ALGEBRA 2: QUARTO FOGLIO DI ESERCIZI

- (1) Mostrare che $2\cos(2\pi/7)$ è algebrico su \mathbb{Q} . Qual è il suo grado?
- (2) Determinare il polinomio minimo di $\sqrt{2} + \sqrt{3}$ e di $1 + \sqrt{2} + \sqrt[3]{2}$.
- (3) Determinare il polinomio minimo di $\sqrt{p} + \sqrt{q} + \sqrt{r}$, dove p, q, r sono primi distinti.
- (4) Decomporre in fattori irriducibili di $\mathbb{Q}[x]$ i seguenti polinomi: $x^4 + 1, x^4 + 2, x^4 + 4$.
- (5) Mostrare che i campi $\mathbb{F}_2[x]/(x^3+x+1)$, $\mathbb{F}_2[x]/(x^3+x^2+1)$ sono isomorfi. Quanti elementi possiedono? Contengono sottocampi con 4 elementi?
- (6) Dire se i campi $\mathbb{R}[x]/(x^2+1)$, $\mathbb{R}[x]/(x^2+x+1)$ siano isomorfi.
- (7) Sia \mathbb{K} un campo, $\mathbb{F} = \mathbb{K}[x]/(x^4+1)$. Mostrare che $\alpha = [x]$ è invertibile, e $(\alpha + \alpha^{-1})^2 = 2$. Sotto quali ipotesi \mathbb{F} è un campo?
- (8) Quanti sono gli elementi irriducibili di $\mathbb{F}_p[x]$ che hanno grado 2, 3, 6?
- (9) Determinare tutti i sottocampi di \mathbb{F}_{729} .
- (10) Mostrare che $\mathbb C$ non è la chiusura algebrica di $\mathbb Q$. Le chiusure algebriche di $\mathbb Q$ e di $\mathbb Q(x)$ sono isomorfe?
- (11) Sia $f: \mathbb{R} \to \mathbb{R}$ un omomorfismo invertibile di anelli (o meglio, un automorfismo di \mathbb{R}). Mostrare che $f = \mathrm{id}_R$.
- (12) Mostrare che $\mathbb{Q}(\sqrt{2})$ ha automorfismi diversi dall'identità.
- (13) Calcolare tutti gli automorfismi dei campi $\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3}).$
- (14) Elencare tutti i sottocampi di $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- (15) Sia \mathbb{K} un campo. Dire sotto quali ipotesi su f(x) il quoziente $\mathbb{K}[x]/(f(x))$ sia un dominio d'integrità, un campo, possieda elementi nilpotenti diversi da 0.