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Abstract
This paper is divided into two parts. The first part is a brief survey, accompanied by
concrete examples, on the main results of the papers (De Concini and Gaiffi in Adv
Math 327:390–09, 2018; Algebr Geom Topol 19(1):503–532, 2019): the construction
of projective models of toric arrangements and the presentation of their cohomology
rings by generators and relations. In the second part we focus on the notion of well-
connected building set that appears in the cohomological computations mentioned
above: we explore some of its properties in the more general context of arrangements
of subvarieties of a variety X .
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1 Introduction

Let T � (C∗)n be an n-dimensional torus and let X∗(T ) be its group of characters; a
layer in T is a subvariety of T of the form

K(�, φ) ..= {
t ∈ T | χ(t) = φ(χ) for all χ ∈ �

}

where � < X∗(T ) is a split direct summand and φ : � → C
∗ is a homomorphism.

A toric arrangement A is a (finite) set of layers {K1, . . . ,Kr } in T . We remark
that in literature the usual definition of “toric arrangement” requires the layers to be 1-
codimensional; instead we allow layers of any codimension and use the term divisorial
arrangement for the case where all layers are 1-codimensional.

Toric arrangements have been studied since the early 1990s, and over the last two
decades several aspects have been investigated: in particular, as far as the topology of
the complement is concerned, De Concini and Procesi [12] determined the generators
of the cohomology modules over C in the divisorial case, as well as the ring structure
in the case of totally unimodular arrangements; d’Antonio and Delucchi, generalizing
an algebraic complex first introduced by Moci and Settepanella [25], provided a pre-
sentation of the fundamental group for the complement of a divisorial complexified
arrangement [5,6]; Callegaro, Delucchi and Pagaria computed the graded cohomology
ring with integer coefficients (see [3,4,26]); the cohomology ring itself was computed
by Callegaro et al. [2].

The problem of studying wonderful models for toric arrangement was first ad-
dressed by Moci [24], where he described a construction of a non-projective model.
Wonderful models for subspace arrangements were introduced by De Concini and
Procesi [10,11], where they provided both a projective and a non-projective version of
their construction. A wonderful model for the complement of an arrangement M(A)

is a smooth variety YA containing M(A) as an open set and such that YA\M(A)

is a divisor with normal crossings and smooth irreducible components. In [10] the
integral cohomology ring of these wonderful models was presented by generators and
relations. Subsequently, many authors studied the cohomology rings of the models of
subspace arrangements: among others Yuzvinsky [31] and Gaiffi [17], where some
integer bases were provided; and Etingof et al. [13,30] in the real case.

The connections between the geometry of these models and the Chow rings of
matroidswere pointed out first by Feichtner andYuzvinsky [16] and then byAdiprasito
et al. [1], where they also played a crucial role in the study of some log-concavity
problems—see also [19].

The first part (Sects. 2–5) of this paper is a short survey, enriched with examples, on
the main results of the papers [8] and [9]: the construction of a projective wonderful
model YA for a toric arrangement A and the presentation of its cohomology ring by
generators and relations.

The key ingredient in the construction of YA is a toric variety XA with some good
properties. In [8] this variety is obtained by subdividing a given fan in a suitable way.
De Concini and Gaiffi provided an algorithm to do so, and Papini implemented it in
his Ph.D. thesis [27] in order to produce some meaningful examples.
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792 C. De Concini et al.

Inspired by the computations in [10] and using [8], in [9] the same authors describe
a presentation of the cohomology ring of the wonderful model YA with integer coef-
ficients; more precisely, they show that H∗(YA; Z) is isomorphic to a quotient of a
polynomial ring with coefficients in H∗(XA; Z). Papini in his Ph.D. thesis provided a
code that computes the ideal of the relations involved in the presentation of H∗(YA; Z)

as the quotient of a polynomial ring with Z coefficients, thus being able to give first
examples of computed presentations. Actually, the wonderful model YA depends on
the choice of a so-called building set and the algorithm allows the user to choose one,
even computing the minimal one if requested.

This part of the paper is structured as follows. Section 2 describes the properties
of a “good” toric variety in which we have to embed the toric arrangement in order
to construct the model. Section 3 outlines the algorithms that subdivides the fan to
compute the toric variety, and illustrates a couple of examples. Section 4 recalls the
theoretic construction of a wonderful model for an arrangement of subvarieties. Sec-
tion 5 shows how to construct a projective wonderful model for a toric arrangement,
using the results from the previous sections, and exhibits generators and relations of
a presentation of the cohomology ring, together with some examples.

The secondpart (Sect. 6) of this paper explores the notionofwell-connected building
set of subvarieties (see Definition 5.1), which was introduced in [9] and turned out to
play a crucial role in the computation of the cohomology rings of projective models
for toric arrangements. In more detail, the construction of a wonderful model of a
variety X is obtained by a sequence of blowups, whose centres are the (transforms
of the) elements of a building set of subvarieties. The order in which the blowups
are performed respects the inclusion relation of the subvarieties (i.e., the minimal
subvarieties with respect to inclusion are blown up first, and so on).

In the case of projective models of toric arrangements, if the building set is well-
connected, it is possible to compute the cohomology ring by induction on the steps of
the blowup process. The key points in this toric case are the following:

(a) the property of being well-connected turns out to be stable under the blowup
process;

(b) at each step of the blowup process, the restriction map in cohomology from the
blown up variety to the transform of an element of the building set is surjective;
this allows for the application of a Keel’s lemma (see Theorem 6.6) to compute
the cohomology ring;

(c) at every step of the blowup process, some polynomials are chosen in such a way
that their restrictions to the transforms of the elements of the building set coincide
with the Chern polynomials of the normal bundles of the strata; then one proves
that the ideal generated by these polynomials does not depend on their choice.

In Sect. 6 we consider an arrangement of subvarieties in a variety X . We consider a
well-connected building set of subvarieties and we prove that the properties (a) and (b)
mentioned above are still valid in this general setting (see Theorems 6.5 and 6.8). The
proof of property (c) instead uses some specific features of toric arrangements. In our
opinion this remark points out the interest of the definition of well-connected building
set: if for a specific family of wonderful models one can prove property (c), the same
methods used in [9] can be applied to compute their cohomology rings. This is the case,
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for instance, of the wonderful models of subspace arrangements, where the methods
of [9] can be used to give a different proof of the presentation of the cohomology ring
provided in [10].

2 A good toric variety for the arrangement

Let A = {K1, . . . ,Kr } be a toric arrangement in the n-dimensional torus T , where
Ki = K(�i , φi ) with �i split direct summands of X∗(T ) and φi : �i → C

∗ homo-
morphisms, and let V = X∗(T )⊗ZR. Notice that a layer K(�, φ) is a coset with
respect to the torus

H =
⋂

χ∈�

ker(χ) ⊆ T . (1)

In [8] it is shown how to build projective wonderful models for the complementM(A).
The goal is to apply Li’s machinery [22], thus we have to identify a toric arrangement
A as an arrangement of subvarieties in the sense of Li’s paper.

Definition 2.1 Let X be a non-singular variety. A simple arrangement of subvarieties
of X is a finite set� of non-singular closed connected subvarieties properly contained
in X such that

• for every two �i ,�j ∈ �, either �i ∩ �j ∈ � or �i ∩ �j = ∅;
• if �i ∩ �j 	= ∅, the intersection is clean, i.e., it is non-singular and for every

y ∈ �i ∩ �j we have the following conditions on the tangent spaces:

Ty(�i ∩�j ) = Ty(�i ) ∩ Ty(�j ).

Definition 2.2 Let X be a non-singular variety. An arrangement of subvarieties of X
is a finite set � of non-singular closed connected subvarieties properly contained in
X such that

• for every two �i ,�j ∈ �, either �i ∩ �j is a disjoint union of elements of � or
�i ∩ �j = ∅;

• if �i ∩ �j 	= ∅, the intersection is clean.

By choosing a basis of X∗(T ), we get an isomorphism T � (C∗)n. Therefore we
can embed T into (P1)n which, as a toric variety, is associated with the fan � induced
by the decomposition of V into orthants. Then we consider the closures of the layers
Ki in (P1)n. These do not give an arrangement of subvarieties in the sense of Li, since
these closures of the layers, or their intersections, may be singular.

To see a simple example, let us consider the torus (C∗)n as the open set of C
n

consisting of points with non-zero coordinates. If we take n = 2, the closure in C
2

of the layer of equationK(Z(2,−3), 1) is the cubic curve of equation z21 = z32 which
has a cusp in the origin.

On the other hand, it can be easily shown (see for instance Theorem 2.5 below,
which recalls [8, Theorem 3.1]) that, given a layer K(�, φ) ⊂ (C∗)n, if � has a basis
(χ1, . . . , χs) ⊂ Z

n consisting of vectors of positive coordinates, then the closure of
K(�, φ) in C

n is non-singular.
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794 C. De Concini et al.

Definition 2.3 Let� be a fan in V . A character χ ∈ X∗(T ) has the equal sign property
with respect to� if, for every cone C ∈ �, either 〈χ, c〉� 0 for all c ∈ C or 〈χ, c〉� 0
for all c ∈ C .

Definition 2.4 Let � be a fan in V and letK(�, φ) be a layer. A Z-basis (χ1, . . . , χm)

for � is an equal sign basis with respect to � if χi has the equal sign property for all
i = 1, . . . , m.

This suggests the following idea (see [8], in particular Proposition 6.1). Let A =
{K1, . . . ,Kr } be a toric arrangement. Let us start with a fixed projective toric variety
(for example (P1)n) and suppose that we can subdivide its fan to obtain a smooth
projective fan �(A) such that for every layer Ki = K(�i , φi ) in A there is an equal
sign basis (χi,1, . . . , χi,si ) of �i with respect to �(A). Then all the intersections of
the closuresK(�i , φi ) of the layers ofA in the toric variety XA

..= X�(A) defined by
�(A) are smooth. We will say that XA is a good toric variety for A.

The behaviour of the layers in this variety XA has been described in [8]. In fact,
consider the closure K(�, φ) of a layer in XA. It turns out that this closure is a toric
variety itself, whose explicit description is provided by the following result.

Theorem 2.5 ([8, Proposition 3.1 and Theorem 3.1]) For every layer K(�, φ) let H
be the corresponding homogeneous subtorus as defined in (1) and let V�

..= {v ∈
V | 〈χ, v〉 = 0 for all χ ∈ �}.
(i) For every cone C ∈ �(A), its relative interior is either entirely contained in V�

or disjoint from V� .
(ii) The collection of cones C ∈ �(A) which are contained in V� is a smooth fan

�(A)H .
(iii) K(�, φ) is a smooth H-variety whose fan is �(A)H .
(iv) Let O be an orbit of T in XA and let CO ∈ �(A) be the corresponding cone.

Then

(a) if CO is not contained in V� , O ∩ K(�, φ) = ∅;
(b) if CO ⊂ V� , O ∩ K(�, φ) is the orbit of H in K(�, φ) corresponding to

CO ∈ �(A)H .

Once we have the toric variety XA, the next step is to build the wonderful model.
Let Q′ be the set

Q′ ..= {K |K ∈ A}

and let

Q ..= Q′ ∪ {
D | D is an irreducible component of XA\T

}
.

As a consequence of Theorem 2.5, the family L of all the connected components
of intersections of elements of Q gives an arrangement of subvarieties in the sense of
Definition 2.2.
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Notice that also the family L′ of all the connected components of intersections of
elements of Q′ is an arrangement of subvarieties, because it is contained in L and it
is closed under intersection. This allows, by a series of blowups, to build a projective
wonderful model associated with A: the construction is outlined in Sect. 4.

3 Subdividing the fan

3.1 The first algorithm

The core of the process outlined in Sect. 2 is the construction of the T -variety XA.
Section 4 of [8] is devoted to a combinatorial algorithm that, starting from a finite set
� ⊂ X∗(T ) of characters (here identified with vectors of Z

n) and a fan � in V � R
n,

produces a new fan �′ with the same support as � (in fact, a proper subdivision of
�) and such that each vector of � has the equal sign property with respect to �′. We
describe it here briefly.

First of all, we suppose that � = {χ}, i.e., we subdivide a fan � in such a way that
a single fixed character χ has the equal sign property with respect to the new fan �′;
in general, if � = {χ1, . . . , χs} we set �(0)

..= � and repeat the previous step s times,
where we obtain �(i) by subdividing �(i−1) using the character χi , for i = 1, . . . , s.
The output is �′ ..= �(s).

So, suppose that � is a fan in V and χ ∈ X∗(T ). In accordance with [8], we have
to consider only the 2-dimensional cones of �: in fact, let C ∈ � be a k-dimensional
cone generated by (r1, . . . , rk) and suppose that for each 2-dimensional cone C ′ ∈ �

we have either 〈χ, c〉� 0 or 〈χ, c〉� 0 for all c ∈ C ′. For each ri , rj letC(ri , rj ) ∈ � be
the 2-dimensional cone generated by ri and rj . Now, without loss of generality wemay
assume that 〈χ, r1〉� 0 and 〈χ, r2〉� 0, since we have the property for C(r1, r2). But
now also 〈χ, r3〉� 0, due to the property applied to the cone C(r2, r3). By induction
then we have 〈χ, ri 〉� 0 for all i = 1, . . . , k.

Notice that for 2-dimensional cones of the form C(v1, v2) the property translates
as

〈χ, v1〉 〈χ, v2〉� 0,

and the algorithm checks it for each 2-dimensional cone of �, building a list of “bad”
cones forwhich the property is not satisfied. If there are no bad cones, the algorithm ter-
minates returning the fan; otherwise, it chooses a bad cone C = C(v1, v2) and defines
a new fan �(C) obtained from � by substituting each cone C(v1, v2, w1, . . . , wk)

containing C with two new cones generated by (v1, v1 + v2, w1, . . . , wk) and
(v1 + v2, v2, w1, . . . , wk) respectively. After that it restarts with �(C) as the new
input fan.

Proposition 3.1 ([8, Proposition 4.1]) The new fan �(C) is smooth, and a projective
subdivision of �. Moreover, if X� and X�(C) are the two toric varieties associated
with the fans � and �(C) respectively, then X�(C) is obtained from X� by blowing
up the closure of the 2-codimensional orbit in X� associated with C.
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796 C. De Concini et al.

The only thing to do is to find a way to choose wisely the bad cone that has to
be replaced. We follow the choice of [8]: if �(N ) is the set of the bad 2-dimensional
cones, define

P� : �(N ) → N×{0, 1}
C(v1, v2) �→ (MC , εC )

where MC = max {|〈χ, v1〉|, |〈χ, v2〉|} and

εC =
{
1 if |〈χ, v1〉| = |〈χ, v2〉|,
0 otherwise.

Fix the lexicographic order on N×{0, 1}, i.e.,

(0, 0) < (0, 1) < (1, 0) < (1, 1) < (2, 0) < · · ·

Lemma 3.2 ([8, Lemma 4.2]) Assume �(N ) 	= ∅ and choose C ∈ �(N ) so that
P�(C) = (MC , εC ) is maximum in Im(P�).

(i) If εC = 1, then �(C)(N ) = �(N )\{C}.
(ii) If εC = 0, then max (Im(P�(C)))� (MC , εC ), and

∣∣P−1
�(C)((MC , εC ))

∣∣ <
∣∣P−1

� ((MC , εC ))
∣∣.

The previous lemma proves that, if we choose C ∈ �(N ) such that P�(C) =
(MC , εC ) is maximum in Im(P�), we are guaranteed that the number of bad cones
eventually decreases and the algorithm stops.

We are now ready to describe (the fan associated with) a good toric variety XA for
a toric arrangement A. Let

A = {K(�1, φ1), . . . ,K(�r , φr )}

be a toric arrangement in the n-dimensional torus T ; for i = 1, . . . , r let Bi be a
Z-basis for the lattice �i and define

� =
r⋃

i=1

Bi .

A good toric variety XA is obtained by using this set � in the algorithm described
above, starting with any fan that gives a projective smooth variety: in [8] the authors
choose the one generated by the orthants of R

n (the associated variety is (P1)n).
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3.2 The second algorithm

The algorithm described in the previous section begins with a smooth fan and subdi-
vides it in such a way that:

• each intermediate subdivision of the fan remains smooth;
• in the end we have a fan such that each vector of the set � has the equal sign
property with respect to that fan.

Let us show that in the 2-dimensional case we can use a different strategy. Given
a set of integral vectors � that span V � R

2 (which is the relevant case—see [8,
Remark 6.2]),1 we compute the fan � whose rays are the vectors orthogonal to the
ones in�: this fan is projective and by construction the vectors of� have the equal sign
property with respect to it, but it can be non-smooth. Hence we proceed as follows:
at first for each 2-dimensional cone C ∈ � we check if C is smooth. This is easily
done because, if the two rays delimiting a cone C are v1 = (x, y) and v2 = (z, w),
smoothness is guaranteed as long as

p ..=
∣∣∣∣det

(
x z
y w

)∣∣∣∣ = 1.

Therefore we compute p for each cone; if p = 1, we leave the cone untouched and
proceed with the next one; otherwise we subdivide it with the following method.

Let c1, c2 be integer numbers such that c1x + c2y = 1 (they exist because v1
is supposed to be primitive) and notice that the value c1z + c2w (mod p) does not
depend on the choice of c1 and c2. In fact, let c′

1, c′
2 be another such choice; therefore

0 = 1 − 1 = (c1x + c2y) − (c′
1x + c′

2y) = (c1 − c′
1)x + (c2 − c′

2)y

and on the other hand there exists k such that
(

z mod p
wmod p

)
= k

(
x mod p
y mod p

)

(this is because det ≡ 0 (mod p), but none of the vectors can be the zero vector
modulo p since they are primitive). It follows that

(c1z + c2w) − (c′
1z + c′

2w) = (c1 − c′
1)z + (c2 − c′

2)w

≡ k
(
(c1 − c′

1)x + (c2 − c′
2)y

) ≡ 0 (mod p).

Now let q = c1z + c2w and let q0 be the remainder of the division of q by p. Notice
that 0� q0 < p and that GCD(q0, p) = 1 (by absurd: let GCD(q0, p) = h > 1;
since h | q0 and h | p, by definition h | q, hence the vector (q, p) is not primitive; but

(
c1 c2
−y x

)(
z
w

)
=

(
q
p

)

1 For technical reason we suppose also that all vectors of � are primitive and that there are no parallel
vectors.
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and the determinant of the matrix is c1x + c2y = 1, so it sends primitive vectors to
primitive vectors). Therefore we define the vector

v ..= 1

p

(
(p − q0)v1 + v2

) = 1

p

(
(p + q − q0)x − c2 p
(p + q − q0)y + c1 p

)
,

where it is an easy check that the division is exact, i.e., v ∈ Z
2. Now notice that v

belongs to the cone generated by v1 and v2, because it is a linear combination of them
with positive coefficients (remember that q0 < p); moreover,

det
(
v1 | v) = p − q0

p
det

(
v1 | v1

) + 1

p
det

(
v1 | v2

) = ± p

p
= ±1

so the cone C(v1, v) is smooth. On the other hand,

det
(
v | v2

) = p − q0
p

det
(
v1 | v2

) + 1

p
det

(
v2 | v2

) = ± p(p − q0)

p
= ±(p − q0)

and |p − q0| < p, so we can reapply the algorithm to the cone C(v, v2). Since the
absolute value of the new determinant strictly decreases, we can prove by induction
that this procedure terminates with p = 1.

3.3 Examples

An implementation of the aforementioned procedures was done by one of the authors
in his Ph.D. thesis [27], using the SageMath language.

Example 3.3 Consider in (C∗)2 with coordinates x, y the following sets:

L1 = {(x, y) ∈ (C∗)2 | x2 = y3},
L2 = {(x, y) ∈ (C∗)2 | y = −x2},
L3 = {(1,−1)}.

They are layers of a toric arrangement A = {K1,K2,K3} with

�1 = 〈(2,−3)〉, φ1 : (2,−3) �→ 1;
�2 = 〈(−2, 1)〉, φ2 : (−2, 1) �→ −1;

�3 = 〈(1, 0), (0, 1)〉, φ3 :
{

(1, 0) �→ 1,

(0, 1) �→ −1.

Therefore we have to give the set

� = {(2,−3), (−2, 1), (1, 0), (0, 1)}
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(a) (b)

Fig. 1 Arrangement of Example 3.3. (a) Picture of the corresponding arrangement in (S1)2: L1 is the blue
subtorus, L2 is the red one, and L3 is the green dot. (b) Fan associated to the arrangement (Color figure
online)

to the algorithm. The resulting fan is pictured in Fig. 1. Actually, both algorithms
return the same fan, and this behaviour takes place in many other examples that we
computed, even if it is possible to construct examples in which this does not happen.

Example 3.4 By running the code, we notice that even relatively small arrangements
can give rise to quite large objects. Consider the arrangement in (C∗)4 with two layers

L1 = {(x, y, z, w) ∈ (C∗)4 | xy = zw},
L2 = {(x, y, z, w) ∈ (C∗)4 | y = x2, z = −1}.

In this case

� = {(1, 1,−1,−1), (2,−1, 0, 0), (0, 0, 1, 0)}

and if we apply the algorithm of Sect. 3.1 we get a fan with 52 rays, which are the
following:

(1, 2, 2, 0) (0, 0, 1,−1) (1, 2, 3, 0) (0, 0,−1, 0)
(1, 2, 0, 0) (−1,−2, 0,−3) (1, 2, 1, 0) (−1,−2,−2, 0)

(−1,−1,−1, 0) (−1,−2,−2,−1) (−1, 1, 0, 0) (−1,−2,−1, 0)
(−1,−1,−1,−1) (−1,−2, 0,−2) (−1,−2,−3, 0) (−1,−2,−1,−2)

(1, 2, 2, 1) (1,−1, 0, 0) (0,−1,−1, 0) (1, 2, 0, 1)
(−1, 0,−1, 0) (1, 2, 0, 2) (−1,−2, 0,−1) (1, 1, 0, 1)

(1, 2, 1, 2) (1, 0, 0, 0) (−1,−1,−2, 0) (1, 0, 1, 0)
(0, 0, 0, 1) (0, 1, 0, 1) (0,−1, 0, 0) (0, 1, 0, 0)
(1, 1, 1, 1) (0, 1, 1, 0) (0, 0, 0,−1) (0, 0,−1, 1)

(−1,−1, 0, 0) (−1, 0, 0, 0) (1, 1, 0, 2) (1, 1, 1, 0)
(1, 2, 0, 3) (−1, 0, 0,−1) (1, 1, 0, 0) (−1,−1, 0,−1)
(1, 2, 1, 1) (−1,−2,−1,−1) (1, 0, 0, 1) (0, 0, 1, 0)
(1, 1, 2, 0) (−1,−2, 0, 0) (−1,−1, 0,−2) (0,−1, 0,−1)
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800 C. De Concini et al.

4 General construction of wonderful models for arrangements of
subvarieties

In this sectionwe recall the construction of awonderfulmodel associatedwith a variety
X using Li’s techniques [22], which were inspired by the original work of De Concini
and Procesi [10] and by the work of MacPherson and Procesi [23].

We start by giving the definitions of building sets and nested sets of subvarieties;
we refer the reader to the papers [14,15,18,28,29] where building and nested sets are
studied from a more combinatorial point of view (in particular in [28, Section 2] one
can find a short comparison among various definitions and notations in the literature).

Definition 4.1 Let� be a simple arrangement of subvarieties of X (seeDefinition 2.1).
A subset G ⊆ � is a building set for � if for each subvariety �i ∈ �\G the minimal2

elements of the set {G ∈ G | G ⊃ �i } intersect transversally and their intersection is
�i . These minimal elements are called the G-factors of �i .

Definition 4.2 Let G be a building set for a simple arrangement �. A subset T ⊆ G

is called G-nested if for any subset {A1, . . . , Ak} ⊆ T of pairwise non-comparable3

elements there is an element in � of which A1, . . . , Ak are the G-factors.

Let U ⊆ X be an open set. The restriction of an arrangement of subvarieties � to U
is the set

�|U ..= {�i ∩ U | �i ∈ �, �i ∩ U 	= ∅}.
Definition 4.3 Let � be an arrangement of subvarieties of X . A subset G ⊆ � is a
building set for � if there is an open cover U of X such that

• for every U ∈ U, the restriction �|U is simple;
• for every U ∈ U, G|U is a building set for �|U .

Definition 4.4 Let G be a building set for an arrangement �. A subset T ⊆ G is called
G-nested if there is an open cover U of X such that, for every U ∈ U, G|U is simple
and T|U is G|U -nested.

We have first introduced the notion of arrangement of subvarieties and then defined a
building set for the arrangement. However it is often convenient to go in the opposite
direction.

Definition 4.5 A finite set G of connected subvarieties of X is called a building set if
the set of the connected components of all the possible intersections of collections of
subvarieties from G is an arrangement of subvarieties � (the arrangement induced by
G) and G is a building set for � according to Definition 4.3.

2 With respect to the inclusion.
3 This means that for any i, j we have Ai � Aj and Ai � Aj .
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Given an arrangement � of a non-singular variety X and a building set G for �, we
can construct a wonderful model Y (X;G) by considering (by analogy with [10]) the
closure of the image of the locally closed embedding

(
X \

⋃

�i ∈�

�i

)
→

∏

G∈G
BlG X

where BlG X is the blowup of X along G. This can be done one step at a time, as the
following results show.

Proposition 4.6 (see [22, Proposition 2.8]) Let G be a building set in the variety X.
Let F ∈ G be a minimal element in G under inclusion and, for a subvariety V ⊆ X,
denote by t (V ) its proper transform. Then the set t (G) ..= {t (G) | G ∈ G} consisting
of the proper transforms of the elements in G is a building set in BlF X.

Proof In fact, Li showed this for a building set of a simple arrangement. But since the
definition of building set is local, one can easily adapt his proof. ��
Theorem 4.7 (see [22, Theorem 1.3]) Let G be a building set in a non-singular variety
X. Let us order the elements G1, . . . , Gm of G in such a way that for every 1� k � m
the set Gk

..= {G1, . . . , Gk} is building. Then if we set X0
..= X and Xk

..= Y (X;Gk)

for 1� k � m, we have

Xk = Blt (Gk ) Xk−1,

where t (Gk) denotes the dominant transform4 of Gk in Xk−1.

Remark 4.8 1. We notice that any total ordering of the elements of a building set
G = {G1, . . . , Gm} which refines the ordering by inclusion, that is i < j if Gi ⊂ Gj ,
satisfies the condition of Theorem 4.7.

2. In particular, using the above ordering we deduce that Y (X;G) is obtained from X
by a sequence of blowups, each with centre a minimal element in a suitable building
set.

To finish this section let us mention further result of Li describing the boundary of
Y (X;G) in terms of G-nested sets.

Theorem 4.9 (see [22, Theorem 1.2]) The complement in Y (X;G) of X \ ⋃
�i is the

union of the divisors t (G), where G ranges among the elements of G. An intersection
of the form t (T1) ∩ · · · ∩ t (Tk) is non-empty if and only if {t1, . . . , Tk} is G-nested;
moreover, if the intersection is non-empty then it is transversal.

4 In the blowup of a variety M along a centre F the dominant transform of a subvariety Z coincides with
the proper transform if Z � F (and therefore it is isomorphic to the blowup of Z along Z ∩ F), and with
π−1(Z) if Z ⊆ F , where π : BlF M → M is the projection. We will use the same notation t (Z) for both
the proper and the dominant transform of Z , if no confusion arises.
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5 Projective wonderful model in the toric case: the cohomology

Let A = {K1, . . . ,Kr } be a toric arrangement in the n-dimensional torus T , where
Ki = K(�i , φi ). Recall that V = X∗(T )⊗ZR and let V�

..= {v ∈ V | 〈χ, v〉 =
0 for all χ ∈ �}. Let XA be a good toric variety forA, as we have seen in Sect. 2, and
consider the arrangement of subvarietiesL′ as defined in the same section.We choose a
building set G forL′ and construct a projective wonderful model YA(G) ..= Y (XA;G)

according to the strategy of Sect. 4.

5.1 Computing the cohomology

In order to compute the cohomology H∗(YA(G); Z) using the methods of [9], the
building set is required to have an additional property.

Definition 5.1 A building set G is well-connected if for any subset {G1, . . . , Gk} ⊆ G,
if the intersection G1 ∩ · · · ∩ Gk has two or more connected components, then each
of these components belongs to G.

Example 5.2 If � is a simple arrangement, then each building set G for � is well-
connected. In fact every intersection G1 ∩ · · · ∩ Gk is either empty or connected,
therefore the condition of Definition 5.1 is vacuously true.

Remark 5.3 One may choose G to be the whole arrangement �, which is always a
well-connected building set. However bigger building sets imply more complicated
wonderful models (and cohomologies).

Remark 5.4 IfG is well-connected and F ∈ G is minimal, we have that for every G ∈ G

the intersection G ∩ F is either empty or connected.

In [9] the cohomology ring H∗(YA(G); Z) is presented as a quotient of a polynomial
ring with coefficients in H∗(XA; Z). We recall here a well-known presentation of this
ring, which was proven by Danilov.

Theorem 5.5 ([7, Theorem 10.8]) Let X = X� be a smooth complete T -variety.
Let R be the set of primitive generators of the rays of � and define a polynomial
indeterminate Cr for each r ∈ R. Then

H∗(X�; Z) � Z[Cr | r ∈ R]/(ISR + IL)

where

• ISR is the Stanley–Reisner ideal

ISR ..= (Cr1 · · · Crk | r1, . . . , rk do not belong to a cone of �);

• IL is the linear equivalence ideal

IL ..=
(∑

r∈R
〈β, r〉Cr

∣∣∣β ∈ X∗(T )

)
.
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Notice that for ISR it is sufficient to take only the square-free monomials, and for IL
it is sufficient to take only the β’s belonging to a basis of X∗(T ).

Let L′ be as before; let XA be a good toric variety for A and let B ..= H∗(XA; Z)

be its cohomology ring. For each G ∈ G let TG be a polynomial indeterminate. We
are going to produce an ideal IW of the polynomial ring B[TG | G ∈ G] such that the
cohomology ring of YA(G) is isomorphic to the quotient B[TG | G ∈ G]/IW. To do
so, we need some auxiliary polynomials.

Let Z be an indeterminate and, for every G ∈ L′ denote by �G the lattice such
that G = K(�G, φ). For every pair (M, G) ∈ L′×L′ with G ⊆ M choose a basis
(χ1, . . . , χs) for �G such that (χ1, . . . , χk), with k � s, is a basis for �M and such
that it is equal sign with respect to the fan � associated with the variety XA.5 If M is
the whole torus T , then choose any (equal sign) basis of �G and let k = 0. Define the
polynomials P M

G ∈ B[Z ] as

P M
G

..=
s∏

j=k+1

(
Z −

∑

r∈R
min(0, 〈χj , r〉)Cr

)
. (2)

Notice that we allow G = M : in that case PG
G

..= 1 since it is an empty product.
Now consider the following set:6

W ..= {
(G, A) ∈ G× P(G) | G � K for all K ∈ A

}
.

For each G ∈ G define
BG

..= {H ∈ G | H ⊆ G}
and for each (G, A) ∈ W with A = {G1, . . . , Gk} let M be the unique connected
component of G1 ∩ · · · ∩ Gk that contains G (if A = ∅, let M = T ). Define the
polynomial in B[TG | G ∈ G]

F(G, A) ..= P M
G

( ∑

H∈BG

− TH

) ∏

K∈A

TK .

Finally let W0
..= {A = {G1, . . . , Gk} ∈ P(G) | G1 ∩ · · · ∩ Gk = ∅}. For each

A ∈ W0 define the polynomial in B[TG | G ∈ G]

F(A) ..=
∏

K∈A

TK .

Theorem 5.6 ([9, Theorem 7.1]) The cohomology ring H∗(YA(G); Z) is isomorphic
to the quotient of B[TG | G ∈ G] by the ideal IW generated by

5 This last property was not explicitly stated in [9], although the authors assumed it; we would like to thank
Roberto Pagaria for pointing this out. This remark should be considered as an erratum to [9], first lines of
Section 8 at p. 528.
6 For a set S, we denote by P(S) the power set of S.
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• the products Cr TG, with G ∈ G and r ∈ R such that r does not belong to V�G ;
• the polynomials F(G, A) for every pair (G, A) ∈ W;
• the polynomials F(A) for every A ∈ W0.

Putting all together, we have

H∗(YA(G); Z) � B[TG | G ∈ G]/IW � Z[Cr , TG | r ∈ R, G ∈ G]/(ISR + IL + IW).

Remark 5.7 It is known (see [8, Theorem 9.1]) that the cohomology of the projective
wonderful model YA(G) satisfies:

• Hi (YA(G); Z) = 0 for i odd;
• Hi (YA(G); Z) is torsion-free for i even.

Notice that the ideal IW is homogeneous and that the image of an indeterminate TG

under the isomorphism stated in Theorem 5.6 belongs to H2(YA(G); Z) ([9, Theo-
rem 7.1] describes this isomorphism explicitly). This means that H∗(YA(G); Z) and
B[TG | G ∈ G]/IW are isomorphic as graded rings and that

(
B[TG | G ∈ G]/IW

)
i � H2i (YA(G); Z).

In particular, if B is a monomial basis of B[TG | G ∈ G]/IW as Z-module, we have

rk(H2i (YA(G); Z)) = |{m ∈ B | deg(m) = i }| .

5.2 Examples

To compute these examples we use a quite straightforward implementation of the
algorithm that computes the cohomology H∗(YA(G); Z) written in the SageMath
language, which can be found in [27], with a minor correction: in order to make sure
that all the bases required for the P M

G polynomials (see formula (2)) have the equal sign
property, we compute them before computing the fan with the procedure of Sect. 3.1,
and we include all the vectors of those bases in the set �. The result is a fan � with
respect to which all the bases are automatically equal sign.

Example 5.8 Let us begin with a small arrangement A of three 1-dimensional layers
in (C∗)2, namely

L1 = {(x, y) ∈ (C∗)2 | x2 = y3},
L2 = {(x, y) ∈ (C∗)2 | y = i },
L3 = {(x, y) ∈ (C∗)2 | x = ω},

where i is the imaginary unit and ω = e2π i/3 is a primitive third root of unity. We
want to compute a presentation of the cohomology ring H∗(YA(G); Z), where G is
the minimal (i.e., with least elements) well-connected building set.

We begin computing the well-connected building setG: in this case it is not difficult,
even by hand (see Fig. 2). Then we compute the fan � with one of the algorithms
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(a)

(b)

(c)

Fig. 2 Arrangement of Example 5.8. (a) Picture of the corresponding arrangement in (S1)2: L1 is the
blue subtorus, L2 is the red one, and L3 is the green one. (b) Fan associated to the arrangement, with
polynomial indeterminates Cr corresponding to the generators of the rays (see Theorem 5.5). (c) Poset
of the connected components of the intersections of the layers in A, with elements of the building set
highlighted, together with the associated polynomial indeterminates TG ; note that it contains the whole
torus (C∗)2 as the intersection of zero layers. The values are ξ = e3π i/4, η = e2π i/9 (Color figure online)
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described in Sect. 3 (in this case they actually return the same fan). The result is
pictured in Fig. 2.

Once we have all the ingredients, we compute all the relations as stated in Theo-
rem 5.6:

• the relations of the form Cr TG are: C1T1, C2T1, C4T1, C5T1, C6T1, C7T1, C8T1,
C10T1, C2T2, C3T2, C4T2, C5T2, C6T2, C7T2, C9T2, C10T2, C1T3, C3T3, C5T3,
C6T3, C7T3, C8T3, C9T3, C10T3, C1T4, C2T4, C3T4, C4T4, C5T4, C6T4, C7T4,
C8T4, C9T4, C10T4, C1T5, C2T5, C3T5, C4T5, C5T5, C6T5, C7T5, C8T5, C9T5,
C10T5, C1T6, C2T6, C3T6, C4T6, C5T6, C6T6, C7T6, C8T6, C9T6, C10T6, C1T7,
C2T7, C3T7, C4T7, C5T7, C6T7, C7T7, C8T7, C9T7, C10T7, C1T8, C2T8, C3T8,
C4T8, C5T8, C6T8, C7T8, C8T8, C9T8, C10T8;

• the relations of the form F(G, A) are: 2C4+C5+C7+C8−T1−T5−T6,C3+3C4+
C5+2C7−T2−T4−T7−T8, 3C1+2C3+C7+C10−T3−T4−T5−T6−T7−T8,
2C3C4+6C2

4 +C3C5+5C4C5+C2
5 +C3C7+7C4C7+3C5C7+2C2

7 +C3C8+
3C4C8 + C5C8 + 2C7C8 − C3T4 − 5C4T4 − 2C5T4 − 3C7T4 − C8T4 + T 2

4 ,
2C4T2 + C5T2 + C7T2 + C8T2 − T2T4, C1T3 + C3T3 + C4T3 + C7T3 − T3T4,
T2T3, 2C3C4 + 6C2

4 + C3C5 + 5C4C5 + C2
5 + C3C7 + 7C4C7 + 3C5C7 + 2C2

7 +
C3C8+3C4C8+C5C8+2C7C8−C3T5−5C4T5−2C5T5−3C7T5−C8T5+T 2

5 ,
C3T1 + 3C4T1 + C5T1 + 2C7T1 − T1T5, C1T3 + C3T3 + C4T3 + C7T3 − T3T5,
T1T3, 2C3C4 + 6C2

4 + C3C5 + 5C4C5 + C2
5 + C3C7 + 7C4C7 + 3C5C7 + 2C2

7 +
C3C8+3C4C8+C5C8+2C7C8−C3T6−5C4T6−2C5T6−3C7T6−C8T6+T 2

6 ,
C3T1 + 3C4T1 + C5T1 + 2C7T1 − T1T6, C1T3 + C3T3 + C4T3 + C7T3 − T3T6,
2C3C4 + 6C2

4 + C3C5 + 5C4C5 + C2
5 + C3C7 + 7C4C7 + 3C5C7 + 2C2

7 +
C3C8+3C4C8+C5C8+2C7C8−C3T7−5C4T7−2C5T7−3C7T7−C8T7+T 2

7 ,
2C4T2 + C5T2 + C7T2 + C8T2 − T2T7, C1T3 + C3T3 + C4T3 + C7T3 − T3T7,
2C3C4 + 6C2

4 + C3C5 + 5C4C5 + C2
5 + C3C7 + 7C4C7 + 3C5C7 + 2C2

7 +
C3C8+3C4C8+C5C8+2C7C8−C3T8−5C4T8−2C5T8−3C7T8−C8T8+T 2

8 ,
2C4T2 + C5T2 + C7T2 + C8T2 − T2T8, C1T3 + C3T3 + C4T3 + C7T3 − T3T8;

• the relations of the form F(A) are: T1T8, T2T6, T6T8, T1T2T6T8, T4T8, T1T4,
T4T6, T1T2T3T8, T2T3T6T8, T1T2T3T6, T1T3T6T8, T2T3T4T8, T1T2T3T4, T1T3T4T8,
T2T3T4T6, T3T4T6T8, T1T3T4T6, T7T8, T1T7, T6T7, T4T7, T2T3T7T8, T1T2T3T7,
T1T3T7T8, T2T3T6T7, T3T6T7T8, T1T3T6T7, T2T3T4T7, T3T4T7T8, T1T3T4T7,
T3T4T6T7, T2T5, T5T8, T1T2T5T8, T5T6, T4T5, T2T3T5T8, T1T2T3T5, T1T3T5T8,
T2T3T5T6, T3T5T6T8, T1T3T5T6, T2T3T4T5, T3T4T5T8, T1T3T4T5, T3T4T5T6, T5T7.

Therefore, adding the relations that come from the cohomology of XA (see Theo-
rem 5.5), we conclude that

H∗(YA(G); Z) � Z[C1, . . . , C10, T1, . . . , T8]/I

where I is the ideal generated by T 3
8 , C2

6 − 2T 2
8 , C6C7, C2

7 − 2T 2
8 , C6C8, C7C8,

C2
8 − T 2

8 , C6C9 + T 2
8 , C7C9, C8C9 + T 2

8 , C2
9 − 2T 2

8 , C6C10, C7C10, C8C10, C9C10,
C2
10−3T 2

8 , C6T1, C7T1, C8T1, C9T1+T 2
8 , C10T1, T 2

1 −2T 2
8 , C6T2, C7T2, C8T2+T 2

8 ,
C9T2, C10T2, T1T2 + T 2

8 , T 2
2 − 3T 2

8 , C6T3, C7T3, C8T3, C9T3, C10T3, T1T3, T2T3,
T 2
3 − 5T 2

8 , C6T4, C7T4, C8T4, C9T4, C10T4, T1T4, T2T4 + T 2
8 , T3T4 + T 2

8 , T 2
4 − T 2

8 ,
C6T5, C7T5, C8T5, C9T5, C10T5, T1T5 + T 2

8 , T2T5, T3T5 + T 2
8 , T4T5, T 2

5 − T 2
8 , C6T6,
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Fig. 3 Poset of the connected components of the intersections of layers for the arrangement in Example 5.9,
with elements of the well-connected building set G highlighted, together with the associated polynomial
variable TG

C7T6, C8T6, C9T6, C10T6, T1T6 + T 2
8 , T2T6, T3T6 + T 2

8 , T4T6, T5T6, T 2
6 − T 2

8 , C6T7,
C7T7, C8T7, C9T7, C10T7, T1T7, T2T7 + T 2

8 , T3T7 + T 2
8 , T4T7, T5T7, T6T7, T 2

7 − T 2
8 ,

C6T8, C7T8, C8T8, C9T8, C10T8, T1T8, T2T8+T 2
8 , T3T8+T 2

8 , T4T8, T5T8, T6T8, T7T8,
3C1 − C6 − 2C9 + C10 − 3T1 + 2T2 + 2T4 − 3T5 − 3T6 + 2T7 + 2T8, 3C2 + 2C6 +
C9 + C10 − T2 − T4 − T7 − T8, 2C3 + C6 + C7 + 2C9 + 3T1 − 2T2 − T3 − 3T4 +
2T5 + 2T6 − 3T7 − 3T8, 2C4 − C6 + C7 − 2C8 − 2C9 − T1 + T3 + T4 + T7 + T8,
C5+C6+3C8+2C9−T3−T4−T5−T6−T7−T8. In particular, the computation of a
monomial normal basis for Z[C1, . . . , C10, T1, . . . , T8]/I gives us the Betti numbers:
such a basis is

(
T 2
8 , T8, T7, T6, T5, T4, T3, T2, T1, C10, C9, C8, C7, C6, 1

)
,

so we have H0(YA(G); Z) � Z, H2(YA(G); Z) � Z
13 and H4(YA(G); Z) � Z,

as one could also check by hand, since in this case we are blowing up points in a
2-dimensional toric variety.

Example 5.9 Consider the (non-divisorial) arrangement in (C∗)3 with three layers

L1 = {(x, y, z) ∈ (C∗)3 | x = 1},
L2 = {(x, y, z) ∈ (C∗)3 | y = 1},
L3 = {(x, y, z) ∈ (C∗)3 | z = 1, xy2 = 1}.

The poset of the connected components of the intersections of the layers, as well as
the well-connected building set G that we use to build YA(G) (in this case the minimal
one coincides with the set of all the elements of the poset except the whole torus), is
represented in Fig. 3.
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The fan � as computed with the algorithm of Sect. 3 has 10 rays:7

C1 → (−1, 1, 0), C2 → (−2, 1, 0),

C3 → (1, 0, 0), C4 → (2,−1, 0),

C5 → (0, 0, 1), C6 → (1,−1, 0),

C7 → (0, 0,−1), C8 → (0,−1, 0),

C9 → (−1, 0, 0), C10 → (0, 1, 0).

The ideal I of Z[C1, . . . , C10, T1, . . . , T6] of the relations for H∗(YA(G); Z) has a
Gröbner basis degrevlex with 68 polynomials, which are the following: T 4

6 , T 3
1 −

4T 3
6 , T

3
4 −T 3

6 , T
3
5 −2T 3

6 , T
2
1 T6+T 3

6 , T
2
5 T6+T 3

6 , T1T 2
6 , T5T 2

6 ,C
2
6−2T 2

5 −4T5T6−2T 2
6 ,

C6C7 + 2C7C8 + C7C9 + T 2
1 + T 2

4 + 4T1T6 + T 2
6 , C2

7 , C6C8 + T 2
5 + 2T5T6 + T 2

6 ,
C2
8 − T 2

5 − 2T5T6 − T 2
6 , C6C9, C8C9 + T 2

5 + 2T5T6 + T 2
6 , C2

9 − 2T 2
5 − 4T5T6 − 2T 2

6 ,
C6C10, C8C10, C9C10, C2

10 − T 2
5 − 2T5T6 − T 2

6 , C6T1, C7T1, C8T1, C9T1, C10T1,
C6T2, C8T2, C9T2 + T 2

5 + 2T5T6 + T 2
6 , C10T2, T1T2, T 2

2 − T 2
5 − 2T5T6 − T 2

6 , C6T3,
C8T3 + T 2

5 + 2T5T6 + T 2
6 , C9T3, C10T3 + T 2

5 + 2T5T6 + T 2
6 , T1T3, T2T3, T 2

3 − T 2
4 −

T 2
5 − 2T5T6 − T 2

6 , C6T4, C7T4, C8T4, C9T4, C10T4, T1T4 − T1T6, T2T4, T3T4 + T 2
4 ,

C6T5, C7T5 − T5T6, C8T5, C9T5, C10T5, T1T5, T2T5 + T 2
5 + T5T6, T3T5 + T 2

5 + T5T6,
T4T5, C6T6, C7T6, C8T6, C9T6, C10T6, T2T6 + T5T6 + T 2

6 , T3T6 + T5T6 + T 2
6 , T4T6,

C1 − C9 + 2C10 − 2T2 + T3 + T4 − T5 − T6, C2 + C9 − C10 + T2 − T3 − T4,
C3 − C6 − 2C8 + 2T2 − T3 − T4 + T5 + T6, C4 + C6 + C8 − T2 − T5 − T6, C5 − C7.

Finally the computation of a monomial basis gives us the following Betti numbers:

i 0 2 4 6

rk(Hi (YA(G); Z)) 1 11 11 1

6 More on well-connected building sets

In Sect. 5 we outlined how the cohomology of thewonderful model has been computed
in [9]. In this sectionwe are going to showunderwhich circumstances a similar strategy
can be, at least in theory, used in a more general situation.

Let us start from a well-connected building set G in a variety X and blow up a
minimal element F ∈ G. Consider the set t (G) ..= {t (G) | G ∈ G} in BlF X . Our two
main observations are

• The set t (G) ..= {t (G) | G ∈ G} in BlF X is a building set which is still a well-
connected building set (Theorem 6.5).

7 On the left of each ray there is the corresponding polynomial variable Cr .
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• If for any subset {Gj1, . . . , Gjs } of G for which Gj1 ∩ · · · ∩ Gjs is connected, the
map

H∗(X) → H∗(Gj1 ∩ · · · ∩ Gjs ),

induced by the inclusion, is surjective, then for every subset {t (Gi1), . . . , t (Gis )}
of t (G) for which t (Gi1) ∩ · · · ∩ t (Gis ) is connected, the map

H∗(BlF X) → H∗(t (Gi1) ∩ · · · ∩ t (Gis )),

induced by the inclusion, is surjective (see Theorem 6.8).

We remark that the concrete application to the computation of the cohomology ring of
compact models for toric arrangements as it is described above, also depends on some
further specific properties of toric arrangements and toric varieties (see [9, Section
6]). Anyway, we think that it is useful to point out these general properties of a well-
connected building set in a variety X and of the model constructed starting from it.

Remark 6.1 A description of the cohomology of a wonderful model of subvarieties as
a module was already found by Li [21].

We begin by recalling some useful lemmas for building sets that are not necessarily
well-connected. In the following, let A be an arrangement of subvarieties in a con-
nected, non-singular variety X and let G be a building set for A. Moreover, let F be a
minimal element of G with respect to inclusion; for any subvariety D of X , we denote
by t (D) the dominant transform of D in the blowup BlF X .

Lemma 6.2 ([9, Lemma 3.1]; see [22, Lemma 2.9]) Let A, B, A1, A2, B1, B2 be non-
singular subvarieties of X.

(i) Suppose that A1 � A2 and A2 � A1, and suppose that A1 ∩ A2 = F cleanly.
Then t (A1) ∩ t (A2) = ∅.

(ii) Suppose that A1 and A2 intersect cleanly and that F � A1 ∩ A2. Then t (A1) ∩
t (A2) = t (A1 ∩ A2).

(iii) Suppose that B1 and B2 intersect cleanly and that F is transversal to B1, B2 and
B1 ∩ B2. Then t (B1) ∩ t (B2) = t (B1 ∩ B2).

(iv) Suppose that A is transversal to B, F is transversal to B and F ⊂ A. Then
t (A) ∩ t (B) = t (A ∩ B).

Lemma 6.3 ([9, Lemma 3.2]) Let G be a building set for A and let U be an open set
belonging to an open cover U as in Definition 4.3. Consider two subsets {H1, . . . , Hk}
and {G1, . . . , Gs} of G, and let H ′ ..= H1 ∩ · · · ∩ Hk and G ′ ..= G1 ∩ · · · ∩ Gs.
Finally let H0 ..= U ∩ H ′ and G0 ..= U ∩ G ′. If H0 	= ∅ and H0 ⊂ G0, then the
connected component of H ′ containing H0 is contained in the connected component
of G ′ containing G0.

Lemma 6.4 ([9, Corollary 3.4]; see [22, Lemma 2.6]) Let G be a building set for A

and let U be an open set belonging to an open cover U as in Definition 4.3. In order
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to keep the notation simple, in the following every object is considered restricted to U
but we avoid repeating the symbol. Let F be a minimal element in G with respect to
inclusion.

(i) For any G ∈ G, either G contains F, or F ∩ G = ∅, or F ∩ G is transversal.
(ii) Let G1, . . . , Gk be elements of G such that F � Gi for every i = 1, . . . , k.

Suppose that G1 ∩ · · · ∩ Gk 	= ∅. Then the intersection between G1 ∩ · · · ∩ Gk

and F is either empty or transversal.

Theorem 6.5 Let G be a well-connected building set of X, and let F be a minimal ele-
ment inG. Then t (G) ..= {t (G) | G ∈ G} is a well-connected building set of subvarieties
in Y ..= BlF X.

Proof We know from Proposition 4.6 that t (G) is still a building set in Y ; we still need
to check that it is well-connected, i.e., that for any subset {t (G1), . . . , t (Gk)} of t (G),
whenever the intersection t (G1) ∩ · · · ∩ t (Gk) is non-empty, it is either connected or
it is the union of connected components each belonging to t (G).

We notice that the statement is trivial for k = 1, so from now on we assume
k � 2. We also assume that t (G1) ∩ · · · ∩ t (Gk) is non-empty and that the elements
G1, . . . , Gk are pairwise non-comparable. We analyze all the possible relations of
inclusion between F and G1, . . . , Gk :

1. F is properly contained in all the Gi ’s;
2. F is not contained in any Gi ;
3. F is properly contained in some of the Gi ’s, say in the first s, and not contained

in the others;
4. F belongs to {G1, . . . , Gk}, say F = G1.

We proceed by induction on k � 2 in each case. It is useful to introduce notation: for
I ⊆ G let G be the intersection of the elements of I ; we denote by t∗(G) the union of
the transforms of the connected components of G which are not equal to F .

Case 1: F � Gi for every i = 1, . . . , k. We start with the case k = 2. If G1∩G2 = F ,
by Lemma 6.2 (i) it would follow that t (G1) ∩ t (G2) = ∅ but this is excluded by
assumption; therefore we have F � G1 ∩ G2.

Now, since G is well-connected, we know that G1 ∩ G2 is either connected or it
is the union of connected components A1, . . . , Ar belonging to G. In the first case,
t (G1)∩ t (G2) = t (G1∩G2) by Lemma 6.2 (ii), so it is connected. In the second case,
one of the connected components A1, . . . , Ar , say A1, contains F , while the others
have empty intersection with F . We have again two cases:

• if F � A1, we may apply again Lemma 6.2 (ii) and deduce that t (G1) ∩ t (G2) =
t (G1 ∩ G2): we conclude that t (G1)∩ t (G2) is the disjoint union of the connected
components t (A1), . . . , t (Ar ), which belong to t (G);

• if F = A1, then t (G1) ∩ t (G2) is the disjoint union of the connected components
t (A2), . . . , t (Ar ), which belong to t (G).

Therefore, in all the previous cases we have

t (G1) ∩ t (G2) = t∗(G1 ∩ G2)
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using the notation introduced before.
The case k � 3 follows by a straightforward induction, whose essential ingredient

is the k = 2 step illustrated above.

Case 2: F � Gi for every i = 1, . . . , k. In this case F ∩ Gi is either empty or
transversal by Lemma 6.4 (i), and it is connected by well-connectedness (see Re-
mark 5.4). Suppose k = 2. If (G1 ∩ G2) ∩ F = ∅, it follows immediately that
t (G1) ∩ t (G2) = t (G1 ∩ G2). If (G1 ∩ G2) ∩ F is not empty, then it is connected
by well-connectedness (otherwise each connected component of G1 ∩ G2 ∩ F would
belong to G, against the minimality of F) and it is transversal by Lemma 6.4 (ii). Then,
using Lemma 6.2 (iii), we conclude again that t (G1) ∩ t (G2) = t (G1 ∩ G2).

In either case, since G is well-connected we know that G1 ∩ G2 is either connected
or the union of connected components A1, . . . , Ar each belonging to G. This implies
that t (G1) ∩ t (G2) = t (G1 ∩ G2) is either connected8 or it is the disjoint union of
the connected components t (A1), . . . , t (Ar ) each belonging to t (G).

Suppose now k � 3. We will prove by induction that

t (G1) ∩ · · · ∩ t (Gk) = t (G1 ∩ · · · ∩ Gk),

from which we can conclude immediately by well-connectedness. The base step is
k = 2, which we did before. Let us denote G ..= G1 ∩ · · · ∩ Gk−1. By inductive
hypothesis

t (G1) ∩ · · · ∩ t (Gk−1) = t (G1 ∩ · · · ∩ Gk−1) = t (G),

so we need to prove that t (G) ∩ t (Gk) = t (G ∩ Gk). The situation is similar to the
case k = 2:

• if G ∩ Gk ∩ F is empty, we immediately obtain t (G) ∩ t (Gk) = t (G ∩ Gk);
• if G ∩ Gk ∩ F is not empty, then we notice that the intersections Gk ∩ F , G ∩ F
and (G ∩ Gk)∩ F are transversal and connected, again by Corollary 6.4 and well-
connectedness, and we conclude t (G) ∩ t (Gk) = t (G ∩ Gk) by Lemma 6.2 (iii).

Case 3: there exists 1� s < k such that F � Gi for every i = 1, . . . , s and F � Gi

for every i = s + 1, . . . , k. Let

U1
..=

s⋂

i=1

Gi and U2
..=

k⋂

i=s+1

Gi .

By the previous cases we know that

t (G1) ∩ · · · ∩ t (Gk) = t∗(U1) ∩ t (U2).

From the analysis made before we know that one of the following cases occurs:

(a) U1 is connected (and properly contains F , otherwise t∗(U1) would be empty);

8 It is the blowup of the connected subvariety G1 ∩ G2 along G1 ∩ G2 ∩ F .
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(b) U1 is the disjoint union of some connected components A1, . . . , Ar belonging to
G, with F � A1, while the other components have empty intersection with F ;

(c) U1 is the disjoint union of some connected components A1, . . . , Ar belonging to
G, with F = A1.

For case (a), we have t∗(U1) = t (U1) and U1 ∩ U2 ∩ F = U2 ∩ F . If U2 ∩ F = ∅

we deduce t (U1) ∩ t (U2) = t (U1 ∩ U2) and conclude by well-connectedness of
G. Suppose now that U2 ∩ F 	= ∅: then, using again the same reasoning than the
previous cases, it is connected by well-connectedness. Now notice that, if C is the
unique connected component of U1 ∩ U2 that intersects F , then the intersection of
U1 and U2 in C is transversal. This follows again from Lemma 6.4 (ii): we know that
U2 is tranversal to F , but F ⊂ U1, therefore for every point y ∈ F the set of linear
equations that describe the tangent space Ty(F) includes the equations that describe
Ty(U1). Since U2 ∩ F ⊆ C and C is smooth, this implies our claim.

All the properties listed above allow us to apply Lemma 6.2 (iv) and deduce that
t (U1) ∩ t (U2) = t (U1 ∩ U2).

Case (b) can be reduced to case (a): also in this case t∗(U1) = t (U1), therefore
t (U1)∩t (U2) is the disjoint union of the t (Ai )∩t (U2). For i = 1, the same argument of
case (i) allows us to conclude t (A1)∩ t (U2) = t (A1∩U2); for i � 2, we already know
that t (Ai )∩ t (U2) = t (Ai ∩U2). In conclusion, we have t (U1)∩ t (U2) = t (U1 ∩U2)

and the claim follows again from well-connectedness.
In case (c) we have that

t (G1) ∩ · · · ∩ t (Gk) = t∗(U1) ∩ t (U2) =
r⋃

i=2

(t (Ai ) ∩ t (U2)) =
r⋃

i=2

t (Ai ∩ U2)

and everything follows from well-connectedness.

Case 4: F = G1. Notice that in this case F � Gi for all i = 2, . . . , k because we
suppose that the Gi ’s are pairwise non-comparable. We put U ..= G2 ∩· · ·∩ Gk ; from
the preceding points we have that

t (F) ∩ t (G2) ∩ · · · ∩ t (Gk) = t (F) ∩ t (U ).

Now, if F ∩ U is empty, then it immediately follows that t (F) ∩ t (U ) = ∅, which
cannot happen under our assumptions. If F∩U is not empty, then it is connected, by the
well-connectedness of G and the minimality of F . Only one connected component of
U contains F ∩U (the others, if any, have empty intersection with F), and t (F)∩ t (U )

coincides with the exceptional divisor of the blowup of this component along F ∩ U ,
therefore it is connected. ��

We recall here Keel’s Theorem (Theorem 1 of the Appendix of [20]). Let Y be a
smooth variety and suppose that X is a regularly embedded subvariety of codimension
d (we denote by i : X → Y the injection). Let BlX Y be the blowup of Y along X ,
with the usual map π : BlX Y → Y , and let E be the exceptional divisor.
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Theorem 6.6 (Keel) Suppose that the map i∗ : H∗(Y ) → H∗(X) is surjective with
kernel J and let T be an indeterminate. Then H∗(BlX Y ) is isomorphic to

H∗(Y )[T ]/(J ·T , P(t))

where P(t) ∈ H∗(Y )[T ] is any polynomial whose constant term is [X ] and whose
restriction to H∗(X) is the Chern polynomial of the normal bundle N = NX Y , that
is to say

i∗(P(t)) = T d + c1(N )T d−1 + · · · + cd(N ).

This isomorphism is induced by π∗ : H∗(Y ) → H∗(BlX Y ) and by sending −T to
[E].
In the sequel we will denote by J (Y , X) and by P(Y , X)(t) respectively the kernel J
and the polynomial P(t) that appear in the statement of Theorem 6.6.

Let X be a smooth variety and let G = {G1, . . . , Gm} be a well-connected building
set of subvarieties of X whose elements are ordered in a way that refines inclusion,
i.e., if Gi � Gj then i < j . For every k = 1, . . . , m, let us denote by Gk the set
Gk

..= {G1, . . . , Gk}. We extend this notation by putting G0
..= ∅ and Y (X;G0)

..= X .

Lemma 6.7 ([9, Proposition 4.3]) For every k = 1, . . . , m, the set Gk is a building set
in the sense of Definition 4.5 and it is well-connected.

Notice that by Proposition 4.6 the set

{t1(G1), . . . , t1(Gm)}

is a building set in Y (X;G1), where t1(Gi ) denotes the transform of Gi in this blowup.
Moreover, since t1(G1) is a divisor, hence maximal with respect to inclusion, we have
that also

G1 ..= {t1(G2), . . . , t1(Gm)}

is a building set in Y (X;G1), well-connected by Theorem 6.5, and t1(G2) is a minimal
element.

By a simple induction, we obtain that

Gs ..= {t s(Gs+1), . . . , t s(Gm)}

is a well-connected building set in Y (X;Gs) (again, t s(Gi ) denotes the transform
of Gi in this blowup) and t s(Gs+1) is a minimal element. We also observe that, by
Theorem 4.7, for every s = 1, . . . , m we have

Y (X;G) = Y (Y (X;Gs);Gs).

Moreover we extend this notation to G0 ..= G.
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The following theorem, which is about the surjectivity of some restriction maps
in cohomology, shows that in this general setting one can start an inductive process
which involves the repeated application of Keel’s Theorem 6.6; by dealing with this
process in the particular case of compact models of toric arrangements we managed to
compute their cohomology rings (Theorem 5.6 illustrated above); this motivates our
interest in the following more general statement.

Theorem 6.8 Assume that, for any subset {Gj1, . . . , Gjs } of G for which Gj1 ∩· · ·∩Gjs
is connected, the map

H∗(X) → H∗(Gj1 ∩ · · · ∩ Gjs ),

induced by the inclusion, is surjective. Then for all k = 0, . . . , m −1 and every subset
{tk(Gi1), . . . , tk(Gis )} of Gk for which tk(Gi1) ∩ · · · ∩ tk(Gis ) is connected, the map

H∗(Y (X;Gk)) → H∗(tk(Gi1) ∩ · · · ∩ tk(Gis )
)
,

induced by the inclusion, is surjective.

Proof We prove this by induction on k. For k = 0 the statement is true by assumption.
Now suppose that k � 1 and that the theorem is true for k − 1.

Let the indices i1, . . . , is be such that

k < i1 < i2 < · · · < is � m

and tk(Gi1) ∩ · · · ∩ tk(Gis ) is connected. We have to prove that the map

φ : H∗(Y (X;Gk)) → H∗(tk(Gi1) ∩ · · · ∩ tk(Gis )
)

is surjective. Let us put for brevity

G ..= tk−1(Gi1) ∩ · · · ∩ tk−1(Gis ),

G ′ ..= tk(Gi1) ∩ · · · ∩ tk(Gis ).

Recall that Y (X;Gk) is obtained by blowing up Y (X;Gk−1) along tk−1(Gk). We have
two cases.

Case 1: G ∩ tk−1(Gk) is empty. In this case we have G ′ = t (G) which is isomorphic
to G. In this case the surjectivity follows by the inductive hypothesis, since G ′ is
connected and so is G.

Case 2: G ∩ tk−1(Gk) is not empty. By inductive hypothesis we know that

H∗(Y (X;Gk−1)) → H∗(tk−1(Gk))

is surjective, so we can apply Keel’s Theorem 6.6 and deduce that

H∗(Y (X;Gk)) � H∗(Y (X;Gk−1))[T ]
J (Y (X;Gk−1), tk−1(Gk)) ·T , P(Y (X ,Gk−1), tk−1(Gk))(t)

(3)
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where the indeterminate T is evaluated at − [tk(Gk)] ∈ H∗(Y (X;Gk)).
Now notice that G ∩ tk−1(Gk) is connected (by Remark 5.4: tk−1(Gk) is minimal

in the well-connected building set Gk−1), therefore the map

H∗(Y (X;Gk−1)) → H∗(G ∩ tk−1(Gk))

is surjective again by inductive hypothesis. Moreover, notice that in this case G ′ =
t (G): checking the proof of Theorem 6.5, one realizes that G ′ 	= t (G) can happen
only if tk−1(Gk) is contained properly in all the tk−1(Gij ), for j = 1, . . . , s, and it is
equal to one of the connected components of G; but

• G is connected, because G ′ and G ∩ tk−1(Gk) are;
• tk−1(Gk) 	= G, otherwise G ′ would be empty by Lemma 6.2 (i).

The surjectivity of the map H∗(G) → H∗(G ∩ tk−1(Gk)) induced by the inclusion
allows us to apply again Keel’s Theorem 6.6 to t (G) = G ′, which is the blowup of the
variety G along G ∩ tk−1(Gk). We obtain

H∗(t (G)) � H∗(G)[T ]
J (G, tk−1(Gk) ∩ G) ·T , P(G, tk−1(Gk) ∩ G)(t)

(4)

where the indeterminate T is evaluated at − [tk(Gk) ∩ t (G)] ∈ H∗(t (G)).
We can now compare the isomorphisms (3) and (4): looking at the right members

of these equations, we conclude that the surjectivity of the map φ : H∗(Y (X;Gk)) →
H∗(t (G)) follows from the surjectivity of H∗(Y (X;Gk−1)) → H∗(G), which is
provided by the inductive hypothesis, and from φ([tk(Gk)]) = [tk(Gk) ∩ t (G)]. ��
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