
HOPF ALGEBRAS WITH TRACE AND CLEBSCH-GORDAN

COEFFICIENTS

CORRADO DE CONCINI

Abstract. In this lecture I shall report on some joint work with Procesi,
Reshetikhin and Rosso [1].

1. Recollections and the problem

Let G be a simply connected semisimple algebraic group over C. g =Lie G.
T ⊂ G a maximal torus, t =Lie T, R the root system, R+ positive roots, ∆ =

{α1, . . . , αn} the simple roots, A = (ai,j), the Cartan matrix, D =diag(d1, . . . , dn)
the diagonal matrix with DA symmetric. B ⊃ T ⊂ B− the corresponding Borel
subgroup and its opposite.

Fix ` odd (and prime with 3 if there are G2 components). Let ε be a primitive
` root of 1.

The quantized enveloping algebra is the C-algebra Uε(g) generated by elements
{E1, . . . En}, {F1, . . . Fn}, Kλ, λ ∈ X∗(T ) the character group of T , with relations:

KλKµ = Kλ+µ
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, [h]ε! = [h]ε . . . [2]ε[1]ε and [h]ε = εh−ε−h
ε−ε−1 . ∆ acts on gener-

ators by

∆Kµ = Kµ ⊗Kµ, ∆Ei = Ei ⊗ 1 +Kαi ⊗ Ei,

∆Fi = Fi ⊗K−1
αi + 1⊗ Fi

The main peculiarity of being at roots of unity is that Uε(g) has a very big center
Z.

Indeed, Uε(g) is a finite Z-module. Z is the coordinate ring of an algebraic
variety X of dimension equal to dim g. So:

1) Every irreducible Uε(g)-module is finite dimensional.
1
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2) If Ûε(g) denotes the set of irreducible Uε(g)-modules, taking central characters
we get a surjective map

γ : Ûε(g)→ X.

Problem 1. Given two irreducible Uε(g)-modules, V , W, describe the composition
factors of V ⊗W and their multiplicities.

Consider the sub Hopf algebra Uε(b) ⊂ Uε(g) generated by theKλ and E1, . . . En.

Problem 2. Given an irreducible Uε(g)-module, V “decompose” its restriction
to Uε(b).

Notice that as Problem 2, also Problem 1 is a problem of branching. In fact
it consists of decomposing the restriction of the irreducible Uε(g) ⊗ Uε(g)-module
V ⊗W to the subalgebra ∆(Uε(g)).

To explain our results recall that Z contains a sub Hopf algebra Z0 such that
Uε(g) is a free Z0 module of rank `dimg. Z0 is the coordinate ring of an algebraic
group H (the Poisson dual of G) which is the kernel of the homomorphism p :
B × B− → T defined by p((b, b′)) = p+(b)p−(b′)−1 where p± are the quotients
modulo the unipotent radicals. The inclusion Z0 ⊂ Z gives a map π : X → H.

Theorem 1. There is a non empty Zariski open set V ⊂ H × H such that if
V and W are two irreducible representations of Uε(g), such that if (h1, h2) =
(πγ(V ), πγ(W )) ∈ V, as a Uε(g) module,

V ⊗W = ⊕U∈(πγ)−1(h1h2)U
m

with m = `|R+|−rkg.

As for problem 2, Z+
0 = Z0 ∩ Uε(b) is a sub Hopf algebra of Uε(b). Z+

0 is
the coordinate ring of B− and the inclusion Z+

0 ⊂ Z0 induces the homomorphism
µ : H → B− given by the projection on the second factor. Again, taking central
character we get a map

γ′ : Ûε(b)→ B−.

Theorem 2. There is a non empty Zariski open set V ⊂ H such that if V is an
irreducible representations of Uε(g), such that if h = πγ(V ) ∈ V, as a Uε(b) module,

V = ⊕U∈(γ′)−1(µ(h))U
m

with m = `(|R+|−s)/2 where s is the number of orbits of −w0 on the set of simple
roots.

The main content of these theorems is that in both cases, at least generically, the
multiplicities are uniformly distributed among the various irreducible components.

2. Cayley-Hamilton algebras.

The results we have just stated follow from a careful study of the centers of the
algebras involved, by applying the theory of Cayley-Hamilton algebras which we
now briefly recall.

A trace on a algebra R over a field k (here =C) is a 1-ary operation t : R → R
such that

(1) t is k−linear. (This implies that t(R) is an k−subspace)
(2) t(a)b = b t(a), ∀a, b ∈ R. (This implies that t(R) is in the center of R),
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(3) t(ab) = t(ba), ∀a, b ∈ R. (This implies that t is 0 on the space of commu-
tators [R,R],)

(4) t(t(a)b) = t(a)t(b), ∀a, b ∈ R. (This implies that t(R) is an subalgebra,
called the trace algebra, and that t is also t(R)−linear).

The most famous example is that of the algebra Mn of n× n matrices with the
usual trace tr.

Algebras with trace form a category. Given (R1, t1), (R2, t2) a morphism φ from
(R1, t1) to (R2, t2) is an algebra homomorphism such that φt1(a) = t2φ(a) for each
x ∈ R1.

A morphism φ : (R, t)→ (Mn, tr) is called a representation.
(Mn, tr) have the following extra properties:

(1) tr(1) = n

(2) Given A ∈ Mn, set p
(n)
a (x) = det (xI − A), the characteristic polynomial,

then we get the Cayley-Hamilton identity

p(n)
a (a) = 0

Remark that p
(n)
a (x) has coefficients which are universal polynomials in tr(a), . . . , tr(an).

For example for n = 2,

p(2)
a (x) = x2 − tr(a)x+

1

2
(tr(a)2 − tr(a2)).

Thus given (R, t) we can consider p
(n)
a (x) for every a ∈ R as a polynomial with

coefficients in the trace algebra and define

Definition 3. An algebra with trace (A, t) is a n-Cayley Hamilton algebra (or
briefly an n-CH algebra) if

1) t(1) = n

2) p
(n)
a (a) = 0 for all a ∈ R.

Remark that if ρ : (R, t)→ (Mr, tr) is a representation of a n C-H algebra, then
r = n since

r = tr(1) = tr(ρ(1)) = ρ(t(1)) = ρ(n) = n.

If (R, t) n-CH algebra and h is a positive integer, (R, ht) is a hn-CH algebra and
if V is a (n dimensional) (R, t)-module, V ⊕h is a (R, ht)-module.

The category of C-H algebras clearly contains free objects. The free n-CH algebra
Fn〈x1, . . . , xm〉 on m generators is the algebra generated freely by the xi’s and
by traces of monomials modulo the ideal generated by evaluating the nth Cayley
Hamilton identity.

3. Representations of Cayley-Hamilton algebras.

The following results describes the free n-CH algebra Fn〈x1, . . . , xm〉. Con-
sider the algebra Cn(ξ1, . . . , ξm) of GL(n)-equivariant polynomial maps of matrices
Mn(k)m → Mn(k), ξi(A1, . . . , Am) = Ai, with trace t(ψ) = tr · ψ. We have a
universal map Fn〈x1, . . . , xm〉 → Cn(ξ1, . . . , ξm)

Theorem 4. (Procesi)

(1) The universal map

Fn〈x1, . . . , xm〉
i−→ Cn(ξ1, . . . , ξm)



4 CORRADO DE CONCINI

is an isomorphism.
(2) The trace algebra Tn(ξ1, . . . , ξm) of the algebra Cn(ξ1, . . . , ξm) is the algebra

of invariants of m−tuples of matrices and, if m > 1, it is the center of
Cn(ξ1, . . . , ξm).

(3) Cn(ξ1, . . . , ξm) is a finite Tn(ξ1, . . . , ξm) module.

The above theorem tells us in particular that if (R, t) is a n-CH algebra which
is finitely generated also its trace algebra A is finitely generated and R is a finite
A-module.

It follows that every irreducible representation of R (as an algebra) is finite
dimensional.
A is a ring of functions on an affine algebraic variety X, so if R̂ denotes the set of

irreducible representations of R, we get, by taking central characters, a surjective
map

γ : R̂→ X.

The points of X itself are a ”moduli space” for a class of representations. Indeed

Theorem 5. Given a point x ∈ X, there is a unique semisimple, trace compatible,
representation Wx of the form

Wx = ⊕V ∈γ−1(x)V
⊕mV ,

and each semisimple, trace compatible, representation of R is of this form.

In fact there is a Zariski open set (possibly empty), called the unramified locus,
in X such that if mx ⊂ A is the maximal ideal in A, R/mxR is semisimple and so
Wx is the unique representation “lying over x” which is compatible with the trace.

If A is the center of R and R satisfies suitable conditions, for example it is a
domain, there is a non empty Zariski open set for which Wx is irreducible.

In general however, the determination of γ−1(x) and of the multiplicities mV is
a very hard problem.

If we consider (R, ht), with h a positive integer, then the semisimple, trace
compatible, representation corresponding to x ∈ X with respect to the new trace
is just W⊕hx .

4. Reduced trace

In our example of quantized enveloping algebra we have no trace, so if we want to
use the results about the CH algebras we need to find ways to canonically introduce
a trace.

Here is a way of doing this under some assumptions.
A prime algebra R is an algebra in which the product of two non-zero ideals is

non-zero. Let R be a prime algebra, assume that A is a subalgebra of the center
and R is an A−module of finite type. Then:

1) A is an integral domain.
2) R is a torsion free module.
So if F is the field of fractions of A, then R ⊂ R ⊗A F and S := R ⊗A F is a

finite dimensional simple algebra isomorphic to Mk(D) with D a finite dimensional
division ring.

Denote by Z the center of S and of D. Then dimZ D = h2.
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If Z is an algebraic closure of Z, Mk(D)⊗Z Z = Mhk(Z). Setting p := [Z : F ] =
dimF Z we also have

S ⊗F Z = Mk(D)⊗F Z = Mhk(Z)⊕p

The number n := hkp is called degree of S over F . Consider the F−linear operator
aL : S → S, aL(b) := ab. We define the reduced trace

tS/F (a) =
1

hk
tr(aL).

This theorem tells us that, provided A is integrally closed, we have constructed
a nice trace:

Theorem 6. If S = R ⊗A F as before and A is integrally closed we have that the
reduced trace tS/F maps R into A, so we will denote by tR/A the induced trace.
The algebras R and S with their reduced trace are n−Cayley Hamilton algebras.

Even more important for us is the fact that, in the situation above, the nice
trace is essentially unique. Indeed,

Theorem 7. Under the same circumstances of Theorem 6, if τ : R → A is any
trace for which R is an m−Cayley Hamilton algebra then there is a positive integer
r for which:

m = rn, τ = r tR/A

Notice that in particular, this implies that if x is a point in X and Wx is the
unique semisimple representation above x, compatible with tR/A then W⊕rx is the
unique semisimple representation above x compatible with τ.

5. Compatibility

Since our final goal is to analyze the restriction of certain representation of an
algebra R to a subalgebra, what I am going to explain now is how the reduced trace
of R relative to a subring A restricts to a subalgebra.

Assume that we have two prime algebras R1 ⊂ R2 with two central subrings
A1 ⊂ R1, A2 ⊂ R2, A1 ⊂ A2 such that R1 is a finite A1 module, R2 is a finite A2

module and A1, A2 are integrally closed. We have the reduced traces tR1/A1
and

tR2/A2
for which both algebras are Cayley-Hamilton. We need a criterion ensuring

that the restriction of tR2/A2
to R1 is a multiple of tR1/A1

(in this case we say that
they are compatible). The criterion is the following,

Theorem 8. Denote by Z1 the center of R1. If the algebra Z1⊗A1
A2 is a domain

there is a positive integer r such that

r tR1/A1
= tR2/A2

on R1.

6. Back to quantum algebras

In this final section I am going to explain how the theory of Cayley Hamilton
algebras can be applied to the quantum group situation described in Section 1.

As a first step we need to show that quantized enveloping algebras have reduced
traces. This is not hard. One knows that both Uε(g) and Uε(b) are domains and
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hence prime and that their centers Z, Z ′ are integrally closed. Z0 and Z+
0 are

clearly integrally closed, so we have reduced traces

tUε(g)/Z0
tUε(g)/Z′ tUε(g)⊗2/Z⊗2 tUε(b)/Z+

0
.

Next we have to compare them.
We start with Problem 1 and the inclusion ∆(Uε(g)) ⊂ Uε(g)⊗Uε(g). Unfortu-

nately we have that ∆(Z) is not contained in Z ⊗ Z. On the other hand the fact
that Z0 is a sub Hopf algebra means that ∆(Z0) ⊂ Z0 ⊗ Z0 ⊂ Z ⊗ Z. So, we may
try to compare tUε(g)⊗2/Z⊗2 with tUε(g)/Z0

.

In order to use Theorem 8 we need to show that the variety X̃ defined as the
fiber product

X̃
φ −→ X

q ↓ π ↓
X ×X π×π−→ H ×H m−→ H.

with m : H ×H → H the group multiplication, is irreducible.
Let us recall that X is obtained as the fiber product

X
p −→ T/W

π ↓ ` ↓
H

ρ−→ G
σ−→ G//G ∼= T/W.

Where for (h, k) ∈ H, ρ((h, k)) = hk−1, σ is the quotient modulo the adjoint action,
W is the Weyl group and the map ` is the map induced by the homomorphism t→ t`

of the torus T on W -invariants.
Putting the two diagrams together we obtain X̃ as the fiber product

X̃
pφ −→ T/W

q ↓ ` ↓
X ×X σ·ρ·m·π×π−→ T/W.

From this one proves:

Step 1. X̃ is a complete intersection over X ×X which is Cohen-Macaulay so it
is Cohen-Macaulay.

Step 2. X̃ is non singular in codimension 1 so in particular it is reduced and
normal.

Step 3. X̃ is connected. This is the hardest step and one needs to use a variation
of Steinberg section for the quotient G → G//G (G//G denoted the categorical
quotient defined using invariant polynomial functions ).

Using the irreducibility of X̃ we deduce that the restriction to ∆(Uε(g)) of
tUε(g)⊗2/Z⊗2 is mtUε(g)/Z0

with m = `|R+|−rkg and Theorem 1 follows.
The open set V ⊂ H × H consists of the set of pairs ((h1, k1), (h2, k2)) with

h1k
−1
1 , h2k

−1
2 , h1h2k

−1
2 k−1

1 all regular semisimple.
The solution to Problem 2 is quite similar with the extra difficulty that one has

to compute the center of Uε(b) first since this has not been determined before. We
have seen that Z+

0 is the coordinate ring of the group B−. For a dominant weight
λ, consider the irreducible G-module Vλ of highest weight λ. Take a highest weight
vector v ∈ Vλ, a highest weight vector φ and a lowest vector ψ in V ∗λ . Define the
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function fλ(b) = φ(bv)ψ(bv) for b ∈ B−. These functions generate a subring Z in
Z+

0 , isomorphic to the polynomial ring C[fω1
, . . . , fωr ], ωi the fundamental weights.

Embed Z into the polynomial ring

Z ′ = C[f1/`
ω1
, . . . , f1/`

ωr ].

Z is the ring of invariants in Z ′ under an obvious action of the group Z/`Z which we
can consider as the group T` of `-torsion points in T . Set Γ = {t ∈ T`| tw0 = t−1}.
and Z+

1 = (Z ′)Γ.

Theorem 9. The center of the algebra Uε(b) is isomorphic to Z+ = Z+
0 ⊗Z Z

+
1 .

Once we know the center of Uε(b), in order to solve Problem 2 we need to
compare tUε(g)/Z and tUε(b)/Z+

0
. In order to use Theorem 8 we need to show that

the fiber product Ỹ
Ỹ −→ Y
q ↓ ↓ `
X

π−→ H
p−−→ B−

with Y=Spec Z+, is a irreducible variety. This is done as in the previous case. After
these facts have been established the proof of Theorem 2 follows rather easily.

7. Final remarks and problems

The technique explained can be used in other cases. One example is the so called
quantized function algebra Fε[G]. In this case the role played by H is played by G

and we have a projection π : F̂ε[G]→ G.

Theorem 10. There is a non empty Zariski open set V ⊂ G × G such that
if V and W are two irreducible representations of Fε[G], such that if (g1, g2) =
(π(V ), π(W )) ∈ V, as a Fε[G] module,

V ⊗W = ⊕U∈(π)−1(g1g2)U
m

with m = `|R+|−rkg.
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