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Abstract. Given a representation ρ : G → GL(N) of a semisimple group G, we
discuss the normality or non normality of the cone over ρ(G) using the wonderful
compactification of the adjoint quotient of G and its projective normality [K]. These
methods are then used to discuss the normality or non normality of certain other
orbit closures including determinantal varieties.

1 Introduction

Given a finite dimensional representation ρ : G → GL(V ), where we assume
that G is an algebraic group defined over an algebraically closed field of cha-
racteristic 0 and that ρ is rational, a natural object to consider is the cone
ZV over ρ(G), i.e., the closure of the linear transformations in End(V ) which
are multiples of some ρ(g) for g ∈ G. It is easy to see that ZV is a semigroup
and one may ask about geometric properties of this semigroup. In this paper
we are going to analyze the normality of ZV under the assumption that G
is semisimple and that V is an highest weight module. In particular, we are
going to perform this discussion in the case in which V is irreducible.

It turns out that in this case, ZV is almost never normal. Indeed, we prove
that it is normal if and only if V is a minusculrepresentation (for the definition
see Section 3). On the other hand we are able in all cases to exhibit the
normalization of ZV , which turns out to be of the form ZW for “the largest”
G-module having the same highest weight as V , that is W is the sum of all
irreducible modules whose highest weight is less than or equal to that of V in
the dominant ordering. After this is achieved, we make the observation that
our methods can be used to analyze a much larger class of orbit closures which
include, among others, various varieties of matrices satisfying rank conditions,
in particular determinantal varieties. Thus we slightly generalize our methods
to treat this case as well.

We now briefly explain how our results are obtained. The main observation
is that the coordinate ring of ZV is also the homogeneous coordinate ring of the
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associated projective variety. This projective variety turns out to be the image
under a suitable morphism of a certain completion of a homogeneous space (in
the case of the semigroups over G, this is the wonderful compactification of G
introduced and studied in [DCP]). Thus results about such compactifications
can be used. In particular we crucially use their projective normality recently
proved by Kannan in [K], not only directly, but also as the main idea behind
our arguments.

To finish I would like to stress that many of our results are contained or
implicit in the work of others. Affine semigroups for semisimple or reductive
groups have been considered by various authors (see for example [Re1], [Re2],
[RP], [Ri], [V]). Some of the questions considered below have been addressed
in [F] and results closely related to those of this paper have been obtained
in [T]. In particular a great deal of the content of our Theorem 3.1 can be
obtained using [V] together with [K]. Under the normality assumption, the
property of having rational singularities has been proved in similar terms in
[Ri]. Nonetheless, we have decided to give complete proofs, including those of
such known facts as the projective normality result of Kannan.

Our paper is divided as follows. After a section giving our notations, we
discuss the normality of semigroups in Section 3. In Section 4 the generali-
zation to other orbit closures is explained. In order to obtain this result, we
need to slightly generalize the theory of wonderful completions of an adjoint
group. Since the proofs of many assertions are essentially identical to those of
the corresponding assertions in the case of group compactifications, they are
sometimes omitted. Finally in the last section we discuss various examples.

2 Notation

Let k denote an algebraically closed field of characteristic 0. Let G be a
semisimple simply connected algebraic group over k. Choose a maximal torus
T and a Borel subgroup B ⊃ T in G, and let W = N(T )/T be the Weyl group
of (G, T ).

Consider the character group P := X(T ) of T , and let ∆ ⊂ P denote the
roots of (G, T ) with ∆+ the positive roots relative to B. Similarly consider the
dual lattice P̌ , and the set of coroots ∆̌ with positive coroots ∆̌+. Set P+ equal
to the semigroup of dominant weights, the weights λ such that 〈λ, α̌〉 ≥ 0 for
each positive coroot α̌. Here 〈 , 〉 is the canonical W -invariant inner product
on P ⊗ R. P+ is a fundamental domain for the action of the Weyl group W
on P .

Let us order P by setting λ ≥ µ if λ − µ is a positive linear combination
of positive roots. This order is called the dominant order.

Recall that the set of isomorphism classes of finite dimensional irreducible
representations of G is in bijection with P+, the bijection being defined as
follows. Any such representation contains a unique line preserved by B called
the highest weight line. Given a non zero vector v in such a line, then T acts on
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v by multiplication by a character λ ∈ P+. The “unique” (up to isomorphism)
irreducible module corresponding to λ will be denoted by Vλ.

P can be identified with the Picard group of G/B. We fix this identification
in such a way that, if λ ∈ P+, the line bundle Lλ corresponding to λ is such
that

H0(G/B,Lλ) ≡ Vλ.

Let us recall a few facts about the weight structure of Vλ. We say that a weight
µ ∈ P appears in a representation V if there is a non zero T eigenvector v ∈ V
of weight µ. One has:

(1) µ appears in V if and only if wµ does for every w ∈ W .
(2) If µ appears in Vλ, then µ ≤ λ.
(3) µ appears in Vλ if and only if the unique dominant weight of the form

ν = wµ satisfies ν ≤ λ.

We shall say that a finite dimensional G-module U has highest weight
λ ∈ P+, if it has a non zero vector of weight λ and each weight µ which
appears in U satisfies µ ≤ λ.

Recall that a dominant weight λ is called minuscule if it satisfies one of
the following

(1) 〈λ, α̌〉 ≤ 1 for all positive coroots α̌.
(2) If µ is dominant and µ ≤ λ, then µ = λ.
(3) A weight appears in Vλ if and only if it is in the W -orbit of λ.

Given now λ ∈ P+, we define its saturation as the set

Σ(λ) = {µ ∈ P+ | µ ≤ λ}.

It is well known that λ is minuscule if and only if Σ(λ) = {λ}.

3 Some Semigroups

Given a G-module V , denote by I ∈ End(V ) the identity map. Consider the
morphism γ : G×Gm → End(V ) defined by γ((g, z)) = gzI = zgI. The image
of this morphism is the set of G translates of the homotheties.

Notice that clearly the image of γ lies in GL(V ) and as a morphism

γ : G × Gm → GL(V ),

γ is a group homomorphism. Furthermore γ(G × Gm) is stable under the
action of G × G by left and right multiplication.

We set ZV equal to the closure of γ(G × Gm) in End(V ). Note that, by
continuity, ZV is closed under composition, i.e., it is a semigroup, and it is
stable under the action of G × G by left and right multiplication. The main
goal of this paper will be to discuss the normality of these semigroups for
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certain representations V of G. First some notation. Fix a dominant weight
λ ∈ P+ and let Σ(λ) be its saturation. Define Wλ = ⊕µ∈ΣλVµ.

We set
Zλ := ZVλ and Zλ := ZWλ .

We can now state:

Theorem 3.1. 1) Zλ is a normal variety with rational singularities.
2) If V is a G-module of highest weight λ, then Zλ is the normalization of

ZV , and it is equal to ZV if and only if Wλ is a subrepresentation of V .
In particular Zλ is the normalization of Zλ and it is equal to Zλ if and only
if λ is minuscule.

The proof is an application of some of the results in [DCP], so before giving
it, let us recall these facts.

In [DCP] one studies the following variety. Consider ω1, . . . ,ωn, the fun-
damental weights for (G, T ). Let pi ∈ P(End(Vωi)) be the point repre-
senting the line spanned by the identity. Define X to be the closure in
P(End(Vω1)) × · · · × P(End(Vωn)) of the orbit G(p1, . . . , pn). X is called the
wonderful compactification of the adjoint group G = G/Z(G), and it has a
number of very nice properties. Here we shall need some of them.

First of all X is a smooth G×G-variety with open orbit G(p1, . . . , pn), the
complement of which is a divisor with normal crossings and smooth irreducible
components D1, . . . , Dn. Given a subset I ⊂ {1, . . . , n}, the smooth subvariety
DI := ∩i∈IDi is the closure of the G×G-orbit OI = DI −∪J!IDJ (D∅ = X)
and each G×G-orbit equals one of the OI . In particular X contains a unique
closed G × G-orbit which can be seen to be isomorphic to G/B × G/B.

One knows that the Picard group of G/B × G/B can be identified with
P ×P , and one has that the homomorphism Pic(X) → Pic(G/B×G/B) is an
injection whose image is the lattice consisting of pairs of the form (λ,−w0(λ)),
w0 being the longest element in W . Thus Pic(X) can be identified with P .
Under this identification, the classes of the O(Di) correspond to the simple
roots αi.

Furthermore take λ ∈ P+ and U a G-module of highest weight λ.
Consider the point p ∈ P(End(U)) representing the line spanned by the

identity. Set X(U) = Gp. Then the obvious map G(p1, . . . , pn) → X(U) given
by g(p1, . . . , pn) → gp extends to a morphism

φ : X → X(U) → P(End(U))

(in fact if λ is regular φ gives an isomorphism of X onto X(U)).
Furthermore under the identification of Pic(X) with P , λ corresponds to

the class of φ∗(O(1)), O(1) being the tautological line bundle on P(End(U)).
The above discussion obviously applies to both Vλ and Wλ. Furthermore

it is clear that Zλ is nothing else than the affine cone over X(Vλ), while Zλ is
the affine cone over X(Wλ). Thus the coordinate rings of Zλ and Zλ can be
identified with graded G × G stable subrings of the ring
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A := ⊕nH0(X, Lnλ),

Lµ being the line bundle on X corresponding to µ.
Let us take now for each simple root αi the unique (up to a scalar) G×G

invariant section of H0(X, Lαi), whose set of zeroes is the divisor Di. We can
filter the ring

R := ⊕µ∈P H0(X, Lµ)
by the order of vanishing on the D′

is. We get a filtration R = R0 ⊃ R1 ⊃
· · · ⊃ Rm ⊃ · · · , where

Ri =
∑

h1+···+hn=i

sh1
1 · · · shn

n R.

One then easily gets from [DCP]
Proposition 3.2. The associated graded ring GrR = ⊕iRi/Ri+1, is isomor-
phic to the polynomial ring C[x1, . . . , xn], where xi is the class of si in R1/R2

and
C = ⊕λ∈P H0(G/B × G/B,L(λ,−w0(λ))),

L(λ,−w0(λ)) being the line bundle on G/B×G/B corresponding to (λ,−w0(λ)) ∈
P × P .

Proof. Fix λ ∈ P . We have already seen that if we restrict the line bundle Lλ

to G/B × G/B, we get the line bundle L(λ,−w0(λ)). Also if we consider the
restriction map

H0(X, Lλ) → H0(G/B × G/B,L(λ,−w0(λ))),

we have that this is surjective with kernel R1(λ) = R1 ∩ H0(X, Lλ).
Given two sequences h = {h1, . . . , hn} and k = {k1, . . . , kn}, we shall say

that k ≥ h if ki ≥ hi for each i = 1, . . . , n. If we now fix such a sequence h,
we set Rh(λ) equal to the image of the map

H0(X, Lλ−
∑

hiαi
) → H0(X, Lλ)

given by multiplication by sh1
1 · · · shn

n . Then by [DCP], we know that this map
induces an isomorphism of G × G-modules,

ψh(λ) : Rh(λ)/
∑

k>h

Rk(λ) → H0(X, Lλ−
∑

hiαi
)/R1(λ−

∑
hiαi) ∼=

∼= H0(G/B × G/B,L(λ−
∑

hiαi,−w0(λ−
∑

hiαi))).
Since clearly

GrR = ⊕λ∈P,hRh(λ)/
∑

k>h

Rk(λ),

we get the required isomorphism

ψ : GrR → C[x1, . . . , xn]

by setting ψ(a) = ψh(λ)(a)xh1
1 · · ·xhn

n for a ∈ Rh(λ)/
∑

k>h Rk(λ). 12
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As an application of this proposition, we have

Proposition 3.3. Let λ ∈ P+. Then the ring

A := ⊕nH0(X, Lnλ)

is normal with rational singularities.

Proof. By a result of Kempf and Ramanathan [KR, Theorem 2], the ring

⊕(λ,µ)∈P×P H0(G/B × G/B,L(λ,µ))

is normal with rational singularities. Now if we let T × T act on this ring by
(t1, t2)s = λ(t1)µ(t2)s, for s ∈ H0(G/B × G/B,L(λ,µ)), then the ring

C = ⊕λ∈P H0(G/B × G/B,L(λ,−w0(λ))),

is the subring of invariants under the action of the subgroup Γ ⊂ T×T defined
as the intersection of the kernels of the characters (λ,−w0(λ)) as λ varies in
P . Thus by [B], it is also normal with rational singularities. It follows that also
the polynomial ring GrR = C[x1, . . . , xn] is normal with rational singularities.
Using a result of Elkik [E, Theorem 4], we then deduce that R itself is normal
with rational singularities.

At this point, let us act on R with T by ts = λ(t)s if s ∈ H0(X, Lλ). Then
A is the subring of invariants under the action of the subgroup Ker(λ). Thus
again by [B], it is normal and with rational singularities. 12

Let us now observe the following easy Lemma. Consider the coordinate
ring k[G] of G. One knows that as a G × G-module, k[G] = ⊕λ∈P+End(Vλ).
We have

Lemma 3.4. Given λ, µ ∈ P+, we set Cλ,µ = {ν ∈ P+ | (Vλ⊗Vµ⊗V ∗
ν )G 3= 0}.

Then, in k[G],
End(Vλ)End(Vµ) = ⊕ν∈Cλ,µEnd(Vν).

Proof. If we consider k[G] as a G-module with respect to the G action in-
duced by left multiplication, then End(Vλ) is the isotypic component of the
irreducible module Vλ. It follows that if we consider End(Vλ)End(Vµ) as a
G-module, each of its irreducible components has to be isomorphic to an ir-
reducible module Vν with ν ∈ Cλ,µ.

The decomposition k[G] = ⊕λ∈P+End(Vλ) is a decomposition into distinct
pairwise non isomorphic irreducible G × G-modules and End(Vλ)End(Vµ) is
stable under the action of G × G. From this we deduce that there is a subset
C′

λ,µ of Cλ,µ such that

End(Vλ)End(Vµ) = ⊕ν∈C′
λ,µ

End(Vν).
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In particular
End(Vλ)End(Vµ) ⊆ ⊕ν∈Cλ,µEnd(Vν).

From these facts we see that in order to prove equality, it suffices to see that,
as a G-module, End(Vλ)End(Vµ) contains a copy of Vν for every ν ∈ Cλ,µ.

To see this, consider the open G-orbit in G/B × G/B, i.e., the orbit of
(B, B−), B− being the opposite Borel subgroup to B with respect to T .
Let π : G → G/B × G/B be the map defined by π(g) = g(B, B−) =
(gBg−1, gB−g−1). Notice that π can be written as the composition of the
diagonal embedding G → G×G and of the G×G action. Take the line bundle
L(λ,µ) on G/B×G/B with the property that H0(G/B×G/B, L(λ,µ)) = Vλ⊗Vµ

as a G-module. Since G is simply connected, its Picard group is zero and we
get an embedding π∗ of H0(G/B × G/B, L(λ,µ)) into k[G]. Since π is G-
equivariant, and factors through the diagonal G → G × G, we easily deduce
that the image of π∗ is a copy of Vλ ⊗ Vµ contained in End(Vλ)End(Vµ). In
particular, it follows from the definition of Cλ,µ, that we can find a copy of
Vν in End(Vλ)End(Vµ) for every ν ∈ Cλ,µ, as desired. 12

We now recall the PRV conjecture proved by Kumar [Ku] and Mathieu
[Ma].

Theorem 3.5. Given two dominant weights λ, µ, if a dominant weight ν is
of the form wλ + w′µ, for some w, w′ ∈ W , then ν ∈ Cλ,µ.

From this we deduce

Theorem 3.6. [K] Let λ, µ ∈ P . Then the multiplication map

H0(X, Lλ) ⊗ H0(X, Lµ) → H0(X, Lλ+µ)

is surjective.

Proof. As in the above Lemma 3.4, we can restrict to the open G-orbit and
embed H0(X, Lλ) into k[G] as the G×G-submodule ⊕γ∈Σ(λ)End(Vγ). Thus,
following all our identifications and Lemma 3.4, we are reduced to prove that,
given ν ∈ P+ with ν ≤ λ + µ there exist λ′ ≤ λ and µ′ ≤ µ both dominant,
such that ν ∈ Cλ′,µ′ .

To see this, recall that the natural map Vλ ⊗ Vµ → Vλ+µ is surjective
(since it is non zero, G-equivariant and Vλ+µ is irreducible). So each weight
appearing in Vλ+µ can be written as a sum of a weight appearing in Vλ and of
a weight appearing in Vµ. Now notice that since ν ≤ λ+µ and ν is dominant,
for every w ∈ W , wν ≤ ν ≤ λ+µ. We deduce that ν appears in Vλ+µ. By the
above remark write

ν = λ′′ + µ′′

with λ′′ appearing in Vλ and µ′′ in Vµ. We now know that there exist w, w′

such that λ′ = wλ′′ and µ′ = w′µ′′ are dominant and appear in Vλ and in
Vµ respectively. The PRV conjecture then implies that ν ∈ Cλ′,µ′ and we are
done. 12
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Remark 3.7. Although the variety X is defined in arbitrary characteristic
and both the computation of the Picard group of X and Proposition 3.2 hold
(see [S1]), Theorem 3.6 is false in positive characteristic, contrary to the claim
contained in the Appendix of [K].

The easiest example is the following. Let F be a field of characteristic 2.
Let G = SL(4) and let λ = ω2 be the second fundamental weight.

Consider a matrix Y = (yi,j), 1 ≤ i, j ≤ 4, of indeterminates. Given two
sequences 1 ≤ i1 < · · · < ih ≤ 4 and 1 ≤ j1 < · · · < jh ≤ 4 (of course
h ≤ 4), we denote by [i1, . . . , ih|j1, . . . , jh] the determinant of the minor of
Y formed by the rows i1, . . . , ih and the columns j1, . . . , jh. We can then
identify H0(X, Lω2) with the subspace of F[zi,j] spanned by 2 × 2 minors
of Y and H0(X, L2ω2) with the span of the polynomials [s, t|s′, t′][u, v|u′, v′]
and [s, t, u|s′, t′, u′][v|v′] with 1 ≤ s, t, u, v, s′, t′, u′, v′ ≤ 4. The image of
H0(X, Lω2) ⊗ H0(X, Lω2) in H0(X, L2ω2) is the the span of the polynomi-
als [s, t|s′, t′][u, v|u′v′]. A direct computation (see [Br] section 4 and 5), shows
that the polynomial [2, 3, 4|2, 3, 4][1|1] does not belong to this image.

Notice that if we set V =
∧2 F4, then the coordinate ring of Zω2 is the

subring of F[yi,j ] generated by H0(X, Lω2). In [Br] it is also shown that this
ring is neither normal nor Cohen–Macaulay. So we get that also Theorem 3.1
does not hold in this case.

Using Theorem 3.6 we can now prove the first part of our Theorem 3.1,
namely that Zλ is a normal variety with rational singularities.

To see this let us see that k[Zλ] = A. Since both rings are graded and
generated in degree 1, (k[Zλ] by definition and A by the Theorem 3.6) and
since k[Zλ] ⊆ A, it suffices to see that the two rings coincide in degree 1. Now
A1 = H0(X, Lλ) = ⊕µ∈Σ(λ)End(Vµ). On the other hand, the degree one part
k[Zλ]1 of k[Zλ], is the G × G-module spanned by the identity in End(Wλ).
Since Wλ = ⊕µ∈Σ(λ)Vµ, it is immediate that k[Zλ]1 = ⊕µ∈Σ(λ)End(Vµ),
proving our claim.

It remains to prove the second part of Theorem 3.1. By our assumption on
V , we have that there is a subset Ω ⊂ Σ(λ) containing λ and positive integers
nµ for µ ∈ Ω, such that

V 5 ⊕µ∈ΩV ⊕nµ
µ .

If we take the identity map I ∈ End(V ), we then deduce that the G×G span of
I is isomorphic to ⊕µ∈ΩEnd(Vµ). It follows that we can assume, without loss of
generality, nµ = 1 for all µ ∈ Ω. Also we deduce that ZV ⊂ ⊕µ∈ΩEnd(Vµ). In
particular, as we have already seen above, we get that Zλ ⊂ ⊕µ∈Σ(λ)End(Vµ).
We thus have that the obvious G × G-equivariant projections

⊕µ∈Σ(λ)End(Vµ) → ⊕µ∈ΩEnd(Vµ) → End(Vλ)

restrict to dominant morphisms

Zλ → ZV → Zλ.

Thus we get inclusions k[Zλ] ⊂ k[ZV ] ⊂ k[Zλ].
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Notice that k[ZV ] = k[Zλ] if and only if Ω = Σ(λ), since only in this case
do the two rings coincide in degree 1. Also using the above inclusions, it is
clear that in order to show our claims, it suffices to see that k[Zλ] and k[Zλ]
have the same quotient field and that k[Zλ] is integral over k[Zλ].

Let us see that k[Zλ] and k[Zλ] have the same quotient field. Indeed both
the representation of G × Gm in Gl(Vλ) and of G × Gm in Gl(Wλ), have as
kernel the subgroup S ⊂ Z(G)×Gm, Z(G) being the center of G, consisting of
those pairs (z, t) ∈ Z(G) × Gm for which λ(z)t = 1. This clearly implies that
Zλ and Zλ contain the dense open set G × Gm/S, hence they are birational.

It remains to see that k[Zλ] is integral on k[Zλ]. For this, it is clearly
sufficient to show that the degree one part of k[Zλ] is integral over k[Zλ].

Restricting to the open G×G-orbit, we can identify, for each m, the degree
m part k[Zλ]m of k[Zλ] with the subspace of k[G] spanned by the products
f1f2 · · · fm, with fi ∈ End(Vλ). Using Lemma 3.4 we deduce that as a G×G-
module,

k[Zλ]m =
⊕

{ν| HomG(Vν ,V ⊗m
λ ) (=0}

End(Vν).

From this we see that our claim will immediately follow from the following
statement.

Proposition 3.8. (Cf. also [T] Lemma 1) Let µ,λ be dominant weights. As-
sume that µ ≤ λ. Then there exists a positive integer H such that VHµ is an
irreducible component of V ⊗H

λ .

Proof. We know that µ is a convex linear combination of the weights wλ, as
w varies in the Weyl group W . So let us write

µ = a1w1λ+ · · · + amwmλ

with a1 +a2+ · · ·+am = 1, ai > 0, ai rational. Let us make induction on m. If
m = 1 there is nothing to prove, since the fact that λ is the unique dominant
weight in its W -orbit clearly implies that µ = λ. Assume m ≥ 2. Write

µ = a1w1λ+ (1 − a1)
( a2

1 − a1
w2λ+ · · · + am

1 − a1
wmλ

)
.

Now notice that there is a positive integer N such that

µ̃ = N
( a2

1 − a1
w2λ+ · · · + am

1 − a1
wmλ

)

=
a2

1 − a1
w2Nλ+ · · · + am

1 − a1
wmNλ ∈ P,

is a convex combination of m − 1 W -translates of Nλ. Thus also every W -
translate of µ̃ has the same properties and, by the inductive hypothesis, if we
denote by µ the unique W -translate of µ̃ which lies in P+, we obtain that
there exists a M such that VMµ is an irreducible component of V ⊗M

Nλ . But



24 Corrado De Concini

we know that V ⊗M
Nλ is a summand of V ⊗MN

λ , so that VMµ is an irreducible
component of V ⊗MN

λ . Let us now consider

NMµ = a1w1NMλ+ (1 − a1)Mµ̃.

Since 0 < a1 < 1, we can find two positive integers s and r with r < s and
a1 = r/s. Clearing denominators, we obtain that

sNMµ = w1rNMλ+ (s − r)Mµ̃.

Now (s − r)Mµ̃ is a W -translate of (s − r)Mµ, so that applying the PRV
conjecture, we deduce that VsNMµ is an irreducible component of VrNMλ ⊗
V(s−r)Mµ. On the other hand VrNMλ is an irreducible component of V ⊗rNM

λ

while V(s−r)Mµ is an irreducible component of V ⊗s−r
Mµ which in turn is a direct

summand of V ⊗(s−r)NM
λ . Thus VsNMµ is an irreducible component of

V ⊗rNM
λ ⊗ V ⊗(s−r)NM

λ = V ⊗sNM
λ .

Setting H = sNM we obtain our claim. 12

Remark 3.9. In [DCP, section 4], it is shown that whenever λ is regular, then
both X(Vλ) and X(Wλ) are isomorphic to X . This can be used to deduce
directly that k[Zλ] is integral on k[Zλ]. Also we have that Zλ contains the
origin as its unique singular point and the natural projection

f : Zλ → Zλ

is bijective. But as we have proved in Theorem 3.1, it is an isomorphism only
for G = SL(2)n and λ = (ω1, . . . ,ω1), in which case Zλ is the cone over the
Segre embedding of (P3)n.

4 A Generalization

As in the previous section, G will denote a semisimple simply connected al-
gebraic group over k, T ⊂ G a maximal torus and B ⊂ G a Borel subgroup
containing T . We shall continue to denote by G the adjoint quotient of G.

We now take another semisimple simply connected group G, a maximal
torus T in G and a Borel subgroup B ⊃ T in G. We shall set P̃ = X(T ), the
character group of T . Let ∆̃ ⊂ P̃ denote the set of roots, and let ∆̃+ ⊂ ∆ be
the positive roots relative to B. Finally, let P̃+ be the semigroup of dominant
weights.

We now assume that G contains a parabolic subgroup P ⊃ B having
the following property. If S ⊂ P denotes the solvable radical of P , we have a
surjective homomorphism π : P/S → G×G with finitekernel. Equivalently we
assume that the semisimple Levi factor of P is isogenous to G×G. Composing
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π with the quotient homomorphism P → P/S, we get a surjection π′ : P →
G × G.

We set K equal to the preimage under π′ of the diagonal subgroup in
G × G.

Notice that we get an action of G×G on S and a surjective homomorphism
γ : S!(G×G) → P with finite kernel. Using γ, we can consider any P-module
and hence any G-module as a S ! (G × G)-module .

Let us consider now the wonderful compactification X of G and define

Y = G ×P X.

We want to make a study of some of the properties of Y. This study is in
fact essentially identical to that of X , so that we shall only sketch the proofs
of the various assertions. First of all notice that, since we have an obvious
G-equivariant fibration

p : Y → G/P ,

with fiber X , we immediately deduce that all G-orbits in Y are of the form
G ×P O, O being a G × G-orbit in X . This gives a codimension preserving
bijection between G-orbits in Y and G×G-orbits in X with the property that
since G/P is projective, if O is any G×G-orbit in X , then G ×P O = G×P O.
In particular each orbit closure in Y is smooth.

Recall that the complement of the open orbit, which is isomorphic to G/K,
is a divisor D with normal crossings and smooth irreducible components Di,
i = 1, . . . , n, each of which is the closure of a G-orbit. Furthermore, each
orbit closure in Y is the transversal intersection of those among the Di’s
which contain it. Finally Y contains a unique closed orbit ∩n

i=1Di which is
isomorphic to G ×P (G/B × G/B) 5 G/B.

We are now going to determine the Picard group of Y. Recall that in
the previous section we have seen that the homomorphism i∗ : Pic(X) →
Pic(G/B × G/B) induced by the inclusion i : G/B × G/B → X as the
closed orbit is injective and has as image the lattice consisting of pairs of
the form (λ,−w0(λ)), w0 being the longest element in the Weyl group W .
Consider now the inclusions j : G/B → Y as the closed orbit and the inclusion
h : G/B ×G/B → G/B as the fiber over [P ] of the fibration G/B → G/P . We
have

Proposition 4.1. The homomorphism j∗ : Pic(Y) → Pic(G/B) is injective
and has as image the lattice (h∗)−1i∗(Pic(X)).

Proof. We have a commutative diagram of inclusions

G/B × G/B
h !!

i

""

G/B

j

""
X

h̃ !! Y

where h̃ is the inclusion of X as the fiber over [P ] of the fibration Y → G/P .
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Now observe that since Y has a finite number of orbits, it contains a finite
number of fixed points under the action of T . Thus applying [BB], we deduce
that Y has a paving by affine spaces. The same is true both for G/P and for
X . Using this fact and the previous diagram, we get a diagram

0 !! Pic(G/P)
(pj)∗

!! Pic(G/B) h∗
!! Pic(G/B × G/B) !! 0

0 !! Pic(G/P)

id

##

p∗
!! Pic(Y)

j∗

##

h̃∗
!! Pic(X)

i∗

##

!! 0

whose horizontal sequences are exact. Now recall that i∗ is injective. This
clearly implies that also j∗ is injective and has as image (h∗)−1i∗(Pic(X)) as
desired. 12

Now that we have computed the Picard group of Y, we can proceed to
analyze the space of sections of a line bundle on Y. We can clearly assume
that the homomorphism π′ : P → G × G takes the Borel subgroup B to the
Borel subgroup B×B, which is the image in G×G of B×B and also takes the
maximal torus T to the maximal torus T ×T , which is the image in G×G of
T×T . We can also assume that under the homomorphism γ : S!(G×G) → P ,
T ×T is mapped to T . Set Q equal to the root lattice X(T ). Our various maps
induce homomorphisms

Q ⊕ Q
π′∗

!! P̃
γ∗

!! P ⊕ P ,

with the composition being the inclusion of the root lattice into the weight
lattice for the maximal torus T×T in G×G. Clearly we can identify P⊕P with
Pic(G/B ×G/B), P̃ with Pic(G/B) and γ∗ with h∗. So Pic(Y) gets identified
with the sublattice of P̃ consisting of those elements λ such that γ∗(λ) =
(λ′,−w0(λ′)) for a suitable λ′ ∈ P . In particular Pic(Y) contains a copy of
the root lattice Q. This lattice consists of the elements τ̃ = π′∗((τ,−w0τ)),
τ ∈ Q (we want to stress that in all this discussion w0 denotes the longest
element in the Weyl group of G). Let {α1, . . . ,αn} ⊂ Q denote the set of
simple roots with respect to the Borel subgroup B ⊂ G and {α̃1, . . . , α̃n} the
corresponding subset of P̃ .

Before we proceed, let us prove a well known and easy Lemma. Let U ⊂ P
denote the unipotent radical in P . Given a G-module M , set MU equal to the
subspace of vectors which are invariant under the action of U . MU is clearly
a G × G-module.

Lemma 4.2. The G-module M is irreducible if and only if the G×G-module
MU is irreducible.

Proof. M (resp. MU) is irreducible if and only if contains a unique line stable
under B (resp. B × B). But a line stable under B is automatically contained
in MU and a B ×B stable line in MU is automatically B stable, so that M is
irreducible if and only if MU is irreducible. 12
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We now have

Proposition 4.3. Let λ ∈ Pic(Y) and let Lλ be the corresponding line bundle
on Y, Lλ its restriction to G/B. The the restriction map

H0(Y, Lλ) → H0(G/B,Lλ)

is surjective.

Proof. We can clearly assume that λ is dominant. Otherwise H0(G/B,Lλ)
= 0 and there is nothing to prove. If λ is dominant, then H0(G/B,Lλ) = M∗

λ ,
Mλ being the irreducible module of highest weight λ. We get an associated
morphism ψ : G/B → P(Mλ). We are going to extend this morphism to Y.
This will clearly imply our claim.

As we have seen in the previous Lemma, the subspace MU
λ is an irreducible

G × G-module whose highest weight is of the form (λ′,−w0(λ′)), since λ ∈
Pic(Y) for a suitable dominant weight λ′ ∈ P+. It follows that, as a G × G-
module, MU

λ is isomorphic to End(Vλ′ ).
Consider the identity map in I ∈ End(Vλ′ ) = MU

λ ⊂ Mλ. The line spanned
by I is clearly stable under the action of P and so is the corresponding point
[I] ∈ P(MU

λ ). In the previous section, we have seen that we have a G × G-
equivariant morphism from X onto the closure of the G × G-orbit of [I].
It is clear, from the above considerations, that this morphism is indeed P-
equivariant.

Using the G action and the inclusion P(MU
λ ) → P(Mλ), we then obtain a

G-equivariant morphism

ψ̃ : Y = G ×P X → P(Mλ)

which clearly extends ψ as desired. 12

Once the above result has been established, most of the results which
follow are proven exactly as in [DCP, section 8] or as in section 3, so we leave
their proof to the reader or only sketch them. The first is the following.

Proposition 4.4. We can order the divisors Di, i = 1, . . . , n in such a way
that, under the above identifications, the class in Pic(Y) of O(Di) is α̃i.

Let us now choose for each i = 1, . . . , n, a non zero section ti ∈ H0(Y, Lα̃i)
whose set of zeros is Di.

Consider the ring
R =

⊕

λ∈Pic(Y)

H0(Y, Lλ).

As in section 3, given sequences h = {h1, . . . , hn} and k = {k1, . . . , kn} of non
negative integers, we shall say that k ≥ h if ki ≥ hi for each i = 1, . . . , n and
set |h| = h1 + . . . + hn. If we now fix such a sequence h, we set Rh(λ) equal
to the image of the map

H0(Y, Lλ−
∑

hiα̃i
) → H0(Y, Lλ)
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given by multiplication by th1
1 · · · thn

n . Clearly Rk(λ) ⊂ Rh(λ) if and only if
k ≥ h and ⊕λ∈Pic(Y)Rh(λ) is the ideal generated by th1

1 · · · thn
n .

Theorem 4.5. (1) For each λ ∈ Pic(Y),

Rh(λ)/
∑

k>h

Rk(λ)

is isomorphic as a G-module to H0(G/B,Lλ−
∑

i hiα̃i
). In particular as a G-

module, we have an isomorphism

H0(Y, Lλ) 5
⊕

(h1,...,hn)

H0(G/B,Lλ−
∑

i hiα̃i
).

(2) If we set
C =

⊕

λ∈Pic(Y)

H0(G/B,Lλ),

and
Ri =

⊕

|h|=i,λ∈Pic(Y)

Rh(λ) =
∑

|h|=i

th1
1 · · · thn

n R,

then associated graded ring

GrR = ⊕i≥0Ri/Ri+1

is isomorphic to the polynomial ring C[x1, . . . , xn], where for j = 1, . . . , n, xj

is the image of the tj in R1/R2.
(3) Let λ ∈ Pic(Y) be a dominant weight. Then the ring

Rλ =
⊕

n≥0

H0(Y, Lnλ)

is normal with rational singularities.

Proof. The proof of (1) is identical to that given in [DCP] for the case of
X . (2) then follows repeating the proof of Proposition 3.2 and (3) the one of
Proposition 3.3. 12

Before we proceed, let us remark that, by Lemma 4.2, the restriction of
the map

h∗ : M = H0(G/B,Lλ) → H0(G/B × G/B,Lλ|G/B×G/B)

to MU is an isomorphism for all dominant λ ∈ P̃+. Using this we obtain

Proposition 4.6. Let λ, µ ∈ Pic (Y) ∩ P̃+, then the multiplication map

m : H0(Y, Lλ) ⊗ H0(Y, Lµ) → H0(Y, Lλ+µ)

is surjective.
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Proof. Since the map m is G-equivariant and H0(Y, Lλ+µ)U generates
H0(Y, Lλ+µ) as a G-module, it is sufficient to show that the restriction of
m to the U-invariants is surjective.

Using the notations of Section 3, notice that, by the definition of the
divisors Di, the restriction of the section ti to X is, up to scalar, the section
si vanishing on the boundary divisor Di of X . This implies that we have, for
each h = (h1, . . . , hn) and for any λ ∈ Pic(Y), a commutative diagram

H0(Y, Lλ−
∑

hiα̃i
) !!

h̃∗

""

H0(Y, Lλ)

h̃∗

""
H0(X, Lλ−

∑
hiα̃i |X) !! H0(X, Lλ|X) .

Setting h∗(λ) = (λ′,−w0(λ′)) and, by abuse of notation, still denoting by h̃∗

the map induced by h̃∗ on a subquotient, we get a commutative diagram

Rh(λ)/
∑

k>h Rk(λ) !!

h̃∗

""

H0(G/B,Lλ−
∑

i hiα̃i
)

h∗

""
Rh(λ′)/

∑
k>h Rk(λ′) !! H0(G/B × G/B,L(λ′−

∑
i hiαi,−w0(λ′−

∑
i hiαi)))

where the horizontal arrows are isomorphisms. Now assume that λ is domi-
nant. Then it is easy to see, λ′−

∑
i hiαi is dominant if and only if λ−

∑
i hiα̃i

is dominant. This implies, by the remark made before our Proposition, that
for all h,

h∗ : H0(G/B,Lλ−
∑

i hiα̃i
)U → H0(G/B × G/B,L(λ′−

∑
i hiαi,−w0(λ′−

∑
i hiαi)))

is an isomorphism, so that also the restriction of h̃∗ to the space of U invariants
is an isomorphism.

Take λ, µ ∈ P̃+. We get a diagram

H0(Y, Lλ)U ⊗ H0(Y, Lµ)U m !!

h̃∗⊗h̃∗
""

H0(Y, Lλ+µ)U

h̃∗

""
H0(X, Lλ|X) ⊗ H0(X, Lµ|X) m !! H0(X, Lλ+µ|X)

where the vertical arrows are isomorphisms.
By Theorem 3.6, we have that the map

H0(X, Lλ|X) ⊗ H0(X, Lµ|X) m !! H0(X, Lλ+µ|X)

is surjective and this, together with our previous considerations, implies our
claim. 12
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We are now going to use the properties of Y to study certain orbit closures.
Let us take a representation M of G and a non zero vector v ∈ M which,

as we can suppose without loss of generality, spans M as a G-module. The
assumptions we are going to make on v are

Assumptions 4.7 1) There is a character χ : K → k∗ such that kv = χ(k)v,
for all k ∈ K.

2) Let W ⊂ M be the G × G-module spanned by v. Then W is a highest
weight module.

Let us make some considerations. By assumption 1) the diagonal subgroup
in G × G fixes v, so that the orbit map G × G → (G × G)v factors through
the map f : G × G → G given by f((g1, g2)) = g1g

−1
2 , for all g1, g2 ∈ G.

Thus, we get an G × G-equivariant inclusion of the vector space W into the
coordinate ring k[G]. In particular, using assumption 2), we deduce that there
is a dominant λ′ ∈ P+ and a subset Ω′ ⊂ Σ(λ′) containing λ′, such that, as a
G × G-module,

W 5 ⊕µ′∈Ω′End(Vµ′ ).

Also, by assumption 1), we have that P preserves the line spanned by v, so
that W is stable under the action of P and W ⊂ MU . Since v spans M as
a G-module, we deduce that indeed W = MU . Using Lemma 4.2 and our
description of Pic(Y), we then deduce that there is a subset Ω ⊂ Pic(Y)
mapped bijectively onto Ω′ by h̃∗ : Pic(Y) → Pic(X) = P such that, as a
G-module,

M 5 ⊕µ∈ΩMµ.

Definition 4.8. The variety Y (v,Ω) is the cone over the orbit Gv, i.e., if we
let Gm act on M by homotheties,

Y (v,Ω) = (G × Gm)v.

In order to simplify notations we denote by U the G-module ⊕µ′∈Ω′(Vµ′).
We have

Lemma 4.9. Set Z = (P × Gm)v ⊂ W . Then
(1) Z is isomorphic as a G × G variety to ZU .
(2) Y (v,Ω) = GZ.

Proof. (1) Notice that up to rescaling, we can assume that the isomorphism

ψ : W → ⊕µ′∈ΣEnd(Vµ′ )

has the property that ψ(v) =
∑

µ∈Σ IdVµ . On the other hand, we have
a G×G-equivariant inclusion of ⊕µ∈ΣEnd(Vµ) into End(U) taking

∑
µ∈Σ IdVµ

to the identity. Composing, we get a G × G-equivariant inclusion ψ̃ : W →
End(U) with ψ̃(v) = IdU . Clearly the restriction of ψ̃ to Z gives the required
isomorphism with ZU .
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(2) Since both Y (v,Ω) and Z are cones, it suffices to show that GZ̃ =
Ỹ (v,Ω) for the projective varieties Z̃ = (Z − {0})/Gm and Ỹ (v,Ω) =
(Y (v,Ω)−{0})/Gm. Notice that Z̃ is P-stable, so that the morphism G×Z̃ →
Ỹ (v,Ω) factors through G ×P Z̃. Since G/P and Z̃ are complete, also G ×P Z̃
and hence its image GZ̃ are complete, proving that GZ̃ coincides with Ỹ (v,Ω).
12

Notice that if G = P = G×G, then the variety Y (v,Ω) coincides with the
variety ZU considered in Section 3.

The following Lemma strongly restricts our choice of Ω. Let λ ∈ Ω be the
unique element such that h̃∗(λ) = λ′. Given µ′ = λ′ −

∑
hiαi ∈ Σ(λ′), we set

ρλ(µ′) = λ−
∑

hiα̃i. Notice that the set Ω(λ) := ρλ(Σ(λ′)) coincides with the
set of highest weights of irreducible components of the G-module H0(Y, Lλ).

Lemma 4.10. Ω = ρλ(Ω′). In particular Ω ⊂ Ω(λ).

Proof. By what we have seen in Section 3, we have a G×G-equivariant mor-
phism

ψ : X → Z̃.

So we deduce from part 2) of the previous Lemma that we have a surjective
G-equivariant morphism

φ : Y → Ỹ (v,Ω)
whose restriction to X equals ψ. The line bundle on Y which is the pull back
of O(1) on Ỹ (v,Ω) is equal to Lλ for some λ ∈ Pic (Y) with the property
that h̃∗(λ) = λ′. It follows that the G-module M is a direct summand in
H0(Y, Lλ)∗. Thus Proposition 4.6 implies our claim. 12

We are ready to show:

Theorem 4.11. 1) The variety Y (v,Ω) is normal with rational singularities
if and only if Ω = Ω(λ).

2) For a general Ω ⊂ Ω(λ), Y (v,Ω(λ)) is the normalization of Y (v,Ω).
In particular Y (v, {λ}) is normal if and only if λ′ is minuscule.

Proof. The argument given in the above lemma implies that we can iden-
tify the coordinate ring k[Y (v,Ω)] of Y (v,Ω) with the subring of the ring
Rλ = ⊕n≥0H0(Y, Ln

λ) generated by the G submodule M∗ ⊂ H0(Y, Ln
λ). In

particular, notice that, up to isomorphism, Y (v,Ω) depends, as a G-variety,
only on Ω and not on the choice of a specific vector v (of course provided that
the Assumptions 4.7 are satisfied).

We can now prove Theorem 4.11 exactly as we have shown Theorem 3.1. If
Ω = Ω(λ), we get that k[Y (v,Ω(λ))] and Rλ coincide in degree one by Theo-
rem 4.5. Since by Proposition 4.6 they are both generated by their degree one
components, we deduce that k[Y (v,Ω(λ))] = Rλ. In particular k[Y (v,Ω(λ))]
is normal with rational singularities.

It remains to see that, if Ω " Ω(λ), then k[Y (v,Ω)] is not normal. This
follows in a way completely analogous to the corresponding statement for ZV ,
which has been seen in Section 3, so we leave the details to the reader. 12
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Theorem 4.11 can be extended as follows. Suppose G = G1 × · · · × Gs.
Let M1, . . . , Ms be G-modules and v1, . . . , vs be vectors with vi ∈ Mi each
satisfying Assumptions 4.7. Assume furthermore that for each i = 1, . . . , s, and
j 3= i, Gj×Gj fixes vi. By what we have already seen, for each i, Mi is a highest
weight module of highest weight λi and we get a subset λi ∈ Ωi ⊂ Pic(Y),
such that Mi 5 ⊕µ∈ΩiMµ. Also, we have the subsets Ω′

i = h̃∗(Ωi) ⊂ P+.
Denote by S the subspace in M = M1 ⊕ · · · ⊕ Ms spanned by the vectors
v1, . . . , vs.

We then define Y (v1, . . . , vs;Ω1, . . . ,Ωs) as the closure of GS ⊂ M . One
obtains

Theorem 4.12. 1) The variety Y (v1, . . . , vs;Ω1, . . . ,Ωs) is normal with ra-
tional singularities if and only if Ωi = Ω(λi) for each i = 1, . . . , s.

2) For a general sequence Ω1, . . . ,Ωs, with Ωi ⊂ Ω(λi), the normalization
of Y (v1, . . . , vs;Ω1, . . . ,Ωs) is given by Y (v1, . . . , vs,Ω1(λ1), . . . ,Ωs(λs)). In
particular, Y (v1, . . . , vs; {λ1}, . . . , {λs}) is normal if and only if λ′i is minus-
cule for each i = 1, . . . , s.

Proof. Let Γ ⊂ T be the intersection of the kernels of the characters λi.
It is easy to see that the definition of the λi’s implies that the coordinate
ring of Y (v1, . . . , vs,Ω1(λ1), . . . ,Ωs(λs)) can be identified with the ring of Γ
invariants in

R =
⊕

λ∈Pic(Y)

H0(Y, Lλ),

the T action being given by ts = λ(t)s, if s ∈ H0(Y, Lλ), t ∈ T .
This immediately implies that Y (v1, . . . , vs,Ω1(λ1), . . . ,Ωs(λs)) is normal

with rational singularities. We leave the rest of the proof to the reader. 12

5 Some Examples

In this section, using the notations of the previous sections, we are going to
make a number of examples of varieties of the form Y (v1, . . . , vs;Ω1, . . . ,Ωs).

Example 5.1. Assume G is arbitrary and P = B is a Borel subgroup. Then
necessarily G = {e} the trivial group. We can then take any dominant weight
λ ∈ P̃ and consider the irreducible G-module Mλ. Then necessarily v is a
highest weight vector and the variety Y (v, {λ}) is just the affine cone over the
unique closed orbit in P(Mλ). Notice that in this case, Y (v, {λ}) is normal
with rational singularities in accordance with our result (every representation
of the trivial group is minuscule). However, we remark that we have used this
fact to prove our result.

Example 5.2. Let us start with the case of one of the semigroups ZV . Take
G = SL(n) and let V be its fundamental representation

∧h kn. Then it is easy
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to see, as we have already remarked in Section 3 in a special case, that the
coordinate ring k[ZV ] is nothing else than the subring of the polynomial ring
k[xi,j ], i, j = 1, . . . , n, generated by the determinants of the h×h minors of the
matrix (xi,j). More generally, assume G = SL(n)×SL(m) and G = SL(h) with
h ≤ min(m, n). Take V = Hom(

∧r kn,
∧r km) for some r ≤ h. Consider kh as

a subspace of both kmand kn in the obvious way, so that we have an inclusion
of End(

∧r kh) into Hom(
∧r kn,

∧r km). Take v to be the identity map in
End(

∧r kh). Then, since
∧r kh is a minuscule SL(h)-module , we deduce that

the corresponding variety Y (v,Ω) is normal with rational singularities. It is
clear from our description, that the coordinate ring of Y (v,Ω) can be described
as follows. Consider the ring R = k[xi,j ]/Ih with i = 1, . . . , n, j = 1, . . . , m
and Ih equal to the ideal generated by determinants of h + 1 × h + 1 minors
of the matrix (xi,j). Then k[Y (v,Ω)] is the subring of R generated as a k
algebra, by the determinants of r × r minors of (xi,j) (in particular if r = 1,
Y (v,Ω) is the determinantal variety of n × m matrices of rank less than or
equal than h). The fact that this ring is normal with rational singularities, at
least when h = min(n, m), has been originally shown in [Br], see also [BrC].

Example 5.3. Suppose now G = Sl(n0) × Sl(n1) × · · · × Sl(nr), fix a
sequence of non negative integers (h1, h2, . . . , hr) with h1 ≤ min(n0, n1),
hi ≤ min(ni−1 − hi−1, ni), for 2 ≤ i ≤ r. Set v = (v1, v2, . . . , vr) ∈
Hom(kn0 , kn1)⊕Hom(kn1 , kn2)⊕ · · ·⊕Hom(knr−1 , knr) where, letting Ih de-
notes the identity h × h matrix, we have

vi =
(

Ihi 0
0 0

)

if i is odd,

vi =
(

0 0
0 Ihi

)

if i is even.
Notice that vi+1vi = 0 for each i = 1, . . . , r − 1. G = Sl(h1)× · · ·× Sl(hr)

and the G × G-module spanned by v is just End(kh1) ⊕ · · · ⊕ End(khr) so
that the conditions of Theorem 4.12 are satisfied. Furthermore for each i,
Ωi = {ω1}, a minuscule weight. We deduce that the variety

Y (v1, v2, . . . , vr; {ω1}, . . . , {ω1})

is normal with rational singularities. The fact vi+1vi = 0 for each i = 1, . . . , r−
1 clearly implies that Y (v1, v2, . . . , vr; {ω1}, . . . , {ω1}) is nothing else than the
variety of complexes with rank conditions (h1, h2, . . . , hr), i.e., it is the variety
of sequences (ψ1, . . . ,ψr) in Hom(kn0 , kn1)⊕ · · ·⊕Hom(knr−1 , knr) such that
ψi+1ψi = 0 for i = 1, . . . , r − 1 and rkψi ≤ hi for i = 1, . . . , r. The fact that
varieties of complexes have rational singularities is well known (see [Ke], [DS]
or, for a more recent reference [MT]).
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Example 5.4. Suppose now G = SL(n)×SL(m), and fix a pair of non negative
integers (h, s) with h + s ≤ min(n, m). Define v = (v1, v2) ∈ Hom(kn, km) ⊕
Hom(km, kn) by

v1 =
(

Ih 0
0 0

)
, v2 =

(
0 0
0 Is

)
.

(As before, Ih and Is are identity matrices of size h and k respectively). G =
SL(h)×SL(s) and the G×G-module spanned by v is just End(kh)⊕End(ks), so
Ωi = {ω1} for i = 1, 2. Reasoning as in the previous example, we deduce that
Y (v1, v2; {ω1}, {ω1}) is normal with rational singularities. Now notice that
v1v2 = 0 and v2v1 = 0. From this, it is immediate that Y (v1, v2; {ω1}, {ω1})
is the variety of circular complexes with rank conditions (h, s), i.e., it is the
variety of pairs (ψ1,ψ2) in Hom(kn, km) ⊕ Hom(km, kn) such that ψ1ψ2 =
0 ,ψ2ψ1 = 0 and rkψ1 ≤ h, rkψ2 ≤ s. These varieties have been studied in
[S] and in [MT1].

Example 5.5. As a final example, let V be an n-dimensional vector space
with a non degenerate symmetric or antisymmetric bilinear form (in this case
dimV is even). We let G be the group of isometries with respect to the form:
i.e., G = SO(V ) if our form is symmetric, G = Sp(V ) if it is antisymmetric.
Given a linear tranformation A ∈ End (V ), we denote by tA its adjoint with
respect to the form. Then the variety ZV is the variety of linear tranformations
A ∈ End (V ) such that tAA = AtA = tI, for some t ∈ k (I is the identity)
and, if G = SO(V ) and dimV is even, detA = tn. Since V is a minuscule
representation if and only if dimV is even, we deduce that in this case ZV

is normal with rational singularities. If on the other hand dimV is odd, the
normalization of ZV is given by ZW , with W = V ⊕ k.
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