ALGEBRA 2: QUINTO FOGLIO DI ESERCIZI

- (1) Mostrare che se $a, m, n \in \mathbb{N}, d = MCD(m, n)$, allora $MCD(a^m 1, a^n 1) = a^d 1$
- (2) Mostrare che se $m, n \in \mathbb{N}, d = \text{MCD}(m, n)$, allora in $\mathbb{Q}[x]$ si ha: $\text{MCD}(x^m 1, x^n 1) = x^d 1$.
- (3) Mostrare che se \mathbb{K} ha caratteristica 0, oppure è un campo finito, e $q(x) \in \mathbb{K}[x]$ è un polinomio irriducibile, allora MCD(q(x), q'(x)) = 1.
- (4) Trovare un campo \mathbb{K} e un polinomio *irriducibile* $q(x) \in \mathbb{K}[x]$ tale che $MCD(q(x), q'(x)) \neq 1$.
- (5) Sia \mathbb{K} un campo, e sia $\mathbb{K}(x)$ il campo delle funzioni razionali in x a coefficienti in \mathbb{K} . Descrivere tutti gli automorfismi del campo $\mathbb{K}(x)$ che si restringono all'identità su $\mathbb{K} \subset \mathbb{K}(x)$.
- (6) Sia $\mathbb{K} = \mathbb{F}_{p^n}$. Mostrare che esiste $\alpha \in \mathbb{K}$ tale che $\mathbb{K} = \mathbb{F}_p(\alpha)$.
- (7) Sia \mathbb{K} un campo, e $\overline{\mathbb{K}}$ la sua chiusura algebrica. Mostrare che ogni automorfismo ϕ di \mathbb{K} si estende ad un automorfismo di $\overline{\mathbb{K}}$.
- (8) Siano $\mathbb{K} \subset \mathbb{F}$ campi, con \mathbb{F} algebricamente chiuso. Allora ogni automorfismo di \mathbb{K} si estende ad un automorfismo di \mathbb{F} .
- (9) Esibire un automorfismo di un sottocampo di $\mathbb R$ che non si estende ad un automorfismo di $\mathbb R$.
- (10) Siano $\mathbb{K} \subset \mathbb{F}$ campi. Mostrare che esiste un'estensione intermedia $\mathbb{K} \subset \mathbb{E} \subset \mathbb{F}$ con la proprietà che \mathbb{F} è un'estensione algebrica di \mathbb{E} ;
 - gli unici elementi di $\mathbb E$ algebrici su $\mathbb K$ sono contenuti in $\mathbb K$. (Si dice che $\mathbb E$ è un'estensione trascendente pura di $\mathbb K$)
- (11) Siano X, Y insiemi. Mostrare che esiste un'applicazione iniettiva da X in Y oppure da Y in X.
- (12) Sia A un anello commutativo con 1. Mostrare che A possiede ideali massimali.
- (13) Sia V uno spazio vettoriale sul campo \mathbb{K} . Mostrare che V possiede una base.
- (14) Utilizzando l'esercizio precedente, mostrare che il gruppo moltiplicativo \mathbb{C}^{\times} è isomorfo al suo sottogruppo $S^1=\{z\in\mathbb{C}^{\times}\,|\,z\bar{z}=1\}$. [Osservare che $\mathbb{C}^{\times}\simeq S^1\times\mathbb{R}_+$, $(S^1,\cdot)\simeq (\mathbb{R}/\mathbb{Z},+)$, $(\mathbb{R}_+,\cdot)\simeq (\mathbb{R},+)$]
- (15) Una relazione d'ordine \leq sull'insieme X è un *buon ordinamento* se ogni sottoinsieme non vuoto di X possiede elemento minimo. Mostrate che ogni insieme possiede almeno un buon ordinamento.