ALGEBRA 2 — Primo esame scritto

22 Giugno 2012 soluzioni

(1) • Mostrare che il gruppo diedrale dell'esagono D_6 è isomorfo a $D_3 \times C_2$.

Soluzione: Sia ρ la rotazione di 60 gradi, e s il ribaltamento rispetto ad una diagonale massima dell'esagono. Sappiamo che $G=\mathrm{D}_6=\langle \rho,s\rangle$, e che $\rho^6=1=s^2,s\rho s^{-1}=\rho^{-1}$.

Il sottogruppo $H=\langle \rho^2,s\rangle$ conserva uno dei triangoli equilateri inscritti nell'esagono, e contiene 6 elementi. E' pertanto isomorfo a D_3 ; ha indice 2, ed è quindi normale. Il sottogruppo $K=\langle \rho^3\rangle$ ha ordine 2, e coincide col centro di G. E' pertanto normale. L'intersezione $H\cap K$ contiene la sola identità, e il prodotto HK possiede allora $|H||K|/|H\cap K|=6\cdot 2/1=12$ elementi. Concludiamo che $H,K\lhd G,H\cap K=\{\mathrm{id}\},HK=G$. Pertanto $G=H\times K$. Poiché $H\simeq D_3,K\simeq C_2$, otteniamo $G\simeq D_3\times C_2$.

• Mostrare che il gruppo diedrale dell'ottagono D_8 non è isomorfo a $D_4 \times C_2$.

Soluzione: D_8 possiede elementi di ordine 8, mentre $D_4 \times C_2$ non ne ha.

- (2) G è un gruppo di ordine $315 = 3^2 \cdot 5 \cdot 7$ e R è un suo 3-Sylow non normale.
 - Mostrare che il normalizzatore N(R) contiene 45 elementi.

Soluzione: Il numero dei 3-Sylow di G divide 35 ed è $\equiv 1 \mod 3$. Le uniche possibilità sono 1 e 7, ma R non è normale. Pertanto G possiede esattamente 7 3-Sylow, e il normalizzatore di ciascuno di essi ha indice 7, e quindi ordine 45.

• Mostrare che N(R) è abeliano.

Soluzione: N(R) è un gruppo di ordine 45, nel quale R è normale. Inoltre il numero dei 5-Sylow di N(R) divide 9 ed è $\equiv 1 \mod 5$. Il 5-Sylow è quindi unico, e necessariamente normale. Allora N(R) è prodotto diretto di R con il suo unico 5-Sylow. Questi sottogruppi hanno ordine 9 e 5, e sono entrambi abeliani. Allora anche il loro prodotto diretto è abeliano

• Mostrare che il 5-Sylow di G è normale.

Soluzione: Consideriamo un sottogruppo H di ordine 5 contenuto in N(R). A causa dell'abelianità di N(R), H è normale in N(R), e quindi il suo normalizzatore contiene almeno i 45 elementi in N(R).

Ad ogni modo, H è un 5-Sylow di G, e il numero dei 5-Sylow di G divide 63 ed è $\equiv 1 \mod 5$. Le uniche possibilità sono 1 e 21. Tuttavia, se G possiede 21 coniugati, è normalizzato da un sottogruppo di indice 21, e quindi di ordine 15, che è troppo piccolo per contenere i 45 elementi mostrati prima. L'unica altra possibilità è che H sia normale in G.

• Mostrare che *G* contiene un sottogruppo ciclico di ordine 35.

Soluzione: Basta moltiplicare H per un sottogruppo K < G di ordine 7. La normalità di H costringe HK, che contiene 35 elementi, ad essere un sottogruppo di G. Un gruppo di ordine $35 = 5 \cdot 7$ è ciclico poiché 5 non divide 7 - 1.

• Mostrare che anche il 7-Sylow di G è normale.

Soluzione: Possiamo ripetere il ragionamento precedente. K è un 7-Sylow di G, ed è contenuto nel sottogruppo HK di ordine 35, che lo normalizza per abelianità. Il normalizzatore di K ha allora indice $\leq 315/35 = 9$. Tuttavia il numero dei 7-Sylow in G divide 45, è $\equiv 1 \mod 7$ ed è ≤ 9 . L'unica possibilità è 1, e l'unicità del 7-Sylow impone la sua normalità.

• A quali gruppi può essere isomorfo *G*? Individuarli tutti a meno di isomorfismo.

Soluzione: G è prodotto semidiretto del sottogruppo normale di ordine 35 con il sottogruppo R, che sappiamo essere non normale e di ordine 9; si tratta pertanto di un prodotto semidiretto non banale. R è isomorfo a C_9 oppure a $C_3 \times C_3$, mentre il gruppo di ordine 35 è necessariamente ciclico.

Nei due casi, dobbiamo costruire omomorfismi $\phi: C_9 \to \operatorname{Aut}(C_{35}) \simeq C_6 \times C_4$, oppure $\phi: C_3 \times C_3 \to \operatorname{Aut}(C_{35})$, rispettivamente. Se ϕ è non banale, la sua immagine, che ha ordine un divisore di 9, deve essere contenuta nel primo fattore diretto in entrambi i casi, ed è univocamente determinata (C_6 possiede un solo sottogruppo di ordine 3). Possiamo allora scegliere il generatore di C_9 in modo che venga applicato da ϕ nel generatore fissato di $C_3 \times C_6$; nell'altro caso, possiamo scegliere due generatori di $C_3 \times C_3$ in modo che il primo venga applicato da ϕ nel generatore fissa di C_3 , e il secondo appartenga al nucleo. G è pertanto isomorfo ad uno dei seguenti due gruppi: $(C_7 \ltimes C_9) \times C_5$ nel primo caso, e $(C_7 \ltimes C_3) \times (C_3 \times C_5)$ nel secondo.

- (3) Se $g(x) = x^6 + 3 \in \mathbb{Q}[x]$, sia α una radice complessa di g(x), e poniamo $L = \mathbb{Q}(\alpha)$.
 - Mostrare che L contiene la radice sesta dell'unità $\zeta = \frac{1}{2} + \frac{\sqrt{-3}}{2}$.

Soluzione: $\alpha^3 = \pm \sqrt{-3}$.

• Mostrare che L è il campo di spezzamento di g(x). Qual è il grado di L come estensione di \mathbb{Q} ?

Soluzione: Poiché $\zeta=\frac{1}{2}+\frac{\sqrt{-3}}{2}$ è una radice sesta primitiva dell'unità, il campo $\mathbb{Q}(\alpha)$ contiene tutte e sei le radici complesse $\zeta^i\alpha, i=0,\ldots,5$, di g(x). Il polinomio g(x) è irriducibile per il criterio di Eisenstein, e quindi $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$.

• Dire quante e quali sono le estensioni intermedie $\mathbb{Q} \subset E \subset L$ tali che $[E:\mathbb{Q}]=2$.

Soluzione: L è il campo di spezzamento di un polinomio separabile (siamo in caratteristica 0) e quindi è un'estensione di Galois di \mathbb{Q} . Poiché $[L:\mathbb{Q}]=6$, il gruppo $\mathrm{Gal}(L/\mathbb{Q})$ ha ordine 6. A prescindere dal fatto che sia ciclico o isomorfo a S_3 , possiede un solo sottogruppo di indice 2, e quindi vi è una sola estensione intermedia di grado 2 su \mathbb{Q} . Non può che trattarsi di $\mathbb{Q}(\sqrt{-3})=\mathbb{Q}(\zeta)$.

• Determinare $Gal(L/\mathbb{Q})$ a meno di isomorfismo.

Soluzione: Gli elementi di $\operatorname{Gal}(L/\mathbb{Q})$ sono determinati dalla loro azione su α . Inoltre, $\phi(\alpha)$ può essere soltanto una delle sei radici $\zeta^i\alpha$. E' utile osservare che $\phi(\alpha^3)=\zeta^{3i}\alpha^3$ e quindi $\phi(\sqrt{-3})=\pm\sqrt{-3}$, a seconda che i sia pari oppure dispari; nei due casi abbiamo quindi $\phi(\zeta)=\zeta^{\pm 1}$. Indichiamo con ϕ_i l'automorfismo che applica α in $\zeta^i\alpha$. Chiaramente, ϕ_0 è l'identità. Per quanto riguarda ϕ_1 , si ha $\phi_1(\alpha)=\zeta_\alpha$, $\phi_1(\zeta\alpha)=\phi_1(\zeta)\phi_1(\alpha)=\zeta^{-1}\zeta\alpha=\alpha$. ϕ_1^2 fissa allora α , e coincide con l'identità. Concludiamo che ϕ_1 ha ordine 2.

Ripetendo questo ragionamento, si vede che ϕ_3 scambia α con $\zeta^3\alpha$. Di conseguenza anche ϕ_3 ha ordine 2. Il gruppo G, di ordine 6, possiede pertanto almeno due elementi di ordine 2, e non può quindi essere ciclico.

¹Si dice anche "il 3-Sylow è normale".

- (4) In questo esercizio sfruttiamo la teoria di Galois per fattorizzare il polinomio $f(x) = x^7 1 = (x 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) \in \mathbb{F}_{11}[x].$
 - Mostrare che il gruppo moltiplicativo $\mathbb{F}_{11^n}^{\times}$ contiene elementi di ordine 7 se e solo se n è multiplo di 3.

Soluzione: Il gruppo $\mathbb{F}_{11^n}^{\times}$ possiede 11^n-1 elementi. Per i teoremi di Cauchy e Lagrange, contiene elementi di ordine 7 se e solo se 7 divide 11^n-1 , cioè esattamente quando $11^n\equiv 1\mod 7$. Si vede che [11]=[4] ha ordine 3 in $\mathbb{Z}/(7)^{\times}$, e quindi l'equazione è verificata per ogni n multiplo di 3.

• Mostrare che se $\mathbb{F}_{11^n}^{\times}$ contiene elementi di ordine 7, allora f(x) si spezza in $\mathbb{F}_{11}[x]$ in fattori lineari. Calcolare il grado su \mathbb{F}_{11} del campo di spezzamento L di f(x).

Soluzione: Se $\mathbb{F}_{11^n}^{\times}$ contiene un elemento di ordine 7, contiene almeno le sue sette potenze distinte. Questi sono elementi di \mathbb{F}_{11^n} che soddisfano f(x). Pertanto f(x) ha 7 radici distinte in \mathbb{F}_{11^n} , e si spezza quindi nel prodotto di fattori lineari. Il minimo valore per cui questo accade è n=3; possiamo concludere che $L=\mathbb{F}_{11^3}$ è il campo di spezzamento di f(x), e di conseguenza $[L:\mathbb{F}_{11}]=3$.

• Sia $1 \neq \omega \in L$, $\omega^7 = 1$. Quali sono le altre radici in L del polinomio minimo $g(x) \in \mathbb{F}_{11}[x]$ di ω ?

Soluzione: Le radici del polinomio minimo di ω sono gli elementi dell'orbita di ω sotto l'azione del gruppo di Galois. Essendo questo ciclico, e generato dal Frobenius $\alpha \mapsto \alpha^{11}$, si ottengono applicando ad ω ripetutamente il Frobenius. Ricordando che $\omega^7 = 1$, si ottiene $F(\omega) = \omega^{11} = \omega^4$. $F^2(\omega) = F(\omega^4) = \omega^{44} = \omega^2$. $F(\omega^3) = F(\omega^2) = \omega^{22} = \omega$. L'orbita di ω contiene quindi i tre elementi $\omega, \omega^2, \omega^4$, come doveva essere, dal momento che il gruppo di Galois è ciclico di ordine 3.

• Mostrare che g(x) è della forma $x^3 + ax^2 + (a-1)x - 1$, $a \in \mathbb{F}_{11}$, e fattorizzare $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ nel prodotto di irriducibili di $\mathbb{F}_{11}[x]$, utilizzando l'informazione che i suoi fattori irriducibili hanno questa forma.

Soluzione: Il polinomio minimo di ω su \mathbb{F}_{11} è $(x-\omega)(x-\omega^2)(x-\omega^4)=x^3-(\omega+\omega^2+\omega^4)x^2+(\omega^3+\omega^5+\omega^6)x-1$. Si vede che la differenza tra il coefficiente del termine di grado 1 e quello di grado 2 vale esattamente $\omega^3+\omega^5+\omega^6+\omega+\omega^2+\omega^4=-1$. Se a è il coefficiente di grado 2, allora a-1 deve essere il coefficiente di grado 1. Ricapitolando, x^7-1 è prodotto di x-1 e di due polinomi irriducibili di grado 3 della forma $x^3+ax^2+(a-1)x-1$. Possiamo procedere per forza bruta, imponendo

$$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = (x^3 + ax^2 + (a - 1)x - 1)(x^3 + bx^2 + (b - 1)x - 1).$$

Confrontando i termini di grado 5 si trova che a+b=1, e da quelli di grado 4 si ottiene ab+a-1+b-1=1, che diventa ab=2 utilizzando a+b=1. Sostituendo b=1-a nella seconda equazione, si ottiene $a^2-a+2=0$ che ha le soluzioni a=5,7. Quindi

$$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1 = (x^{3} + 5x^{2} + 4x - 1)(x^{3} + 7x^{2} + 6x - 1).$$