0) = 0$. Let $g(t) = \frac{1}{2}\vartheta(\sqrt{2t})$ for $t \ge 0$. Then $\vartheta(|z|) \le \varphi(z) \le 2\vartheta(|z|)$.

Remark 3.5. From Propositions 3.2 and 3.1 we can compute φ in the case $g(z) = \sqrt{|z|}$. In fact, from Proposition 3.2 applied with $\vartheta(t) = \sqrt{2}t$ we get $\varphi(z) \ge \sqrt{2}|z|$. On the other hand, we have for all $\alpha > 0$ $g(z) \le \frac{1}{2\sqrt{\alpha}}z + \frac{\sqrt{\alpha}}{2}$. Hence, using Proposition 3.1, $\varphi(z) \le \sqrt{2}|z| + \sqrt{\alpha}$. By the arbitrariness of $\alpha > 0$ we get $\varphi(z) \le \sqrt{2}|z|$. The same argument applies to $g(z) = c \land \sqrt{|z|}$, obtaining $\varphi(z) = 2c \land \sqrt{2}|z|$.

References

- 1. A. Braides, G. Dal Maso, Nonlocal approximation of the Mumford-Shah functional, Calc. Var. (to appear).
- 2. G. Cortesani, Sequences of non-local functionals which approximate free-discontinuity problems, Preprint SISSA, Trieste, 1996.
- 3. G. Dal Maso:, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
- E. De Giorgi, L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210.
- 5. J.M. Morel, S. Solimini:, Variational Models in Image Segmentation, Birkhäuser, Boston, 1995.
- D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685.

Email addresses: braides@sissa.it and garroni@mercurio.mat.uniroma1.it