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Abstract. We show how several classical results on the infinitesimal behaviour of
the period map for smooth projective manifolds can be read in a natural and unified
way within the framework of ∞-categories.

A common criticism of ∞-categories in algebraic geometry is that they are an ex-
tremely technical subject, so abstract to be useless in everyday mathematics. The aim
of this note is to show in a classical example that quite the converse is true: even a näıve
intuition of what an ∞-groupoid should be clarifies several aspects of the infinitesimal
behaviour of the periods map of a projective manifold. In particular, the notion of Car-
tan homotopy turns out to be completely natural from this perspective, and so classical
results such as Griffiths’ expression for the differential of the periods map, the Kodaira
principle on obstructions to deformations of projective manifolds, the Bogomolov-Tian-
Todorov theorem, and Goldman-Millson quasi-abelianity theorem are easily recovered.

The use of the language of ∞-categories should not be looked at as providing new
proofs for these results; namely, up to a change in language, our proofs verbatim repro-
duce arguments from the recent literature on the subject, particularly from the work of
Marco Manetti and collaborators on dglas in deformation theory. Rather, by this change
of language we change our point of view on the classical theorems above: in the perspec-
tive of∞-sheaves from [Lu09b], all these theorems have a very simple local nature which
can be naturally expressed in terms of ∞-groupoids (or, equivalently, of dglas); their
classical global counterparts are then obtained by taking derived global sections. It is
worth remarking that, if one prefers proofs which do not rely on the abstract machinery
of ∞-categories, one can rework the arguments of this note in purely classical terms.
Namely, once the abstract ∞-nonsense has suggested the “correct” local dglas, one can
globalize them by means of an explicit model for the derived global sections, e.g., via
resolutions by fine sheaves as in [FM09], or by the Thom-Sullivan-Whitney model as in
[IM010].

Since most of the statements and constructions we recall in the paper are well known
in the (∞, 1)-categorical folklore, despite our efforts in giving credit, it is not unlikely we
may have misattributed a few of the results; we sincerely apologize for this. We thank
Ezra Getzler, Donatella Iacono, Marco Manetti, Jonathan Pridham, Carlos Simpson,
Jim Stasheff, Bruno Vallette, Gabriele Vezzosi, and the nLab for suggestions and several
inspiring conversations on the subject of this paper.
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Through the whole paper, K is a fixed characteristic zero field, all algebras are defined
over K and local algebras have K as residue field. In order to keep our account readable,
we will gloss over many details, particularly where the use of higher category theory is
required.

1. From dglas to ∞-groupoids and back again

With any nilpotent dgla g is naturally associated the simplicial set

MC(g⊗ Ω•),

where MC stands for the Maurer-Cartan functor mapping a dgla to the set of its Maurer-
Cartan elements, and Ω• is the simplicial differential graded commutative associative
algebra of polynomial differential forms on algebraic n-simplexes, for n ≥ 0. The impor-
tance of this construction, which can be dated back to Sullivan’s [Su77], relies on the
fact that, as shown by Hinich and Getzler [Ge09, Hi97], the simplicial set MC(g ⊗ Ω•)
is a Kan complex, or -to use a more evocative name- an ∞-groupoid. A convenient way
to think of ∞-groupoids is as homotopy types of topological spaces; namely, it is well
known1 that any ∞-groupoid can be realized as the ∞-Poincaré groupoid, i.e., as the
simplicial set of singular simplices, of a topological space, unique up to weak equiva-
lence. Therefore, the reader who prefers to can substitute homotopy types of topological
spaces for equivalence classes of ∞-groupoids. To stress this point of view, we’ll denote
the k-truncation of an∞-groupoid X by the symbol π≤kX. More explicitely, π≤kX is the
k-groupoid whose j-morphisms are the j-morphisms of X for j < k, and are homotopy
classes of j-morphisms of X for j = k. In particular, if X is the ∞-Poincaré groupoid
of a topological space X, then π≤0X is the set π0(X) of path-connected components of
X, and π≤1X is the usual Poincaré groupoid of X.

The next step is to consider an (∞, 1)-category, i.e., an∞-category whose hom-spaces
are ∞-groupoids. This can be thought as a formalization of the näıve idea of having
objects, morphisms, homotopies between morphisms, homotopies between homotopies,
et cetera. In this sense, endowing a category with a model structure should be thought
as a first step towards defining an (∞, 1)-category structure on it.

Turning back to dglas, an easy way to produce nilpotent dglas is the following: pick
an arbitrary dgla g; then, for any (differential graded) local Artin algebra A, take the
tensor product g⊗mA, where mA is the maximal ideal of A. Since both constructions

DGLA×Art→ nilpotent DGLA

(g, A) 7→ g⊗mA

and

nilpotent DGLA→∞-Grpd

g 7→ MC(g⊗ Ω•)

are functorial, their composition defines a functor

Def : DGLA→∞-GrpdArt.

The functor of Artin rings Def(g) : Art → ∞-Grpd is called the formal ∞-groupoid
associated with the dgla g. Note that π≤0(Def(g)) is the usual set valued deformation
functor associated with g, i.e., the functor

A 7→ MC(g⊗mA)
/

gauge,

1At least in higher categories folklore
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where the gauge equivalence of Maurer-Cartan elements is induced by the gauge action

eα ∗ x = x+
∞∑
n=0

(adα)n

(n+ 1)!
([α, x]− dα)

of exp(g0⊗mA) on the subset MC(g⊗mA) of g1⊗mA. However, due to the presence of
nontrivial irrelevant stabilizers, the groupoid π≤1(Def(g)) is not equivalent to the action
groupoid MC(g⊗mA)

//
exp(g0 ⊗mA), unless g is concentrated in nonnegative degrees.

We will come back to this later. Also note that the zero in g1 ⊗ mA gives a natural
distinguished element in π≤0(Def(g)): the isomorphism class of the trivial deformation.
Since this marking is natural, we will use the same symbol π0(Def(g)) to denote both
the set π≤0(Def(g)) and the pointed set π0(Def(g); 0).

A very good reason for working with∞-groupoids valued deformation functors rather
than with their apparently handier set-valued or groupoid-valued versions is the follow-
ing folk statement, which allows one to move homotopy constructions back and forth
between dglas and (homotopy types of) ‘nice’ topological spaces.

Theorem. The functor Def : DGLA→∞-GrpdArt induces an equivalence of (∞, 1)-
categories.

Here the (∞, 1)-category structures involved are the most natural ones, and they are
both induced by standard model category structures. Namely, on the category of dglas
one takes surjective morphisms as fibrations and quasi-isomorphisms as weak equiva-
lences, just as in the case of differential complexes, whereas the model category structure
on the right hand side is induced by the standard model category structure on Kan com-
plexes as a subcategory of simplicial sets. A sketchy proof of the above equivalence can
be found in [Lu09a]; see also [Pr10].

2. Homotopy vs. gauge equivalent morphisms of dglas (with a detour
into L∞-morphisms)

Let g and h be two (nilpotent) dglas. Then, from the (∞, 1)-category structure on
dglas, we have a natural notion of homotopy equivalence on the set of dgla morphisms
Hom(g, h). Actually, in this form this is a too näıve statement. Indeed, in order to have a
good notion of homotopy classes of morphisms one first has to perform a fibrant-cofibrant
replacement of g and h. In more colloquial terms, what one does is moving from the too
narrow realm of strict dgla morphisms to the more flexible world of morphisms which
preserve the dgla structure only up to homotopy; the formalization of this idea leads to
the notion of L∞-morphism, see, e.g., [LS93, Ko03]. Now, a notion of homotopy (and
of higher homotopies) is well defined on the set of L∞-morphisms between the dglas g
and h; this defines the ∞-groupoid Hom∞(g, h). The definition of L∞-morphism is best
given in the language of differential graded cocommutative coalgebras. Namely, for a
graded vector space V , let

C(V ) =
⊕
n≥1

(⊗nV )Σn ⊆
⊕
n≥1

(⊗nV )

be the cofree graded cocommutative coalgebra without counit cogenerated by V , en-
dowed with the standard coproduct

∆(v1 ⊗ · · · ⊗ vn) =
∑

q1+q2=n

∑
σ∈Sh(q1,q2)

±(vσ(1) ⊗ · · · ⊗ vσ(q1))
⊗

(vσ(q1+1) ⊗ · · · ⊗ vσ(n)),
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where σ ranges in the set of (q1, q2)-unshuffles and ± stands for the Koszul sign; an
explicit determination for the signs in this and the following formulas can be found, e.g,
in [LM95, Sc04]. If V is endowed with a dgla structure, then the differential of V can be
seen as a linear morphismQ1

1 : V [1]→ V [2] and the Lie bracket of V as a linear morphism
Q1

2 : (V [1]⊗V [1])Σ2 → V [2], via the canonical identification (V ∧V )[2] ∼= (V [1]⊗V [1])Σ2 .
Since C(V [1]) is cofreely generated by V [1], the morphisms Q1

1 and Q1
2 uniquely extend

to a degree 1 coderivation Q of C(V [1]), and the compatibility of the differental and the
bracket of V translates into the condition QQ = 0, i.e., Q is a codifferential.

With the dglas g and h are therefore associated the differential graded cocommutative
coalgebras (C(g[1]), Qg) and (C(h[1]), Qh), respectively. An L∞-morphism between g and
h is then defined as a coalgebra morphism F : C(g[1]) → C(h[1]) compatible with the
codifferentials, i.e., such that FQg = QhF . Since C(g[1]) is cofreely cogenerated by
g[1], a coalgebra morphism is completely determined by its Taylor coefficients, i.e. by
the components F 1

n : (⊗ng[1])Σn → h[1]. Similarly, the codifferentials Qg and Qh are
completely determined by their Taylor coefficients which, as we have already remarked,
are nothing but the differentials and the brackets of g and h, respectively. Therefore, the
equation FQg = QhF is equivalent to the following set of equations involving only the
morphisms F 1

n and the dgla structures of g and h:

dhF
1
n(γ1 ∧ · · · ∧ γn) +

1
2

∑
q1+q2=n
σ∈Sh(q1,q2)

±[F 1
q1(γσ(1) ∧ · · · ∧ γσ(q1)), F

1
q2(γσ(q1+1) ∧ · · · ∧ γσ(q1+q2))]h

=
∑
i

±F 1
n(γ1 ∧ · · · ∧ dgγi ∧ · · · ∧ γn)

+
∑
i<j

±F 1
n−1([γi, γj ]g ∧ γ1 ∧ · · · ∧ γ̂i ∧ · · · ∧ γ̂j ∧ · · · ∧ γq+1).

Note in particular that a dgla morphism ϕ : g→ h is, in a natural way, an L∞-morphism
between g and h, of a very special kind: all but the first one of its Taylor coefficients
vanish. One sometimes refers to this by saying that ϕ is a strict L∞-morphisms between
g and h.

The equation defining L∞-morphisms above manifestly looks like the Maurer-Cartan
equation in a suitable dgla. This is not unexpected: by the equivalence between dglas
and (formal) ∞-groupoids stated at the end of the previous section, there must be a
dgla Hom(g, h) such that MC(Hom(g, h) ⊗ Ω•) is equivalent to Hom∞(g, h). What we
see here is that the dgla Hom(g, h) arises in a very natural way and admits a simple
explicit description: it is the Chevalley-Eilenberg-type dgla given by the total dgla of
the bigraded dgla

Homp,q(g, h) = HomZ−Vect(∧qg, h[p]) = Homp(∧qg, h),

endowed with the Lie bracket

[ , ]Hom : Homp1,q1(g, h)⊗Homp2,q2(g, h)→ Homp1+p2,q1+q2(g, h)

defined by

[f, g]Hom(γ1 ∧ · · · ∧ γq1+q2) =

=
∑

σ∈Sh(q1,q2)

±[f(γσ(1) ∧ · · · ∧ γσ(q1)), g(γσ(q1+1) ∧ · · · ∧ γσ(q1+q2))]h,

with σ ranging in the set of (q1, q2)-unshuffles, and with the differentials

d1,0 : Homp,q(g, h)→ Homp+1,q(g, h)
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and
d0,1 : Homp,q(g, h)→ Homp,q+1(g, h)

given by

(d1,0f)(γ1 ∧ · · · ∧ γq) = dh(f(γ1 ∧ · · · ∧ γq)) +
∑
i

±f(γ1 ∧ · · · ∧ dgγi ∧ · · · ∧ γq+1)

and

(d0,1f)(γ1 ∧ · · · ∧ γq+1) =
∑
i<j

±f([γi, γj ]g ∧ γ1 ∧ · · · ∧ γ̂i ∧ · · · ∧ γ̂j ∧ · · · ∧ γq+1).

These operations are best seen pictorially:[
◦||||
◦����

◦****
◦BBBB
◦

OO

f , ◦���

◦$$$
◦4444

g◦

OO ]
Hom

= ◦||||
◦����

◦****
◦BBBB
◦
•wwwf ◦���

◦$$$
◦::::

g◦
•BBB•
OO

[ , ]h
;

d1,0

(
◦||||
◦����

◦****
◦BBBB
◦

OO

f

)
= ◦}}}}}

◦����

◦((((
◦AAAAA
◦

OO

f
•dh

+ ◦}}}}}

◦����

◦((((
◦AAAAA
◦

OO

f
•dg

; d0,1

(
◦||||
◦����

◦****
◦BBBB
◦

OO

f

)
= ◦}}}

��� +++
◦����

◦----
◦AAAAA
◦

OO

f
•[ , ]g

.

It should be remarked that the above construction is an instance of a more general
phenomenon: if O is an operad, A is an O-algebra, and B is a (differential graded)
cocommutative coalgebra, then the space of linear mappings from B to A has a natural
O-algebra structure, see [Do07].

At the zeroth level, the equivalence Hom∞(g, h) ' MC(Hom(g, h) ⊗ Ω•) implies the
following:

Proposition. Let f, g : g→ h be two L∞-morphisms of dglas. Then f and g are gauge
equivalent in MC(Hom(g, h)) if and only if f and g represent the same morphism in the
homotopy category of dglas.

Indeed, one immediately sees that MC(Hom(g, h)) is the set of L∞-morphisms between
g and h and, as we have already remarked, the set π≤0(MC(Hom(g, h)⊗Ω•)) is somorphic
to the quotient MC(Hom(g, h))/gauge. On the other hand, π≤0(Hom∞(g, h)) is the set of
homotopy classes of L∞-algebra morphisms between g and h, i.e., the set of morphisms
between g and h in the homotopy category of dglas.

We thank Jonathan Pridham for having shown us a proof of the equivalence between
Hom∞(g, h) and MC(Hom(g, h) ⊗ Ω•), and Bruno Vallette for having addressed our
attention to [Do07]. The same result holds, more in general, for the homotopy category
of O-algebras, where O is an operad, see [MV09, Pr09].

3. Cartan homotopies appear

Let now g and h be dglas and i : g → h[−1] be a morphism of graded vector spaces.
Then i, and so also −i, is an element of Hom−1,1(g, h), and so a degree zero element
in the dgla Hom(g, h). The gauge transformation e−i will map the 0 dgla morphism
to an L∞-morphism e−i ∗ 0 between g and h. This L∞-morphism will in general fail
to be a dgla morphism (i.e., it will not be a strict L∞-morphism) since its nonlinear
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components will be nontrivial. This is conveniently seen as follows: let l = d1,0i; that is,
la = dhia + idga for any a ∈ g. Then the (0, 1)-component of

e−i ∗ 0 =
+∞∑
n=0

(ad−i)
n

(n+ 1)!
(dHomi) =

+∞∑
n=0

(ad−i)
n

(n+ 1)!
(l + i[ , ]g)

is just l; the (−1, 2)-component is

i[ , ]g −
1
2

[i, l]Hom

and, for n ≥ 3 the (1 − n, n)-component has two contributions, one of the form
[i, [i, · · · , [i, l]Hom · · · ]Hom]Hom and the other of the form [i, [i, · · · , [i, i[ , ]g ]Hom · · · ]Hom]Hom.
From this we see that all the nonlinear components of e−i ∗ 0 vanish as soon as one im-
poses the two simple conditions

i[a,b]g =
1
2
(
[ia, lb]h ± [ib, la]h

)
and [ia, [ib, lc]h]h = 0, for all a, b, c ∈ g.

A linear map i : g → h[−1] satisfying the two conditions above will be called a Cartan
homotopy. Up to our knowledge, this terminology has been introduced in [FM06, FM09],
where the stronger conditions i[a,b]g = [ia, lb]h and [ia, ib]h = 0 were imposed. The name
Cartan homotopy has an evident geometric origin: if TX is the tangent sheaf of a smooth
manifold X and Ω∗X is the sheaf of complexes of differential forms, then the contraction
of differential forms with vector fields is a Cartan homotopy

i : TX → End∗(Ω∗X)[−1].

In this case, la is the Lie derivative along the vector field a, and the conditions i[a,b] =
[ia, lb] and [ia, ib] = 0, together with the defining equation la = [dΩ∗X

, ia] and with the
equations l[a,b] = [la, lb] and [dΩ∗X

, la] = 0 expressing the fact that l : TX → End∗(Ω∗X) is a
dgla morphism, are nothing but the well-known Cartan identities involving contractions
and Lie derivatives.

The above discussion can be summarized as follows.

Proposition. Let g and h be two dglas. If i : g → h[−1] is a Cartan homotopy, then
l = d1,0i : g→ h is a dgla morphism gauge equivalent to the zero morphism via the gauge
action of ei.

4. Homotopy fibers (and the associated exact sequence)

Let now i : g → h[−1] be a Cartan homotopy and l : g → h be the associated dgla
morphism. Then, the equation ei ∗ l = 0 implies that, for any subdgla n of h containing

the image of l, the morphism l : g→ n equalizes the diagram n
incl. //

0
// h up to a homotopy

provided by the gauge action of ei. Hence we have a morphism to the homotopy limit:

g
(l,ei)−−−→ holim

(
n

incl. //
0

// h

)
.

Taking Def’s we obtain a natural transformation of ∞-groupoid valued functors:

Def(g)
(l,ei)−−−→ holim

(
Def(n)

Defincl.//
Def0

// Def(h)

)
.
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The map Def0 : Def(n) → Def(h) is the constant map to the distinguished point 0 in
Def(h); therefore, the homotopy limit above is the homotopy fiber of Def incl. : Def(n)→
Def(h) over the point 0, and we obtain a natural transformation

Def(g)
(l,ei)−−−→ hoDef−1

incl.(0),

which at the zeroth level gives a natural transformation of Set-valued deformation func-
tors

P : π≤0 Def(g)→ π≤0hoDef−1
incl.(0).

The differential of P is easily computed: it is the linear map

H1(g)
H1((l,ei))−−−−−−→ H1(holim

(
n

incl. //
0

// h

)
).

Since the model category structure on dglas is the same as on differential complexes, we
can compute the H1 on the right hand side by taking the holimit in complexes. Then the

natural quasi-isomorphism holim( n
incl. //

0
// h ) ' (h/n)[−1] tells us that the differential

of P is just the map
H1(i) : H1(g)→ H0(h/n)

induced by the morphism of complexes i : g→ (h/n)[−1]. Also, the map

H2(i) : H2(g)→ H1(h/n)

maps the obstruction space of π≤0 Def(g) (as a subspace of H2(g)) to the obstruction
space of π≤0hoDef−1

incl.(0) (as a subspace of H1(h/n)). In particular, if π≤0hoDef−1
incl.(0)

is smooth, and therefore unobstructed, the obstructions of the deformation functor
π≤0 Def(g) are contained in the kernel of the map H2(i) : H2(g)→ H1(h/n).

To investigate the geometrical aspects of the map P, note that, by looking at π≤0hoDef−1
incl.(0)

as a pointed set, it nicely fits into the homotopy exact sequence

π1(Def(n); 0) Defincl.∗−−−−−→ π1(Def(h); 0)→ π0(hoDef−1
incl.(0); 0)→ π0(Def(n); 0),

so we get a canonical isomorphism between the preimage of the distinguished point 0
under the map π0(hoDef−1

incl.(0); 0)→ π0(Def(n); 0) and the quotient set

π1(Def(h); 0)
Def incl.∗π1(Def(n); 0)

.

The group π1(Def(h); 0) is the group of automorphisms of 0 in the groupoid π≤1(Def(h)).
We have already remarked that this groupoid is not equivalent to the Deligne groupoid
of h, i.e., the action groupoid for the gauge action of exp(h0⊗mA) on MC(h⊗mA), since
the irrelevant stabilizer

Stab(x) = {dh+ [x, h] | h ∈ h−1 ⊗mA} ⊆ {a ∈ h0 ⊗mA | ea ∗ x = x}
of a Maurer-Cartan element x may be nontrivial. However, the group π1(Def(h); 0) only
sees the connected component of 0, and on this connected component the irrelevant
stabilizers are trivial as soon as the differential of the dgla h vanishes on h−1. This
immediately follows from noticing that irrelevant stabilizers of gauge equivalent Maurer-
Cartan elements are conjugate subgroups of exp(h0⊗mA), see, e.g., [Ma07]. In particular,
if h is a graded Lie algebra (which we can consider as a dgla with trivial differential), then
π1(Def(h); 0) ' exp(h0), where h0 denotes the degree zero component of h. Similarly,
since n is a subdgla of h, one has π1(Def(n); 0) ' exp(n0), and the group homomorphism
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Def incl.∗ is just the inclusion. Moreover, when h has trivial differential, eα ∗0 = 0 for any
α in h0 ⊗ mA. Therefore, the composition π≤0 Def(g) → π≤0hoDef−1

incl.(0) → π≤0 Def(n)
maps the whole of π≤0 Def(g) onto the distinguished point 0 of π≤0 Def(n) and so it
induces a natural map π≤0 Def(g) → exp(h0)/ exp(n0). This is nothing but the natural
map

ei : π≤0 Def(g)→ exp(h0)/ exp(n0)
which sends a Maurer-Cartan element ξ ∈ g1 ⊗ mA to eiξ mod exp(n0 ⊗ mA). A par-
ticularly interesting case is when the pair (h, n) is formal,2 i.e., if the inclusion of n
in h induces an inclusion in cohomology and the two inclusions H∗(n) ↪→ H∗(h) and
n ↪→ h are homotopy equivalent. Indeed, in this case the pair (Def(h),Def(n)) will be
equivalent to the pair (Def(H∗(h)),Def(H∗(h))) and there will be an induced isomor-
phism between π1(Def(h); 0)/Def incl.∗π1(Def(n); 0) and the smooth homogeneous space
exp(H0(h))/ exp(H0(n)). We can summarize the results described in this section as fol-
lows:

Proposition. Let i : g → h[−1] be a Cartan homotopy, let l : g → h be the associated
dgla morphism, and let n be a subdgla of h containing the image of l. Then, if the pair
(h, n) is formal, we have a natural transformation3 of Set-valued deformation functors

P : π≤0(Def(g))→ exp(H0(h))/ exp(H0(n))

induced by the dgla map

g
(l,ei)−−−→ holim

(
n

incl. //
0

// h

)
.

In particular, since exp(H0(h))/ exp(H0(n)) is smooth, the obstructions of the Set-
valued deformation functor π≤0(Def(g); 0) are contained in the kernel of the map H2(i) : H2(g)→
H1(h/n).

This result can be nicely refined, by showing how the main result from [IM010] nat-
urally fits into the discussion above. We have:

Proposition. Let (h, n) be a formal pair of dglas. Then, the dgla holim
(

n
incl. //

0
// h

)
is quasi-abelian. In particular there is a (non-canonical) quasi-isomorphism of dglas

between holim
(

n
incl. //

0
// h

)
and the abelian dgla obtained by endowing the complex

(h/n)[−1] with the trivial bracket.

To see this, notice that, since by hypothesis the inclusion n ↪→ h induces an inclusion
H∗(n) ↪→ H∗(h), the projection h[−1]→ h/n[−1] admits a section i which is a morphism
of complexes. Denote by g the dgla obtained from the complex h/n[−1] by endowing it
with the trivial bracket. Then, the map of graded vector spaces i : g→ h[−1] is a Cartan
homotopy whose associated dgla morphism is the zero map 0: g→ h. Therefore we have
a dgla map

(h/n)[−1]
(0,ei)−−−→ holim

(
n

incl. //
0

// h

)
.

2We are not sure whether this terminology is a standard one
3This natural transformation is not canonical: it depends on the choice of a quasi isomorphism

(h, n) ' (H∗(h), H∗(n)). Also note that the tangent space at 0 on the right hand side is H0(h)/H0(n);
this is only apparently in contrast with the general result mentioned above that the tangent space at 0
to π≤0hoDef−1

incl.(0) is H0(h/n). Indeed, when (h, n) is a formal pair, the two vector spaces H0(h)/H0(n)

and H0(h/n) are (non canonically) isomorphic.



∞-GROUPOIDS AND PERIOD MAPS 9

Since i is a section to h[−1]→ h/n[−1], the map in cohomology

H∗(h/n)[−1]
H∗(0,ei)−−−−−→ H∗(holim

(
n

incl. //
0

// h

)
)

is identified with the identity of H∗(h/n)[−1] by the the natural quasi-isomorphism of

complexes holim( n
incl. //

0
// h ) ∼−→ (h/n)[−1].

5. From local to global, and classical (and generalized) periods

Assume now K is algebraically closed. Let X be a smooth projective manifold, and let
TX and Ω∗X be the tangent sheaf and the sheaf of differential forms on X, respectively.
The sheaf of complexes (Ω∗X , dΩ∗X

) is naturally filtered by setting F pΩ∗X = ⊕i≥pΩi
X .

Finally, let End∗(Ω∗X) be the endomorphism sheaf of Ω∗X and End≥0(Ω∗X) be the sub-
sheaf consisting of nonnegative degree elements. Note that End≥0(Ω∗X) is a subdgla of
End∗(Ω∗X), and can be seen as the subdgla of endomorphisms preserving the filtration
on Ω∗X .

Recall that the prototypical example of Cartan homotopy was the contraction of
differential forms with vector fields i : TX → End∗(Ω∗X)[−1]; the corresponding dgla
morphism is a 7→ la, where la the Lie derivative along a. Explicitly, la = dΩ∗X

◦ia+ia◦dΩ∗X
,

and so la preserves the filtration. Therefore, we have a natural transformation4

Def(TX)
(l,ei)−−−→ holim

(
Def(End≥0(Ω∗X))

incl. //
0

// Def(End∗(Ω∗X))
)
.

The homotopy fiber on the right should be thought as a homotopy flag manifold. Let us
briefly explain this. At least näıvely, the functor Def(End∗(Ω∗X)) describes the infinites-
imal deformations of the differential complex Ω∗X , whereas the functor Def(End≥0(Ω∗X))
describes the deformations of the filtered complex (Ω∗X , F

•Ω∗X), i.e., of the pair con-
sisting of the complex Ω∗X and the filtration F •Ω∗X . Therefore, the holimit describes a
deformation of the pair (complex, filtration) together with a trivialization of the defor-
mation of the complex. Summing up, the contraction of differential forms with vector
fields induces a map of deformation functors

Def(TX)→ hoFlag(Ω∗X ;F •Ω∗X),

which we will call the local periods map of X.
To recover from this the classical periods map, we just need to take global sections.

Clearly, since we are working in homotopy categories, these will be derived global sec-
tions. The morphism of sheaves i : TX → End∗(Ω∗X)[−1] induces a Cartan homotopy
i : RΓTX → RΓEnd∗(Ω∗X)[−1]; composing this with the dgla morphism RΓEnd∗(Ω∗X)→
End∗(RΓΩ∗X) induced by the action of (derived) global sections of the endomorphism
sheaf of Ω∗X on (derived) global sections of Ω∗X , we get a Cartan homotopy

i : RΓTX → End∗(RΓΩ∗X)[−1].

4Of what? The correct answer would be of ∞-sheaves, see [Lu09b], but to keep this note as far
as possible at an informal level we will content ourselves with noticing that, for any open subset

U of X, there is a natural transformation of ∞-groupoids induced by the dgla map TX(U)
(l,ei)−−−→

holim

„
End≥0(Ω∗X)(U)

incl. //
0

// End∗(Ω∗X) (U)

«
.
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The image of the corresponding dgla morphism l (the derived globalization of Lie de-
rivative) preserves the filtration F •RΓΩ∗X induced by F •Ω∗X , so we have a natural map
of ∞-groupoids

Def(RΓTX)→ hoFlag(RΓΩ∗X ;F •RΓΩ∗X)

and, at the zeroth level, a map of Set-valued deformation functors

P : π≤0 Def(RΓTX)→ π≤0hoFlag(RΓΩ∗X ;F •RΓΩ∗X)

The functor on the left hand side is the Set-valued functor of (classical) infinitesimal de-
formations of X; let us denote it by DefX . If we denote by End∗(RΓΩ∗X ;F •RΓΩ∗X) the
subdgla of End∗(RΓΩ∗X) consisting of endomorhisms preserving the filtration, then the
pair (End∗(RΓΩ∗X),End∗(RΓΩ∗X ;F •RΓΩ∗X)) is formal.5 Moreover,H0(End∗(RΓΩ∗X)) =
End0(H∗dR(X; K)) andH0(End∗(RΓΩ∗X ;F •RΓΩ∗X)) = End0(H∗dR(X; K);F •H∗dR(X; K)),
where F •H∗dR(X; K) is the Hodge filtration on the algebraic de Rham cohomology of
X. By results described in the previous section, this means that the preimage of the
distinguished point 0 under the map

π≤0hoFlag(RΓΩ∗X ;F •RΓΩ∗X)→ π≤0 Def(End≥0(Ω∗X))

is the quotient set
exp(End0(H∗dR(X; K)))

exp(End0(H∗dR(X; K);F •H∗dR(X; K)))
and we recover the classical periods map of X

P : DefX → Flag(H∗dR(X; K);F •H∗dR(X; K)).

Also, the differential of P is the map induced in cohomology by the contraction of
differential forms with vector fields,

H1(i) : H1(X, TX)→
∫
p

Hom0

(
F pH∗dR(X; K);

H∗dR(X; K)
F pH∗dR(X; K)

)
,

a result originally proved by Griffiths [Gr68]. In the above formula,
∫
p denotes the end

of the diagram

Hom0

(
F pH∗dR;

H∗dR
F pH∗dR

)
→ Hom0

(
F pH∗dR;

H∗dR
F p+1H∗dR

)
← Hom0

(
F p+1H∗dR;

H∗dR
F p+1H∗dR

)
Also, we have the following version of the so-called Kodaira principle (ambient coho-
mology annihilates obstructions): obstructions to classical infinitesimal deformations of
X are contained in the kernel of

H2(i) : H2(X, TX)→
∫
p

Hom1

(
F pH∗dR(X; K);

H∗(X; K)
F pH∗dR(X; K)

)
.

In particular, if the canonical bundle of X is trivial, then the contraction pairing

H2(X, TX)⊗Hn−2(X,Ω1
X)→ Hn(X;OX) ' K

is nondegenerate, and so classical deformations of X are unobstructed (Bogomolov-Tian-
Todorov theorem, see [Bo78, Ti87, To89]). Following [IM010], one immediately obtains
the following refinement, due in its original formulation to Goldman and Millson [GM90]:

5This is essentially a consequence of the E1-degeneration of the Hodge-to-de Rham spectral sequence,
see, e.g., [DI87, Fa88].
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if the canonical bundle of X is trivial, then RΓTX is a quasi-abelian dgla. To see this,
just notice that the dgla map

RΓTX
(l,ei)−−−→ holim

(
End∗(RΓΩ∗X ;F •RΓΩ∗X)

incl. //
0

// End∗(RΓΩ∗X)
)

is injective in cohomology and the target is a quasi-abelian dgla. Indeed, if f : g→ h is
a dgla morphism, with H∗(f) injective and h quasi-abelian, then the diagram of dglas

g

h
RRRRRRRR

))
k

h lllllll
uu

k

V
RRRRRRR
))

|< j*f

where V is a graded vector space considered as a dgla with trivial differential and bracket,
can be completed to a homotopy commutative diagram

g

h
RRRRRRRR

))
k

h lllllll
uu

k

V
RRRRRRR
))

l

g lllllll
uu

l

k
RRRRRRRR

))

V

W
RRRRRR
))

|< j*

|<

f

with W a graded vector space, and the composition l→W a quasi-isomorphism.
As a conclusion, we recast the description of a period map for generalized deformations

from [FM09] in the language of this note. Let X be a smooth projective variety defined
over the field C of the complex numbers, and denote by Poly∗X the sheaf of dglas of
multivector fields on X, given by PolyjX =

∧1−j TX , endowed with the zero differential
and with the Schouten-Nijenhuis bracket. Notice that TX is a sub-Lie algebra of the dgla
Poly∗X . The contraction of differential forms with multivector fields

i : Poly∗X → End∗(Ω∗X)[−1]

is a Cartan homotopy, and the corresponding dgla morphism l is the Lie derivative along
a multivector field, i.e., lξ = [dΩ∗X

, iξ]. It is immediate that the image of l is contained
in the sub-sheaf of dglas:

End∗0(Ω∗X) = {f ∈ End∗(Ω∗X) | f(ker dΩ∗X
) ⊆ Im(dΩ∗X

)} ⊂ End∗(Ω∗X),

and so we have a natural transformation:

Def(Poly∗X)
(l,ei)−−−→ holim

(
Def(End∗0(Ω∗X))

incl. //
0

// Def(End∗(Ω∗X))
)
,

which we can think of as a local period map for generalized deformations. As above, to
go from local to global, we take the derived global sections; then, taking π≤0 we obtain
a natural morphism of Set-valued deformation functors:

π≤0 Def(RΓPoly∗X)
(l,ei)−−−→ π≤0 holim

(
Def(End∗0(RΓΩ∗X))

incl. //
0

// Def(End∗(RΓΩ∗X))
)
.

On the left, π≤0 Def(RΓPoly∗X) is the functor D̃efX of generalized deformations of X. It
is shown in [FM09], using the Dolbeault resolution as a model for RΓΩ∗X , and making
use of the ∂∂-lemma, that the pair (End∗0(RΓΩ∗X),End∗(RΓΩ∗X)) is quasi-isomorphic
to the pair (0,End∗(H∗(X,C))). Hence, one obtains the period map for generalized
deformations:

P̃ : D̃efX → exp(End0(H∗(X,C)).
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The tangent map dP̃ is the contraction of differential forms with multivector fields, read
at the cohomology level:

H1(i) :
(
⊕kHk(X;∧kTX)

)
⊗
(
⊕p,qHq(X,Ωp

X)
)
→ ⊕p,q,kHq+k(X,Ωp−k

X ),

and obstructions to generalized deformations are contained in the kernel of the contrac-
tion

H2(i) :
(
⊕kHk+1(X;∧kTX)

)
⊗
(
⊕p,qHq(X,Ωp

X)
)
→ ⊕p,q,kHq+k+1(X,Ωp−k

X ).

In particular, from this one recovers Barannikov-Kontsevich’s result, that generalized
deformations of a smooth projective Calabi-Yau manifold are unobstructed [BK98].

It is tempting to extend the construction of the period map for generalized deforma-
tions to the case of a smooth projective manifold defined on an arbitrary characteristic
zero algebraically closed field K,

P̃ : D̃efX → exp(End0(H∗dR(X; K)).

To do this one only has to prove that (End∗0(RΓΩ∗X),End∗(RΓΩ∗X)) is quasi-isomorphic
to (0,End∗(H∗dR(X,K)). Yet, to mimic the argument in [FM09] one needs an algebraic
substitute of the ∂∂-lemma. A natural candidate for this is E1-degeneracy of the Hodge-
to-de Rham spectral sequence for a smooth projective manifold. It has however to be
remarked that, while in the ∂∂-lemma the two differentials ∂ and ∂ play perfectly inter-
changeable roles, see, e.g. [Hu05, Corollary 3.2.10], this is not true for the Čech and the de
Rham differentials in the Čech-de Rham bicomplex Čq(U ,Ωp

X) associated with an open
cover U of X. In particular only one of the two spectral sequences associated with this
bicomplex, namely the Hodge-to-de Rham spectral sequence, degenerates at E1. This
asymmetry seems to suggest that a purely algebraic proof of the quasi-isomorphism
(End∗0(RΓΩ∗X),End∗(RΓΩ∗X)) ' (0,End∗(H∗dR(X,K)) could be a nontrivial result.
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