ALGEBRA 2 — Secondo esame scritto

20 luglio 2012 soluzioni

- (1) Se H < G, allora $C(H) = \{g \in G \mid gh = hg \text{ per ogni } h \in H\}$ è il centralizzatore di H.
 - [3pt] Mostrare che C(H) è un sottogruppo di G. Soluzione: Innanzitutto, l'identità commuta sicuramente con ogni elemento di H, e quindi id $\in C(H)$. Inoltre, se $x, y \in C(H)$, allora xh = hx, yh = hy per ogni $h \in H$; pertanto

$$(xy)h = x(yh) = x(hy) = (xh)y = (hx)y = h(xy),$$

da cui $xy \in C(H)$. Alla stessa maniera, da xh = hx segue $hx^{-1} = x^{-1}h$ moltiplicando a destra e a sinistra per h^{-1} . Pertanto $x \in C(H)$ implica $x^{-1} \in C(H)$. In conclusione C(H) è un sottoinsieme non vuoto di G chiuso rispetto a prodotto e inverso, ed è pertanto un sottogruppo.

Si poteva procedere anche indirettamente: C(H) è l'intersezione dei centralizzatori degli elementi di H. Poiché il centralizzatore di un elemento è sempre un sottogruppo (lo abbiamo visto a lezione) e l'intersezione di sottogruppi è un sottogruppo, C(H) non può che essere un sottogruppo.

• [4pt] Mostrare che se $H \triangleleft G$, allora $C(H) \triangleleft G$. Soluzione: E' sufficiente mostrare che se $xinC(H), g \in G$, allora $gxg^{-1} \in C(H)$. In effetti, se $x \in C(H)$ e $h \in H \triangleleft G$, abbiamo

$$gxg^{-1}h = gx(g^{-1}hg)g^{-1} = g(g^{-1}hg)xg^{-1} = hgxg^{-1},$$

dove, grazie alla normalità di H, sappiamo che x commuta con $g^{-1}hg \in g^{-1}Hg = H$. Vi erano altre maniere di procedere, tutte equivalenti. La più rapida è forse notare che se $H \lhd G$, allora ogni elemento $g \in G$ induce un automorfismo (non necessariamente interno) di H dato da $T_g: h \mapsto ghg^{-1}$. L'applicazione

$$G \ni g \mapsto T_g \in \operatorname{Aut}(G)$$

è un omomorfismo, e il suo nucleo è C(H), che deve quindi essere normale.

- (2) Si consideri la permutazione $\sigma = (15297)$ nel gruppo simmetrico A₉.
 - [2pt] Calcolare il numero dei coniugati di σ in A_9 . *Soluzione:* Sappiamo bene che in un gruppo simmetrico, due elementi sono coniugati se e solo se hanno la stessa struttura ciclica. Questo è in generale nei gruppi alterni, ma abbiamo visto a lezione che continua a valere per le classi di coniugio di elementi che commutano, nel gruppo simmetrico, con almeno una permutazione dispari. Nel nostro caso, σ commuta ad esempio con $(3\,4)$, e quindi i suoi coniugati in A_9 sono tutti e soli i 5-cicli.

Il conto è adesso facile: i 5-cicli in A₉ sono esattamente

$$\binom{9}{5} \cdot 4! = 9 \cdot 8 \cdot 7 \cdot 6 = 3024.$$

• [2pt] Calcolare l'ordine del normalizzatore N in A_9 del sottogruppo $H=(\sigma)$. Soluzione: Il sottogruppo H è un 5-Sylow di A_9 , e i 5-Sylow sono tutti coniugati tra loro. Il loro numero coincide con l'indice del normalizzatore N=N(H). Contare i 5-Sylow è facile: sappiamo per il punto precedente che il numero di elementi di ordine 5 in A_9 è 3024, e ciascun 5-Sylow ne contiene esattamente 4. Inoltre, ogni elemento di ordine 5 genera un 5-Sylow, e due 5-Sylow distinti si intersecano nella sola identità. Il numero di 5-Sylow è quindi pari a $3024/4=9\cdot7\cdot6\cdot2=756$. Poiché $[A_9:N]=756$, avremo

$$|N| = \frac{9!}{2} \cdot \frac{1}{756} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{9 \cdot 7 \cdot 6 \cdot 4} = 8 \cdot 5 \cdot 3 \cdot 2 = 240.$$

- [2pt] Mostrare che N contiene almeno un sottogruppo di ordine 20. Soluzione: Il sottogruppo H, di ordine 5, è sicuramente normale nel suo normalizzatore N. Se troviamo in N un sottogruppo K di ordine 4, il prodotto NK sarà un sottogruppo di N di ordine 20. Ad ogni modo, ciascun 2-Sylow di N contiene 16 elementi, e possiede quindi un sottogruppo di ordine 4, dal momento che ogni p-gruppo possiede sottogruppi di qualsiasi ordine possibile.
- [2pt] Mostrare che N contiene almeno un sottogruppo abeliano di ordine 20. *Soluzione:* Come nel punto precedente, basta trovare un sottogruppo di N di ordine 4 che commuti con H. Questo si può fare in maniera diretta, notando che $\{\mathrm{id}, (34)(68), (36)(48), (38)(46)\}$ è un tale sottogruppo, oppure indirettamente. In effetti, dal calcolo del numero dei coniugati di σ possiamo facilmente ricavare l'ordine del suo centralizzatore, che è

$$|(C(\sigma)| = \frac{9!}{2} \frac{1}{9 \cdot 8 \cdot 7 \cdot 6} = \frac{5!}{2} = 60.$$

Ma allora il 2-Sylow di $C(\sigma)$ contiene 4 elementi che commutano con σ e quindi centralizzano $H=(\sigma)$.

(3) • [3 pt] Calcolare il polinomio minimo di $\gamma = \sqrt{2} + \sqrt[4]{8}$ su \mathbb{Q} . Soluzione: Notiamo subito che $\gamma \in \mathbb{Q}(\sqrt[4]{2})$, e quindi sicuramente $\mathbb{Q}(\gamma) \subset \mathbb{Q}(\sqrt[4]{2})$. Il polinomio $x^4 - 2 \in \mathbb{Q}[x]$, irriducibile per il Criterio di Eisenstein, annulla $\alpha = \sqrt[4]{2}$, e quindi $[\mathbb{Q}(\alpha):\mathbb{Q}] = 4$.

E' facile trovare un polinomio razionale annullato da γ . In effetti $\gamma-\sqrt{2}=\sqrt[4]{8}$, e quadrando si ottiene

$$\gamma^2 + 2 - 2\gamma\sqrt{2} = 2\sqrt{2},$$

da cui $\gamma^2 + 2 = 2\sqrt{2}(\gamma + 1)$ e quadrando nuovamente

$$\gamma^4 + 4\gamma^2 + 4 = 8\gamma^2 + 16\gamma + 8.$$

Il polinomio $x^4-4x^2-16x-4$ annulla quindi γ . Si può ora verificare direttamente, per forza bruta, che questo polinomio è irriducibile in $\mathbb{Q}[x]$. Tuttavia è più semplice notare che $1,\alpha,\alpha^2,\alpha^3$ formano una \mathbb{Q} -base di $\mathbb{Q}(\alpha)$, ed esprimere in questa base le potenze di γ . Si ha: $\gamma^0=1,\gamma^1=\alpha^2+\alpha^3,\gamma^2=2(1+\alpha+\alpha^2)$ che sono evidentemente \mathbb{Q} -linearmente indipendenti. Pertanto il grado di γ su \mathbb{Q} è superiore a 2. Dovendo dividere $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$, deve essere necessariamente 4.

- [2 pt] L'estensione $\mathbb{Q} \subset \mathbb{Q}(\gamma)$ è normale? Soluzione: Abbiamo già visto che $\mathbb{Q}(\gamma)$ coincide con $\mathbb{Q}(\alpha)$, che non può essere normale, in quanto non contiene tutte le radici di x^4-2 : in effetti, due di tali radici sono immaginarie pure, mentre ogni elemento di $\mathbb{Q}(\alpha)$ è reale.
- [3 pt] Determinare il grado su $\mathbb Q$ del più piccolo campo $\mathbb Q \subset E \subset \mathbb C$ che sia un'estensione di Galois di $\mathbb Q$ e che contenga γ . Soluzione: Tale campo E è il campo di spezzamento del polinomio x^4-2 , e coincide quindi con $\mathbb Q(\pm\alpha,\pm i\alpha)=\mathbb Q(\alpha,i)$. Si vede facilmente che $[\mathbb Q(\alpha,i):\mathbb Q(\alpha)]=2$, in quando i soddisfa x^2+1 e non appartiene a $\mathbb Q(\alpha)\subset \mathbb R$. Pertanto $[E:\mathbb Q]=[\mathbb Q(\alpha,i):\mathbb Q(\alpha)][\mathbb Q(\alpha):\mathbb Q]=2\cdot 4=8$.

- (4) Il campo $K = \mathbb{F}_5(\alpha)$ è un'estensione finita di \mathbb{F}_5 , e α soddisfa $\alpha^4 = 2\alpha + 1$.
 - [4 pt] Mostrare che $[K : \mathbb{F}_5] = 4$. Soluzione: α soddisfa il polinomio $x^4 - 2x - 1 \in \mathbb{F}_5[x]$. E' necessario quindi mostrare che questo polinomio è irriducibile. Procediamo per forza bruta: se

$$x^4 - 2x - 1 = (x^2 + ax + b)(x^2 - ax + c),$$

allora

$$\begin{cases} b+c=a^2\\ a(b-c)=2\\ bc=1 \end{cases}.$$

A meno di scambiare b con c, le uniche soluzioni a bc=1 sono: $b=c=\pm 1$, b=2, c=3. Nel primo caso si ottiene $a^2=\pm 2$, che non è un quadrato in \mathbb{F}_5 , e nel secondo si ottiene $a^2=0$, che contraddice la seconda equazione. Il polinomio è pertanto irriducibile.

Esiste un altro modo di procedere, più involuto. Se il polinomio x^4-2x-1 si fattorizza in $\mathbb{F}_5[x]$, si spezza allora nel prodotto di due irriducibili di grado 2 — si controlla infatti facilmente che x^4-2x-1 non possiede radici in \mathbb{F}_5 . Allora una radice α soddisfa anche uno di tali fattori di grado 2, e quindi $F(F(\alpha))=\alpha$, dove F indica l'automorfismo di Frobenius $x\mapsto x^5$.

Ora, si calcola facilmente $F(\alpha)=\alpha^5=\alpha(\alpha^4)=\alpha(2\alpha+1)=2\alpha^2+\alpha$, da cui

$$F^{2}(\alpha) = 2(2\alpha^{2} + \alpha)^{2} + (2\alpha^{2} + \alpha) = 8\alpha^{4} + 8\alpha^{3} + 4\alpha^{2} + \alpha.$$

Se $F^2(\alpha)=\alpha$, si ottiene $8\alpha^4+8\alpha^3+4\alpha^2=0$ e quindi α soddisfa anche $2x^2+2x+1$, o la sua versione monica x^2+x+3 . Possiamo allora concludere che OGNI radice di x^4-2x-1 soddisfa x^2+x+3 , e quindi che $x^4-2x-1=(x^2+x+3)^2$, il che è sicuramente falso. L'ipotesi che x^4-2x-1 conduce quindi ad una contraddizione.

- [2 pt] Quante sono le soluzioni in K dell'equazione $x^2 + x + 2 = 0$? Soluzione:K è un'estensione di grado 4 di \mathbb{F}_5 , e quindi ogni polinomio irriducibile di grado che divide 4 si spezza in K. Le soluzioni sono quindi 2, anche se bisognerebbe controllare che le soluzioni non coincidano (nessuno studente lo ha verificato).
- [2 pt] Elencare tutti i campi strettamente contenuti tra \mathbb{F}_5 e K. *Soluzione:* Una volta identificato K con \mathbb{F}_{625} , l'unico campo strettamente contenuto è \mathbb{F}_{25} .