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On the Geometry of Graph Arrangements

C. De Concini and C. Procesi∗

Abstract

We use the results of [5], [6] to discuss the counting formulas of
network flow polytopes and magic squares, i.e. the formula for the
corresponding Ehrhart polynomial in terms of residues. We also dis-
cuss a description of the big cells using the theory of non broken
circuit bases.

1 Introduction

In this paper we discuss two topics which are complements of the theory
developed in [5]. First an interesting example, the one of graph arrange-
ments (in particular certain magic squares), with applications to network
flow polytopes.

Next (in an appendix) we discuss a combinatorial approach to the de-
termination of the big cells in a convex polyhedral cone, using the theory
of non broken circuit bases, a concept introduced in the theory of matroids
and hyperplane arrangements.

Graph arrangements arise as follows: given a graph Γ via its vertices V
and edges L we fix a basis element ev for every vertex and, having chosen
an orientation of the edges, consider the set of vectors ∆Γ := {va := ef(a)−
ei(a)} as a ∈ L and f(a), i(a) are the two vertices of a (oriented).

If VΓ denotes the span of the vectors va, we have that the vectors ∆Γ

define a hyperplane arrangement in V ∗
Γ . This arrangement is clearly inde-

pendent of the orientation chosen for the graph.
The simplest example is the complete graph on n + 1 elements which

generates the arrangement of root hyperplanes for type An.
Another special case is related to magic squares.
Recall that a magic square of size k, is a square matrix of order k, filled

with all the integers 1, 2, . . . , k2, with the property that the sums of the
entries on each row or each column and the two diagonals is fixed.
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2 C. De Concini and C. Procesi

In this paper we do not have really much to say about magic squares
but rather we will study the weaker problem of counting square matrices
filled with integers with the property that the sums of the entries on each
row or each column is a fixed number n.

This is a special case of the theory of integral points in convex integral
polytopes among which are polytopes associated to oriented graphs (cf. [1]).

In our case the graphs given by choosing two disjoint sets A, B with
m, n elements as vertices, and in which edges are all possible ones joining
a vertex in A with one in B.

Recall that, given a convex integral polytope Π, the number of integral
points in nΠ, is a polynomial in n, called the Ehrhart polynomial [7], [2].
We use the formulas developed in [2] as formulated in [5] to compute this
polynomial. The formulas are based on a study of an associated hyperplane
arrangement, this we explicit in this paper for graphs.

Let us recall the main points. In [2] the Ehrhart polynomial is given
as follows. First a polytope is presented in the following way. We fix a set
∆ := {α1, . . . ,αN} of vectors in a real vector space V . We assume that
these vectors are all on the same side of some hyperplane. Then, given a
vector a in the positive cone spanned by the elements of ∆, define

Πa :=
{

(a1, . . . , aN )
∣∣∣∣ ai ∈ R+,

N∑

k=1

aiαi = a

}
. (1.1)

In order to count the integral points in Πa we pass to the corresponding
hyperplane arrangement in the dual space (we think of the αk as linear
equations defining hyperplanes in the dual space). We work then in the
coordinate ring of the complement of the hyperplane arrangement. We
make now a simplifying assumption (for the general theory see [10]).

Definition 1.1 A set ∆ ⊂ Λ of integral vectors is said to be unimodular,
if all the subgroups spanned by subsets of ∆ are direct summands of Λ.

The final formula that we use is the one developed in [5] and reproduced
here in §4 (5), (6).

The first half of this paper is just a reminder of the notations and
results of [5], [6]. The reader familiar with this work can pass directly to
the last section where we illustrate the general theory in the case of graph
arrangements. We give a characterization of irreducible subsets, in the sense
of Defintition 2.1 in this case (Proposition 5.8) and then we apply this to
determine nested sets in the case of magic arrangements in section 5.2.
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2 Notations

With the notations of the introduction, let U be a complex vector space of
dimension r, ∆ ⊂ U a totally ordered finite set of vectors∆ = {α1, . . . ,αm}.
These vectors are the linear equations of a hyperplane arrangement in U∗.
We also assume that ∆ spans U and any two distinct elements in ∆ are
linearly independent.

From these data one constructs the partially ordered set of subspaces
obtained by intersection of the given hyperplanes and the open set A∆ of
U∗, complement of the union of the hyperplanes of the arrangement.

From the general theory (cf. [8]), if Ωi(A∆) denotes the space of rational
differential forms of degree i on A∆ one has the formality, that is the fact
that the Z subalgebra of differential forms on A∆ generated by the linear
forms 1

2πid logα,α ∈ ∆ is isomorphic (via De Rham theory) to the integral
cohomology of A∆ [8].

Formality implies in particular that Ωr(A∆) = Hr ⊕ dΩr−1(A∆), for
top degree forms. Hr ≡ Hr(A∆, C) is the C span of the top degree forms
ωσ := d log γ1∧· · ·∧d log γr for all bases σ := {γ1, . . . , γr} extracted from ∆.
The forms ωσ satisfy a set of linear relations generated by the following ones.
Given r + 1 elements γi ∈ ∆ spanning U, we have:

r+1∑

i=1

(−1)id log γ1 ∧ . . . ˇd log γi · · · ∧ d log γr = 0.

The projection of Ωr(A∆) to Hr induced by the previous decomposition
is by the definition the Total residue Tres.

Recall that a non broken circuit in ∆ (with respect to the given to-
tal ordering) is an ordered linearly independent subsequence {αi1 , . . . ,αit}
such that, for each 1 ≤ % ≤ t, there is no j < i# such that the vectors
αj ,αi! , . . . ,αit are linearly dependent. In other words αi! is the minimum
element of ∆ ∩ 〈αi! , . . . ,αit〉. In [8] it is proved that the elements

( 1
2πi

)r
ωσ :=

( 1
2πi

)r
d log γ1 ∧ . . . ∧ d log γr,

where σ = {γ1, . . . , γr} runs over all ordered bases of V which are non
broken circuits, give a linear Z−basis of the integral cohomology of A∆.

2.1 Irreducibles

Let us now recall some notions from [5]. Given a subset S ⊂ ∆ we shall
denote by US the space spanned by S.
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Definition 2.1 Given a subset S ⊂ ∆, the completion S of S equals US ∩
∆. S is called complete if S = S.

A complete subset S ⊂ ∆ is called reducible if we can find a proper
partition S = S1∪̇S2, called a decomposition such that US = US1 ⊕ US2 ,
irreducible otherwise.

Equivalently we say that the space US is reducible. Notice that, in the
reducible case, S = S1∪̇S2, also S1 and S2 are complete.

From this definition it is easy to see [5]:

Lemma 2.2 Given complete sets A ⊂ S and a decomposition S = S1∪̇S2

of S we have that, if A = (A∩S1)∪̇(A∩S2) is proper, it is a decomposition
of A. Let S ⊂ ∆ be complete. Then there is a sequence (unique up to
reordering) S1, . . . , Sm of irreducible subsets in S such that

• S = S1 ∪ · · · ∪ Sm as disjoint union.
• US = US1 ⊕ · · ·⊕ USm .

The Si’s are called the irreducible components of S and the decomposition
S = S1 ∪ · · · ∪ Sm, the irreducible decomposition of S.

We shall denote by I the family of all irreducible subsets in ∆.
One of the main points of [5] is the construction of a smooth variety X∆

containing A∆ as open set with complement a divisor with normal crossing
and irreducible components indexed by the set I of irreducibles. X∆ has a
proper map to U∗ extending the identity of A∆.

2.2 Nested sets

In the theory developed in [5] we introduced, for a family of irreducibles Si

the notion of being nested according to:

Definition 2.3 A subfamily M ⊂ I is called nested if, given any subfamily
{S1, . . . , Sm} ⊂ M with the property that for no i -= j, Si ⊂ Sj , then
S := S1 ∪ · · ·∪ Sm is complete and the Si’s are the irreducible components
of S.

The geometric meaning of this notion is in the fact that, in the model
X∆ a set of boundary divisors indexed by a family M ⊂ I has non empty
intersection if and only if M is nested. We also have [6]

Lemma 2.4 1) Let M = {S1, . . . , Sm} be a nested set. Then S :=
∪m

i=1Si is complete. The irreducible components of S are the max-
imal elements of M.
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2) Any nested set is the set of irreducible components of the elements of
a flag A1 ⊃ A2 ⊃ · · · ⊃ Ak, where each Ai is complete.

Proposition 2.5 1) Let A1 ! A2 · · · ! Ak, be a maximal flag of com-
plete non empty sets. Then k = r and for each i, Ai spans a subspace
of codimension i − 1.

2) Let ∆ = S1 ∪ . . . ∪ St be the irreducible decomposition of ∆.

i) Then the Si’s are the maximal elements in I.
ii) Every maximal nested set contains each of the elements Si, i =

1, . . . , t and is a union of maximal nested sets in the sets Si.

3) Let M be a maximal nested set, A ∈ M and B1, . . . , Br ∈ M maximal
among the elements in M properly contained in A.
Then the subspaces UBi form a direct sum and

dim(⊕k
i=1UBi) + 1 = dimUA.

4) A maximal nested set always has r elements.

One way of using the previous result is the following. Given a basis
σ := {γ1, . . . , γr} ⊂ ∆, one can associate to σ a maximal flag F (σ) by
setting Ai(σ) := ∆∩ 〈γi, . . . , γr〉. Clearly the maps from bases to flags and
from flags to maximal nested sets are both surjective. We thus obtain a
surjective map from bases to maximal nested sets. In fact this map induces
a bijection between the set of no broken circuit bases and that of proper
maximal nested sets (see below for their definition).

We define a map φ from subsets of ∆ to ∆ by associating to each S ⊂ ∆
its minimum φ(S) := min(a ∈ S) with respect to the given ordering.

We give the definition:

Definition 2.6 1) A flag of complete sets Si is called proper if the set
φ(Si) ⊂ ∆ is a basis of V .

2) A maximal nested set M is called proper if the set φ(M) ⊂ ∆ is a
basis of V .

The main combinatorial result of [6] is that:

Theorem 2.7 We have canonical bijective correspondences between:

1) Proper flags of complete sets.
2) Proper maximal nested sets.
3) Non broken circuit bases.
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The bijection is given as follows:
Given a basis σ = {γ1, . . . , γr}, we associate to σ the flag Ai = ∆ ∩

〈γi, . . . , γr〉.
Then the maximal nested set is the decomposition of the previous flag.

3 A Basis for Homology

Let us denote by C the set of non broken circuit bases of V , by M denote
the set of proper maximal nested set.

Let us now fix a basis σ ⊂ ∆. Write σ = {γ1, . . . , γr} and consider the
r-form

ωσ := d log γ1 ∧ . . . ∧ d log γr.

This is a holomorphic form on the open set A∆ of U∗ which is the com-
plement of the arrangement formed by the hyperplanes whose equation is
in ∆. In particular if M ∈ M, we shall set ωM := ωφ(M).

Also if M ∈ M, we can define a homology class in Hr(A∆, Z) as follows.
Identify U∗ with Ar using the coordinates φ(S), S ∈ M. Consider another
complex affine space Ar with coordinates zS , S ∈ M. In Ar take the small
torus T of equation |zS | = ε for each S ∈ M. Define a map

f : Ar → U∗, by φ(S) :=
∏

S′⊃S

zS′ . (3.1)

In [5] we have proved that this map lifts, in a neighborhood of 0, to a local
system of coordinates of the model X∆ . To be precise for a vector α ∈ ∆,
set B = pM(α). In the coordinates zS , we have that

α =
∑

B′⊂B

aB′

∏

S⊇B′

zS =
∏

S⊇B

zS(aB +
∑

B′⊂B

aB′

∏

B!S⊇B′

zS) (3.2)

with aB′ ∈ C and aB -= 0. Set fM,α(zS) := aB +
∑

B′⊂B aB′
∏

B!S⊇B′ zS

and AM be the complement in the affine space Ar of coordinates zS of the
hypersurfaces of equations fM,α(zS) = 0. The main point is that AM is an
open set of X∆. The point 0 in AM is the point at infinity PM. The open
set A∆ is contained in AM as the complement of the divisor with normal
crossings given by the equations zS = 0. From this one sees immediately
that if ε is sufficiently small, f maps T homeomorphically into A∆. Let us
give to T the obvious orientation coming from the total ordering of M, so
that Hr(T, Z) is identified with Z and set cM = f∗(1) ∈ Hr(A∆, Z).

Given the class cM and an r−dimensional differential form ψ we can
compute

∫
cM

ψ. Denoting by PM the point at infinity corresponding to 0 in
the previously constructed coordinates zi := zSi we shall say:
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Definition 3.1 The integral 1
(2πi)r

∫
cM

ψ is called the residue of ψ at the
point at infinity PM. We will also denote it by resM(ψ).

Notice that the rational forms regular in A∆, in a neighborhood of the
point PM and in the coordinates zi, have the form ψ = f(z1, . . . , zr)dz1 ∧
· · · ∧ dzr with f(z1, . . . , zr) a Laurent series which can be explicitly com-
puted (this is the consequence of the fact that the model X∆ has normal
crossings). One then gets that the residue resM(ψ) equals the coefficient of
(z1 . . . zr)−1, in this series.

By abuse of notations, since we have canonical coordinates zS we shall
also speak of residue of a function and write resM(f(z1, . . . , zr))

The main Theorem of [6] is

Theorem 3.2 The set of elements cM, M ∈ M is the basis of Hr(A∆, Z),
dual, under the residue pairing, to the basis given by the forms ωφ(M): the
forms associated to the no broken circuit bases relative to the given ordering.

We have seen thus in [6] that:

1) The formulas found give us an explicit formula for the projection π
of Ωr(A∆) = Hr ⊕ dΩr−1(A∆) to Hr with kernel dΩr−1(A∆). We
have:

π(ψ) =
∑

M∈M
resM(ψ)ωM. (3.3)

2) Using the projection π any linear map on Hr, can be thought of as
a linear map on Ωr(A∆) vanishing on dΩr−1(A∆). Our geometric
description of homology allows us to describe any such map as inte-
gration on a cycle, linear combination of the cycles cM.

4 The Residue Formulas

In this section V is a real r−dimensional vector space and U := V ⊗R C,
∆ = {α1, . . . ,αn} ⊂ V . We fix an orientation for V .

We now further restrict to the case in which there exists a linear function
on V which is positive on ∆, i.e. that all the elements in ∆ are on the same
side of some hyperplane. The cone C spanned by the vectors in ∆ is acute
and we can decompose it into chambers using the hyperplanes generated
by vectors of ∆.

For each basis τ ⊂ ∆, set C(τ) = {x ∈ V |x =
∑

α∈τ aαα, aα > 0}. Set
for simplicity, for a proper maximal nested set M, C(M) := C(φ(M)).
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The final result of [6] gives the formula to count the number of integer
points Na for a polytope Πa in term of residues as follows, choose a big
chamber C so that a ∈ C (the closure of C) then:

Na =
∑

M∈M|C⊂C(M)

resM

(
e〈a,x〉

∏N
k=1(1 − e〈αk,x〉)

)
. (4.1)

In a similar spirit there is a simpler formula which computes the volume
Va of the polytope as:

Va =
∑

M∈M|C⊂C(M)

resM

(
e〈a,x〉

∏N
k=1〈αk, x〉

)
. (4.2)

The algorithm to compute it takes the following steps:

1. Order the set ∆ and determine the proper maximal nested sets.
2. If a ∈ C has been fixed, determine only the proper maximal nested

sets such that C ⊂ C(M) (often very few out of all the proper nested
sets).

3. Prepare for each proper maximal nested set M with C ⊂ C(M) the
change of new coordinates zS as in formulas (3.1), (3.2) to substitute
in the function e〈a,x〉

QN
k=1(1−e〈αk,x〉)

.

4. In the new coordinates zS each term 1 − e〈αk,x〉 equals a product of
the variables zS times an invertible power series in these variables.
Hence one can develop enough terms of the function e〈a,x〉

QN
k=1(1−e〈αk,x〉)

so to be able to compute the residue.

Remark 4.1 i) Each term of formulas (4.1), (4.2) is clearly a polyno-
mial in the variable a of which one can estimate the degree.

ii) If a is a regular vector the condition C ⊂ C(M) is equivalent to
a ∈ C(M). Otherwise we have in general more than one choice for
the chamber C and the formulas are not unique.

Thus these formulas determine functions on the cone C(∆) generated
by ∆ which are locally polynomials. More precisely they are polynomials
on the strata of an equivalence relation.

Set in fact S(v) := {M ∈ M | v ∈ C(M)}. Define v ∼=M w, ⇐⇒ S(v) =
S(w) and, if M ∈ S(v), then v and w belong to the same relatively open
face of C(M). Clearly the strata of this equivalence relation are convex
polyhedral cones which decompose C(∆). On each of these strata the
formulas (4.1), (4.2) take polynomial values. In the appendix we discuss
this phenomenon.
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5 Network Flows Arrangements

5.1 Graph arrangements

The magic arrangement can be seen as a special case of the following general
setting. Let Γ := (V, L) be an oriented graph, i.e. we assume that each
a ∈ L has an initial vertex i(a) and a final vertex f(a) we also assume that
there are no simple loops i.e. edges with initial and final vertex equal and
that two vertices are joined by at most one edge.

Denote by l, v the number of edges and vertices respectively and by
b1, b0 the two Betti numbers of the graph. Of course l − v = b1 − b0.

Remark 5.1 For a connected graph the number of independent loops is
by definition the dimension of its first homology group, i.e. l − v + 1.

Often, taking just a subset of the edges we will speak of the graph they
generate, meaning that the vertices are exactly all the vertices of the given
set of edges.

Fix a basis element ev for every vertex and consider the set of vectors
∆Γ := {xa := ef(a) − ei(a)} as a ∈ L.

Lemma 5.2 The vectors xa span a space VΓ of dimension v − b0.

Proof Clearly the spaces spanned by vectors in different connected com-
ponents form a direct sum so it suffices to prove the formula when Γ is
connected. These vectors span a space U contained in the subspace gen-
erated by the vectors ev where the sum of the coordinates is 0. We claim
that U coincides with this subspace, in fact choose a vector ev and add it
to U then by connectedness each ew ∈ U + Rev hence the claim.

!

Remark 5.3 If Γ is connected, v−1 edges ai are such that the vectors xai

are a basis of VΓ if and only if these edges span a maximal tree.

If we have given a total order to the edges it makes thus sense to ask
wether a basis xa1 , . . . , xav−1 or a maximal tree a1, . . . , av−1 is no broken
circuit.

This means that each ai is minimal in the complete graph generated by
the vertices of ai, . . . , av−1.

The vectors ∆Γ define thus a hyperplane arrangement in the v − b0

dimensional space V ∗
Γ which we shall call a graph arrangement. We shall

now investigate the irreducible subsets in ∆Γ and the corresponding nested
sets.
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In case that the orientation of the graph is such that the vectors xa span
an acute cone, i.e. they are all on the same side of a hyperplane which does
not contain any of them, we will speak of a network and we can define the
corresponding network polytopes (we simplify re. [1]). Let us recall some
simple facts about this notion.

Proposition 5.4 A way to obtain a network is by fixing a total order on
the set of vertices and orient the edges according to the given order.

An oriented graph is a network if and only if it does not contain oriented
loops.

In every network we can totally order the vertices in a way compatible
with the orientation of the edges.

Proof If we have a total order on the vertices and consider a vector α with
strictly increasing coordinates with respect to this total order, we have that
the scalar product of α with each xa is strictly positive.

An oriented loop a1, . . . , ak gives vectors xa1 , . . . , xak with xa1 + · · · +
xak = 0 so it cannot be a network.

Conversely assume there are no oriented loops. Take a maximal oriented
chain a1, . . . , ak, this is not a loop and necessarily a1 is a source otherwise
we could increase the oriented chain. We take this source to be the smallest
vertex, remove it and all the edges coming from it and then start again on
the remaining graph by recursion.

!

Remark that ∆Γ is in canonical bijection with the set of edges of Γ.
Thus subsets of ∆Γ correspond to subgraphs of Γ (with no isolated vertices).
Given A ⊂ ∆Γ we shall denote by ΓA the corresponding graph.

Now recall that a subgraph is called complete if whenever it contains
two vertices it also contains all edges between them. On the other hand
a subset A ⊂ ∆Γ is complete in the sense of arrangements if and only
if 〈A〉 ∩ ∆Γ = A. If A is complete in this sense, we shall say that the
corresponding subgraph ΓA is A-complete.

Proposition 5.5 A connected subgraph of Γ is A-complete if and only if
it is complete.

A subgraph is A-complete if and only if all its connected components are
A-complete.

Proof The fact that a complete subgraph is also A-complete is clear.
If a subgraph Λ is not A-complete we have an edge a /∈ Λ which is

dependent of the edges in Λ. We know that the dimension of the corre-
sponding span equals the number of vertices in Λ minus the number of its



On the Geometry of Graph Arrangements 11

connected components. This dimension can remain the same if and only
if, adding a, we do not add any vertices nor do we decrease the number of
connected components. If Λ is connected, this means that the vertices of a
are in Λ. Hence Λ is not complete.

If the graph is not connected the condition is not only that the vertices
of a are in Λ but also that they belong to the same connected component,
hence the claim.

!

The previous proof has a simple but important consequence:

Corollary 5.6 A graph arrangement is unimodular.

Corollary 5.7 Given a connected graph Γ, a proper subgraph Λ is maximal
A-complete if and only if either Λ is a connected subgraph obtained from
Γ deleting one vertex and all the edges from it, or it is a graph with two
connected components obtained from Γ deleting a set of edges each of which
joins the two components.

Proof If we remove one vertex and all the edges from it, and the resulting
graph Λ, with edges C, is still connected, it follows that the corresponding
subspace 〈C〉 has codimension 1. Since Λ is clearly complete it is also max-
imal. Similarly in the second case where the graph we obtain is complete
the number of vertices is unchanged but it has two connected components,
so it gives again a codimension 1 subspace.

Conversely if Λ is maximal A-complete with w vertices and b connected
components we must have v − 2 = w − b so, either b = 1 and w = v − 1
or w = v and b = 2. It is now easy to see that we must be in one of
the two preceding cases (from the description of A-complete subgraphs and
Lemma 5.2).

!

A set of edges so that the remaining graph has two connected compo-
nents and all the deleted edges join the two components will be called a
simple disconnecting set. To find such a set is equivalent as to decompose
the set of vertices into two disjoint subsets V1, V2, so that each of the two
complete subgraphs of vertices V1, V2 are connected.

Recall that, given two graphs Γ1,Γ2 with a preferred vertex w1, w2

in each, the wedge Γ1 ∨ Γ2 of the two graphs is given by forming their
disjoint union and then identifying the two vertices. Clearly if v1, v2, v
resp. b1, b2, b denote the the number of vertices resp. of connected com-
ponents of Γ1,Γ2,Γ1 ∨ Γ2 we have v = v1 + v2 − 1, b = b1 + b2 − 1 hence
v − b = v1 − b1 + v2 − b2.
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We shall now say that an A-complete subgraph is irreducible if the
corresponding subset of ∆Γ is irreducible. The previous formulas shows
that the decomposition of a graph as wedge or into connected components,
implies a decomposition of the corresponding hyperplane arrangement so
that in order to be irreducible a graph must be connected and cannot be
expressed as the wedge of two smaller subgraphs. The following Proposition
shows that these conditions are also sufficient.

Proposition 5.8 A connected graph Γ is irreducible if and only if it is
not a wedge of two graphs. This also means that there is no vertex which
disconnects the graph.

Proof We have already remarked that the decomposition of a graph as
wedge implies a decomposition of the corresponding hyperplane arrange-
ment.

On the other hand, let Γ be connected and suppose that ∆Γ has a non
trivial decomposition ∆Γ = A ∪ B (in the sense of hyperplane arrange-
ments). If A′ is the set of edges of a connected component of ΓA, then
∆Γ = A′ ∪ ((A − A′) ∪ B) is also a decomposition so we can assume that
ΓA is connected.

Denote by VA (resp. VB) the set of vertices of ΓA (resp. ΓB.) We must
have that VA ∩ VB is not empty since Γ is connected.

The fact that ∆Γ = A∪B is a decomposition implies 〈∆Γ〉 = 〈A〉⊕ 〈B〉
so from Lemma 5.2 we deduce v − 1 = |VA|− bA + |VB |− bB (with bA, bB

the number of connected components of the two graphs with edges A, B
respectively). Since v = |VA| + |VB|− |VA ∩ VB |, we have 1 + |VA ∩ VB| =
bA + bB.

We are assuming that bA = 1, so we get |VA ∩ VB | = bB. Since Γ is
connected each connected component of ΓB must contain at least one of
the vertices in VA ∩ VB. The equality |VA ∩ VB | = bB implies then that
each connected component of ΓB contains exactly one of the vertices in
VA ∩ VB . Thus Γ is obtained from ΓA by attaching, via a wedge operation
each connected component of ΓB on different vertices.

!

Remarks 5.9
1) Notice that in fact, the first case of 5.7 could be considered as a

degenerate case of the second, with ΓA reduced to a single vertex.
2) In general a complete decomposition will thus present a connected

graph as an iterated wedge of irreducible graphs.

With the previous analysis it is easy to give an algorithm which allows
to describe all proper maximal nested sets.
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The algorithm is recursive and based on the idea of building a proper
maximal flag of complete sets.

Step 1. We choose a total order of the edges.
Step 2. We decompose the graph into irreducibles.
Step 3. We proceed by recursion separately on each irreducible where we have

the induced total order.

We assume thus we have chosen one irreducible.
Step 4. We build all the proper maximal complete sets which do not contain

the minimal edge. These are of two types.

i) The two sets obtained by removing the edges out of one of the
vertices of the minimal edge (by Proposition 5.8 this operation
produces a connected graph).

ii) Remove the simple disconnecting sets containing the minimal
edge.

Step 5. Keeping the induced order, go back to Step 2 for each of the proper
maximal complete sets constructed.

From the residue formulas it is clear that, in the previous algorithm,
given a vector u in order to compute the volume or the number of integer
points of the polytope Πa, it is only necessary to compute the proper nested
sets M which satisfy the further condition u ∈ C(M), which we will express
by the phrase M is adapted to u. The previous algorithm explain also how
to take into account this condition.

In fact let Λ ⊂ Γ be a proper maximal complete set, we can see as
follows if this can be the first step to construct an M adapted to u. In fact
the basis φ(M) is composed of the minimal element xa and the basis of the
span 〈Λ〉 corresponding on the part M′ of the nested set contained in 〈Λ〉.
Thus u can be written uniquely in the form λxa + w with w ∈ 〈Λ〉.

M is adapted to u if and only if λ ≥ 0 and M′ is adapted to w.
This gives a recursive way of proceeding if we can compute λ. Let us

do this in the second case (since the first is a degenerate case). In the
decomposition of the maximal complete subset as A∪B let us assume that
the orientation of the arrow of the minimum edge a points towards A so
that xa as a function on the vertices takes the value 0 on all vertices except
its final point in A where it takes the value 1, and its initial point in B
where it takes the value −1. The vector u is just a function on the vertices
with the sum 0. Let λ equal the sum of the values of u on the vertices of
A, thus −λ equals the sum of the values of u on the vertices of B.

We then have that u − λxa = w ∈ 〈Λ〉, so we see that:
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Proposition 5.10 In the decomposition of the maximal complete subset Λ
as A ∪ B let us assume that the orientation of the arrow of the minimum
edge a points towards A. Then if Λ is the first step of a proper flag adapted
to u we must have that the sum of the values of u on the vertices of A is
non negative.

Remark 5.11 We have seen in 3.6 that the decomposition into chambers
can be detected by any choice of ordering and the corresponding n.b.c.
bases. Nevertheless the number of n.b.c. bases adapted to a given cell
depends strongly on the order. For a given cell it would thus be useful
to minimize this number in order to optimize the algorithms computing
formulas (4.1), (4.2). This point needs a further investigation which we
have not done.

5.2 Two examples: An and Magic arrangements

As we have mentioned before, in the case our graph Γ is the complete graph
on n + 1 elements {1, . . . , n + 1}, the arrangement we obtain is the root
arrangement of type An. If we furthermore order our vertex set in the
obvious way we get that ∆Γ = {ei − ej, 1 ≤ i < j ≤ n + 1} is the set
of positive roots. This case has been studied extensively (see for example
[6]). Our previous analysis allows us to recover immediately a number of
know facts. Given any set S of vertices with at least two elements, the
complete subgraph with vertex set S is clearly a complete graph and hence
irreducible. It follows that irreducible subsets of ∆Γ are in bijection with
subsets of {1, . . . , n} containing at least 2 elements.

Under this correspondence, a sequence S1, . . . , St of subsets of
{1, . . . , n + 1} containing at least 2 elements is nested if and only for any
1 ≤ i, j ≤ t, either Si ∩ Sj = ∅ or Si and Sj are one contained in the other.

Let us now fix the following total order on ∆Γ. We set ei − ej ≤ eh − ek

if k − h < j − i and if k − h = j − i, if i ≤ h. A proper maximal nested
set M is then encoded by a sequence of n subsets each having at least two
elements, with the property that, taking the minimum and maximum for
each set, these pairs are all distinct.

Correcting an imprecision in [6, page 5] let us explain how to inductively
define a bijection between proper maximal nested sets and permutations of
1, . . . , n fixing n. To see this consider a maximal nested set M as a sequence
{S1, . . . , Sn} of subsets of {1, . . . , n + 1} with the above properties. We
can assume that S1 = (1, 2, . . . , n + 1). Using Corollary 5.7 we see that
M′ := M−{S1} has either one or two maximal elements. If S2 is the unique
maximal element and 1 /∈ S2, by induction we get a permutation p(M′) of
2, . . . , n fixing n. We then set p(M) equal to the permutation which fixes 1
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and is equal to p(M′) on 2, . . . , n. If S2 is the unique maximal element and
n /∈ S2, we get, by induction, a permutation p(M′) of 1, . . . , n − 1 fixing
n − 1. We then set p(M) equal to the permutation which fixes n and is
equal to τp(M′) on S2 = {1, . . . , n − 1}, τ being the permutation which
reverses the order in S2. If S2 and S3 are the two maximal elements so
that {1, . . . , n} is their disjoint union, and 1 ∈ S2 = {1 = i1 < · · · < ih},
n ∈ S3 = {ih+1 < · · · < in = n} then by induction we get two permutations
p2 and p3 of S2 and S3 respectively. A permutation σ of a subset S =
{i1 < · · · < ih} ⊂ {1, . . . , n} induces a bijection σ′ between {1, . . . , h} and
S defined by σ′(t) = σ(it) for 1 ≤ t ≤ h. We then set p(M)(t) equal to
p′3(t − |S2| + 1) if t > |S2| and equal to (τp2)′(t) otherwise, τ being the
permutation which reverses the order in S2. Remark that the two sets
S2, S3 are determined by p(M) by writing it as a word and collecting all
the entries appearing before and including 1 and all the entries after. The
two permutations are also similarly reconstructed. In particular this shows
that there are (n−1)! proper maximal nested sets, which can be recursively
constructed.

The second example we want to analyze is the following:
Given 2 positive integers m, n we define the arrangement M(m, n) as

follows. We start from the vector space Rm+n withe basis elements ei, i =
1, . . . , m, fj , j = 1, . . . , n and let V be the hyperplane where the sum of the
coordinates is 0. The arrangement is given by the nm vectors ∆(m, n) :=
{(i|j) := ei − fj , i = 1, . . . , m, j = 1, . . . , n}. It is the graph arrangement
associated to the full bipartite graph formed of all oriented edges from a
set X with n elements to a set Y of m elements.

Let us discuss the notions of irreducible, nested and proper nested in the
example M(m, n). We need some definitions, given two non empty subsets
A ⊂ {1, 2, . . . , m}, B ⊂ {1, 2, . . . , n}, we denote by A×B the set of vectors
(i|j), i ∈ A, j ∈ B and call it a rectangle. We say that the rectangle is
degenerate if either A or B consists of just one element (and we will speak
of a row or a column respectively).

In particular when A, B have two elements we have a little square. We
define triangle a subset of 3 elements of a little square.

Lemma 5.12 1) The 4 elements of a little square {i, j}× {h, k} form a
complete set. They span a 3 dimensional space and satisfy the relation
(i|h) + (j|k) = (i|k) + (j|h)

2) The completion of a triangle is the unique little square in which it is
contained.

3) Any rectangle is complete.

The proof is clear.
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Theorem 5.13 For a subset S ⊂ ∆(m, n) the following conditions are
equivalent.

1) ΓS is A-complete.
2) If a triangle T is contained in S then its associated little square is

also contained in S.
3) S = ∪h

i=1Ai × Bi where the Ai are mutually disjoint and also the Bj

are mutually disjoint .

Proof Clearly 1) implies 2). Assume 2), consider a maximal rectangle
A×B contained in S, we claim that S ⊂ A×B∪C(A)×C(B). Otherwise
there is an element (i|k) ∈ S where either i ∈ A, k /∈ B or i /∈ A, k ∈ B. Let
us treat the first case the second is similar. If A = {i} then A × (B ∪ {k})
is a larger rectangle contained in S a contradiction. Otherwise take j ∈
A, j -= i, h ∈ B we have that (i|h), (j|h), (i|k) are in S and form a triangle
so by assumption also (j|k) ∈ S this means that again A × (B ∪ {k}) is a
larger rectangle contained in S a contradiction. Now we can observe that
S ∩ C(A) × C(B) is also complete and we proceed by induction.

3) implies 1) follows from Proposition 5.5.
!

Theorem 5.13 now gives the decomposition of a complete set into irre-
ducibles.

Corollary 5.14 A non degenerate rectangle is irreducible. Given a com-
plete set of the form S = ∪h

i=1Ai × Bi where the Ai are mutually disjoint
and also the Bj are mutually disjoint its irreducible components are the
non degenerate rectangles Ai ×Bi and the single elements of the degenerate
rectangles Ai × Bi.

Theorem 5.13 also implies the structure of the maximal proper complete
subsets of ∆(h, k).

Corollary 5.15 A maximal proper complete subset S of ∆(h, k) is of one
of the following types:

A × B ∪ C(A) × C(B) if A, B are proper subsets.
A × {1, . . . , n} where A has m − 1 elements.
{1, . . . , m}× B where B has n − 1 elements.

All these considerations allow us to find all proper flags in the case of
the magic arrangement. Of course in order even to speak about proper
flags, we have to fix a total ordering among the pairs (i, j). Let us use
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as order the lexicographic order so that (1|1) is the minimum element. It
follows that if S is a proper maximal complete subset, in order to be the
beginning of a proper flag one needs that (1|1) /∈ S.

It is then clear that, once we have started with such a proper maximal
complete subset we can complete the flag to a proper flag by taking a
proper flag in S for the induced order. This gives a recursive formula for
the number b(m, n) of proper flags which is also the top Betti number. We
have from our discussion the recursive formula for b(m, n):

b(m − 1, n) + b(m, n − 1) +
∑

a,c

(
m − 1
a − 1

)(
n − 1

c

)
b(a, c)b(m − a, n − c).

6 Appendix

6.1 The big cells

The condition of Remark 4.1 is clearly independent of the order chosen
so that it makes sense to ask whether the stratification discussed in that
remark is independent of the order chosen. In order to prove this we need
a few simple combinatorial lemmas on polytopes whose proof we recall for
completeness.

In an r−dimensional real vector space V , let us choose a finite set of vec-
tors Ψ := {vi} spanning V and lying in an affine hyperplane Π of equation
〈φ, x〉 = 1 for some linear form φ .

The intersection of the cone C(Ψ) with Π is the convex polytope Σ
envelop of the vectors vi. Each cone, generated by k+1 independent vectors
in Ψ, intersects Π in a k dimensional simplex. Then the configuration of
cones is obtained by projecting a configuration of simplices and there is a
simple dictionary to express properties of cones in terms of simplices and
conversely.

It is well known (and in any case will follow from our more precise re-
sults) that Σ is the union of the simplices with vertices independent vectors
of Ψ. It is natural to define regular a point in Σ which is not contained in
any r − 2 dimensional simplex (or in the corresponding cone). The con-
nected components of the set of regular points are called in [3] the big cells.
They are the natural loci where the formulas (4.1), (4.1) take polynomial
values. Since on the other hand in Remark 4.1 the natural strata are the
ones determined via n.b.c. bases it is important to compare the two strati-
fications. Our main result is in fact that they coincide (Theorem 6.5), this
gives a rather strong simplification in the algorithms necessary to determine
the big cells. In order to do this we have to work in a slightly more general
setting and consider the following stratifications of Σ.
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Let us choose a family I of bases extracted from Ψ. For each such basis
b consider the family Fb of faces of the simplex σb generated by b and set
FI = ∪b∈IFb. Given a point v ∈ Σ we set Z(v) = {f ∈ FI |v ∈ f} and
define an equivalence relation RI on Σ by setting v and w as equivalent (or
belonging to the same stratum), if Z(v) = Z(w).

We want to compare the equivalence relations RI for various choices of
I. We start with a special case assuming that the set Ψ consists of r + 1
vectors v0, . . . , vr. We set I equal to the family of all bases formed by
elements in Ψ and chosen 0 ≤ j ≤ r, Ij equal to the family of all bases
formed by elements in Ψ and which contain the vector vj . Then

Lemma 6.1 Σ = ∪b∈Ijσb, (Σ = ∪b∈Iσb).

Proof By suitably reordering we can assume that j = r. If v0, . . . vr−1

are not linearly independent, let us consider their convex envelope Σ′ which
is contained in the hyperplane V ′ which they span. By induction we can
assume that Σ′ is the union of the r − 2- dimensional simplices σb′ , where
b′ runs over the bases of V ′ which can be extracted from {v0, . . . , vr−1}.
In this case Σ is a pyramid with basis Σ′ and and vertex vr, and our claim
follows.

Let us now suppose that b = {v0, . . . vr−1} is a basis of V . Take v ∈ Σ.
Consider the line joining v with vr. It intersects σb in a segment with ends
two points a, b and then v is either in the segment avr or in bvr. a, b are in
r − 2 dimensional faces of σb, thus v lies in the convex envelop of an r − 2
dimensional face τ of σb and vr. If vr is independent of τ we have thus an
r − 1 dimensional simplex having vr as a vertex in which v lies. Otherwise
by induction v lies in any case in some simplex having vr as a vertex which
is then contained in a larger r − 1 dimensional simplex.

!

Lemma 6.2 Let σ be a simplex, q a point in the interior of a face τ of σ
and p a point. Assume that the segment pq intersects σ only in q then the
convex hull of τ and p is a simplex and meets σ in τ .

Proof If p does not lie in the affine space spanned by σ the statement is
obvious. Otherwise we use the vector notations, we can assume that σ is
the convex hull of the basis vectors e1, . . . , em and τ is the face of vectors
with non zero (positive) coordinates for i ≤ k.

The condition that {tq + (1− t)p | 0 ≤ t ≤ 1}∩ σ = {q} is equivalent to
the fact that there is a i larger than k such that the i−th coordinate of p
is negative. This condition does not depend on the point q ∈ τ and shows
that p is independent of τ . Our claim follows.

!
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We then have

Lemma 6.3 With the same notation as above, the equivalence relations
RI and RIj coincide.

Proof As before assume j = r. If b = {v0, . . . vr−1} is not a basis, I = Ij

and there is nothing to prove. Otherwise FI differs from FIj only by adding
the interior σ0

b of the simplex σb.
Thus we only have two show that if two vectors v, w are congruent under

RIj it is not possible that v ∈ σ0
b and w /∈ σ0

b. The half line joining vr and
w meets for the first time the simplex σb in a point u which is in the interior
of some face τ of σb and w is in the segment vr, u. By the previous lemma
the convex hull of vr and τ is a simplex and meets σb exactly in τ . By
hypothesis then v also lies in this simplex hence not in the interior of σb a
contradiction.

!

Let us now go back to our set of vectors ∆ and let us fix an ordering
of ∆. Since we know that there is a linear form φ which takes positive
values on each element in ∆, by suitably rescaling with positive numbers,
we can assume that 〈φ,α〉 = 1 for each α ∈ ∆. We now set I equal to the
family of all bases which can be extracted from ∆ and,as before, M equal
to the family of n.b.c bases with respect to the chosen ordering.

Choose an element α ∈ ∆ and assume that the element β is the successor
of α in our ordering. Define a new ordering by exchanging α and β. The
following Lemma tells us how the set M changes.

Lemma 6.4 A n.b.c. basis σ := α1, . . . ,αn for the first order remains
n.b.c. for the second unless all the following conditions are satisfied:

i) α = αi appears in σ.
ii) β does not appear in σ.
iii) β is dependent on α = αi and the elements αj , j > i in σ following α.

In all these conditions hold, σ′ := α1, . . . ,αi−1,β,αi+1, . . . ,αn is a n.b.c.
basis for the second order. All n.b.c bases for the second order are obtained
in this way.

Proof The proof is immediate and left to the reader.
!

Theorem 6.5 The equivalence relations RI and RM coincide.
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Proof As before choose an element α ∈ ∆ and call β the successor of α in
our ordering. Define a new ordering by exchanging α and β and denote by
M′ the family of n.b.c bases with respect to the new ordering. We claim
that the equivalence relations RM and RM′ coincide.

Since every basis extracted from ∆ is a n.b.c. basis for a suitable or-
dering and we can pass from one ordering to another by a sequence of
elementary moves consisting of exchanging an element with its successor,
this will prove our Theorem.

Set M = M ∪ M′. Take a basis b ∈ M − M. By Lemma 6.4
b = {γ1, . . . , γk−1,β, γk+1 . . . , γr} with α,β, γk+1 . . . , γr linearly dependent.
Consider the set of vectors b ∪ {α}. To this set we can apply Lemma 6.3
and deduce that the equivalence relation induced by the family of all bases
extracted from b ∪ {α} coincides with the equivalence relation induced by
subfamily of all bases containing α. These are easily seen to lie all in M. We
deduce that RM and RM coincide. By symmetry RM′ and RM coincide
too, hence our claim.

!

Notice that given v, w ∈ C(∆), we have v ∼=M w if and only if either
v = w = 0 or v/〈φ, v〉 8RM w/〈φ, v〉. By this remark and our Theorem it
is immediate to see that:

Corollary 6.6 If we remove from C(∆) the strata which are not of max-
imal dimension, the resulting connected components are just the big cham-
bers as defined in [3].
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