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[ntroduction.

Quantum group Uy, = U,(a) is a certain (Hopf algebra) deformation
of the universal enveloping algebra U(a) of a complex simple finite-
dimensional Lie algebra a, introduced by Drinfeld [3], [4] and Jimbo [5] il
in their study of the quantum Yang-Baxter equation.

An important problem is to describe finite-dimensional representa-
tions of the algebra ;. When q is generic, i.e. it is not a root of 1,
then the (finite—~dimensional) representation theory of U, is essentially
the same as that of &/(a), namely representations of &, are deformations
of representations of 2/(a), so that the latter are obtained as ¢ — 1 [12],
(18]. Our contribution to the generic case is Proposition 1.9 giving a
formula for the determinant of the contravariant form on a Verma mod-
ule over Uy, and Proposition 2.2 giving an explicit description of the
center of U,. Proposition 2.2 is derived by a method developed in [7]. i
Proposition 1.9 implies in a usual way the description of irreducible sub-
quotients of Verma modules over U,; this description was obtained by | |
a different method in [1]. A result, somewhat weaker than Proposition |
2.2b was previously obtained by a different method in [19]. L

When ¢ = ¢, a primitive £-th root of 1, the situation changes dramat- [
ically. We study this case in §3. Our first key observation is that U, e
contains a large “standard” central subalgebra Zj, so that U, is finite—
dimensional over its center Z,. Since U, has no zero divisors, the algebra
QU:) = Q(Z.) ®z. U, is a division algebra of dimension m? over the
field of fractions Q(Z.) of Z.. Since, moreover, U, is integrally closed
(ie. is a maximal order in Q(U.))(Theorem 1.8), Z, is integrally closed
as well and we may use the theory of finite—dimensional associative al-
gebras. Denoting by Rep U, the set of equivalence classes of finite-
dimensional irreducible representations of i,, we obtain a sequence of
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canonical surjective maps: Rep U, X Spec Z, L Spec Zy. Outside
the discriminant D C Spec Z, the map X is bijective and X~!(x) for
X € Spec Z,\D is a representation of dimension m. Dimensions of all
other irreducible representations are less than m. The map 7 is finite.
In the case when ¢ is odd we find an explicit formula for m and for the
degree of 7

(0.1) m=¢N degr =",

where N = (dim a - rank a)/2 and n = rank a.

The proof of the above formulas consists of two components, both of
which, we think, are of independent interest. First, it is the study of
a family of “diagonal” modules, which for generic values of parameters
are irreducible of dimension £N (for odd £). Secondly, we introduce a
(infinite-dimensional) group G of automorphisms of the algebra U, (or
rather of its analytic completion &, ). We show that the group G acts
on Spec Z, by analytic transformations and that the G-orbit of the set
Ho C Spec Zg corresponding to irreducible diagonal modules contains
an open (in metric topology) subset of Spec Zy. This proves (0.1).

We call the action of G on Spec Z, the quantized coadjoint action for
the following reasons. As an algebraic variety, Spec Zj is isomorphic to
Cdim @ with n subspaces of codimension 1 removed. The group G has 2"
fixed points in Spec Zy. In a subsequent paper [2] (written jointly with
Procesi)we show that the action of G in the tangent space to a fixed
point is precisely the coadjoint action on a. We hope that this will lead
us to the proof of conjectures on the quantized coadjoint action stated
in §5. We find it quite remarkable that the quantized coadjoint action
is independent of £.

In §4 we study in detail the case of U,(s¢3).

The most interesting representations of the algebra U, are the “re-
stricted” representations, i.e. those which correspond to the fixed points
of G in Spec Zy. A remarkable conjecture on the structure of these rep-
resentations has been proposed recently by Lusztig [14]. We hope that
our work will contribute to progress in the solution of this conjecture by
some deformation arguments.

Our work was greatly inspired and motivated by the works [24], [21],
[20], [23] and [9] on representation theory of simple classical type Lie
algebras in characteristic p. We conjecture that the reduction mod p
of an irreducible representation of U,, where ¢ is a primitive p-th root
of 1, remains irreducible (for “restricted” representations this has been
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conjectured by Lusztig [14]). Moreover, the whole “quantum” picture
described above descends nicely to the Lie algebra picture in character-
istic p. Both theories should undoubtedly benefit from the interaction
petween these two pictures.

This paper was written in the fall of 1989 when the first author vis-
ited MIT. The results of the paper were reported at the International
conference on algebraic groups in Hyderabad, India, in December 1989.

We would like to thank G. Lusztig and C. Procesi for stimulating
discussions.

§1. Algebras / and U, and Verma modules.

1.1. Let ¢ be an indeterminate and let A = C[q, ¢~ !], with the quotient
field C(q). Forn € Z and d € N, let [n]s = (¢9" —q¢~9")/(¢? — ¢~ %) € A.
As usual, we define

[n]a! = [n]a[n — 1] - - - [1]4,

and the Gaussian binomial coefficients

[?L = [n]a[n — 1]a...[n — 7 + 1]a/[j]a! for 7 €N, [g]d —1

We shall omit the subscript d when d = 1. Here and further we let
N={1,2,...}, Z+ - NU{O}

One knows that | € A; this follows from the Gauss binomial
d
formula
m-—1 m
(1.1.1) [Ma+¢¥2)=3" [T] g (Vo
j=0 j=0

12. Fix an n x n indecomposable matrix (a;;j) with integer entries
such that a;; = 2 and a;; < 0 for 7 # j, and a vector (dy,...,d,) with
relatively prime entries d; such that the matrix (d;a;;) is symmetric
and positive definite. Note that (a;;) is a Cartan matrix of a simple
finite-dimensional Lie algebra. Let ¢; = ¢%:.

Following Drinfeld [3], [4] and Jimbo [6], we consider the C(g)-algebra
U defined by the generators E;, F;, K;, K;' (1 < i < n) and the relations
(1.2.1)-(1.2.5):

(121) K;‘I{j s I{jK,’, K,'K,-_l = K,'—IKi =1,
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(1.2.2) KiE;K" = ¥ Ej, KiF; K" = g F;,

(1.2.3) EiF; - FE; = §;(Ki - K7")/(¢i = ¢7Y),
1-a;;

(1.2.4) Y (= [1 _sa‘j]d. E;™T'E{E! =0ifi#j,

l1-a;;
(1.2.5) Y (-1 [1 ‘s"‘f] Fi™ T FF*i=0ifi # ]
d

s=0 i

U is a Hopf algebra, called the quantum group associated to the matrix
(aij), with comultiplication A, antipode S and counit ¢ defined by

(1.2.6) AE; = E;®1+K;QF;,AF; = ;K +19F;, AK; = K;QK;
(1.2.7) SE; = -K['E;,SF; = -F;K;,SK; = K[!,

(1.2.8) eE; = 0,eF; = 0,¢K; = 1.

Introduce the C-algebra anti-automorphism w and the C-algebra auto-
morphism ¢ of U by

(1.2.9) wE; = F;,wF; = E;,wK; = K", wg=q7,

(1.2.10) ¢E; = F;,oF; = E;,pK; = K;, ¢ = ¢ *.

Finally, introduce the following elements of i:
[Ki;n] = (Kig" — K7'¢™™) /(g — ¢7).

1.3. One has the following useful relation (due to Kac, see [12]):
(1.3.1)

min(m,s)

B, Fi] = Z [?]d.» [;]diU]di!F:—j 2jﬁ—’ [K.‘;der]E:"—j

j=1 r=j-m-s+1
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ula is proved in two steps. First, one shows by induction on s

This form
that [6]
(132) [Ei, F?] = [sla, F 7 (K di(1 = 9)),
od then proves (1.3.1) by induction on m for arbitrary s. Other useful
:pecial cases of (1.3.1) are:
(1.3.3) (Ef, F)] = [s]a,[Kis di(1 = $)1E{ 7,
0

(1.34) (B /ls)a B = [ [Kididl +[s]4i(9),

j=-s+1
where Ai(q) € U has no poles except for ¢ = 0 and ¢ = ¢, where e =1

for j €L, lj] < s

Let U+, U~ and 1° be the subalgebras of U generated by the E;, the
F;, and the K, K,-"l (i=1,0- ,n) respectively. It follows from (1.2.1)-
(1.2.5) and (1.3.1) that U = U-UU*. Using the comultiplication (18],
it is easy to deduce that, moreover, multiplication defines a C(g)-vector

space isomorphism

(1.3.5) U=Uu oU'ut.

14. Let P be a free abelian group with basis w;, 1=1,...,n. Define

the following elements:

n n
p:Zw,-, aj:Za,'jw,- (j:l,...,n).
i=1 i=1

Let Q =, Zay, @y = 3 Lyci- For =3 kici € Q let htg = Y, ki.
Introduce a partial ordering on P by A>pifA—p€ Q+-
Define a bilinear pairing P x @ — Z by

(1.4.1) (Wilaj) = 6,']'(1.'.

Then (a;]a;) = d;ay;, so that we get a symmetric 7-valued bilinear form

on @ such that (o]a) € 2Z.
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Define automorphisms r; of P by riw; = wj — 6ja; (i,j = 1,... ,n).
Then ria; = aj — a;je;. Let W be the (finite) subgroup of GL(P)
generated by r1,... ,r,. Then Q is W-invariant and the pairing PxQ —
L is W-invariant. Let

I={ay,...,an}, R=WI, R* =RNQ.

Then, of course, R is a root system corresponding to the Cartan matrix
(aij), W is its Weyl group, Rt a set of positive roots, etc.

For B =Y ;nia; € Q we let Kg =[]; K{**. If 3 = wa; € R for some
w€E W, a; €I, we let:

dp = di, gp = g; and [Kp;n] = (Kpq" — K5 07")/ (6~ G5")-

1.5. Let U4 be the A-subalgebra of U generated by the elements
E;, F;, K;, K',[K;;0] (i=1,...,n). Let U} (resp. U3) be the A-
subalgebra of &4 generated by the E; (resp. F;) and 4§ that generated
by the K; and [K;;0]. Note that relations (1.2.1), (1.2.2), (1.2.4), (1.2.5)
together with

(1.5.1) E,’Fj - Fj E,' = 6,']'[K,';0],

(1.5.2) (¢ — g7 Y[K;i;0) = K; — K71,

are defining relations of the algebra U 4. Note also that U4 is a Hopf
algebra with A, S and ¢ defined by (1.2.6)—(1.2.8) and

(1.5.3)

A[K;;0] = [Ki;0)® K + K~ ® [K;;0], S[Ki;0] = —[K;;0], €[K;;0] = 0.

Finally, note that the elements [K;;d;n] lie in U 4 since
(1.5.4) [Ki;din] = [Ki;0]¢7" + Ki[n]a,.

Note also the following useful formulas:
(1.5.5)

[Ki; din]E; = E;[K;; di(n + a45)], [Ki;din)Fj = Fj[K;; di(n - aij))-

Given ¢ € CX, we may consider the “specialization” U, = U/
(q—€)y. If 2 £ 1foralli =1,...,n, then U, is an algebra over
C on generators E;, F;, K;, Ki'l and defining relations (1.2.1)-(1.2.5), in
which ¢ = ¢. We denote by U}, U, U2 the images of U}, U3 and U}
nlU,.

Especially important is the “limiting” specialization U .
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grioN 1.5- U, is an associative algebra over C on generators
PFO;OK, and Hi(= [K:i;0D)(@ = 1,... ,n) and the following defining
rEe'l,au'onS.'
(159) (E:, Fj] = & Hi (Hi, Ej] = ai; KiEj, [Hi, Fj] = —ai; K F;

57) K; are central elements and K}=1,

(15
w59 B (B EI=0= [Fi, - [F, ] if i # 5.

1—a,jtimes 1—a;; times

In particular, U /(Ki — 1;i = 1,... ,n) is isomorphic to U(g(as;)),
the universal enveloping algebra of the simple Lie algebra g(a;;) over C
associated to the Cartan matrix (aij).

prooF: (1.5.6) follows from (1.5.1), (1.5.4) and (1.5.5); (1.5.7) follows
from (1.2:2) and (1.5.2); (1.5.8) follows from (1.2.4) and (1.2.5). O

REMARK 1.5. Note that U := U} /(¢ — 1)U} is an algebra on
generators E; (i =1,... ,n) and defining relations (1.5.8) for E;. Hence,
being an enveloping algebra of a Lie algebra, U has no zero divisors.
Hence U} and U* (and similarly U and U™) have no zero divisors. It
follows from (1.3.3) that &4 and U have no zero divisors. This proof
works for an arbitrary symmetrizable generalized Cartan matrix (a;;).

1.6. Given s € N, we shall often write E§’) and F,-(’) for E?/[s]q4,! and
F!/[s]a,!, respectively. Following Lusztig [13], introduce the following
automorphisms T; (¢ = 1,... ,n) of the algebra U:

(16.1)
TEi=-FK;, TE = Y (=1)"%¢ BB E? ifi#,
s=0
(1.6.2)
-y
LR =-K'E, T;F; = Z(—1)""""q$F.-(’)1*"jFf’“""’) if ¢ £ J,
s=0
(16.3)

T;K; = K; K;*.
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Note that

(1.6.4) Tiw = wT;,

(1.6.5) T = pTip™'.

PRroPosITION 1.6. [13], [14].
(a) Let w € W and let r;, ...r;, be areduced expression of w. Then
the automorphism T,, = T;, ... T;, of U is independent of the choice of

the reduced expression of w.
(b) Suppose that 8 = wa; € RY, o; €. Then T,E; € Ut. 0O

Proposition 1.6(a) shows that the T; define a representation of the
braid group of W in the group Autc(o)i/. Note that when restricted to
U° this descends to an action of W (given by (1.6.3)), so that T, K =
Kug.

REMARK 1.6. Recall that for a Hopf algebra U one defines the adjoint

representation z — adz in U by (adz)u = ) _; a;uS(b;), where Az =
Ya; ® b;. One checks that
]

T,E; = (ad — EC%))E; if i # 5.

1.7. Fix a reduced expression r;,7;, ...7;, of the longest element of
W. This gives us an ordering of the set of positive roots R*:

(1.7.1) Br=a;, Po=riai,, BN=Ti,...Tiy_,Cipy.
Introduce root vectors [13], [1]:
Eg, =T, ...Ti,_,Ei,, Fs, =T, ... T;,_, F;, (=wEp,).
For k = (ki,...,kn) € Z¥ let EF = E§ .. EgY, F¥ =wE".
For k,r € Z¥ and u € U° define the monomial M, = FEuET,

Define the height of this monomial by ht( Mg r.u) = [];(ki+ri)hts; € 4,
and its degree by

d(M ru) = (KN kN1, k1,71, v, (M p)) € T3V FL

We shall view ZiN +1 as a totally ordered semigroup with the lexico-
graphical order < such that u; < us < ... < uan41, where y; =
(8i1,-..,6i2n+1) is the standard basis.

The following important lemma was first stated in [11]. Soibelman
kindly sent us a letter with its proof. Also Reshetikhin informed us that
he and Kirillov independently discovered this result. Finally, Lusztig
pointed out that the proof of the lemma at least for some particular
choices of the reduced expression can be easily derived from the quiver
approach [17] to quantum groups.
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pemma 1.7 [11]. For i < j one has:

Ep, Ep, — qPi1P3) g, Ep, = Z prE*,
kez

where pr € A and p; = 0 unless d(E*) < d(Ep,Ep,). O

Recall that, given a commutative totally ordered semigroup S, an
S-filtration of an algebra A is a collection of subspaces AB®) s € S,
such that |, AG) = A AG) ¢ AG) if s < s’, and A AC) ¢ Al+s),
The associated graded algebra is GrA = G),esGr,A where Gr,A =
A Y e A(' , with the usual multiplication. We shall always assume
that every subset of S has a minimal element. Then we may define a
degree d(a) € S of a € A as the minimal s such that a € AG) We
have a linear isomorphism A——=GrA denoted by a —— @, where @ = a
mod E,<d(a) AG) € Gl‘d(a)A.

Given s € 22N+1 denote by U(*) the linear span over C(q) of the

monomials My ., such that d(Mj ) < s. We define U(") C U, simi-
larly.

PROPOSITION 1.7.
(a) The U(®), s € ZAN+!, form a filtration of U (similarly for U, ).
(b) [13] Elements E*, k € Z¥, form a basis of Ut (resp. U}) over
Clg) (resp. C).
(c) Elements FFK** ... KT~ E", where k,r € %, (my,...,m,) €
1", form a basis of U over C(q) (resp. a basis of U, over C, provided
thatez"' £1 fori=1,... y1n).

(d) The associated graded algebra Grid (resp. Grid. provided that
€¥i£1, i=1,...,n) is an associative algebra over C(q) (resp. C) on
generators E,, F, (o € Ry), Kiil (z=1,...,n) subject to the following

relations:
K;K; = K;K;, K;K7' =1, EqFg = FgEq,
K,Eq = ¢1*VE K;, KiFy = ¢ cl*)F K;,
EoEp = ¢ EgEy, FoFp = P FgFy if a > B,

(resp. same relations with ¢ = ¢).

ProoF: It follows from (1.2.3) that E,Fg = FgE, + (linear combi-
nation of the My ,., of degree less than d(E4Fs). This together with
Lemma 1.7 imply (a) and the relations in (d). The fact that the E* span
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Ut (resp. U}) follows also from Lemma 1.7. Their linear independence
is proved as in [13]. This proves (b) and (c). (d) now follows from (c).
O

REMARK 1.7. (a) Let 8 = wa;. Applying T, to both sides of (1.3.1)
and using (1.5.4), we see that (1.3.1) holds if we replace E;, F; and K;
by Eg, Fp and Kp.

(b) For different presentations § = wa; the Eg may be not propor-
tional. For example we have:

(1.72)  Eij:=T,E; = —E;E; + ¢; 'EiEj if aji = -1.

1.8. An algebra P over C on generators z,... ,z; and defining rela-
tions z;z; = Ajjzjz; for i > j where \jj; € CX, 4,5 =1,... ,k, is called
a quasipolynomial algebra. One may introduce a N¥—gradation in P
by letting degz; = (6;1,...,68;%). It is clear that P is spanned over C
by monomials z7* ...z}*. Moreover, they form a basis of P. This fol-
lows by looking at the representation 7 of P in the polynomial algebra
C[t1,... ,t] defined by

i-1
LENTEIRVLIEN| [ [PV LI s v Ve S i
j=1

As usual, this implies that P has no zero divisors. Furthermore, let A be
a commutative algebra on generators Kj,..., K, with no zero divisors.
Let P4 = A ®c P with multiplication given by K;z; = u;;z; K;, pij €
C*. We may extend the N¥F—gradation from P to P4 by letting deg K; =
0. This gives P4 a structure of a free left A-module with basis £™ :=
2P ...z, m € Zk . Tt follows that P4 has no zero divisors as well.
Hence Gri/ and Grld, have no zero divisors by Proposition 1.7d, and we
deduce the following corollary.

COROLLARY 1.8. The algebras U and U, have no zero divisors. [

Let A be an algebra with no zero divisors, let Z be the center of A
and Q(Z) the quotient field of Z, and let Q(A4) = Q(Z) ®z A. We shall
call the algebra A integrally closed if for any subring B of Q(A) such
that AC B C 271 A for some z € Z, z # 0, we have B = A. It is clear
that for a commutative algebra A this definition of an integrally closed
algebra implies the usual one.
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PrOPOSITION 1.8. Let A be an integrally closed algebra with no zero
divisors. Let C be an S-filtered algebra such that Co = A and Gr C =
p,. Assume that each generator z; of P C P4 has a preimage z; in C
such that z¢ lies in the center Z of C. Then the algebra C is integrally

closed.

PROOF: Let 2 € Z, z # 0, and let B be a subalgebra of z~'C containing
C. Let ¢ € B, so that y := z¢p € C. We can write:

y = az” + lower degree terms, where a € A, h € Zi,
z = bzx" + lower degree terms, where b€ A, r € Zi.
Pick N € Z such that N¢ > h; for each 7 and set
t=(N—hy,..., NE—h)€Zk.
Since z"z! = Azt A € C*, we get:

z
Y := A" lyz! = a2zt + lower degree terms = A~ lzpz'.
v

Letting v = A~ 19z’ € B, we get Y = zv. For each m € N we have:
(1.8.1) Y™ = 2™ (2v™) € 2™ 1C.

Since, by the assumption, 2! € Z, we get:

(1.8.2) Y™ = a™z™3+) 4 Jower degree terms.

But 2/ = z7~!1(b%" + lower degree terms) = bz ~1Z" + lower degree
terms. Hence we have by induction:

(1.8.3) ™1 = A, 07" 12(Mm=Dr 4 Jower degree terms, where ),,, € C*.

Since Gr,C is a free A—-module of rank 1 generated by z*, s € 2k we
deduce from (1.8.1), (1.8.2) and (1.8.3) that b™~! divides a™ for all
m € N. It follows that the subalgebra of Q(A) generated by A and
a/b is contained in b~!A. Since A is integrally closed, we deduce that b
divides a.

Note now that y™ = 2™~ 1(z¢™), where 2™ € C. It follows that
mh; > (m — 1)r; for all m € N and all : = 1,... ,k. Hence h; >
r; for all 1.

Suppose now that B # C and choose ¢ € B\C such that y = 2o € C
has minimal possible degree. Let ¢ = a/b, s = h — r and consider the

element

o' = —plezt,
where 4 € C* is taken from z* = uz"z’. But ¢’ € B\C and d(z¢') =
d(y — p~lezz®) < degy, a contradiction. O

An immediate corollary of Propositions 1.8 and 1.7d is
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THEOREM 1.8. The algebra U, is integrally closed. |

1.9. Let Q3 be the group of all homomorphisms of Q to the group
{£1}. Given A € P and é§ € Q3, define the Verma module of type
8, M®()) over U (which is a vector space over C(g)) as the (unique)
U-module having a vector vy such that

Utvy =0, K;vy = 5(01.')(1('\'0")0)\,

and the vectors
F"v; (k € Z]_:_,)

form a basis of M¥()).
Such a module exists due to Proposition 1.7c. Any quotient V of

M?(}), called a highest weight Z/-module, admits a weight space de-
composition.

V = ®neqy Va, where V;, = {v € V|K;v = 6(a;)q()“"|°"')v}.

We denote the (unique) irreducible quotient of M®(X) by L!(}) =
ME(X)/J3(N).

Given a highest weight module V' over the algebra U, let vy be its
highest weight vector and consider its & 4.—submodule (which is an A-
module) V4 = U 4vy. This gives rise to a Uj—module V) = V4 /(q—1)V4.
The K; act on Vi as é(a;), hence by Proposition 1.5 the module V;
becomes a highest weight module with highest weight vector vy over
U(g(aij)), the enveloping algebra of the simple finite-dimensional Lie
algebra g(a;;) over C associated to the Cartan matrix (a;;).

LEMMA 1.9. [12]. Let V be a Verma module of type é or an irreducible

highest weight module with highest weight A\ over U and let n € Q.
Then

dime(y) Vy = dime(Vy),. O
Given a = a(q) € C(q), let a = a(¢g~?!). A C-bilinear form H on a
vector space V over C(g) with values in C(q) is called Hermitian if
H(au,v) = aH(u,v), H(u,av) = aH(u,v),and
H(u,v) =m, a € C(q), u,veV.

The U-module M%(X) carries a unique Hermitian form H, called the
contravariant Hermitian form, such that

(1.9.2)
H(vx,vx) = 1 and H(gu,v) = H(u,w(g)v) for g € U, u,v € M°(}).

(1.9.1)
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We have: HM®(\),, M¥(X),) = 0if p # v, and Ker H = J(A).
Denote by H, the restriction of H to M4(A),, n€ Q4+, and let detf,(,\)
Jenote the determinant of the matrix of H, in the basis consisting of
clements F*vy, k € Par (n). Here for n € Q we denote by Par (n) the
et of all k € Zf such that )", kiB8; = 1. Also, for given § € Q3, we
view Kp as a function on P defined by Ks()) = 6(8)q*®); any ¢ € U°
thereby becomes a function on P with values in C(q), which we denote
5(X).

by(;Piann)ﬂ € R* and r € N, let T, g = {X € P|2(A +p|B) = r(B|B)}, and
let T% = {) € Trpl2(A + plv) # m(7ly) for all y € R*\{B} and m €N
such that my < rB3}. Note that if ¢ € U° and ¢ vanishes on Troﬁ then ¢
vanishes on T;.5.

PrOPOSITION 1.9.

(a) det, = HﬂeR+ HmeN([m]da [Kp;(p|B) — mf(ﬁlﬂ)])lpar("—mp)l-
b)IfX € T%, r € N,B € R*, then M®()\) contains a submodule
isomorphic to M®(X — ).

ProoF: Let A € T3, r € N, B € R*. By Shapovalov’s formula [22] for
the determinant of the contravariant form of the U(g(A))-module M ()
it follows that dimg¢(L%(A)1)rp < dimg(M4(A)1)rs. Hence by Lemma
1.9 we have: dimg(g) L*(A)rp < dimg(g) M?(X),5. It follows that det,s
is divisible by [K5; (p|8)—5(B|8)] and that there exists a non—zero vector
v€ M¥(X),5 N J%(X), such that &4+ v = 0, provided that A € T,‘.)p. Since
U~ has no zero divisors it follows that v generates a submodule of M4())
isomorphic to M®(X — r3) which lies in J®()), proving (b). Hence det,,
is divisible by [Kg; (p|8) — 5(8|B)]Fa(1=rA)l. Thus, det, is divisble by
the right-hand side of the formula in question.

To complete the proof of (a) we calculate the leading term of det,.
Using formula (1.3.1) it is easy to see (as in [22]) that it equals to

H H ([m]dﬂ!Kg‘)|Par(ﬂ-mﬁ)l—lPar(n—(m+1)p)|
pER+ meN

which proves (a). O

Let ¢ € C*. Given a homomorphism A : U2 — C, we define the Verma
module M,()\) over U, as a vector space over C with an action of U,
having a vector vy such that vy = 0, uvy = A(u)vy for u € U2 and the
vectors F*v), (k € ZY) form a basis of M()). Such a module exists due
to Proposition 1.7c. The module M, ()\) admits a Q+-gradation M, () =
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®neQy Me(A)y, where M,()),, is the linear span over C of the F*v, with
k € Par(g). Note that M (), C {v € Mc(A)|Kiv = A(K;)e~(laidy},
and that this inclusion is an equality if € is not a root of 1. Note also
that M1(V)/(g — €)M'()) = M.(Ac), where A¢(K;) = eQlew),

Let now |¢| = 1. The contravariant Hermitian form H on M,(}) is
defined as above (see (1.9.1) and (1.9.2)) (H is then a usual Hermitian
form). We define similarly det, ¢(A)(7 € Q+) as the determinant of H
on M,()), in the basis F*vy, k € Par(n). Proposition 1.9a gives us
immediately the following formula (we assume that €24 # 1 for all 4):

(1.9.3)

emd, — E—md, |Par(n—mp)|
deto,c(\) = [ I ( )

peR+ mEN (% — =)
x (A(K)eP1=3B18) _ )(K 5)~1¢= P18+ 3(B18))[Par(n-mp)|

We define the U,—module L.()) as the (unique) quotient of M,(A) by
the maximal Q;-graded submodule J¢(A); this module is irreducible.
Formula (1.9.3) implies the following

COROLLARY 1.9. Let A(K;) = ¢l i =1,... n, where A € C®;z P
and ¢ is not a root of 1. Then M. (1) is an irreducible U.—module if and
only if 2(A + p|B) # m(B|B) for allme N, € R*. O

REMARK 1.9. Using the usual argument (see [5] or [8]) one can
show that Proposition 1.9b holds for all A € T,5 and derive the usual
conditions for inclusions of Verma modules over & and occurence of
L3(p) in M%(X) (cf. [1]). One can also prove similar results for the
U.—modules M, ()) provided that € is not a root of 1.

1.10. Let a;; = —a. Introduce the following notation:
Eji...i =TE; if a=1,2o0r 3,

a times
Eji = (T,'T,')G-IE,' if a=2or3,
Eij =T;T,Ej ifa=2, Ey;j = T;T;T;E; if a = 3,
Ejii = T,T’E, and E,',',-j = (7}7})2EJ ifa=3.

Then one has the following important identities:

a
(L101) BB =Y gePep L pleh)
k2=;) 1...12 3

k times
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a

(s) _ (a—k)s+k ~(2—k)
1.10.2) E;E; = Eqi E;"VE: iy
( el Jh times

1103)  EE = ¢ BB + ¢ Ef + [814is(a), if aji = -1,

where A;;(g) € U has no poles except for ¢ = 0 and ¢ = ¢, where €% =1
forj€Z, |jl <s.

All these formulas can be deduced directly from [13] or proved in a
similar way (by induction).

§2. The center of U.

2.1. Let Z be the center of U (i.e. the set of elements commuting with
all elements of /). Since Z, in particular, commutes with °, it is clear
(in view of Proposition 1.7¢), that any element of Z is of the form

(2.1.1) Z = E Z F*py .E", where ¢, € U°.
n€EQ+ k,r€Par(n)

As usual, the map 2z —— ¢g,0 is a homomorphism h : Z — U°, called
the Harish-Chandra homomorphism.

Fix an element z € Z of the form (2.1.1). It is clear that z € Z if
and only if z acts as a scalar equal to ¢go(A) on each Verma module
M%(X), A € P, § € Q3. Denote by ¢, the matrix (¢k,m)k,mePar(n)- We
will compute the matrix ¢, by induction on 7 € Q4. Denote by Gg(/\)
the matrix of the operator 3, e par(y) F¥pr . E™ on M%()), in the basis

F*v) (s € Par(n)). By the inductive assumption, we know G for vy < 7.
We obviously have

(2.12) G, = ¢ H,.

Hence the fact that z acts as a scalar p§y(A) on M%(X), can be written
as follows:

(2.13) $nHy+ Y Gy = ool

v<n

This gives us an effective way for calculating the coefficients @i m, of the
series (2.1.1), given ¢ 0. By construction, the series z commutes with
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the F; and K;. Since z acts as a scalar also on the dual to a Verma
module, we see that z commutes also with the E;, and hence with U.
Denote by S the set of all products of elements [Kg; (p|8) — 3(8|8)], 8 €
R*, m € N. In view of Proposition 1.9a, we have:

(2.1.4) orm €S™UC.

Note also that we have proved that h is an injective homomorphism.

2.2. Define the homomorphism v : U° — U°® by yK; = ¢;K;. Then
we have:

(2.2.1) (Y9)(A) = p(A+p), A€ P.

Given ¢ € U, denote by z, the series (2.1.1) with pgo = ¥(p) con-
structed above.

Note that the group Q% acts on U° by

6Ks = 6(B)Kp, 6 €Q3, BEQ.

We thus have an action of the group W x Q% on U°. Denote by W
the subgroup of this group generated by all subgroups cWo~!, o € Q5.
Note that in the simply laced case, Q% is canonically isomorphic to P/2P,
and denoting by Q the image of Q, we have: W = W x Q.

PROPOSITION 2.2. (a) Given poo € U°, all coefficients prm of the
corresponding series z lie in U° if and only if

(222) 7Y (po0) €U = {9 € Ulwip = $,w € W}.
Moreover, we then have:
(2.2.3) deg ¢r,m + min(|k|,|m|) < deg ¥o,0-

(b) We have: )
v Yoh: ZSUV,
and the map ¢ — z, establishes the inverse isomorphism.

PROOF: It is easy to see that condition (2.2.2) is equivalent to

(2:24) A€ Trp implies po(A — rB) = pho(A)
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for every §€Q5 r€Nand 8 € RY.

Suppose Now that all coefficients i ;n of the series z lie in &«°. Then
; is defined on every Verma module M?()) and acts on it as the scalar
(pgo(’\)' But by Proposition 1.9b, M%(X) D M%(X — rB) provided that
\ € Tfﬂ, hence ¢§ o(A — rB) = ‘Pg,o('\) if A € T,Pﬂ. It follows that
oho(A— rB) = ¢4 o(A) for all A € T;4, hence (2.2.2) is necessary.

Conversely, suppose that (2.2.2) holds. As has been mentioned above,
(2.24) holds for 3 € Rt and r € N. We shall prove by induction on

that the denominator of ¢ ,,» with k,m € Par(n) does not contain
factors [K 5; (p1B) — 5(BIB)]. In view of (2.1.4), this will imply the suf-
ficiency of (2.2.2) for the @i, to lie in U°, and also will complete the
proof of (b).

Let T, = {} € T512(A + ply) # m(7ly) for all ¥ € R*\{B} and
m € N such that my < 7. Let A € T4 ,; then, by Proposition 1.9,
M¥()) D Mé(X — r3) and, moreover,

(2.2.5) Me(N), NJS(A) = M*(A = 7B)y—rs.

It is clear that z coincides on V := M%(X — rf),_,s with the operator
Y Yk mePary F*¥or mE™ (and is defined on this subspace by the
inductive assumption). On the other hand, z acts on V as the scalar
¢*(A = rB), which is § 4(A) by assumption (2.2.4). Hence the matrix
B}()) == @} o(M)I — 3=, <, G5(X) is zero on V. Thus, by (2.13) and
Proposition 1.7a) we have an equality of matrix—valued functions on V:

¢S (M HJ(A) = B*()\), A€ P,

such that KerH(\) C KerB®(A) (by (2.2.5)) for A € T}, hence for
all A € T,4, and dim KerH?(A) = multiplicity of zero of det H}(X) for
A€ Ty, . Hence, using [7, Lemma 2], we see that the matrix ¢, has a
removable singularity in the hyperplane Tz, as desired.

Inequality (2.2.3) is clear by looking at degrees in (2.1.3), where we

letdegK; =1, i=1,...,n. O

2.3. Let now € € C* be not a root of 1. Then for every ¢ € UV
we denote by z, . the element z, in which ¢ is replaced by €. This
is an element of the center Z, of U,. Defining the Harish-Chandra
homomorphism h, : Z, — U2 as in 2.1 and v : U2 — U by 7. K; =
Fd‘Ki we obtain from Proposition 2.2 that y7' o h, : Z.=UW is an
isomorphism, the map ¢ —— 2, being the inverse homomorphism.
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§3. The center of i/, and the group G, when ¢ is a root of 1.

3.1. Let ¢ be a primitive £-th root of 1. Let & = £ if £ is odd and
¢ = 1L if £ is even. We shall assume that

(3.1.1) ¢ > d:= max{d:}

Then U, is the algebra over C on generators E;, F;, K; and K;! and
defining relations (1.2.1)-(1.2.5), where ¢ = €.

LEMMA 3.1. The following relations hold in U, :

(3.1.2) EYEg = ¢~ E Y| FEFy = I py Rl
(3.1.3) EYFs = F3EL, FY Eg = EgFt,
(3.1.4) K{Ey =P EKL, K5 Fy = el F KL

ProoF: It suffices to check the relations (3.1.2) and (3.1.3) for @ = o;
and S = a; since these relations for arbitrary a,# € R* follow by using
automorphisms T}; (3.1.4) follows immediately from (1.2.2). If & = o;
and f = aj, formula (3.1.3) follows from (1.3.2), formula (3.1.2) for
the E’s follows from (1.10.1) and for the F’s it follows by applying the
automorphism ¢. a

Denote by Z, the center of U, .
CoRrOLLARY 3.1. (a) All elements E%, Ff (a € R*) and K} (B € Q)
liein Z,. , ’

(b) If £ is even, then all elements EY, F: and Ké lie in Z, iff A is of
type B, (n>1). 0O

3.2. Consider the Verma module M,()) over the algebra U,. By
formula (3.1.3), we have:

Urrtvy =0, a € R*.

It follows that F vy € J(A). Let M,()) denote the quotient of M, (})
by the U.—submodule generators by all the vectors F,f,’vx, a € Rt.
We call M.()\) a diagonal U,—~module. Proposition 1.7b and formulas
(3.1.2)-(3.1.4) imply
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opOSITION 3.2. Vectors
R

F™ ... Fg:Nvx, wherem; € Z,, m;<?¢,
(3.2-1) '

orm pasis over C of the space M (). O
or

It is clear that M¢(A) is irreducible if and only if ﬁe(,\)n, n # 0,
ntains no singular vgctors, i.e. no non—zero vectors v such ghat FE;v =
< n. Let A € C®z P be such that A(Kp) = ¢}9). From

=1, L. .
% (1.9.3) and Proposition 3.2 we obtain

formula

TueoreM 3.2. The U —module M. ()) is irreducible if and only if

(3.2.2)
62(i+plﬂ)—m(ﬁ|ﬁ) #1 for all 3 € R and m € Z such that m < ¢'. O

CoroLLARY 3.2. (a) I{’\(Ké)z # 1 for all B € RY, then the U.—module
M.()) is irreducible.

(b) Theue—module_ﬁe(—p), where (—p)(Kg) = e= (718 s irreducible
provided that g2mdi £ 1 for m € Z4 such that 1 < m < ¢ and i —

1,...,n (this condition always holds in the simply laced case or if £ is
odd). O

3.3. For each a € R, let z, = E% and y, = F%; for each B8 € Q,
let zg = K;,. We shall often write z; and y; for 4, and yo,. Denote
by Z§ (resp. Z5 ) the subalgebra of Z, generated by the z4 (resp. Yo ),
@ € R*, and denote by Z§ the subalgebra generated by the z5, 8 € Q.
Let Zy be the subalgebra of Z, generated by the subalgebras Z§, Zg
and Z§. Then, by Proposition 1.6b, Zf C UZ* and hence

Zo=23 23® Z; .

It ] . C :
tis clear that ZJ is the algebra of Laurent polynomials in z; and (=
».++yn), where z; = -,

1Den(;\t,e by Par, the set of all k € Z} such that 0 < ki < £ (i =
tl’l;t.,zi ’)c:;'ni i";)r n € Q denote by Par,(n) the set of all k € Par, such

€ obtain from Proposition 1.7¢ the following

B




490 DE CONCINI AND KAC

COROLLARY 3.3. (a) The algebra Zg (resp. Z; ) is a polynomial alge-
bra in the z, (resp. y,), @ € R*.

(b) The algebra U, (resp. U, or U} ) is a free module over Z (resp.
Zy ) with basis FEK™ .. K™ E" (resp. F*, or E*), where k,r €
Par,, 0<m; <¢ 0O

Given a homomorphism A : %2 — C and a homomorphism v :
Zy; — C we construct the associated triangular U.—module H,(,\,u)
as the quotient of U, by the left ideal generated by the elements E;,
K; = MK;), K71 = AMK;)™Y, yo —v(¥e) (= 1,...,n, @ € RY). De-
note by vy the image of 1 in M.(A,v). It is clear from Corollary 3.3b,
that vectors

(3.3.1) F;: ...F;l’:v;\, where (ky,...,kn) € Pary,

form a basis of M,()\,v). Denoting by M.(\,v), the linear span of
vectors (3.3.1) with (ky,...,kn) € Pary(n), we obtain a Q4-gradation
M.\, v) = ®,M.(\,v),, consistent with the action of &} (but not
U7 ). Tt follows that if the only vector in M. (), v),, n # 0, killed by &+
is zero, then M,(),v) is irreducible.

Using formula (1.9.3) we deduce from the above remarks

LEMMA 3.3. If £ is odd and A satisfies (3.2.2), then the U.—module
M, (), v) is irreducible. O

REMARK 3.3. (a) The converse to the last statement is false (in
contrast to diagonal modules).
(b) M.(X) = M(),0) if £ is odd.

We use triangular modules to prove the following

ProPOSITION 3.3. (a) Let @ = w'ay € RY and let E!, = T, E;, F. =
wE'. Then 2!, = E! lies in Z$ and y, = F'* lies in Z; .

(b) U NZ, = 2%,

(c) The subalgebra Z is invariant with respect to the automorphisms
T;.

Proor: It suffices to prove a) for y,, as the case of z/, follows by apply-
ing w. Recall that by Proposition 1.6b, y/, € . Hence by Corollary
3.3b, we have:

(3.3.2) v = Z ap F*, where a; € Z; .
k€Par,
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Choose A such that M(X,v) is irreducible for all v (see Lemma 3.3).
Since, by Schur’s lemma, all elements of Z act as scalars on M, (), v),
applying both sides of (3.3.2) to vy we obtain:

v(yo)I = z v(ap)F*.

k€Par,

By (3.3.1) it follows that y;, = aq € Zg, proving (a). The proof of (b)
is similar.
Finally, we prove (c). We have from the definition (1.6.1)-(1.6.3):

(3:33) Tizi = (-1)'ziyi, Tiyi = (=1)%2; ey,

(334) T,'Zp = Z2r,B-

Itisknown that for every 7 there exists a reduced expression r;, Ty oo Tin
of the longest element of W such that ¢; = i. Then we have:

T s
R - {ail’rilaig)rilrigais) LR )ril R )rl'n_lain})

and
R+\{a,~} = {a,-,, TigQigy oo yTigy . .T,'n_la,'n}.

Since Ef , (T, Ei,), ... ,(Ty, - . Ti,_, E;, )t liein Zg, we obtain, by Propo-
sition 1.6b that thelr images under T; also lie in Zj. a

3.4. Let from now on £ be an odd integer greater than d (see (3.1.1)).

For each o € R define derivations eo, f, and kj, of the algebra U as
follows:

(341)
o(v) = [E¢/[fa. ! ul, falu) = [Fa/[la.! 4], Kiolu) = [K$o/[0a,!, ).

Lebe; =, fo = oy, B2 ky,. Note that if @ = wa;, then
(3.4.2) ea = TwesTo!, fo=TufiTSL

A remarkable fact is that the derivations eq, f, and k!, can be pushed
down to U, where ¢ is a primitive £~th root of 1, £ odd (if £ is even one
should replace ¢ by ¢ in (3.4.1)). For k., this is clear. Due to (3.4.2) it
suffices to check this for the e; and f;. In the latter case this is clear from
the formulas (1.3.2), (1.3.3), and (1.10.1) and the formula obtained from
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(1.10.1) by applying w. In fact, using them we obtain explicit formulas
for the derivations e;, f; and kio = c5tk’ . Here and further we let

Ca =¢de _¢7de fora € R+, Cj = Caj-

We have (c¢f. [13] where analogous derivations are considered in the
“restricted” case):

8ije " d; 1,.—di\ pt-1
(3.4.3) ei(Fy) = 'J[ (Kie® — K7 'e%)E{™,
(3.44) e,-(KJ?“) — (ailey)ef E‘K*l

T laule )t
(3.4.5) C.(E ) - Z [—au] (E(S)E E(l -3) E(t s)E E(s))

(«1B)

(3.4.6) ko(Ea) = 3 1o520 Fer

(We have specialized ¢ = € in (3.4.5)). Indeed (3.4.3, 4 and 6) are easy
using (1.3.2), (1.3.3) and the formula

[€=1)1=£/(e -~ 1)L

Formula (3.4.5) is obtained by taking the difference of (1.10.1) and
(1.10.2) and specializing ¢ = €. Formulas for the f; follow immediately
from (3.4.3)-(3.4.5) by applying the automorphism ¢:

peip™' = fi, pEi = F;, pK; = K;, pe =€ 1.

Denote by § (resp. g%, or §~) the subalgebra over Z, of the Lie
algebra of all derivations of the algebra U, generated by all the ey, k+ta
and f, (resp. eq, Or fo), @ € RY.

LEMMA 3.4. The Lie algebra § is normalized by the T;.
Proor: This follows from (3.4.2) and

(3.4.7) TieiT7 = —zifi —yikl. O
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oSITION 3.4. The subalgebra Zo is invariant with respect to g.

ngP ) el .
prOOF" Trivially, 82 C Z. and §%Zy C U;. Hence, by Proposition
3.3b:
(348) ot Z3 C Zj.
purthermore, We have by (3.4.4) and (3.4.6):
diaicsil
. :.l‘:l = ot et At 3 :":1 .
(3,4.9) e‘(zJ )=F 5d; z; .
(«|B)
k xr = TAZA.
(3.4.10) o(5a) = (515,727
Now we show that
(3.411) ea(yﬁ) = ZO~

Indeed, if & = 3, (3.4.11) follows from

(3.4.12) &5 (o) == (Ze — zz et

The latter formula is clear if & = oy, by (1.3.4); for general a € Rt it is
deduced by applying Ty,. Finally, if o # 3, then, using (3.4.2), we may
assume that o = «;. We have:

T.-e,-(yg) = T‘,’C,”Ti_lT'i(yﬁ) = —’(zifi =+ yik;)ﬂ(yﬁ)
by (3.4.7). Since Ti(ys) € Zg and, by (3.4.8), fiZ5 C Zq , the proof of

(3.4.11) is completed. The inclusion fa(zp) € Zo follows from (3.4.11)
by applying w. O

_For v € R* we shall often let e_y = fy, 8-y = - Proposition 3.4
Implies the following

CoroLLARY 3.4. We have for o, € R:

€a(2p)|z,=0~er =0 ifa+ B #0, ea(2p)|z,=0er = 0. O
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The following useful formula follows from (3.4.9) by applying the T;:

(3.4.13) ea(28) = ((!ﬁ); z23Tq, * € R, B € Q.

We deduce immediately from (1.10.3) one more formula (in which we
put z;; = Ef;):

d; ¢ 1,
(3 4. 14) a— (—) e,(:c,) = CJ(-T;) = 2 313_1 + z;;, if aj; = -1.

REMARK 3.4. Note that in coordinates T, = ctz, and z; all our
formulas for the derivations e, fo and k4, are independent of £. We
can show that indeed the action of the e4(a € R) on Zj is independent
of £ in these coordinates [2] (for the k. this is clear by (3.4.10)).

3.5. Denote by Zy the algebra of all formal power series in the
Zo (® € R), z; and z7! (i = 1,...,n) which converge to a holomorphic
function for all complex values of the Zo and all non-zero complex values
of the z;. Let U. = Zo ®z, Ue, Z. = 7o ®z, Ze. It is clear by (3 4.10)

that the series exptkq, t € C, converges to an automorphism of ..

PROPOSITION 3.5. The series exp teg, te C, a € R, converges to an
automorphism (over C) of the algebra U, .

PRrROOF: Due to the automorphisms T; it suffices to show that the series
expte; when applied to the K, F; and E; converges to an element of

the algebra #,. We obtain from (3.4.4):
(3.5.1) (expte;)Kp = e'(("’"ﬂ)cfl(""l“‘)‘)""Kp.
Furthermore, using (3.4.3), we obtain:

ef (Fr) = (=1)" 7 2(cf /0" 2} (e Ki + (- 1)"e“ KT DE™,

It follows that:

(3.5.2)
e_'(cflt)zi -1 4 et(cf/t)z" -1 _, -1\ pt-1
(exp te')FJ - F:’—&"J( c?z‘ ed' K'+T€ d'Ki )E' g
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Finally, define endomorphisms ¢, of U for s =1,... ,£—1 by: ¢,(u) =
Efu uE{*. Then (3.4.5) can be rewritten as follows

aiy

ei(E5) = 5 Z[ a"]([s]a.'[l-s]a.') L9y — i) Ej

Since ¥; and ¥; commute, it suffices to show that (exp tys)u converges
to an element of U if u € U.. We have:

(expt‘(/)s)u — ZtrElrs r([ s) Z ((t.’l},)mt

mlé 4+ r)!
One deduces from (3.4.12 and 13) the following formulas for the action
on Zo:
—ctiz; Ltz
_ e | _p 5t —1
(3.5.3)  (exptei)y; = y; — bijc; u(zie_x-_ % ICT)’
(3.5.4) (exptei)zg = e‘(("’i/ﬁ)cf/(a-‘/“-‘)“‘zp.

3.6. Recall that we have: U, DO Z, D Zy, where Z, is the center of the
algebra U,, Zy = C[zo(a € R);2;, 27 (i=1,...,n)], and that U, is a
free module over Zg of rank £2V+" (Corollary 3.3b).

Since U, is a finitely generated module over Zy, it follows [see e.g. [15,
(3.5)]) that Z. is as well, hence Z, is integral over Z; and it is a finitely
generated algebra.

As usual, for a finitely generated algebra R over C, we denote by
Spec R the affine algebraic variety of algebra homomorphisms R — C.
For example, Spec Zy ~ C?N x C*"; denote by H the (n—dimensional)
subvariety of Spec Zy consisting of the points such that zo = 0 for all
@ € R and by Hy the subset of H consisting of the points such that
22 # 1 for all @ € R.

Denote by G the subgroup of the automorphism group of the alge-
bra ue generated by all automorphlsms expte, and exptk,, a € R.
This group leaves invariant Z, and Zg (by Proposition 3.4), hence acts

by holomorphic transformations on the algebraic varieties Spec Z, and
Spec Z,.
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REMARK 3.6. The action of G on Spec Zp may be viewed as a “quan-
tization” of the coadjoint action, H being a “quantization” of a Cartan
subalgebra and Hj being the set of regular elements. Note also, that by
Proposition 3.3¢c, the T; act on Spec Zp. This action leaves H invariant
and induces the action of W on H. Note finally that, by Remark 3.4,
the action of G on Spec Z; in coordinates T,, 2; is independent of £.

LEMMA 3.6. The set GHy contains a non-empty open (in metric topol-
ogy) subset of Spec Z,.

PRrRoOOF: Consider the (holomorphic) map ¥ : C2N x Hy — Spec Z,
given by ¥((ta)aer,u) = ([IoereXPtata)u. It follows from formula
(3.4.10) and Corollary 3.4 that the differential d¥ is non—-degenerate at
all points (0,u), u € Hy. The lemma follows. O

3.7. Denote by Rep U, the set of all (non—zero) irreducible finite-
dimensional representations (up to equivalence) of the algebra U, over
C. Then we have a sequence of canonical maps:

(3.7.1) Rep U, X Spec Z. — Spec Z.

The map 7 is induced by the inclusion Zy C Z,. Since Z, is integral over
Zy, T is a finite and hence surjective morphism. The map X is defined
as follows. By Schur’s lemma, for 7 € Rep U, we have

w(u) = xx(u)I, u € Z,, where x»(u) € C,

and we let X (7) = xx.

Given x € Spec Z., let IX denote the ideal of U, generated by the
kernel of the homomorphism x : Z, — C. Let UX = U./IX. Since
U, has no zero divisors (Corollary 1.8b), it is a torsion free (finitely
generated) module over Z,, hence (see e.g. [15, (3.10)]) &X # 0. Hence
the map X is surjective.

Since U, has no zero divisors, the same is true for Z, and we can
consider its quotient field Q(Z.). Let Q(U,) = Q(Z:)®z U, ; this algebra
is finite-dimensional over the field Q(Z,) and has no zero divisors. Hence
Q(U.) is a division algebra over its center Q(Z,), hence it is the quotient
algebra of U, . It follows that I/, is a C-subalgebra of a full matrix algebra
Mat,, (F) over some finite extension F of Q(Z, ), such that FQq(z,)Ue =
Mat,, (F), for some m € N (see e.g. [16]). Then m is called the degree
of U.. Hence we may consider the characteristic polynomial of z € U,:

det(A—z) =A™ — (tr 2)A™ "1 4 ... 4 (-1)" det 2,
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its norm N (z) = det z and the bilinear form (z,y) = tr zy.

Being the center of an integrally closed algebra U, (see Theorem 1.8),
7, is integrally closed. Hence all coefficients of the characterjstic poly-
pomial of £ € U lie in Z,. The determinants det.((u.-,uj);"‘j___l, where
uy,.-- »Um2 € Ue, generate a non-zero ideal of Z, called the discriminant
ideal of Ue. The set D C Spec Z, of zeros of the discriminant ideal is a
well-defined closed (proper) subvariety of Spec Z,, called the discrim-

inant subvariety. The following facts are special cases of well-known
general results:

LEMMA 3.7. (a) UX is isomorphic to Mat,,,(C) if and only if x ¢ D.
(b) If x € D, then dimc UX > m?, but the dimension of every irre-
ducible representation of UX is less than m.

ProOF: Let ¢ : Z, — C be a point of Spec Z, outside D. Then
there exist elements uy, ..., u,2 in U, such that o(det(u;,u;)) # 0. We
have: D := det((ui,u;)) € Z,; let d = (D). Consider the algebra
A:=U: ®, C. We claim that the elements %; := u; ® 1 form a basis of
A over C. Indeed, the u; being linearly independent over Q(Z.), form a
basis of Q(U.) over Q(Z.). Let {u'} be the dual basis with respect to
the trace form. Then Du* € U, for each i. For u € U, we have:

Da = Z(Du, u')u; = E(U,Dui)u;.
Passing to A we get:

du = Z o((u, Du'))a;.

Thus, the %; span A over C and det((u;,%;)) # 0. Hence A is a m?-
dimensional semisimple algebra over C. On the other hand, each element
of U, satisfies a polynomial of degree m with coefficients in Z,, hence each
element of A satisfies a polynomial of degree m with complex ccefficients.
It follows that A = Mat,,,(C) (since m?2 = n? +n3 + ..., n; > 0 and
n+n3+ ... < m imply that m = n; for some 7).

Let now p : U, — Mat,,(C) be an irreducible representation and let
¢ = X(p) : Z. — C be the corresponding element of Spec Z,. Let
Ul,...,um2 be elements of U, such that p(u;) form a basis of Mat,,(C)
over C, and let D = det((u;, u;)). Then (D) = det(tr p(u;)p(u;)) # 0,
hence ¢ ¢D.
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In order to prove (b) notice that since each element of U, satisfies a
polynomial of degree m with coefficients in Z,, every irreducible repre-
sentation of /, has dimension < m. This and (a) give the second part
of (b), while the first part follows from the fact that U/, is a torsion free
rank m? module over Z,. a

3.8. Consider a finite-dimensional irreducible representation = of U,
in a complex vector space V. Since Zy acts by scalar operators on V,
7 extends in an obvious way to U.. Given g € G, denote by 79 the
“twisted” (irreducible) representation of &, in V defined by

7 (u) = n(gu), u EU..
Note that

Xx9 = Xx 94, gGG'

We call the representation = diagonalizable (resp. triangulizable) if there
exists g € G such that 79 is a diagonal (resp. triangular) representation.

Denote by € the set of all A € Spec Z, such that (7 - X)~1) consists
of £" irreducible diagonalizable representations of (maximal) dimension
¢N. Note that by Corollary 3.2a it follows Hy C Q. An immediate
corollary of Lemma 3.6 and Corollary 3.2a is

LEMMA 3.8. Q contains a non-empty open (in metric topology) subset
of Spec Zy. O

Since, due to Corollary 3.3b:
(381) dimq(zo) Q(u,) = £2N+n,
Lemma 3.8 gives us immediately

(3.8.2) dimQ(zo) Q(Z;) = fn,

(3.8.3) m? := dimg(z,) QU,) = £V

The following theorem summarizes the obtained results.

THEOREM 3.8. Let £ be an odd integer, £ > max;{d;} and let ¢ be a
primitive {—th root of 1.

(a) Spec Z. is a normal affine algebraic variety and the map 7 :
Spec Z, — Spec Z, is finite (surjective) of degree £".
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(b) If x € Spec Z:\D (where the discriminant D is a closed proper
subvariety), then X ~1(x) consists of a single irreducible representation
of U. of dimension €N . If x € D, then X ~'(x) consists of a finite number
of irreducible representations of U, of dimension less than &, 0

REMARK 3.8. Let the Cartan matrix A be of type B,, n > 1. Let
{ be a positive even integer, and let, as before, £’ = £/2. Then elements
Ef,’,Fé’ (e € RY) and Kf,' (B € Q) lie in the center Z, of the algebra
U, (by Lemma 3.1). Denote by Z, the subalgebra generated by all these
elements. Then all the results proved above still hold if £ is replaced by
¢'. In particular:

(384) dimQ(Z‘) Q(u,_.) — £’2N, dimQ(zo) Q(Ze) = eln.

39. Given ¢ € UV | let o0 = p(e¥ K1,...,e%" K,). Furthermore,
for each pair, k,r € Par, construct elements ¢ ,.. by formula (2.1.3),
in which ¢ is replaced by €. By formula (1.9.3) and the argument prov-
ing Proposition 2.2 (in which Verma modules are replaced by diagonal
modules), we see that ¢ ... € U2. We let

k
Zpe = E F gok,,-;eEr eEU..
k,r€Par,

LEMMA 3.9. 2, € Z..

ProOF: Note that the intersection of kernels of all triangular modules
is M := )" cp+ Talde. Since, by the construction, z,. acts on each
triangular module as a scalar, we obtain: [z, ., F;] € M. It follows,
using Corollary 3.3b, and commutation relations (1.2.1)—(1.2.3), that

(206, F;] = 0. Since w(zpe) = zp,e (see §2.1), we obtain that also
[Zv,eaEi] =0 d

Thus, we have an injective homomorphism I,IEOW — Z. defined by
P — z<p,e-

§4. The example of &/ and U, of type A;.

4.1. We consider here the simplest example, that of the quantum
algebra U, associated to the matrix (2), which first appeared in the
work of Kulish-Reshetikhin and Sklyanin. This is a Q(q)-algebra on
generators E, F, K and K~! and defining relations

(4.1.1) KK~ '=1, KEK™! = ¢’E, KFK~! = ¢7?F,
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(4.1.2) EF-FE=(K-K™Y/(g—-q¢7").
The center Z of & contains the well-known element
Kq+K—lq-l
4.1.3 c= + FFE.
(4.13) (g—9q71)?

Note that ¢ = z,,, where ¢ = (K + K~1)/(g—q~")? (see § 2.2). Since ¢
generates U°Y | we deduce that c generates Z.

It is well-known that all finite—dimensional irreducible representations
over Q(q) of U are equivalent to representations 7¥, n € Z,, of dimen-

sion n + 1, which in some basis vy, ..., v, are given as follows (we let
vo1 =0 =vp41):
(4.14)

12 (K)v; = £¢" Yv;, 7E(E)v; = [n—j+1]vj_1, X (F)v; = [j+1]vj41.

These facts still hold for the specialization of ¢ to any complex number
different from 0 and a root of 1.

4.2. Let now £ > 2 be an integer, and let, as before ¢ = £ if £ is odd
and ¢ = £/2 if £ is even. Let ¢ be a primitive £’th root of 1, and let
¢’ = ¢if £is odd and = €2 if £ is even. Denote by U, the algebra over C
on generators E, F, K and K~! and defining relations (4.1.4), (4.1.2)
where ¢ is replaced by ¢. Let Zp be the subalgebra of the center Z,
generated by z = EY, y = F, z = K* and 2~!. We have by (3.8.2),
(3.8.3) and (3.8.4):

(4.2.1) dimg(z,) QU.) = €2, dimg(z,) Q(Z,) = ¢

Note that the norm of an element f(K) € U° over Q(Z,) can be calcu-
lated as follows:

-1
(4.2.3) N(f(K)) = ] f(e" K).
j=0
We also have:
(4.2.4) N(E) = (-1)**'z, N(F) = (-1)¢'*1y.

Denote again by ¢ the element of Z, given by formula (4.1.3) where ¢ is
replaced by €. Taking norm of both sides of the equality
._KetK =lg=1
(e —€g~1)?

= FE,
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tain:
we 002 s Kee + K~ le~1¢'~i
429 [le-"G—ey ==

The eft-hand side of (4.2.5) is of the form:
Ct' 4 alc"-l +...4+ap_1c+ a,

where, clearly, a; € C for i = 1,...,¢ —1,and
o= (D= e 5,
Hence we can rewrite (4.2.5) in either of the following two forms, .
where c;-h e C: |
-1

=1
(4.2.6+) H (c— c;t) =zy+ (—1)‘+1u
j=0

(e — e 1)2¢"

In order to calculate the constants c;-t (¢), consider the representations
%, of U, over C defined as follows. If £ is odd (resp. even), W,zf’e (resp.
xs,})u) is defined for each n = 0,1,... ,£ — 1 by formulas (4.1.4) for rE
(resp. ), where ¢ is replaced by e and 0 < j < n (resp. 0 < j < nif
n<land0< j<n—¢ifn>7).

The proof of the following lemma is standard.

LEMMA 4.2. (a) Representations w,:f:’e form a complete non-redundant
list of all inite—dimensional irreducible representations of U, over C such
that:c:y:O, 22: 1.

(b) 7£,(c) = (£1)*cn(€), where

€n+l +6—n—1
(42.7) cn(e) = (e —e1)? .0

(4(;0mparing Lemma 4.2 with (4.2.64), we obtain an explicit form of
264):

p 242142
J_l;[o(c +¢;(0) = 2y + . gmryar f L8 0dd,
(4.2.8i)
T +2-1F2
H (c— cj(e)) =zy— z___z__iF__ if £ is even.
j=o0 (6 _e—l)l
j even

(odd)

o
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Finally, Z is generated by Zo and Z;. Indeed, if z € Z,, then
z = En)O no Whel‘e Zn = Yo FropB*" 20 = Zk>0 F*n g EF,
Pk, Yr € Ilo and z¥ € Z,. Since :ft commute with K, z = 0 unless n
is a multlple of ¢. Hence Z, is generated by z,y and central elements of
the form 3,5, Frp EF = Lise F¥p E* + (element from Z;). Noting
that Z; is generated by ¢, we are done. (An alternative proof: due to
Section 5.3 it suffices to show that Spec Z! is normal, which is the case
since this is a hypersurface, non-singular in codimension 1.)

We can state the results obtained in the A; case in the following form:

THEOREM 4.2. Let U, be the quantum group of type A, at a primitive
£’th root of unity €, £ > 2. Let £' = £ (resp. £/2) if £ is odd (resp. even).
Then:

(a) The center Z, of U, is generated by the elements r,y,z,2~! and
¢ with defining relations 2z=! = 1 and (4.2.8;) (or (4.2.8-)).

(b) Z. is integral over the subalgebra Z, = C[z,y, z][z7}].

() dimg(z,) QWUe) = €2, dimg(z,) Q(Z.) = ¢

(d) Spec Z, is a 3—-dimensional normal affine algebraic variety with
the following singular points given in coordinates (z,y, z, ¢):

= (0,0,£1,£c;(¢)) for j =0,1,... ,£— 2 if £ is odd,
a;j = (0,0,(—=1),¢c;(¢)) for j = 0,1,... ,£—2, j # € —1if £ is even.

(e) The map X : Rep U. — Spec Z, is surjective and X ~(a) is a
single representation of dimension ¢ if and only if a is a non-singular
pomt of Spec Z.. Furthermore X~ 1(a:‘:) consists of two representations

and 7rt _j—2, of dimensions j+1 and £—j—1if ¢ is odd, and X~ 1(aj)

consxsts of two representations 7r( Y and 1r( ) ¢ of dimensions j + 1
and ¢/ —j—1 (resp. j— €' +1 andl j—l) Jf] < (resp. 3 > ¢)if¢
iseven. [

REMARK 4.2. (a) Since e(c) =0 = f(c), it follows from (4.2.8) that
the polynomial

P=(-1)"*(e—e )%y 24271

is fixed by G. Moreover, Z§ is generated by P. Denote by @, the
hypersurface P = a, a € C, in Spec Zj. It is easy to show that O, is a
G-orbit if a # £2, that points (0,0,%1) are fixed and the complements
to them in O4, are G-orbits. Hence every irreducible representations
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of Ue of type A, is triangulizable, and up to the action of G, the only
nOn_diagonalizable representations are those corresponding to the points
(0, 1,41) of Spec Zo.

(b) Every ¢'—dimensional irreducible representation of . of type A;
can be written in some basis vg,v1,...,ve—1 in the following form, for
some A € CX, a,beC:

va :/\e'zjvj, ij = Vj41 (] = 0,... ,el—2), Fuvp_, = b’vo,

(Ael™d — A" led—1)(ed —g7Y) _
Ev; = ( e —e0)e +ab)vj_; j=1,...£ -1),
FEvo = aver—1.
Indeed, we let vo be an eigenvector of K, and let v; = Fiv for j =

1,...,6 = 1.

§5. Open problems.

5.1. The case of even ¢ seems to be more difficult than the case of
odd £. First, Zy probably should be replaced by Z{, the intersection

of Z, with the subalgebra generated by the Ké' (B € Q), E'f,l and

FY (e € Rt), which is a more complicated algebra. Second, the set
of diagonalizable modules does not contain an open subset in general.
The only case when these difficulties can be easily resolved is the case
of the matrix (a;;) of type B, n > 1, as explained by Remark 3.8.
Let s denote the cardinality of the set {# € RT|(8|Q) C 2Z}.

Conjecture 5.1. m = €V /2% if £ is even.

5.2.Conjecture 5.2. (a) Q2 = Spec Zo\7(D).
(b) 7(D) = G(H\Ho).
(c) D is the set of singular points of Spec Z,.

5.3. Denote by Z; the image of the homomorphism U’¥Y — Z, con-
structed in Section 3.9 and by Z! the subalgebra of Z, generated by Zp
and Z;. It is clear that dimg(z,)Q(Z,) > ¢*. It follows from (3.7.3)
that Q(Z!) = Q(Z.). Since Z! is integral over Zg, hence over Z., we
conclude that the embedding Z! C Z, induces the normalization map:
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Spec Z, — Spec Z!. Note also that using diagonal modules, it is easy
to show that

Ze C Z: + Z zolle.
a€ER

Conjecture 5.3. Z! = Z..
This is checked in the A, case in § 4.

5.4. Let A € Hy, so that the diagonal representation 7 of U, in M()‘)
is irreducible. Then

(5.4.1) AT P

where (r;.A)(Kp) = e=(Ble) \(r; Kp). This follows from two easy facts:
v) is a unique up to a constant factor singular vector of ), and Ff‘lm
is a singular vector of m,'. It follows from (3.8.1), that m\(Tiz)vy =
x'f"(z)v,\ = 7, A(2)va = mr(2)v) for z € Z1, and any A € H. Thus,

(5.4.2) T;z = z mod Z o2 if 2 € Z;.
a€R

Conjecture 5.4 (a) All elements of Z, are fixed by the T;.
(b) Z, =UE.

5.5. We propose below the following hypothetical picture for the ac-
tion of G on Spec Zj, similar to the coadjoint action of a simple algebraic
group (see [10] in characteristic 0 and [9] in characteristic p).

Denote by N(H) (resp. C(H)) the subgroup of those elements of G
that leave H invariant (resp. pointwise fixed, and let Wy = N(H)/C(H).

Conjecture 5.5.1 (a) Closed G-orbits are precisely those which inter-
sect H.

(b) The intersection of a closed G-orbit with H is a Wy—orbit.

(c) Wp is a finite group.

(d) The restriction homomorphism from Spec Z, to H induces an
isomorphism of algebras of invariants:

G -1 -1nw,
Zy ~Cl21,27°, ... ,20, 27170,

It is easy to show that the fixed points of G are y € Spec Z such that
X(2a) =0 (@ € R) and x(z:)* =1 (i = 1,...,n). We call a G-orbit
nilpotent if its closure contains a fixed point of G.
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Conjecture 5.5.2. There are finitely many nilpotent orbits.
Conjecture 5.5.3. Any element of Spec Zj can be transformed by G to

an element x such that x(ya) = 0, and x(24)? # 1 = x(2a) =0 (a €
Rrt). In particular every irreducible finite dimensional representation of
U 1s triangulizable.

Given x as in Conjecture 5.5.3, we define x,, the semisimple part of

y by Xs(2a) = X(2a), Xs(za) =0 (a € R).

Conjecture 5.5.4. (a) The semisimple part x, of an element x €

Spec Zo is well-defined up to a G-conjugacy.
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(b) The closure of the G-orbit of x contains x,.

REFERENCES

Andersen, H.H., Polo, P., Wen K., Representations of quantum al-
gebras, preprint.

De Concini, C., Kac, V.G., Procesi, C., The quantum coadjoint
space, in preparation.

Drinfeld, V.G., Hopf algebras and quantum Yang-Bazter equation,
Soviet Math. Dokl. 32 (1985), 254-258.

Drinfeld, V.G., Quantum groups, Proc. ICM, Berkeley (1986),
798-820.

Jantzen, J.C., Moduln mit einem hochsten Gewicht, Lecture Notes
in Math 750, Springer Verlag 1979.

Jimbo, M., A g-difference analogue of U(g) and the Yang-Bazter
equation, Lett. Math. Phys. 10 (1985), 63-69.

Kac, V.G., Laplace operators of infinite-dimensional Lie algebras
and theta function, Proc. Nat’l. Acad. Sci. USA 81 (1984),
645-647.

Kac, V.G., Kazhdan, D.A., Structure of representations with highest
weight of infinite-dimensional Lie algebras, Adv. Math 34 (1979),
97-108.

Kac, V.G., Weisfeiler, B.Yu., Coadjoint action of a semi-simple
algebraic group and the center of the enveloping algebra in charac-
teristic p, Indag. Math 38 (1986), 136-151.

Kostant, B., Lie group representation on polynomial rings, Amer.
J. Math 86 (1963), 327-402.

Levendorskii, S.Z., Soibelman, Ya.S., Some applications of quantum
Weyl group I, preprint.



(12)

[13]
(14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

24]

DE CONCINI AND KAC

Lusztig, G., Quantum deformations of certain simple modules over
enveloping algebras, Adv. in Math. 70 (1988), 237-249.

Lusztig, G., Quantum groups at roots of 1, Geom. Ded. (1990).
Lusztig, G., Finite-dimensional Hopf algebras arising from quantum
groups, J. Amer. Math. Soc. 3 (1990), 257-296.

Nagata, M., Local rings, Interscience publ., 1962.

Pierce, R.S., Associative algebras, Springer Verlag, 1982.

Ringel, C.M., Hall algebras and quantum groups, 1989, preprint.
Rosso, M., Finite dimensional representations of the quantum ana-
logue of the enveloping algebra of a complez simple Lie algebra,
Comm. Math. Phys. 117 (1988), 581-593.

Rosso, M., Analogues de la forme de Killing et du théoréme d’Harish-
Chandra pour les groupes quantiques, 1989, preprint.

Rudakov, A.N., On representations of classical Lie algebras in char-
acteristic p, Izv. AN USSR Ser. matem. 34 (1970), 735-743.
Rudakov, A.N., Shafarevich, I.R., Irreducible representations of the
simple three-dimensional Lie algebra over a field of finite charac-
teristic, Mat. Zametki 2 (1967), 439-454.

Shapovalov, N.N., On a bilinear form on the universal enveloping
algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6
(1972), 307-312.

Weisfeiler, B. Yu, Kac, V.G., On irreducible representations of Lie
p-algebras, Funct. Anal. Appl. 5:2 (1971), 28-36.

Zassenhaus, H., The representations of Lie algebras in prime char-
acteristic, Proc. Glasgow Math. Assoc. 2 (1954), 1-36.

Received May 23, 1990

C. De Concini V. G. Kac
Scuola Normale Superiore  Department of Mathematics
Pisa, Italy MIT

Cambridge, MA 02139, USA




