








CHAPTER 1

Introduction

Consider the Cauchy problem for a strictly hyperbolic n× n system of conser-
vation laws in one space dimension:

(1.1) ut +
[
F (u)

]
x

= 0,

(1.2) u(0, x) = ū(x).

For initial data ū ∈ L1 with small total variation, a well known theorem of Glimm
[G] provides the global existence of weak solutions. Aim of the present paper is
to show that these solutions are unique and depend continuously on the initial
conditions, with a Lipschitz constant in L1 which is uniform w.r.t. time. More
precisely, the following holds.

Theorem 1. Let Ω ⊆ IRn be an open set containing the origin, and let F : Ω 7→ IRn

be a smooth map. Assume that the system (1.1) is strictly hyperbolic and that
each characteristic field is either linearly degenerate or genuinely nonlinear. Then
there exists a closed domain D ⊂ L1(IR; IRn), constants η0, L, and a continuous
semigroup S : D × [0,∞[ 7→ D with the properties:

(i) Every function ū ∈ L1 with Tot.Var.(ū) ≤ η0 lies in D.
(ii) For all ū, v̄ ∈ D, t, s ≥ 0 one has

∥∥Stū− Ssv̄
∥∥
L1 ≤ L

(|t− s|+)‖ū− v̄‖
L1

)
.

(iii) If ū ∈ D is piecewise constant, then for t > 0 sufficiently small the function
u(t, ·) = Stū coincides with the solution of (1.1)-(1.2) obtained by piecing
together the standard self-similar solutions of the corresponding Riemann
problems.

The positively invariant domain D will have the form

(1.3) D = cl
{
u ∈ L1(IR; IRn); u is piecewise constant, V (u) + C ·Q(u) < δ0

}
,

for some constants C, δ0 > 0. Here V (u) and Q(u) denote the total strength of
waves and the wave interaction potential of u, while cl denotes closure.

Following [B5], we say that a map S with the properties (i)–(iii) is a Standard
Riemann Semigroup (SRS). The existence of such a semigroup was proved in [B1,
B3] for special classes of n×n systems with coinciding shock and rarefaction curves,
and in [B-C1] for general 2× 2 systems. The present theorem, dealing with general
n× n systems, contains all previous results in this direction.

Observe that the statement of Theorem 1 does not explicitly say that the tra-
jectories of the semigroup are actually weak solutions of (1.1). This fact, however,
can be deduced as a consequence of (i)–(iii), together with a number of additional
properties which are collected below.
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2 1. INTRODUCTION

Theorem 2. For a given domain D of the form (1.3), there can be at most one
continuous semigroup S : D× [0,∞[ 7→ D satisfying the conditions (i)–(iii) listed in
Theorem 1. If a SRS does exist, then the following properties also hold:

(iv) Each trajectory t 7→ u(t, ·) = Stū is a weak, entropy-admissible solution
of the corresponding Cauchy problem (1.1)-(1.2).

(v) Let (uν)ν≥1 be a sequence of approximate solutions of (1.1)-(1.2) gener-
ated by a wave-front tracking algorithm, or by the Glimm scheme with
uniformly distributed sampling. Then, as ν →∞ we have L1-lim uν(t, ·) =
Stū for every t ≥ 0.

(vi) Let u = u(t, x) be a piecewise Lipschitz, entropic solution of (1.1)-(1.2)
defined on some strip [0, T ]× IR. Then u(t, ·) = Stū for all t ∈ [0, T ].

A proof of Theorem 2 is contained in [B5]. In turn, from the existence of the
semigroup, one can prove the uniqueness of the entropy-weak solution of a given
Cauchy problem, under a mild assumption on the growth of the total variation [B-
LF1] or on the decay of positive waves [B-G]. Another application which is worth
mentioning is the error estimate [B-M2], concerning the L1 distance between the
exact solution of a Cauchy problem and an approximate solution generated by the
Glimm scheme with uniformly distributed sampling [L].

There are three types of estimates which play a fundamental role in our analysis.
These are: the estimates of Glimm on the total strength of waves [G, Sm], the local
integral estimates used in the definition of Viscosity Solution [B5], and the decay
estimates for positive waves of genuinely nonlinear families [B-C3].

A precise statement of these a-priori bounds requires some notation. Call
A(u) = DF (u) the Jacobian matrix of F at u. Smooth solutions of (1.1) thus
satisfy the equivalent quasilinear system

(1.4) ut + A(u)ux = 0.

Let λ1(u) < · · · < λn(u) be the eigenvalues of A(u) and choose right and left
eigenvectors ri(u), li(u), i = 1, . . . , n, normalized so that

(1.5) ∇λi · ri(u) .= lim
h→0

λi

(
u + hri(u)

)− λi(u)
h

≥ 0,

(1.6) |ri| ≡ 1, 〈li, rj〉 =

{
1 if i = j,

0 if i 6= j.

Following [B-C2, Sch], we now extend the definition of the Glimm functional to
a general BV function. Let u : IR 7→ IRn have bounded variation. Then µ

.= Dxu is
a vector measure, which can be decomposed into a continuous and an atomic part:
µ = µc + µa. For i = 1, . . . , n, define the signed measure µi = µc

i + µa
i as follows.

The continuous part of µi is the Radon measure such that
∫

φ dµc
i =

∫
li(u) · φ dµc

for every scalar continuous function φ with compact support. The atomic part of
µi is the measure concentrated on the countable set {xα; α = 1, 2, . . .} where u
has a jump, such that µa

i

({xα}
)

is the strength of the i-th wave in the solution
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of the Riemann problem with data u(xα−), u(xα+). Call µ+
i , µ−i the positive and

negative parts of the signed measure µi, so that

µi = µ+
i − µ−i , |µi| = µ+

i + µ−i .

The total strength of waves in u is defined as

(1.7) V (u) .=
n∑

i=1

Vi(u), Vi(u) .= |µi|(IR),

while the interaction potential of waves in u is

(1.8) Q(u) .=
∑

i<j

(|µj |×|µi|
)({

(x, y); x < y
})

+
∑

i

(
µ−i ×|µi|

)({
(x, y); x 6= y

})
.

With the above notations, the classical interaction estimates [G, Sm] can be stated
as follows.

Proposition 1 (Bounds on wave strengths). There exists a constant C1 such
that, for every solution u = u(t, x) of (1.1) with small total variation, obtained as
limit of wave-front tracking approximations, the following holds. Let t = Λj(x),
j = 1, 2 be the equations of two space-like curves in the t-x plane, with Λ1 ≤ Λ2.
Then, calling ui(x) .= u

(
Λi(x), x

)
, one has

Q(u2) ≤ Q(u1),

V (u2) + C1 ·Q(u2) ≤ V (u1) + C1 ·Q(u1)

Vi(u2) + C1 ·Q(u2) ≤ Vi(u1) + C1 ·Q(u1) i = 1, . . . , n.

(1.9)

It is well known that the estimates (1.9) actually hold not only for exact so-
lutions but also for approximate solutions constructed by various algorithms [B2,
G, R]. For convenience, at various stages of this paper we shall work with slightly
different definitions of the interaction potential Q(u). Indeed, one may consider
two waves of the same family as being always approaching, regardless of their sign,
or as being never approaching. This second definition is useful in connection with
systems where shock and rarefaction curves coincide. In all cases, we will make
sure that the basic interaction estimates (1.9) remain valid.

As proved in [B5], the trajectories of a Standard Riemann Semigroup can be
characterized by a set of local integral estimates. Two types of local approximate
solutions for (1.1) are considered. One is derived from the self-similar solution
of a Riemann problem, the other is obtained by “freezing” the coefficients of the
corresponding quasilinear hyperbolic system in a neighborhood of a given point.

Let u : [0, T ] × IR 7→ IRn be a locally integrable function, and fix any point
(τ, ξ) in the domain of u. Assuming u(τ, ·) ∈ BV , consider the limits

u− = lim
x→ξ−

u(τ, x), u+ = lim
x→ξ+

u(τ, x).

Call ω = ω(t, x) the self-similar solution of the Riemann problem

(1.10) ut +
[
F (u)

]
x

= 0, u(0, x) =

{
u− if x < 0,

u+ if x > 0.
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Let λ̂ be an upper bound for all characteristic speeds. For t > τ , define

(1.11) U ]
(u;τ,ξ)(t, x) .=

{
ω(t− τ, x− ξ) if |x− ξ| ≤ λ̂(t− τ),
u(τ, x) if |x− ξ| > λ̂(t− τ).

Observe that the function t 7→ U ]
(u;τ,ξ)(t, ·) is Lipschitz continuous w.r.t. the L1

distance, and approaches u(τ, ·) as t → τ+ .

Next, call Ã
.= DF

(
u(τ, ξ)

)
the Jacobian matrix of F computed at the point

u(τ, ξ). For t > τ , define U [
(u;τ,ξ)(t, x) as the solution of the linear hyperbolic

Cauchy problem with constant coefficients

(1.12) wt + Ãwx = 0, w(τ, x) = u(τ, x).

In the following, by Tot.Var.
{
u(τ); I

}
we denote the total variation of the function

u(τ, ·) over the set I.

Proposition 2 (Local integral estimates). Let u(t, ·) = Stū be any semigroup
trajectory. Then, for some constant C2, at each point (τ, ξ) one has
(1.13)
1
η

∫ ξ+ρ−ηλ̂

ξ−ρ+ηλ̂

∣∣∣u(τ+η, x)−U ]
(u;τ,ξ)(τ+η, x)

∣∣∣ dx ≤ C2·Tot.Var.
{
u(τ); ]ξ−ρ, ξ[ ∪ ]ξ, ξ+ρ[

}
,

(1.14)
1
η

∫ ξ+ρ−ηλ̂

ξ−ρ+ηλ̂·

∣∣∣u(τ+η, x)−U [
(u;τ,ξ)(τ+η, x)

∣∣∣ dx ≤ C2·
(
Tot.Var.

{
)u(τ); ]ξ−ρ, ξ+ρ[

})2

,

for every ρ, η > 0 sufficiently small. Viceversa, let u : [0, T ] 7→ L1 be a continuous
map taking values inside the domain D of the semigroup. If the bounds (1.13),
(1.14) hold for all ξ ∈ IR and all but countably many times τ ∈ [0, T ], then u
coincides with a semigroup trajectory.

Following [B5], a continuous function u : [0, T ] 7→ L1 will be called a Viscosity
Solution of (1.1) if the inequalities (1.13), (1.14) hold at every (τ, ξ).

To motivate the decay estimates for waves of genuinely nonlinear families, we
consider first the scalar case, assuming F ′′ > κ > 0. In this case, if u = u(t, x) is a
smooth solution of (1.1) defined for t ≥ τ , one has

(1.15) (ux)t + F ′(u)ux)x = −F ′′(u)u2
x.

Integrating (1.15) along characteristics, one obtains the pointwise estimate [O, Sm]

(1.16) ux(t, x) ≤ 1
κ(t− τ)

.

In the vector-valued case, introduce the gradient components

(1.17) ui
x

.=
〈
li(u), ux

〉
.

By (1.4), if u = u(t, x) is a smooth solution of (1.1), one has (see [B1], p.412)

(1.18) (ui
x)t +

[
λi(u)

]
(ui

x)x = −[∇λi · ri(u)
]
(ui

x)2 +
∑

j 6=k

Gijk(u)uj
xuk

x,
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where Gijk(u) = λj(u)〈li(u), [rj(u), rk(u)]〉. Assume that the i-th field is genuinely
nonlinear, so that ∇λi · ri(u) ≥ κ > 0, and let u = u(t, x) be a smooth solution
defined for t ≥ τ . If Gijk ≡ 0 for all i, j, k, then the gradient component ui

x would
clearly satisfy an estimate of the form (1.16). In general, (1.16) may fail because of
the last term on the right hand side of (1.18). Observe that this summation essen-
tially depends on the (instantaneous) amount of wave interaction. This suggests
that the amount by which (1.16) fails, measured by

(1.19)
∫

{ui
x>η}

ui
x(t, x) dx

for any η > 1/κ(t−τ), can be estimated in terms of the total amount of interaction
taking place during the interval [τ, t]. This quantity, in turn, can be bounded by
Q(τ)−Q(t), i.e. by the decay in the wave interaction potential. To state the result
in the most general case of a BV solution, one more piece of notation is needed.
Let u ∈ BV , and let µi be the measure determined by the i-waves in u, as in (1.7),
(1.8). Call m the Lebesgue measure on IR and split µi = µs

i + µac
i according to its

singular and absolutely continuous part. For any η > 0, define

(1.20) V η+
i (u) .= µs,+

i (IR) + µac
i

({
x;

dµac
i )

dm
(x) > η

})
,

where µs,+
i denotes the positive part of µs

i . Observe that (1.20) coincides with
(1.19) if u is Lipschitz continuous. With the above notation, one has

Proposition 3 (Decay Estimates). Assume that the i-th characteristic field is
genuinely nonlinear. Then there exist constants C3, κ > 0 such that any solution
u(t, ·) = Stū of (1.1) satisfies

(1.21) V η+
i

(
u(t, ·)) ≤ C3

[
Q(τ)−Q(t)

] (
1− 1

)ηκ(t− τ)

)−1

for every t > τ ≥ 0 and η > 1/κ(t− τ).

A proof of (1.21) was first derived in [B-C3], for weak solutions obtained as
limits of wave-front tracking approximations. In Section 7 of this paper we will
show that similar estimates hold for our piecewise Lipschitz approximate solutions
as well.

Towards a proof of Theorem 1, the basic strategy for obtaining a Lipschitz
semigroup of solutions of (1.1) is to construct suitable approximate solutions, care-
fully controlling how their distance varies in time. We recall that, for a scalar
conservation law, the entropic solutions constitute a contractive semigroup in L1

[C, K]. Indeed, any two solutions u, u′ can be directly compared, showing that the
distance

(1.22)
∥∥u(t, ·)− u′(t, ·)∥∥

L1

is a non-increasing function of time. This is definitely not true for systems [T2].
In the present case, following [B1], we consider a one-parameter family of (suitably
regular) solutions uθ, θ ∈ [0, 1], with u0 = u, u1 = u′. For each t, the distance
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(1.22) is clearly bounded by the L1-length of the path γt : θ 7→ uθ(t, ·), defined by

‖γt‖L1

.= sup





ν∑

j=1

∥∥uθj (t, ·)− uθj−1(t, ·)
∥∥
L1 , 0 = θ0 < θ1 < · · · < θν = 1, ν ≥ 1



 .

Therefore, if we show that this length satisfies

(1.23) ‖γt‖L1 ≤ L · ‖γ0‖L1

for every curve γ0 joining u(0) with u′(0), it will follow that

(1.24)
∥∥u(t)− u′(t)

∥∥
L1 ≤ L ·

∥∥u(0)− u′(0)
∥∥
L1 ∀t ≥ 0.

If the path γ is suitably regular, its length can be computed by integrating the
norm of a tangent vector:

(1.25) ‖γ‖
L1 =

∫ 1

0

∥∥∥∥
dγ(θ)

dθ

∥∥∥∥
L1

dθ.

An estimate of the form (1.24) can thus be obtained by showing that the norm of
any tangent vector increases at most by a factor L.

We shall implement the above strategy using paths of piecewise Lipschitz func-
tions. Let θ 7→ uθ be a one-parameter family of piecewise Lipschitz functions, each
uθ having the same number of jumps, say at the points yθ

1 < . . . < yθ
N . Assume

that there exist the functions (fig. 1):

(1.26) vθ(x) .= lim
h→0

uθ+h(x)− uθ(x)
h

for a.e. x

and the numbers

(1.27) ξθ
α

.= lim
h→0

yθ+h
α − yθ

α

h
α = 1, . . . , N.

u θ+ h

θ
α

u θ

y

ξ α

v
θ

Fig.1
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Then, under suitable regularity conditions, the L1-length of the path γ : θ 7→ uθ is
computed by

(1.28) ‖γ‖
L1 =

∫ 1

0

‖vθ‖
L1 dθ +

N∑
α=1

∫ 1

0

∣∣uθ(yα+)− uθ(yα−)
∣∣|ξθ

α| dθ.

We stress the fact that, in general, the path θ 7→ uθ is not differentiable w.r.t. the
usual differential structure of L1. Indeed, if the shift rates ξθ

α are not equal to zero,
as h → 0 the ratio [uθ+h − uθ]/h does not converge to any limit in L1. In order
to correctly measure the length of a path γ, it is essential to work with a class of
“generalized tangent vectors” of the form (v, ξ) ∈ Tu

.= L1(IR; IRn)×IRN . Observe
that the tangent space Tu actually depends on the function u, through the number
of points of discontinuity.

Next, assume that each function uθ(t, ·) is a solution of the system of conser-
vation laws (1.1). A set of linearized evolution equations for the corresponding
tangent vectors (vθ, ξθ) was derived in [B-M1]. To write down these equations,
some notation must be introduced. Let A(u) be the Jacobian matrix of f at u and
call λi(u), li(u), ri(u) respectively its eigenvalues and left and right eingenvectors.
For u, u′ ∈ IRn, define the averaged matrix

(1.29) A(u, u′) .=
∫ 1

0

A
(
θu + (1− θ)u′

)
dθ

with eigenvalues λi(u, u′), and choose right and left eigenvectors ri(u, u′), li(u, u′)
of A(u, u′) according to (1.6). The differential of λi at (u, u′) is written Dλi(u, u′).
We thus have

(1.30) Dλi(u, u′) · (v, v′) = lim
ε→0

ε−1
[
λi(u + εv, u′ + εv′)− λi(u, u′))

]
.

The same notation will be used for the differentials of the eigenvectors ri and li.
Let u = u(t, x) be a piecewise Lipschitz continuous weak solution of (1.1). At

almost every point (t, x), the function u thus satisfies the quasilinear system (1.4)
while, along the shock lines x = yα(t), the Rankine-Hugoniot equations hold:

(1.31) ẏα[u+ − u−] =
[
f(u+)− f(u−)

]
,

with u+ = u(t, yα+), u− = u(t, yα−). If the jump at yα occurs in the kα-th
characteristic family, this implies that u+ − u− is a right eigenvector of the matrix
A(u+, u−), with corresponding eigenvalue

(1.32) ẏα = λkα(u+, u−).

The eigenvector condition can also be written as

(1.33)
〈
li(u+, u−), u+ − u−

〉
= 0 ∀i 6= kα.

A system of linearized evolution equations for the generalized tangent vector (v, ξ)
can now be derived from (1.4), (1.32) and (1.33). Namely

(1.34) vt + A(u)vx + [DA(u) · v]ux = 0

outside the lines of discontinuity, together with the conditions〈
Dli(u+, u−) · (ξαu+

x + v+, ) ξαu−x + v−), u+ − u−
〉

+
〈
li(u+, u−), ξαu+

x + v+ − ξαu−x − v−
〉

= 0 ∀i 6= kα,
(1.35)
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(1.36) ξ̇α = Dλkα(u+, u−) · (ξαu+
x ) + v+, ξαu−x + v−

)
,

on each line x = yα(t) where u has a shock (or contact discontinuity) in the kα-th
characteristic field. Observe that the equations (1.34) are formally derived from
(1.4), replacing u by u + εv and differentiating w.r.t. ε. Similarly, the equations
(1.35), (1.36) are obtained from (1.33), (1.32) replacing the right and left limits
u+, u− by u+ +εv+ +εu+

x ξα and u−+εv−+εu−x ξα respectively, and differentiating
w.r.t. ε. For a rigorous derivation of (1.34)–(1.36) see [B-M1].

According to (1.28), the standard L1-length of a path γ can be computed by
integrating the norm of its tangent vector, defined as

(1.37)
∥∥(v, ξ)

∥∥
L1

.= ‖v‖
L1 +

∑
α

∣∣u(yα+)− u(yα−)
∣∣|ξα|.

Example 1. In the scalar case, it is well known that the conservation law (1.1)
generates a contractive semigroup in L1. In particular, the L1-length of a path of
solutions does not increase in time, and the same holds for the norm (1.37) of a
tangent vector. It is an instructive exercise to carry out the computations in this
simple case. Let F be convex and let u = u(t, x) be a piecewise Lipschitz solution
of (1.1), with jumps at the points x = yα(t), α = 1, . . . , N . Calling λ(u) .= DF (u)
the characteristic speed, (1.4) takes the form

(1.38) ut + λ(u)ux = 0.

At points of jump, the Rankine-Hugoniot and the entropy conditions yield

(1.39) ẏα =
1
|σα|

∫ 0

σα

λ
(
u(yα−) + s

)
ds =

F
(
u(yα+)

)− F
(
u(yα−)

)

u(yα+)− u(yα−)
,

(1.40) σα = u(yα+)− u(yα−) < 0.

The linearized evolution equations (1.34)–(1.36) for a generalized tangent vector
(v, ξ) take the form

(1.41) vt +
[
λ(u)v

]
x

= 0,

(1.42) ξ̇α = Dλ(u−, u+) · (v− + ξαu−x , )v+ + ξαu+
x

)
α = 1, . . . , N.

Here and in the following, we use the shorter notation u± .= u(yα±), and similarly
for v±, u±x . Observing that

(1.43) σ̇α =
(
λ(u−)− ẏα

)
u−x +

(
ẏα − λ(u+)

)
u+

x , σα = u+ − u− < 0,

Dλ(u−, u+) · (η−, η+) .=
d

dε

[
F (u− + εη−)− F (u+ + εη+)

(u− + εη−)− (u+ + εη+)

]

ε=0

=
λ(u−)η− − λ(u+)η+

u− − u+
− f(u−)− f(u+)

u− − u+
· η− − η+

u− − u+

=
(
λ(u−)− ẏ

) η−

|σα| +
(
ẏα − λ(u+)

) η+

|σα| ,

(1.44)
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from (1.41), (1.42) we obtain

d

dt

{∫ ∞

−∞

∣∣v(t, x)
∣∣ dx +

N∑
α=1

∣∣ξα

∣∣|σα|
}

= −
{∑

α

(
λ(u−)− ẏα

)|v−|+
∑
α

(
ẏα − λ(u+)

)|v+|
}

+
∑
α

Dλ(u−, u+) · (v− + ξαu−x , )v+ + ξαu+
x

)
(sign ξα)|σα|

+
∑
α

|ξα|
[(

λ(u−)− ẏα

)
u−x −

(
ẏα − λ(u+)

)]

≤ 0.

(1.45)

In the case of systems, on the other hand, the norm (1.37) may well increase
along solutions of (1.34)–(1.36). In [B4], however, the following was proved.

Proposition 4. There exists a set U , containing all piecewise Lipschitz functions
with sufficiently small total variation, and a family of weighted norms ‖·‖u, defined
for u ∈ U , with the following properties.

(i) If u = u(t, x) is a piecewise Lipschitz continuous solution of (1.1) with
u(t) ∈ U , and if the pair

(
v(t), ξ(t)

)
is any solution of the correspond-

ing linearized system, then the norm
∥∥(v(t), ξ(t))

∥∥
u(t)

is a non-increasing
function of time, even at times where two shocks interact.

(ii) There exists a constant L such that, for all u ∈ U and (v, ξ) ∈ Tu, one has

(1.46)
∥∥(v, ξ)

∥∥
L1 ≤

∥∥(v, ξ)
∥∥

u
≤ L ·

∥∥(v, ξ)
∥∥
L1 .

In turn, the Riemann metric ‖ · ‖u determines a weighted distance d? on U .
Roughly speaking, d?(u, u′) is the infimum of the weighted length of paths joining
u with u′. A more careful construction goes as follows.

Definition 1. We say that a continuous map γ : θ 7→ uθ .= γ(θ) from an open
interval J into L1

loc is a Regular Path (RP) if the following holds. For θ ∈ J , all
functions uθ are piecewise Lipschitz continuous, with the same number of jumps, say
at xθ

1 < · · · < xθ
N , and the same Lipschitz constant outside these points of jump.

They all coincide outside some fixed interval [−M,M ]. Moreover, the function
θ 7→ uθ

x is continuous from J into L1. The map θ 7→ uθ admits a generalized tangent
vector Dγ(θ) = (vθ, ξθ) ∈ Tγ(θ) = L1(IR; IRn)× IRN , continuously depending on θ.

Definition 2. A continuous map γ : [a, b] 7→ L1 is a Piecewise Regular Path
(PRP) if there exist finitely many values a = θ0 < θ1 < · · · < θN = b such that the
restriction of γ to each open subinterval J`

.= ]θ`−1, θ`[ is a regular path.

Given any two piecewise Lipschitz continuous functions u, u′ ∈ U , call Σu,u′ the
family of all regular paths γ : [0, 1] 7→ U with γ(0) = u, γ(1) = u′. The weighted
length of a path γ ∈ Σu,u′ is then defined, using the notation of Proposition 4, as

(1.47) ‖γ‖?
.=

∫ 1

0

∥∥Dγ(θ)
∥∥

γ(θ)
dθ,
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while the Riemannian distance between u and u′ is given by

(1.48) d?(u, u′) .= inf
{‖γ‖?; γ ∈ Σu,u′

}
.

As proved in [B-B], the weighted length (1.47) is lower semicontinuous: if (γν)ν≥0

is a sequence of piecewise regular paths such that

lim
ν→∞

sup
θ∈[0,1]

∥∥γν(θ)− γ0(θ)
∥∥
L1 = 0,

then

‖γ0‖? ≤ lim inf
ν→∞

‖γν‖?.

Because of (ii) in Proposition 4, the distance d? is uniformly equivalent to the
standard L1 distance. Hence, it can be extended by continuity to the L1 closure
of U . Moreover, by (i), the length of every regular path does not increase in time
along the flow of (1.1). This suggests that the flow generated by (1.1) should be
globally contractive w.r.t. the weighted distance d?, and hence uniformly Lipschitz
continuous w.r.t. the usual L1 distance.

Unfortunately, a rigorous proof of this fact runs into a major difficulty. Indeed,
the estimates on the norm of a tangent vector, and on the length of a path θ 7→ γt(θ),
are valid assuming that all solutions remain piecewise Lipschitz throughout a given
interval [0, T ]. This is not the case in general. Indeed, a piecewise Lipschitz solution
may lose its regularity in two ways (fig. 2):

(i) The number of shock fronts may become infinite in finite time, due to
repeated shock interactions.

(ii) The Lipschitz constant outside the shocks may become infinite, due to the
genuine nonlinearity of some characteristic fields.

We recall that, in the special case where all characteristic fields are linearly degen-
erate, solutions which are initially smooth remain smooth for all times. In this case,
as soon as Proposition 4 has been established, the construction of the semigroup
is straightforward [B1]. The purpose of the present paper is to show that this con-
struction can still be accomplished, for general n× n genuinely nonlinear systems,
with the aid of three technical tools:

(1) A restarting procedure, which replaces a path γτ : θ 7→ uθ(τ) with a new path
γτ+. This is used when some of the functions uθ are about to lose their regularity
and cannot be prolonged further in time.

(2) A slight modification of the Rankine-Hugoniot equations, which forces shock
curves to coincide with rarefaction curves, for small amplitudes.

(3) A cyclical concatenation of flows generated by quasilinear systems where n− 1
characteristic fields are linearly degenerate and only one is genuinely nonlinear. In
the limit, this yields the flow generated by a general system, with an arbitrary
number of genuinely nonlinear fields.



1. INTRODUCTION 11

Infinite number of discontinuities Gradient catastrophe

τ

Fig.2

Restarting procedures, applied to approximate solutions, are well known in the
literature. A classical example is the Glimm scheme. Another one, consisting of
periodic mollifications, occurs in [B3]. We remark that, in our case, the new path
γτ+ should satisfy

(1.49)
∥∥γτ+(θ)− γτ (θ)

∥∥
L1 ≤ ε0 ∀θ,

(1.50) ‖γτ+‖? ≤ ‖γτ‖? + ε0

for some ε0 > 0 suitably small. In other words, the new path must be close to the
old one, and its length should be almost the same. In addition, the solutions uθ

should be well defined and remain regular on some interval [τ, τ + δ], with δ > 0
independent of ε0. Working with exact solutions, it is apparently not possible to
meet all these requirements. This is why the approximations (2)-(3) are used.

The idea of interpolating between shock and rarefaction curves was introduced
in [B-C1]. In an ε-approximate solution, shocks of strength |σ| ≥ 4ε satisfy the
Rankine-Hugoniot equations exactly. On the other hand, shocks of strength ≤ 3ε
connect a right and a left state lying on the same rarefaction curve. Observing that
any solution contains at most finitely many shocks of strength > 3ε, the advantage
of this approximation is clear. Indeed, outside a finite number of lines in the t-x
plane (which we regard as “free boundaries”), we are now dealing with a system
where shock and rarefaction curves coincide.

The cyclical concatenation of flows, a particular kind of flux-splitting method,
is the main new technique introduced in the present paper. It provides the key
for extending the result in [B-C1] to the general n × n case. The construction
goes as follows. Given the system (1.4), fix a state u∗ and let λ∗1 < · · · < λ∗n be
the eigenvalues of A(u∗). For h = 1, . . . , n, call Ah(u) the matrix with the same
eigenvectors r1(u), . . . , rn(u) as A(u), but whose eigenvalues are

(1.51) λ∗1, · · · , λ∗h−1, λ∗h + n
(
)λh(u)− λ∗h

)
, . . . , λ∗n.
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Clearly, for each h, the system

(1.52) ut + Ah(u)ux = 0

has n−1 linearly degenerate fields. Call (t, ū) 7→ Sh
t ū the corresponding flow. Given

a time step ∆t > 0, we now concatenate the flows of the semigroups S1, . . . , Sn

cyclically, on subintervals of length ∆t/n. Letting ∆t → 0, in the limit we obtain
the flow determined by (1.4).



CHAPTER 2

Outline of the proof

We collect here the basic steps in the proof of Theorem 1. Technical details
will be worked out in the remaining sections.

By possibly performing a linear rescaling of time, it is not restrictive to assume
that all wave speeds are < 1 in absolute value. Moreover, throughout the main
construction we shall assume that all characteristic fields are genuinely nonlinear.
When one or more linearly degenerate fields are present, the minor modifications
needed in the proof will be described in the last section of the paper.

We begin by defining, for a given ε > 0, a set of approximate Rankine-Hugoniot
conditions. These coincide with the usual ones for shocks of strength |σ| ≥ 4ε. For
a given state u ∈ IRn and i = 1, . . . , n, denote by

σ 7→ Si(σ)u), σ 7→ Ri(σ)u),

i
R (-3   ) (u)ε

u
R

S

R

i

i

i

 εi
S (-4   ) (u)

Fig.3

the usual i-shock and i-rarefaction curves through u, parametrized by arclength.
As customary, the orientation is chosen so that the i-th characteristic speed is
increasing along the curves Si, Ri. Consider a smooth, non-increasing map ϕ :
IR 7→ [0, 1] such that

(2.1)

{
ϕ(σ) = 1 if σ < −4
ϕ(σ) = 0 if σ > −3

ϕ̇ ∈ [−2, 0].

13
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Define the interpolated curves (fig. 3)

(2.2) Ψε
i (σ)u) .= ϕ(σ/ε) · Si(σ)u−) +

(
1− ϕ(σ/ε)

) ·Ri(σ)u−).

Definition 3. We say that the jump (u−, u+), located at x = y(t) and travelling
with speed ẏ, satisfies the ε-Rankine-Hugoniot conditions (ε-RH) if, for some σ < 0
and some i ∈ {1, . . . , n}, we have

(2.3) u+ = Ψε
i (σ)u−),

(2.4) ẏ = λε
i (u

−, u+) .= ϕ(σ/ε)λs
i +

(
1− ϕ(σ/ε)

)
λr

i .

Here λs
i is the speed of a true shock connecting u− with Si(σ)u−), while

(2.5) λr
i

.=
1
|σ|

∫ 0

σ

λi

(
Ri(s)u−)

)
ds.

The modified Rankine-Hugoniot conditions introduced above, in turn, deter-
mine a new way of approximately solving a Riemann problem. More precisely,
consider the initial data

(2.6) u(0, x) =

{
u− if x < 0,

u+ if x > 0.

We seek a self-similar, piecewise Lipschitz function ω = ω(t, x) which satisfies
the quasilinear system (1.4) almost everywhere, and the ε-approximate Rankine-
Hugoniot conditions along each shock line. The solution to this problem is provided
by the following

ε-Riemann Solver: Using the implicit function theorem, determine wave sizes
σ1, . . . , σn such that

(2.7) u+ = Ψε
n(σn) ◦ · · · ◦Ψε

1(σ1)u−).

Let ω0 = u−, ω1 = Ψε
1(σ1)ω0), . . . , ωn = Ψε

n(σn)ωn−1) = u+ be the corresponding
intermediate states. If σi ≥ 0, the states ωi−1 and ωi are connected by a centered
rarefaction wave of the i-th family, as usual. If σi < 0, these two states are connected
by a single jump, travelling with the speed ẏ = λε

i (ωi−1, ωi) defined at (2.4).

Definition 4. An L1–continuous map u : [0, T [ 7→ BV is a Viscosity ε-solution
of (1.1) if at each point (τ, ξ) the inequalities (1.13), (1.14) hold for all ρ, η > 0
sufficiently small, with U [ the solution of (1.12), and

U ]
(u;τ,ξ)(t, x) .=

{
ωε(t− τ, x− ξ) if |x− ξ| ≤ t− τ ,

u(τ, x) if |x− ξ| > t− τ .

Here ωε is the ε-solution of the Riemann problem with data u(τ, ξ−), u(τ, ξ+).
Observe that, by our initial assumption, we can take here λ̂ = 1 as an upper bound
for all wave speeds.

For the most part, our work will be devoted to a proof of
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Theorem 3. With the same assumptions of Theorem 1, for some constants L, η0 >
0 the following holds. For each ε > 0 there exists a closed domain Dε ⊂ L1(IR; IRn)
and a continuous semigroup Sε : Dε × [0,∞[ 7→ Dε with the properties:

(i) Every function ū ∈ L1 with Tot.Var.(ū) ≤ η0 lies in Dε.
(ii) For all ū, v̄ ∈ Dε, t, s ≥ 0 one has

∥∥Sε
t ū−Sε

s v̄
∥∥
L1 ≤ L ·(|t−s|+‖ū− v̄‖

L1

)
.

(iii) If ū ∈ Dε is piecewise constant, then for t > 0 sufficiently small the
function u(t, ·) = Sε

t ū coincides with the solution of (1.1)-(1.2) obtained
by piecing together the solutions of the corresponding Riemann problems
determined by the ε-Riemann Solver.

As soon as Theorem 3 is established, letting ε → 0 it will be an easy matter
to show that the semigroups Sε converge to a unique semigroup S, having all the
properties stated in Theorem 1. Throughout the following, we thus fix some ε > 0
and concentrate on the construction of the semigroup Sε, with constants L, η0 > 0
independent of ε. This requires several steps.

STEP 1. We begin by showing that a Lipschitz semigroup exists, whose domain
contains all suitably small perturbations of a Riemann data.

Proposition 5. There exists a neighborhood of the origin Ω0 ⊂ IRn and positive
constants L, η = η(ε) > 0 for which the following holds. For every u−, u+ ∈ Ω0,
there exists a closed domain D = D(u−,u+) of the form
(2.8)

D .=
{

u ∈ BV ;
∫ 0

−∞

∣∣u(x)− u−
∣∣ dx +

∫ ∞

0

∣∣u(x)− u+
∣∣ dx < ∞, Q(u) ≤ η

}
,

and a Lipschitz semigroup S on D satisfying (ii) and (iii) in Theorem 3 (with Dε

replaced by D). Such a semigroup is unique, up to the domain. Its trajectories are
Viscosity ε-solutions of (1.1).

It should be noted that Proposition 5 is much weaker than Theorem 3. Indeed,
in the theorem the constant η0 is independent of ε. This is essential, since we
eventually need to consider the limit as ε → 0. In Proposition 5, however, we allow
ourselves to choose η small depending on ε. In particular, by taking η << ε2, we
can assume that every function u ∈ D(u−,u+) has the same number of large shocks
of strength |σ| > ε (i.e. the same “qualitative structure”) as the solution of the
Riemann problem with data u−, u+.

The construction of the semigroup S relies on the ideas described in the In-
troduction. For sake of clarity, we first describe the constructive procedure in the
special case where the solution of the Riemann problem (2.6) does not contain any
shock of strength ≥ 2ε. In this case, by choosing η > 0 sufficiently small, we can
assume that all functions u in the set D = D(u−,u+) in (2.8) contain shocks only of
strength < 3ε. Because of the definitions (2.1)-(2.2), inside the positively invari-
ant domain D the time evolution is thus determined by a system where shock and
rarefaction curves coincide.

On a given interval [0, T ], our approximations will be piecewise Lipschitz so-
lutions of a quasilinear system, except for a finite number of times 0 = t0 < t1 <
. . . < tν < T where a restarting procedure is used. Namely, to prevent a loss of
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regularity, at suitable times t` we shall replace u(t`−, ·) with a “nicer” function
u(t`+, ·).

First of all, we choose a time step ∆t = δ1 > 0 and partition the time axis into
intervals of the form

(2.9) Im,h
.=

[
τm,h−1, τm,h

[ .=
[(

m +
h− 1

n

)
δ1,

(
m +

h

n
)
)
δ1

[
,

with m ∈ IN , h ∈ {1, . . . , n}. Moreover, we fix a constant state u∗ and call λ∗1 <
. . . < λ∗n the eigenvalues of the matrix A(u∗). For h = 1, . . . , n, let Ah(u) be the
matrix with the same eigenvectors as A(u), but whose eigenvalues are

(2.10) λ∗1, . . . , λ∗h−1, λ∗h + n
(
λh(u)− λ∗h

)
, . . . , λ∗n.

In other words,
(2.11)

Ah(u)v = n
(
λh(u)− λ∗h

)(
lh(u) · v)

rh(u) +
n∑

i=1

λ∗i
(
li(u) · v)

ri(u) v ∈ IRn.

On each subinterval Im,h, our approximation u will have the following properties.
Each u(t, ·) is piecewise Lipschitz continuous and satisfies

(2.12) ut + Ah(u)ux = 0

a. e. outside the jumps. At every point xα(t) where u(t, ·) is discontinuous, the
jump occurs always in the h-characteristic family and the following approximate
Rankine-Hugoniot conditions hold:

(2.13) u(t, xα+) = Rh(σα)
(
u(t, xα−)

)
,

(2.14) ẋα =
1
|σα|

∫ 0

σα

λh

(
Rh(s)

(
u(t, xα−)

))
ds,

for some σα < 0. As usual, σ 7→ Rh(σ)u) describes the h-rarefaction curve through
the state u.

For a given piecewise Lipschitz initial data, the local existence and uniqueness
of a piecewise Lipschitz solution to (2.12)–(2.14) follows from the standard theory of
quasilinear hyperbolic equations. Let us briefly examine for how long this solution
can retain its piecewise Lipschitz regularity. To fix the ideas, assume that, at some
time τ ∈ Im,h, the gradient components ui

x = li(u) · ux of u(τ, ·) satisfy the bounds
(for a. e. x ∈ IR)

(2.15) |ui
x| ≤ M i = 1, . . . , n,

(2.16) uh
x ≥ −1.

(i) Whenever two or more h-shocks interact, they simply join together forming a
single h-shock, without generating outgoing waves of any other family. Indeed, by
construction all shocks in u belong to the h-family. Moreover, according to our
modified dynamics, shock and rarefaction curves coincide. As a consequence, the
number of shock fronts can only decrease in time.

(ii) For i 6= h, the i-th eigenvalue of the matrix Ah(u) is constantly equal to
λ∗i . Hence, for the system (2.12), the i-th family is linearly degenerate. As a
consequence, all gradient components ui

x, i 6= h, remain uniformly bounded. To
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estimate the growth in the (genuinely nonlinear) component uh
x, let x = x(t) be an

h-characteristic line, so that

ẋ(t) = λ∗h + n
(
λh

(
u(t, x)

)− λ∗h
)
.

Differentiating along this line, from (2.12) we obtain an equation of the form

(2.17)
d

dt
uh

x

(
t, x(t)

)
= −n

[∇λh · rh(u)
] · (uh

x)2 +
∑

i 6=j

Ghij(u)ui
xuj

x,

where the functions Ghij are uniformly bounded. Due to the squared term on the
right-hand side, the component uh

x may well approach −∞ in finite time. However,
by (2.17) and (2.16), this component can be bounded from below in terms of the
solution to the O. D. E.

(2.18) Ż = −aZ2 + bZ − c, Z(0) = −1,

where the positive constants a, b, c depend only on the coefficients Ghij and on
the uniform bounds already available on the other components ui

x, i 6= h. This
provides a lower bound on the time when the solution u of (2.12)-(2.14) may lose
its piecewise Lipschitz regularity.

Since the regularity of solutions is not preserved globally in time, the construc-
tion of piecewise Lipschitz approximate solutions on a given interval [0, T ] must
involve some restarting procedures. These restartings are of two types.

(1) At time t = 0 we approximate the initial data ū with a piecewise Lipschitz
function u(0+, ·) containing only 1-shocks. At each time t = τm,h at (2.9), we
replace the function u(t−, ·) (which contains only )h-shocks) with a new function
u(t+, ·) containing only (h + 1)-shocks [only 1-shocks in the case h = n].

(2) At a time t ∈ Im,h when infx uh
x(t, x) is getting close to −∞, we replace u(t−, ·)

with a new function u(t+, ·), still containing only h-shocks, which satisfies (2.16).
This can always be accomplished by inserting several small downward jumps in
regions where uh

x is large and negative (fig. 4).

u h

Fig.4

In all cases, at each restarting time t, we require that the distance
∥∥u(t+, ·) −

u(t−, ·)∥∥
L1 be suitably small. Moreover, we make sure that the total strength
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of waves and the interaction potential are changed very little by the restarting
procedure.

By the analysis in (i)-(ii), the construction of an approximate solution on a
given interval [0, T ] can be accomplished with a finite number of restartings. Indeed,
on each subinterval Im,h we can derive an a-priori bound of the form (2.15) on every
linearly degenerate component ui

x, i 6= h. Hence, by (2.16) and (2.17), the difference
t`+1 − t` between two restarting times is bounded from below by the length of the
interval where the solution of (2.18) is defined.

We can now repeat the above construction with different values of the time
step δ1, letting δ1 → 0, and obtain a sequence of approximate solutions (uν)ν≥1.
By possibly taking a subsequence, a compactness argument yields some function
u = limν uν . We claim that this limit provides an ε-solution to (1.1)-(1.2).

Intuitively, this is seen as follows. Consider any wave, say of the k-th family. In
an exact solution, this wave should travel with speed λk(u). On the other hand, in
an approximate solution with time step ∆t = δ1, by (2.10) such a wave will travel
with speed

ẋ =

{
λ∗k if t /∈ ⋃

m≥1 Im,k,

λ∗k + n
(
λk(u)− λ∗k

)
if t ∈ ⋃

m≥1 Im,k.

Therefore, on any interval of the form

[
mδ1, (m + 1)δ1

[
= Im,1 ∪ · · · ∪ Im,n,

the average speed of a k-wave coincides with λk(u). Letting δ1 → 0 we thus obtain
an exact solution.

Of course, one could construct approximate solutions by a less sophysticated tech-
nique, such as the Glimm scheme or wave-front tracking. The use of piecewise
Lipschitz approximations with successive restartings, however, offers a major ad-
vantage compared with all other methods. Namely, the distance between any two
approximate solutions can now be carefully estimated. This is done as follows
(fig. 5).
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Fig.5

For a fixed δ1 > 0, let u, u′ be any two approximate solutions, constructed on the
interval [0, T ] according to the above procedure. Consider any piecewise regular
path γ0 : θ 7→ uθ(0, ·) joining u(0, ·) with u′(0, ·). We can then construct a one-
parameter family of approximate solutions uθ within the class of piecewise Lipschitz
functions, implementing a restarting procedure at suitable times t` and carefully
controlling the length of the path γt : θ 7→ uθ(t, ·).

At times where all functions uθ solve the same quasilinear system (2.12) with
jump conditions (2.13)-(2.14), the weighted length of the generalized tangent vector
‖duθ/dθ‖uθ does not increase. Moreover, a careful construction guarantees that, at
each time t where a restarting procedure is applied (simultaneously )to all functions
uθ(t−, ·)), the weighted length of the path γt changes only by a very small amount.
In the end, we obtain a bound on the length of the path γ

T
, and hence on the

distance
∥∥u(T, ·)− u′(T, ·)∥∥

L1 , based on the length of the path γ0. Letting δ1 → 0,
this yields the Lipschitz estimate (ii) in Theorem 3.

It is worth observing that, if (1.1) is a special system where all shock and
rarefaction curves coincide [T1], then the above construction already provides a
complete proof of Theorem 1. For general systems, however, we still have to describe
a proof of Proposition 5, in the case where the solution of the Riemann problem
(u−, u+) contains one or more shocks with strength |σi| ≥ 2ε.

To fix the ideas, assume that the ε-solution of the Riemann problem (1.1)-(2.6)
has ν shocks of strength ≥ 2ε, say in the families j1, . . . , jν ∈ {1, . . . , n}, plus
possibly other shocks of smaller strength. Then, if we choose η << ε2 sufficiently
small, every function u ∈ D(u−,u+) will contain exactly one shock of strength > ε
for each of the families j1, . . . , jν , plus possibly other shocks (of different families)
all with strength < 3ε. For any fixed δ1, δ2 > 0, a piecewise Lipschitz continuous
approximation u = u(t, x) is constructed by choosing a time step ∆t = δ1 and
inserting ν “shock layers” of width δ2 around the large shocks, say located at
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yj1(t) < · · · < yjν (t). For t ∈ Im,h as in (2.9), the function u will have the following
properties.

• At each point yi, i ∈ {j1, . . . , jν}, the ε-Rankine-Hugoniot conditions
(2.3)-(2.4) hold.

• Inside each shock layer

(2.19) Bi
.=

[
yi(t)− δ2, yi(t) + δ2

]
i ∈ {j1, . . . , jν},

the evolution of u is determined by a quasilinear system where all char-
acteristic speeds are constant (hence all fields are linearly degenerate).

• Outside the shock layers Bi, the function u is a solution of the quasilinear
system (2.12), with jumps occurring only in the h-characteristic field. All
these jumps have strength |σ| < 3ε and satisfy the ε-Rankine-Hugoniot
equations (2.13)-(2.14).

The reason for inserting the shock layers is the following. Within a time interval
Im,h, if a small h-shock were to hit one of the large shocks, the interaction could
produce several outgoing shocks of various families. By subsequent interactions,
the total number of shocks could thus approach +∞ within a very short time, and
the algorithm would break down. To avoid this, we adopt an additional restarting
procedure:

(3) At a time t when an h-shock has penetrated inside one of the shock layers Bi,
this shock is replaced by a steep Lipschitz continuous compression wave, before
hitting the big shock at yi(t).

By letting all wave speeds be constant inside Bi, we make sure that this steep
compression wave (of the h-family) does not “break”, reforming an h-shock almost
immediately. Since all wave speeds are bounded, it takes a positive amount of
time for an h-wave to penetrate the shock layer Bi of width δ2 > 0 and hit the
shock at yi(t). Therefore, the length of the interval [t`, t`+1] between two consec-
utive restarting times remains uniformly positive. In a finite number of steps, our
approximate solution can thus be constructed on the whole interval [0, T ].

A detailed construction of approximate solutions in this more general case will
be given in Section 3, together with the estimates on the weighted length of a
generalized tangent vector. The restarting procedures are carefully analyzed in
Section 4. The proof of Proposition 5 is then completed in Section 5, showing that,
as δ1, δ2 → 0, our approximate solutions converge to a unique limit, continuously
depending on the initial data.

STEP 2. For a given ε > 0, we now construct a continuous semigroup Sε on a
domain Dε, satisfying (i) and (iii) in Theorem 3.

Observe that, in Step 1, we obtained a family of semigroups with the properties
(ii) and (iii) but not (i), because the domains D(u−,u+) would shrink to a point
as ε → 0. On the other hand, the domains Dε which we now consider remain
uniformly large, satisfying (i) for some η0 > 0 independent of ε. The trajectories
of the semigroup Sε are constructed by a wave-front tracking algorithm. This
algorithm is essentially the same as described in [B-J, B6], except for the use of the
ε-approximate Riemann solver (2.7).
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The basic idea in the wave-front tracking method is well known [D, DP2, B2, R].
Start with a piecewise constant function u(0, ·) close to the initial data ū. At each
point of jump, one approximately solves the corresponding Riemann problem within
the class of piecewise constant functions.
This yields an approximate solution defined up to the first time t1 where one or
more wave-front interactions take place. The new Riemann problem is then solved
again within the class of piecewise constant functions, prolonging the solution up
to some time t2 where the second set of interactions takes place, etc. In order to
keep finite the total number of wave-fronts, we shall use two distinct procedures
for approximately solving a Riemann problem: an accurate method, which possibly
introduces several new fronts, and a simplified method, which avoids the introduc-
tion of new wave-fronts. The algorithm involves two (strictly positive) parameters:
σ̄, bounding the maximum size of rarefaction fronts, and ρ̄, determining which
Riemann problems will be accurately solved.

For a given Riemann problem with data u−, u+, these two solution methods
are described below. By [[s]] we denote here the integer part of s.

Accurate ε-Riemann solver: Let ω0 = u−, ω1, . . . , ωn = u+ be the states present
in the ε-approximate solution of the Riemann problem, as in (2.7). The piecewise
constant approximation u is then obtained by replacing each rarefaction wave with
a rarefaction fan. More precisely, if ωi = Ψε

i (σi)(ωk−1) with σi > 0, we divide this
jump into pi = 1 + [[σi/σ̄]] equal parts, inserting the intermediate states

ωi,0 = ωi−1, ωi,1, . . . , ωi,pi = ωi.

Each small jump (ωi,`−1, ωi,`) travels with speed λi(ωi,`), i.e. with the characteristic
speed of its right state.

Simplified ε-Riemann Solver: Assume that the Riemann problem is determined
by the interaction of two waves of distinct families, say i < j, with sizes σi, σj . Call
ul, um, ur the left, middle and right states before the interaction. Clearly, um =
Ψε

j(σj)ul), ur = Ψε
i (σi)um). We then solve the Riemann problem in terms of two

outgoing wave-fronts of the same families, still with sizes σi, σj . The solution will
thus involve a middle state ũm = Ψε

i (σi)ul) and a new right state ũr = Ψε
j(σj)(ũm).

In general, ũr 6= ur. The jump (ũr, ur) is then propagated along a non-physical
wave-front, travelling with a fixed speed λ̂, larger than all characteristic speeds.
In the case where both incoming wave-fronts belong to the same i-th family and
have sizes σi, σ

′
i, the Riemann problem is solved by a single outgoing i-wave of size

σi+σ′i, together with a non-physical wave-front connecting the states Ψε
i (σi+σ′i)u

l)
and ur, travelling with speed λ̂.
Finally, in the case where a non-physical front hits an i-wave of size σi, the Riemann
problem is solved in terms of an outgoing i-wave of the same size σi, and a non-
physical front always travelling with speed λ̂.

To complete the description of the algorithm, it remains to specify which Rie-
mann solver is used at any given interaction:

- The accurate method is used at time t = 0, and at every interaction where
the product of the strengths of the incoming waves is ≥ ρ̄.
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- The simplified method is used at every interaction involving a non-physical
wave-front, and also at interactions where the product of the strengths of
the incoming waves is < ρ̄.

In the above, we tacitly assumed that only two wave-fronts interact at any
given point. This can always be achieved by an arbitrarily small change in the
speed of one of the interacting fronts.

Given any initial data ū with sufficiently small total variation, consider a se-
quence of piecewise constant functions such that ūν → ū in L1. Calling Nν the
number of jumps in ūν , choose the parameter values

σ̄ν
.=

1
ν

, ρ̄ν
.= e−(Nν+ν).

For each ν ≥ 1, using the above algorithm we now construct a piecewise constant
approximate solution uν , with uν(0, ·) = ūν . Each uν is defined for all t ∈ [0,∞[ and
has a finite number of lines of discontinuity in the t-x plane. By a straightforward
adaptation of the estimates in [B-J, B6] one checks that, as ν →∞,

(i) The total variation of uν(t, ·) remains uniformly small,
(ii) The maximum strength of rarefaction fronts in uν approaches zero,
(iii) The total strength of all non-physical waves approaches zero.
By (i), Helly’s theorem guarantees the existence of a subsequence which con-

verges to some function u in L1
loc. By (ii) and (iii), u is an ε-solution of (1.1).

Moreover, relying on the lengthy construction performed in Step 1, we can show
that this limit function u is unique and depends continuously on the initial data.

Proposition 6. Let ū ∈ L1 have sufficiently small total variation. Then any se-
quence of approximations uν generated by the above wave-front tracking algorithm
converges to a unique limit u = u(t, x), continuously depending on the initial data
ū. The map

(t, ū) 7→ u(t, ·) .= Sε
t ū

is a continuous semigroup. Every trajectory is a Viscosity ε-solution of the corre-
sponding Cauchy problem (1.1), (1.2).

The key step in the proof of Proposition 6 is to show that, locally in the t-
x plane, the limit solution u coincides with a trajectory of one of the Lipschitz
semigroups constructed in Step 1. More precisely, fix any point (τ, x̄) and define
the one-sided limits u− = u(τ, x̄−), u+ = u(τ, x̄+). Choosing ρ > 0 small enough,
the truncated function

(2.20) ũ(x) =





u(τ, x) if x ∈ [x̄− ρ, x̄ + ρ],
u− if x < x̄− ρ,

u+ if x > x̄ + ρ,

lies in the domain D(u−,u+) of one of the semigroups S constructed in Step 1. One
then has

(2.21)
(
St−τ ũ

)
x) = u(t, x) ∀(t, x) ∈ Γ,

where Γ is the domain of dependency

(2.22) Γ .=
{
(t, x); t ≥ τ, |x− x̄| ≤ ρ− (t− τ)

}
.
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From the uniqueness of the semigroup S, proved as in [B4], it thus follows the
uniqueness of the limit function u.

STEP 3. All the remaining analysis aims at establishing the uniform Lipschitz
continuity of the semigroup Sε, with a Lipschitz constant independent of ε, thus
proving (ii) in Theorem 3. This is not an easy task: at this stage we can compare
different solutions, and show the Lipschitz continuity on the initial data, only within
a narrow class of functions with the same wave-front structure. Roughly speaking,
by “wave-front structure” or “configuration” we refer here to the number of shocks
of strength > ε, and to the order in which they interact. As shown in Step 1, we
can construct suitable approximations by choosing artificial wave speeds λ∗i and
inserting the buffer zones (2.19) around each big shock. The distance between
two approximations can then be estimated, but only if these approximations are
obtained by the same choice of the λ∗i , and by the insertion of the same number
of shock layers. Of course, this cannot be the case for solutions with different
wave-front configurations (fig. 6).

1 2 3
1

2
3

Fig.6

Our basic approach is the following. Consider a regular path of initial data γ0 :
θ 7→ ūθ, θ ∈ [0, 1]. For each t > 0, define the corresponding path

(2.23) γt : θ 7→ Sε
t ūθ.

First, we prove that the weighted length of γ does not increase in time if all solutions
uθ have the same wave-front structure. By the continuity of the semigroup Sε,
proved in Step 2, the result can be extended to the case where the configuration
changes only at finitely many values of the parameter θ. Finally, we show that any
path γ of solutions can be uniformly approximated by a path γ̃ such that the wave-
front structure of the function ũθ = γ̃(θ) changes only at finitely many parameter
values.
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To implement the above program, we introduce a set of conditions providing
the structural stability of an ε-solution u. They will imply that any ε-solution u′

sufficiently close to u has the same number of large shocks as u, interacting in the
same order. In particular, u′ can be obtained as limit of the same type of piecewise
Lipschitz approximations used in the construction of u.

As a preliminary, given an ε-solution u and a point (t, x) with t > 0, define

(2.24) uη(t′, x′) .= u(t + ηt′, x + ηx′), ω
(t,x)

(t′, x′) .= lim
η→0+

uη(t′, x′).

By the analysis in [DP1, B-LF2], the self-similar limit in (2.24) is well defined in
L1

loc. On the upper half plane where t′ > 0, ω(t,x) coincides with the solution of the
standard Riemann problem with data u(t, x−), u(t, x+). On the lower half plane
where t′ < 0, the function ω(t,x) may contain a set of incoming waves, including
shocks and centered compression waves of various families. We shall distinguish
three cases.

CASE 1: The strength of all incoming waves is < ε2.
CASE 2: There exists an incoming shock of strength > ε3 while the total strength

of all other incoming waves is < ε8.
CASE 3: There exist two incoming shocks, both of strength > ε9, while the total

strength of all other incoming waves is < ε20.

Observe that the above cases are not mutually exclusive, nor do they cover all
possibilities. A suitable definition of structural stability can now be introduced.

Definition 5. An ε-solution u of (1.1) is Structurally Stable at the point (t, x) if
the corresponding function ω(t,x) in (2.24) satisfies one of the Cases 1, 2, 3. We
say that u is Structurally Stable on [t∗, T ] iff u is stable at each point (t, x) with
t∗ ≤ t ≤ T , x ∈ IR.

There are two typical examples where structural stability fails:

- Three shocks, each with strength > ε, interact at a single point (t, x).
- The point (t, x) is the center of a compression wave, of strength > ε.

Observe that, in both cases, an arbitrarily small perturbation may destroy the
wave-front configuration of the solution u. The next proposition states that this
does not happen for a structurally stable solution ū.

In the following, by V
(
u(t); J

)
we denote the total strength of waves in u(t)

inside the set J .

Proposition 7. Let ũ be an ε-solution of (1.1), structurally stable at the point
(τ, x̄). Then there exists r∗ > 0 such that, for every fixed r ∈ ]0, r∗], on the interval
J

.= [x̄−7r∗− r, x̄+7r∗+ r] the following holds. For every ε-solution u sufficiently
close to ũ in the L1 norm, one has:

(i) In Case 1, u(τ − r) satisfies

(2.25) V
(
u(τ − r); J) ≤ Cε2.

(ii) In Case 2, u(τ − r) has a shock of strength > ε3/2, located at some point
y ∈ J . Moreover,

(2.26) V
(
u(τ − r); J \ {y}) ≤ Cε8.
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(iii) In Case 3, u(τ − r) has two approaching shocks, both of strength > ε9/2,
located at points y, y′ ∈ J . Moreover,

(2.27) V
(
u(τ − r); J \ {y, y′}) ≤ Cε20.

As usual, by C we denote a constant depending only on the system, and not on
u, ũ, r, r∗, ε . . . On the other hand, it is understood that the conclusion of Proposi-
tion 7 holds for every solution u satisfying

∥∥u(t)− ũ(t)
∥∥
L1 < ε∗ ∀t,

with ε∗ > 0 possibly depending on r. For exact solutions of the system (1.1),
or approximations obtained by wave-front tracking, a more general result in this
direction is established in [B-LF2], relying on the decay estimates (1.21). All proofs
remain valid for ε-solutions, without any change. In Section 7 we will show that the
same conclusions (i)–(iii) also hold if u is a sufficiently accurate piecewise Lipschitz
approximation, constructed according to our algorithm.

In the above setting, a trapezoid of the form

(2.28) Γ .=
{

(t, x); t ∈ [τ − r′, τ + r′′], |x− x̄| ≤ 7r∗ − (t− τ)
}

with r′, r′′ ∈ ]0, r∗] will be called a Stabilizing Block for the solution ũ around the
point (τ, x̄). Observe that, by Proposition 7, every solution u suitably close to ũ
in the L1 norm has the same wave-front configuration as ũ inside the trapezoid Γ.
This motivates our definition. We say that the stabilizing block Γ is of type 1, 2 or
3 according to the three cases considered in Proposition 7.

A straightforward compactness argument yields the following covering lemma.

Lemma 1. Let M, t∗ > 0 be given and let ũ be structurally stable on [t∗, T ]. Then
there exist times 0 < t0 < τ1 < t1 < τ2 < · · · < τN < tN = T , points xij and values
rij > 0, j = 1, . . . , Ni with the following properties. For each i = 1, . . . , N , the
intervals [xij − rij , xij + rij ] cover [−M,M ]. Moreover,

(2.29) [t∗, T ] ⊂ [t0, tN ], max
{
ti−τi, τi−ti−1

} ≤ min
j

rij i = 1, . . . N.

Each trapezoid

(2.30) Γij
.=

{
(t, x); t ∈ [ti−1, ti], |x− xij | ≤ 7rij − (t− τi)

}

is a stabilizing block for ũ around the point (τi, xij).

Example 2. Consider an ε-solution u = u(t, x) with the following wave-front
structure (fig. 7). Initially, u contains only one large shock, say at a point y1, plus
other small waves. As time progresses, a second shock is formed, say located at y2.
The strength of this shock increases continuously from 0 to some value > ε. At
some time τ2, the two shocks interact, generating three outgoing shocks.
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In this case, u is structurally stable. A covering in terms of stabilizing blocks is
illustrated in fig. 7. The block Γ12 is of type 1, Γ11,Γ21,Γ22 are of type 2, while
Γ31 is of type 3.

We can now take the main step toward establishing the Lipschitz continuity
of the semigroup Sε. More precisely, we will show that Sε is contractive w.r.t. a
weighted distance defined as follows. Let u be a piecewise Lipschitz function having
jumps at the points x1 < · · · < xN . Assume that the ε-solution of the Riemann
problem determined by the jump at xα consists of a single shock in the kα-th
characteristic family, of strength |σα|. For any v ∈ L1, define the components

(2.31) vi(x) .=
〈
li(u(x)), v(x)

〉
, ui

x(x) .=
〈
li(u(x)), ux(x)

〉
i = 1, . . . , n.

The weighted norm of a generalized tangent vector (v, ξ) ∈ Tu = L1 × IRN is then
defined as

(2.32)
∥∥(v, ξ)

∥∥
u

.=
n∑

i=1

∫ ∞

−∞

∣∣vi(x)
∣∣Wu

i (x) dx +
N∑

α=1

∣∣ξα

∣∣|σα|Wu
kα

(xα).

Here Wu
i (x) is the weight assigned to an i-wave located at x. It has the form

(2.33) Wu
i (x) .= 1 + κ1R

u
i (x) + κ1κ2Q(u),

where

(2.34) Ru
i (x) .=


∑

j≤i

∫ ∞

x

+
∑

j≥i

∫ x

−∞


 ∣∣uj

x(y)
∣∣dy +




∑
kα≤i
xα>x

+
∑
kα≥i
xα<x


 |σα|,
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Q(u) .=
∑

i≤j

∫ ∫

x<y

∣∣uj
x(x)

∣∣∣∣ui
x(y)

∣∣ dxdy +
∑

kα≤kβ , xα>xβ

|σασβ |

+
∑
α


 ∑

i≤kα

|σα|
∫ ∞

xα

∣∣ui
x(x)

∣∣dx +
∑

i≥kα

|σα|
∫ xα

−∞

∣∣ui
x(x)

∣∣dx


 ,

(2.35)

and κ1, κ2 are suitably large constants. Thinking of
∣∣ui

x(x)
∣∣dx as the strength of an

infinitesimal i-wave in u located at x, the weight (2.33) can thus be interpreted as

Wu
i (x) = 1 + κ1

[
amount of waves in u which approach an i-wave located at x

]

+ κ1κ2

[
global interaction potential of waves in u

]
.

A general formula for the weighted length of a tangent vector, valid for functions u
with arbitrary jumps, will be given in Section 8. Here and in the sequel there will
be slight variations in the definitions of Q, due to the fact that couples of waves of
the same family may or may not be regarded as approaching. The different choices
made at various stages of the paper aim at simplifying the computations in the
proofs. They are all essentially equivalent in that the basic interaction estimates
(1.9) always hold.

In turn, the weighted length of a piecewise regular path can then be defined
as in (1.47), by integrating the norm of a tangent vector. To make sense of the
weighted length of an arbitrary path γ : θ 7→ uθ in the case where the uθ are
general BV functions, we set

‖γ‖?
.= lim

ε→0+
inf

{
‖γ′‖? ; γ′ is a piecewise regular path,

∥∥γ′(θ)− γ(θ)
∥∥
L1 < ε for all θ

}
.

(2.36)

Proposition 8. Let γ0 : θ 7→ ūθ be a regular path of initial data, say defined for
θ ∈ Θ .= [a, b]. For some value θ̄, assume that the corresponding ε-solution uθ̄ of
(1.1) is structurally stable on [0, T ]. Then there exists ρ > 0 such that the weighted
length of the path θ 7→ Sε

t ūθ, restricted to θ ∈ [θ′, θ′′], is a non-increasing function
of time, for every subinterval [θ′, θ′′] ⊆ [θ̄ − ρ, θ̄ + ρ].

As a first step toward the proof of Proposition 8, we show that the conclusion
holds in the special case where the solutions uθ vary with θ only within a single
isolating block.

Lemma 2. Let Γ be as in (2.28) and let θ 7→ uθ be a family of ε-solutions of
(1.1), defined for t ∈ [t′, t′′] .= [τ − r′, τ + r′′], θ ∈ Θ .= [a, b]. Assume that, at
the initial time t′ = τ − r′, all functions uθ(t′, ·) satisfy one of the conclusions of
Proposition 7: either (i), or (ii), or (iii). Moreover, assume that for all θ one has

(2.37) uθ(t′, x) = uθ̄(t′, x) x /∈ [x̄− r∗, x̄ + r∗].

Then the weighted length of the path γt′′ : θ 7→ uθ(t′′, ·) is smaller or equal to the
length of the path γt′ : θ 7→ uθ(t′, ·).

The proof of Lemma 2 is achieved by constructing a path γ′ of piecewise Lips-
chitz approximate solutions, arbitrarily close to γ, whose length does not increase
in time. Observe that, inside the trapezoid Γ, all solutions uθ have the same wave-
front structure as uθ̄. Namely:
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- in Case 1 no large shock is present,
- in Case 2 there is exactly one large shock,
- in Case 3 there are initially two large incoming shocks. At some time t

these shocks interact, generating a number of outgoing waves determined
by the corresponding Riemann problem.

Inside the region Γ, the construction of approximate solutions, continuously
depending on the initial data, can thus be carried out by the same algorithm used
in the proof of Proposition 5. Actually, in Cases 1 and 2, we are dealing with a
set of functions all contained in one of the domains D(u−,u+) considered at (2.8) (if
suitably extended outside )Γ). Case 3, on the other hand, forces us to consider a
domain D of functions which possibly contain two large approaching shocks. In this
more general case, the construction of piecewise Lipschitz approximate solutions will
be given in Section 8.

Outside the stabilizing block Γ, our approximate solutions will be constructed
by wave-front tracking. Observe that, in this outer region, nothing is known about
the wave-front structure of the functions uθ. However, by (2.37) and finite prop-
agation speed, all these solutions coincide. Their continuous dependence on the
parameter θ is thus trivial.

In order to apply Lemma 2, we shall need to replace an arbitrary path γ with
a new path γ̃ : θ 7→ ũθ such that the values ũθ(x) locally vary with θ only inside
one single stabilizing block. A suitable localization procedure is described below.

Definition 6. A path γ : θ 7→ uθ has Localized Variation if, for every ε∗ > 0 and
every θ∗, there exists δ > 0 and a point x∗ such that

(2.38) uθ(x) = uθ∗(x) whenever |θ − θ∗| < δ, |x− x∗| ≥ ε∗.

In other words, as θ varies in a neighborhood of θ∗, the values of uθ are allowed
to change only inside a small neighborhood of some point x∗. For example, if u, v
are two distinct continuous functions, then the path θ 7→ u ·χ

]−∞,θ]
+ v ·χ

]θ,∞[
has

localized variation, while the path θ 7→ θu + (1− θ)v does not. The approximation
of piecewise regular paths with paths having localized variation will play a key role
in the sequel.

Lemma 3. Let γ : θ 7→ uθ be a piecewise regular path. Then, for every ε∗ > 0,
there exists another piecewise regular path γ′ with localized variation such that

(2.39) ‖γ′‖? ≤ ‖γ‖? + ε∗,
∥∥γ′(θ)− γ(θ)

∥∥
L1 < ε∗ ∀θ.

The proof of Proposition 8 now goes as follows. For t in a small interval
[0, t0], all solutions uθ remain piecewise Lipschitz, and the result is an immediate
consequence of Proposition 4. Choose M large enough so that all supports of
the functions uθ(t, ·) are contained inside [−M,M ]. We then apply Lemma 1 to
the structurally stable solution uθ̄ and obtain a covering of the rectangle [t0, T ] ×
[−M, M ] in terms of stabilizing blocks Γij . Let (τi, xij) and rij be as in (2.30). For
some ρ > 0 small and all θ ∈ Θ .= [θ̄ − ρ, θ̄ + ρ], we can thus assume that every
suitably accurate approximation to a solution uθ has the same wave-front structure
as uθ̄, on each trapezoid Γij .
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By Lemma 3, the path γt0 : θ 7→ Sε
t0 ū

θ can be replaced by a new path γ+
t0 : Θ 7→

BV , having localized variation and almost the same length as γt0 . By compactness,
we can cover the interval Θ with finitely many subintervals Θk

.= [θk−1, θk], k =
1, . . . , m1, so that, as θ varies inside Θk, the values of uθ(t0+, ·) .= γ+

t0(θ) vary inside
a single interval, say I1j

.= [x1j − r1j , x1j + r1j ]. Here j = j(k).
By applying Lemma 2 to each subinterval Θk, we conclude that the weighted

length of the path

(2.40) γ−t1 : θ 7→ Sε
t1−t0

(
γ+

t0(θ)
)

is less than or equal to the weighted length of γt−0
.

We now apply Lemma 3, replacing γ−t1 with a new path γ+
t1 , having localized

variation and almost the same length as γt−1
. Then we use Lemma 2 to estimate

the length of the path γ−t2
.= Sε

t2−t1(γ
+
t1), etc. . . Since at every step the increase in

the weighted length ‖γ+
ti
‖? −‖γ−ti

‖? can be kept arbitrarily small, after N steps we
obtain a path γ−tN

, arbitrarily close to γ
T

: θ 7→ Sε

T
ūθ, and whose weighted length

is bounded by the length of γ0 up to an arbitrary small correction. This achieves
the proof.

From Proposition 8 and the continuity of the semigroup Sε, one obtains

Corollary 1. If the ε-solution uθ is structurally stable on ]0, T ] for all but finitely
many values of θ, then the weighted length of the path γt : θ 7→ uθ is non-increasing
in time.

The proof of Theorem 3 is completed by showing that the above assumption of
structural stability can be removed, relying on a perturbation argument.

Proposition 9. Let γ0 : θ 7→ ūθ be a regular path of initial conditions. Then the
conclusion of Proposition 8 remains valid, even without assuming the structural
stability of the ε-solution uθ̄.

The proof is based on the following argument. Call Θ∗ the set of all values of
θ for which uθ is structurally unstable. If θ̄ /∈ Θ∗, or if θ̄ is an isolated point of
Θ∗, the result is clear. Consider the remaining case, where θ̄ is a limit point of Θ∗.
Observe that there exists only finitely many points (t`, x`) in the t-x plane where uθ̄

is unstable. Indeed, by Definition 5, at every such point an amount of interaction
> ε18 must take place.

To fix the ideas, assume, for example, that for infinitely many θ ∈ Θ∗ in a
neighborhood of θ̄, the corresponding ε-solution uθ contains three large shocks
interacting at the single point (tθ, )xθ), with (tθ, xθ) → (tθ̄, xθ̄) as θ → θ̄. At a
suitable time τ < tθ̄ we can then perform an arbitrarily small perturbation of the
path γτ : θ 7→ uθ(τ), in such a way that all but finitely many of the perturbed
solutions are structurally stable. More precisely, given any ε′ > 0, we consider a
smooth scalar map ϕ = ϕ(θ, x) with

(2.41) ‖ϕ‖C3 < ε′

and construct a new path γ̃τ : θ 7→ ũθ(τ), where

(2.42) ũθ(τ, x) = uθ
(
τ−, x + ϕ)(θ, x)

)
.
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Because of (2.41), the new path will be close to the old one and have almost the
same weighted length. In addition, by (2.42) the locations of the three large shocks
in each uθ will be slightly shifted. Therefore, an application of the coarea formula
[E-G] will show that, for a “generic” function ϕ, these three shocks will no longer
interact at a single point, but only two at a time, for all except finitely many values
of the parameter θ. The previous estimates can thus be applied to the perturbed
path γ̃, for t > τ .

This will complete the proof of Theorem 3. Letting ε → 0, since the constants
L, η0 > 0 are independent of ε, we establish Theorem 1.



CHAPTER 3

Construction of local semigroups

Throughout the following we fix ε > 0 and consider a fixed set of right and
left eigenvectors ri(u), li(u) of A(u) = DF (u), normalized as in (1.5)-(1.6). Let
two states u−, u+ be given, and call ω = ω(t, x) the ε-approximate solution of the
Riemann problem with initial data (2.6). Aim of this section is to construct a
semigroup S whose trajectories are ε-approximate solutions of (1.1) according to
Definition 2, and whose domain contains all sufficiently small perturbations of the
Riemann data (2.6).

Let ω0 = u−, ω1, . . . , ωn = u+ be the intermediate states in the self-similar
ε-solution ω. Let § = {j1, . . . , jν} ⊆ {1, . . . , n} be the set of indices i for which
the wave connecting ωi−1 with ωi is a shock of strength |σi| ≥ 2ε. By choosing
η < ε2 sufficiently small in (2.8), we can assume that every function u ∈ D contains
ν shocks with strength > ε, one for each of the families j1, . . . , jν , located at points
yj1 < · · · < yjν , plus possibly other shocks (of different families) with strength
< 3ε. Define the characteristic speeds

λ∗i
.= λi(ωi−1), λ∗∗i

.= λi(ωi) if i ∈ §,
λ∗i

.= λ∗∗i
.= λi(u−) if i /∈ §.(3.1)

Given an interval [0, T ] and δ1 > 0, we will construct an approximate solution
u = u(t, x) with the following properties. There exists a finite partition of [0, T ]
into subintervals J` = [τ`, τ`+1[, such that the restriction of u to each strip J` × IR
is piecewise Lipschitz continuous, with jumps located along finitely many lines
x = yα(t). At each time τ`, a restarting procedure is used, producing a new
function u(τ`, ·), suitably close to u(τ`−, ·) in a sense which will be made precise
later.

Each subinterval J` is entirely contained in some interval of the form

(3.2) Im,h =
[(

m +
h− 1

n

)
δ1,

(
m +

h

)n

)
δ1

] (
m ≥ 0, h ∈ {1, . . . , n}).

The restriction of u to the strip J` × IR contains ν large jumps of strength |σ| > ε,
corresponding to the large shocks in the self-similar solution ω of the Riemann prob-
lem. These are located at the points yj1(t) < · · · < yjν (t) and occur respectively in
the j1, . . . , jν-characteristic families. The corresponding ε-Rankine-Hugoniot con-
ditions (2.3)–(2.5) hold at each one of these points.

In addition, if J` ⊆ Im,h, the function u has finitely many small h-shocks, say
located along the lines x = yβ(t), β ∈ §′ (here §′ is some index set, disjoint from §).
These small shocks satisfy

(3.3) u(yβ+) = Rh(σβ)
(
u(yβ−)

)
β ∈ §′

31
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for some σβ ∈ [−3ε, 0[ , so that the left and right states at yβ lie on the same
h-rarefaction curve. To describe the evolution equation satisfied by u outside the
shocks, we introduce the matrix A(h) = A(h)(t, x, u), whose eigenvectors coincide
with the eigenvectors ri, li of A(u), and whose eigenvalues λ

(h)
i = λ

(h)
i (t, x, u) are

defined as follows:

(3.4) λ
(h)
i =





λ∗i if i /∈ §,
λ∗i if i ∈ §, x < yi(t),
λ∗∗i if i ∈ §, x > yi(t),

for all i 6= h, so that n − 1 characteristic fields are linearly degenerate. The def-
inition of the h-th eigenvalue requires more care. Indeed, we want the h-field to
be genuinely nonlinear, except inside some artificial “shock layers” of width δ2 > 0
around the large shocks, where λ

(h)
h will be constant. For α ∈ §, consider the lines

(3.5) y∗α(t) = yα(t)− δ2, y∗∗α (t) = yα(t) + δ2.

If h ∈ §, we then define

(3.6) λ
(h)
h =





λ∗h + n
(
λh(ωα−1)− λ∗h

)
if x ∈ [

y∗α(t), yα(t)
[

for some α ∈ §,
λ∗∗h + n

(
λh(ωα)− λ∗∗h

)
if x ∈ ]

yα(t), y∗∗α (t)
]

for some α ∈ §,
λ∗h + n

(
λh(u)− λ∗h

)
if x < yh(t) and x /∈ ⋃ [

y∗α(t), y∗∗α (t)
]
,

λ∗∗h + n
(
λh(u)− λ∗∗h

)
if x > yh(t) and x /∈ ⋃ [

y∗α(t), y∗∗α (t)
]
.

In the case h /∈ §, the last two cases in (3.6) are replaced by

(3.7) λ
(h)
h = λ∗h + n

(
λh(u)− λ∗h

)
if x /∈

⋃[
y∗α(t), y∗∗α (t)

]
.

The definitions (3.4)–(3.7) completely determine the matrix A(h). If J` ⊆ Im,h,
then on the strip J` × IR we require that the piecewise Lipschitz function u be a
solution of the quasilinear hyperbolic system

(3.8) ut + A(h)(t, x, u)ux = 0

outside the shock lines. Finally, recalling (3.3), we assign the speed of a small
h-shock located at yβ :

(3.9) ẏβ(t) =
1
|σβ |

∫ 0

σβ

λ
(h)
h

(
t, yβ , )Rh(s)

(
u(yβ−)

))
ds.

The quasilinear system (3.8), together with the ε-Rankine-Hugoniot equations (2.3)-
(2.4) valid for the big shocks at yα, α ∈ §, and with the relations (3.3), (3.9) valid
for the small h-shocks at yβ , β ∈ §′, entirely determine the evolution of our piece-
wise Lipschitz approximate solution u, within each time interval J` = [τ`, τ`+1[ .
The piecewise Lipschitz regularity of u will be preserved until one of the following
situations occurs:

- A gradient catastrophe takes place, in the h-family.
- A small h-shock interacts with one of the large shocks.

Before this happens, a restarting procedure will be used, replacing u(τ`+1−) with
a new (better behaved) function. An additional restarting is performed at the end
of each interval Im,h in (3.2), where the evolution of u changes type. All these
restarting procedures will be described in Section 4. In the present section we
study solutions of the above evolution equations on a time interval J` bounded by
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two consecutive restarting times. A-priori bounds will be obtained on the total
strength of waves and on the weighted norm of generalized tangent vectors.

We begin by deriving a set of evolution equations for the gradient components
ui

x
.= 〈li(u), ux〉 and for the strength of the shocks, valid on the time intervals Im,h

of the form (3.2). Using a continuous version of the Glimm interaction functional,
this will imply a uniform bound on the total variation of u(t, ·).

As in [B1, B-M1], from (3.8) we obtain

(3.10) (ui
x)t + (λ(h)

i ui
x)x =

∑

j<k

(λ(h)
k − λ

(h)
j )

〈
li, [rk, rj ]

〉
uj

xuk
x

.=
∑

j<k

Gijk(u)uj
xuk

x,

valid outside the shock lines yα, α ∈ §∪§′ and outside the lines y∗α, y∗∗α , α ∈ §, where
the h-characteristic speed λ

(h)
h is discontinuous. As usual, [rk, rj ]

.= ∇rj ·rk−∇rk ·rj

denotes the Lie bracket of the vector fields rk, rj .
Let kα be the family of the shock at yα. According to our previous notation,

we thus have kα = α if α ∈ §, kα = h if α ∈ §′. Define the sets I and O (incoming
and )outgoing) of signed indices

I = {i+; i ≤ kα} ∪ {i−; i ≥ kα},
O = {j−; j < kα} ∪ {j+; j > kα}.

(3.11)

In a neighborhood of
(
u(yα−), u(yα+)

)
we use the coordinate system

(3.12)

u− = u(yα−) +
n∑

i=1

ri

(
u(yα−)

)
w−i , u+ = u(yα+) +

n∑

i=1

ri

(
u(yα+)

)
w+

i .

Recalling (2.2), the relation (2.3) can now be written as a system of n − 1 scalar
equations in the 2n variables w−i , w+

i , i = 1, . . . , n. By the implicit function theo-
rem, the equations (2.3) can then be solved for the n− 1 outgoing components:

(3.13) w±j = W j(wI) j± ∈ O
where wI denotes the set of incoming components.

In order not to interrupt the flow of the main argument, in the following we state
without proof a number of a priori estimates. Most of these estimates are entirely
standard. The others will be proved in the Appendix. For notational convenience,
we denote by C a constant which depends only on the system (1.1), and not on
the parameters ε, δ1, δ2 or on the particular solution. In a chain of inequalities,
the value of C may change from one term to the next. Constants which play a
distinguished role will be written as C0, C1, . . .

Let σα < 0 be the size of the shock at yα. The derivatives of the functions W j

at wI = 0 satisfy
∣∣∣∣
∂W j

∂w±i

∣∣∣∣ ≤ C · |σα| i 6= j, i± ∈ I, j± ∈ O,(3.14)
∣∣∣∣
∂W i

∂w±i
− 1

∣∣∣∣ ≤ C · |σα| i 6= kα, i± ∈ I, i∓ ∈ O,(3.15)
∣∣∣∣∣
∂W j

∂w±kα

∣∣∣∣∣ ≤ C · |σα|2 j± ∈ O.(3.16)
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Concerning the size and speed of the shock at yα, we have the estimates

(3.17)
∣∣∣∣
∂σα

∂w±i

∣∣∣∣ ≤ C · |σα| i± ∈ I, i 6= kα,

(3.18)

∣∣∣∣∣
∂σα

∂w±kα

∓ 1

∣∣∣∣∣ ≤ C · |σα|2,

(3.19)
∣∣∣∣
∂ẏα

∂w±i

∣∣∣∣ ≤ C i± ∈ I, i 6= kα,

(3.20)

∣∣∣∣∣
∂ẏα

∂w−kα

− λ
(h)
kα

(yα−)− ẏα

|σα|

∣∣∣∣∣ ≤ C · |σα|,

(3.21)

∣∣∣∣∣
∂ẏα

∂w+
kα

− ẏα − λ
(h)
kα

(yα+)
|σα|

∣∣∣∣∣ ≤ C · |σα|.

In the case of a small h-shock, from the relations (3.3)–(3.5) we deduce

(3.22)
∂W j

∂w±kα

= 0,
∂σα

∂w±kα

= ±1,

(3.23)
∂ẏα

∂w−kα

=
λ

(h)
kα

(yα−)− ẏα

|σα| ,
∂ẏα

∂w+
kα

=
ẏα − λ

(h)
kα

(yα+)
|σα| .

By λ
(h)
i (yα+), λ

(h)
i (yα−) we denote respectively the right and left limits of λ

(h)
i

(
u(x)

)
at x = yα.

Next, call ui−
x , ui+

x respectively the i-th component of ux to the left and to the
right of the shock. From the jump equations (2.3) we derive a family of n−1 linear
relations

(3.24) uj±
x = U j(uIx).

We now observe that the gradient components ui±
x satisfy (3.24) iff the components

(3.25) w−i
.=

(
λ

(h)
i (yα−)− ẏα

)
ui−

x , w+
i

.=
(
ẏα − λ

(h)
i (yα+)

)
ui+

x

satisfy the corresponding equations (3.13), linearized at wI = 0. By strict hyper-
bolicity, from the estimates concerning the components w±i it thus follows

∣∣∣∣
∂U j

∂ui±
x

∣∣∣∣ ≤ C · |σα| i 6= j, i± ∈ I, j± ∈ O,(3.26)
∣∣∣∣
∂U i

∂ui±
x

− 1
∣∣∣∣ ≤ C · |σα| i 6= kα, i± ∈ I, i∓ ∈ O,(3.27)

∣∣∣∣
∂U j

∂ukα±
x

∣∣∣∣ ≤ C · |σα|2
∣∣λ(h)

kα
(yα±)− ẏα

∣∣ j± ∈ O.(3.28)

In case of a small h-shock located at x = yα(t), α ∈ §′, the estimates (3.26), (3.27)
still hold, while (3.22) implies

(3.29)

∣∣∣∣∣
∂U j±

∂uh±
x

∣∣∣∣∣ = 0 j± ∈ O.
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Finally, if α ∈ §, across the two lines x = y∗α(t), x = y∗∗α (t) the function u is
continuous while the only component of the gradient that suffers a jump is uh

x.
Observing that ẏα = ẏα

∗ = ẏα
∗∗, one checks that the left and right values of uh

x are
related by

(3.30)
(
λ

(h)
h (y∗α+)− ẏα

)
uh+

x = (λ(h)
h (y∗α−)− ẏα

)
uh−

x at x = y∗α,

and a similar equality holds at x = y∗∗h .

Next, consider the time derivative of the size σα < 0 of a shock at x = yα(t).
For α ∈ § there holds

∣∣∣σ̇α −
(
λ

(h)
kα

(yα−)− ẏα

)
ukα−

x − (
ẏα − λ

(h)
kα

(yα+)
)
ukα+

x

∣∣∣

≤ C ·

|σα|3

(|ukα+
x |+ |ukα−

x |) + |σα|
∑

i±∈I,i 6=kα

|ui±
x |


 .

(3.31)

Moreover, for α ∈ §′, the size σα ∈ [−3ε, 0] of a small h-shock located at x = yα(t)
satisfies the sharper estimate

(3.32)
∣∣∣σ̇α−

(
λ

(h)
h (yα−)− ẏα

)
uh−

x −(
ẏα−λ

(h)
h (yα+)

)
uh+

x

∣∣∣ ≤ C · |σα|
∑

i±∈I,i6=h

|ui±
x |.

It might help the reader to compare (3.31) and (3.32) with the identity (1.43), valid
in the scalar case.

To obtain a bound on the total variation, define the total strength of waves as

(3.33) V (u) .=
∑

i

∫ ∞

−∞

∣∣ui
x(x)

∣∣ dx +
∑

α∈§∪§′
|σα|.

The interaction potential is defined as

Q(u) .=
∑

i<j

∫ ∫

x<x′

∣∣uj
x(x)

∣∣∣∣ui
x(x′)

∣∣ dxdx′

+
∑

α∈§∪§′
|σα|

[ ∑

i<kα

∫ ∞

yα

∣∣ui
x(x)

∣∣ dx +
∑

i>kα

∫ yα

−∞

∣∣ui
x(x)

∣∣ dx

]
+

∑
α,β∈§∪§′

kα>kβ,yα<yβ

|σασβ |

+
∑

i∈§
|σi|




∫ ∞

−∞
)
∣∣ui

x(x)
∣∣ dx +

∑

β∈§′, kβ=i

|σβ |

 .

(3.34)

Observe that in (3.34) two waves of the same family are never regarded as
“approaching”, except in the case where one of them is a large shock. Such a
definition is natural in the present context. Indeed, due to the coincidence of shock
and rarefaction curves (for small shock strengths), the interaction of small waves
of the same family does not increase the total amount of waves.

The instantaneous amount of interaction is

(3.35) Λ(u) .= Λ̃(u) +
∑

α∈§∪§′
Λα(u),
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with

(3.36) Λ̃(u) .=
∑

i<j

∫ ∞

−∞

(
λ

(h)
j (u(x))− λ

(h)
i (u(x))

)∣∣ui
x(x)

∣∣∣∣uj
x(x)

∣∣ dx,

and

Λα(u) .= |σα|

 ∑

i≥kα

)
(
λ

(h)
i (yα−)− ẏα

)∣∣ui
x(yα−)

∣∣ +
∑

i≤kα

(
)̇yα − λ

(h)
i (yα+)

)∣∣ui
x(yα+)

∣∣

 ,

Λα(u) .= |σα|
( ∑

i>kα

)
(
λ

(h)
i (yα−)− ẏα

)∣∣ui
x(yα−)

∣∣ +
∑

i<kα

(
)̇yα − λ

(h)
i (yα+)

)∣∣ui
x(yα+)

∣∣
)

,

(3.37)

in the cases α ∈ § and α ∈ §′, respectively. Using the bounds (3.26)–(3.32), a
lengthy but straightforward computation yields
d

dt
V (u) ≤

∑

i

∑

j<k

∣∣Gijk(u)
∣∣|uj

x||uk
x|+

∑

α∈§∪§′
|σ̇α|

+
∑

α∈§∪§′


)

∑

j±∈O

∣∣λ(h)
j (yα±)− ẏα

∣∣|uj±
x | −

∑

j±∈I

∣∣λ(h)
j (yα±)− ẏα

∣∣|ui±
x |




≤ C4Λ(u)

for some constant C4. Moreover,

(3.38)
d

dt
Q(u) ≤ −Λ(u) + C4Λ(u)V (u) ≤ −1

2
Λ(u),

provided that the total variation remains suitably small. Observe that V,Q both
remain constant at times where two small h-shocks join together. The previous
inequalities together imply

(3.39)
d

dt

[
V (u) + C1 ·Q(u)

]
≤ 0

for some constant C1, as in (1.9). In particular, if |u+ − u−| and η are sufficiently
small, then the domain D in (2.8) is positively invariant.

We now consider the linearized system of equations for a generalized tangent
vector (v, ξ) ∈ L1(IR; IRn) × IRN , with N = #(§∪)§′). Call vi = 〈li, v〉 the i-th
component of v. Outside the jumps, one has

(vi)t +
(
λ

(h)
i (u)vi

)
x

=
∑

j 6=k

{
(∇λ

(h)
i · rk)

(
uk

xvi − ui
xvk)

)
+ (λ(h)

j − λ
(h)
i )

〈
li, [rj , rk]

〉
uj

xvk

}

.=
∑

j 6=k

Hijk(u)uj
xvk.

(3.40)

At a point of shock yα, α ∈ § ∪ §′, the (n− 1) equations (3.13) are satisfied with

(3.41) w−i = v−i + ξαui−
x , w+

i = v+
i + ξαui+

x .

At the points y∗α, y∗∗α where only the h-characteristic speed is discontinuous, we
have

(3.42) v−h + ξαuh−
x = v+

h + ξαuh+
x , v−i = v+

i (i 6= h).
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Recalling (3.30), from (3.42) we obtain a relation between v−h and v+
h . Finally,

(3.43) ξ̇α = Dλ
(h)
kα

(
u(yα−), u(yα+)

) ·
( ∑

i

(v−i + ξα)ui−
x )r−i ,

∑

i

(v+
i + ξαui+

x )r+
i

)
.

Here λ
(h)
kα

(u−, u+) is the speed of an ε-approximate shock, as defined at (2.4), while

the differential Dλ
(h)
kα

is defined as in (1.30). We recall that if α ∈ §, then the shock

speed λ
(h)
kα

is determined by (2.4). In the case α ∈ §′, the speed λ
(h)
kα

is given by the
right hand side of (3.9).

We can now introduce the weighted norm

(3.44)
∥∥(v, ξ)

∥∥∗
u

.=
n∑

i=1

∫ ∞

−∞
Wu

i (x)
∣∣vi(x)

∣∣ dx +
∑

α∈§∪§′
Wu

kα
(yα)|σα| · |ξα|,

where the weight functions Wu
i are defined as

(3.45) Wu
i (x) .= 1 + κ1R

u
i (x) + κ1κ2Q(u)

for some constants κ1, κ2 whose precise value will be determined later. Here Q(u)
is the interaction potential (3.34), while Ru

i (x) measures the total amount of waves
which approach an i-wave located at x. More precisely, for a point x not coinciding
with a large shock, we set

Ru
i (x) .=


∑

j<i

∫ ∞

x

+
∑

j>i

∫ x

−∞


 ∣∣uj

x(y)
∣∣ dy +




∑
α∈§∪§′

kα<i,yα>x

+
∑

α∈§∪§′
kα>i,yα<x


 |σα|+

∑

kα=i∈§
|σα|

+




∑
α∈§

kα≤i,y∗α>x

+
∑
α∈§

kα>i,y∗α<x

+
∑
α∈§

kα<i,y∗∗α >x

+
∑
α∈§

kα≥i,y∗∗α <x


 ε.

(3.46)

Of course, the third summation in (3.46) contains at most one term: the strength
of the i-th big shock, if i ∈ §. The last summations take care of the fictitious wave-
fronts at y∗α, y∗∗α , regarded as waves of the α-th family, of strength ε. The presence
of these terms takes into account the fact that some wave speeds may experience a
small change across these lines. In the case x = yα for some α ∈ § we set

Ru
kα

(yα) .=


 ∑

j≤kα

∫ ∞

yα

+
∑

j≥kα

∫ yα

−∞


 ∣∣uj

x(x)
∣∣ dx +




∑
β∈§∪§′

kβ≤kα,yβ>yα

+
∑

β∈§∪§′
kβ≥kα,yβ<yα


 |σβ |

+ ε ·
{∫ yα

y∗α

( ∑

j<kα

∣∣uj
x(x)

∣∣−
∑

j≥kα

∣∣uj
x(x)

∣∣
)
dx +

∫ y∗∗α

yα

( ∑

j>kα

∣∣uj
x(x)

∣∣−
∑

j≤kα

∣∣uj
x(x)

∣∣
)
dx

+
∑
β∈§′

yβ∈[y∗α,y∗∗α ]

|σβ |sign
[
(ẏβ − ẏα)yβ − yα)

]
}

.

(3.47)
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Following [B4], we now observe that the derivative of Ri along an i-characteristic
satisfies the estimate

(3.48) (Ru
i )t + λ

(h)
i (u)Ru

i )x ≤ −
∑

j 6=i

∣∣λ(h)
j (u)− λ

(h)
i (u)

∣∣|uj
x|+ CΛ(u).

Moreover, recalling (3.37), along a shock we have

d

dt
Ru

kα

(
yα(t)

) ≤ −
∑

j≤kα

(
ẏα − λ

(h)
j (yα+)

)|uj+
x | −

∑

j≥kα

(
λ

(h)
j (yα−)− ẏα

)|uj−
x |+ CΛ(u)

−ε


∑

j

∣∣)λ(h)
j (y∗α+)− ẏα

∣∣∣∣uj
x(y∗α+)

∣∣ +
∑

j

∣∣λ(h)
j (y∗∗α −)− ẏα

∣∣∣∣uj
x(y∗∗α −)

∣∣

 +

ε

|σα|CΛα(u)

≤ −Λα(u)
2|σα| + CΛ(u)− εΛ∗α(u)

(3.49)

in case α ∈ §. We use here the notation

(3.50) Λ∗α(u) .=
∑

j

∣∣λ(h)
j (y∗α+)− ẏα

∣∣∣∣uj
x(y∗α+)

∣∣ +
∑

j

∣∣λ(h)
j (y∗∗α −)− ẏα

∣∣∣∣uj
x(y∗∗α −)

∣∣.

Since the constant C is independent of ε and we are eventually interested in the
limit ε → 0, in (3.49) it was not restrictive to assume εC < 1/2. When α ∈ §′ we
have the simpler estimate

d

dt
Ru

kα

(
yα(t)

) ≤ −
∑

j<kα

(
ẏα − λ

(h)
j (yα+)

)|uj+
x | −

∑

j>kα

(
λ

(h)
j (yα−)− ẏα

)|uj−
x |+ CΛ(u)

≤ −Λα(u)
|σα| + CΛ(u).

(3.51)
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The time derivative of the weighted norm of a tangent vector can now be computed
as

d

dt

∥∥(v(t), ξ(t))
∥∥∗

u(t)

≤
∑

α∈§∪§′

[
(−σ̇α)Wu

kα
(yα)|ξα|+ |σα|Ẇu

kα
(yα)|ξα|+ |σα|Wu

kα
(yα)sign ξα)ξ̇α

]

+
n∑

i=1

∫ ∞

−∞

[
(Wu

i )t + λ
(h)
i (u)Wu

i )x

]|vi| dx

+
n∑

i=1

∫ ∞

−∞
Wu

i · (sign vi)
(
(vi)t +

(
λ

(h)
i (u)vi

)
x

)
dx

+
∑

α∈§∪§′

n∑

i=1

[
Wu

i (yα+)
(
λ

(h)
i (yα+)− ẏα

)∣∣vi(yα+)
∣∣−Wu

i (yα−)
(
λ

(h)
i (yα−)− ẏα

)∣∣vi(yα−)
∣∣
]

+
∑

α∈§

n∑

i=1

[
Wu

i (y∗α+)
(
λ

(h)
i (y∗α+)− ẏα

)∣∣vi(y∗α+)
∣∣−Wu

i (y∗α−)
(
λ

(h)
i (y∗α−)− ẏα

)∣∣vi(y∗α−)
∣∣
]

+
∑

α∈§

n∑

i=1

[
Wu

i (y∗∗α +)
(
λ

(h)
i (y∗∗α +)− ẏα

)∣∣vi(y∗∗α +)
∣∣−Wu

i (y∗∗α −)
(
λ

(h)
i (y∗∗α −)− ẏα

)∣∣vi(y∗∗α −)
∣∣
]

.= E1 + E2 + E3 + E4 + E5 + E6.

(3.52)

We claim that the right hand side of (3.52) is non-positive, as long as u remains
in the domain D in (2.8), for η suitably small. Before embarking in the lengthy
computations that follow, the reader is advised to review the Example 1 given in
the Introduction. In the scalar case, thanks to the identities (1.41)–(1.44), one
can choose the weight function Wu ≡ 1 and obtain (1.45) by a straightforward
computation. To handle the vector valued case, we try to use a similar argument
for each component of the tangent vector. More precisely, we replace (1.41) by
(3.40), (1.42) by (3.43), (1.43) by (3.31), and (1.44) by (3.62). In contrast with
the scalar case, the relations (3.40), (3.31) and (3.62) now contain a non-zero right
hand side. The key point is that all these extra terms are due to some kind of
interaction. Therefore, their contribution to the growth of the norm

∥∥(v, ξ)
∥∥∗

u
can

be more than compensated by the decrease of suitable weight functions.
The estimation of (3.52) follows [B4], with suitable modifications. By choosing

η sufficiently small, we can assume that all the quantities

∣∣u(y∗α)− ωα−1

∣∣, ∣∣u(yα−)− ωα−1

∣∣, ∣∣u(yα+)− ωα

∣∣, ∣∣u(y∗∗α )− ωα

∣∣,
∣∣λ(h)

h (y∗α+)− λ
(h)
h (y∗α−)

∣∣, ∣∣λ(h)
h (y∗∗α +)− λ

(h)
h (y∗∗α −)

∣∣,

(3.53)

are as small as we like. Define the instantaneous amount of interaction between u
and v by setting

(3.54) Ψ(u, v) .= Ψ̃(u, v) +
∑

α∈§∪§′
Ψα(u, v),
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(3.55) Ψ̃(u, v) .=
∑

i 6=j

∫ ∞

−∞

∣∣λ(h)
i (u)− λ

(h)
j (u)

∣∣∣∣ui
x(x)

∣∣∣∣vj(x)
∣∣ dx,

(3.56)

Ψα(u, v) .=




|σα|

[∑
i≥kα

(
λ

(h)
i (yα−)− ẏα

)∣∣vi(yα−)
∣∣ +

∑
i≤kα

(
ẏα − λ

(h)
i (yα+)

)∣∣vi(yα+)
∣∣
]

if α ∈ §,
|σα|

[∑
i>kα

(
λ

(h)
i (yα−)− ẏα

)∣∣vi(yα−)
∣∣ +

∑
i<kα

(
ẏα − λ

(h)
i (yα+)

)∣∣vi(yα+)
∣∣
]

if α ∈ §′.

Define also the upper bound for all weights

(3.57) Mu
W

.= sup
{
Wu

i (x); x ∈ IR, i = 1, . . . , n
}
.

By (3.48), (3.38), the time derivative of Wu
i along an i-characteristic satisfies

(
∂

∂t
+ λ

(h)
i (u)

∂

∂x

)
Wu

i ≤ −κ1

∑

j 6=i

∣∣λ(h)
j (u)− λ

(h)
i (u)

∣∣|uj
x|+ κ1CΛ(u) + κ1κ2Q̇(u)

≤ −κ1

∑

j 6=i

∣∣λ(h)
j (u)− λ

(h)
i (u)

∣∣|uj
x|,

(3.58)

provided that κ2 is chosen sufficiently large. Along a shock, by (3.49) and (3.38)
one has

d

dt
Wu

kα

(
yα(t)

) ≤ −κ1
Λα(u)
2|σα| − κ1εΛ∗α(u) + κ1

(
CΛ(u) + κ2Q̇(u)

)

≤ −κ1
Λα(u)
2|σα| − κ1εΛ∗α(u)

(3.59)

if α ∈ §. In the case α ∈ §′, we have the simpler estimate

(3.60)
d

dt
Wu

kα

(
yα(t)

) ≤ −κ1
Λα(u)
|σα| + κ1

(
CΛ(u) + κ2Q̇(u)

) ≤ −κ1
Λα(u)
|σα| .

We now observe that for every α ∈ § ∪ §′ there holds

(3.61)
∑

i 6=kα

∣∣vi(yα+)− vi(yα−)
∣∣ ≤ C · (|ξα|Λα(u) + Ψα(u, v)

)
.

Moreover, for α ∈ § and any η−, η+ ∈ IR we have

∣∣∣∣
(
λ

(h)
kα

(yα−)− ẏα

)
η− +

(
ẏα − λ

(h)
kα

(yα+)
)
η+ − |σα| ·Dλ

(h)
kα

(
u(yα−), u(yα+)

) · (η−r−kα
, η+)r+

kα

)∣∣∣∣
≤ C · |σα|2

(|η−|+)|η+|)

(3.62)

for some constant C. In the case α ∈ §′ the same result holds with C = 0. These
estimates should be compared with the identity (1.44), valid in the scalar case.
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We are now ready to estimate each term on the right hand side of (3.52). Using
(3.31), (3.59), (3.60), (3.43), then (3.62) with η± = ukα±

x , v±kα
, we obtain

E1 ≤ −
∑

α∈§∪§′

[(
λ

(h)
kα

)(yα−)− ẏα

)
ukα−

x +
(
ẏα − λ

(h)
kα

(yα+)
)
ukα+

x

]
Wu

kα
(yα)|ξα|

+ C

( ∑

α∈§
|σα|3

(|ukα+
x |) + |ukα−

x |) +
∑

α∈§∪§′
|σα|

∑

i 6=kα

(|ui+
x |+ |ui−

x |)
)

Wu
kα

(yα)|ξα|

− κ1

2

∑

α∈§∪§′
|ξα|Λα(u)− κ1ε

∑

α∈§
|ξα|Λ∗α(u)

+
∑

α∈§∪§′
|σα|Wu

kα
(yα)sign ξα) ·Dλ

(h)
kα

(
u(yα−), u(yα+)

) ·
(∑

i

(v−i + ξα)ui−
x )r−i ,

∑

i

(v+
i + ξαui+

x )r+
i

)

≤ −κ1

2

∑

α∈§∪§′
|ξα|Λα(u)− κ1ε

∑

α∈§
|ξα|Λ∗α(u)

+
∑

α∈§∪§′

[(
λ

(h)
kα

)(yα−)− ẏα

)
v−kα

+
(
ẏα − λ

(h)
kα

(yα+)
)
v+

kα

]
(sign ξα)Wu

kα
(yα)|ξα|

+
∑

α∈§∪§′
CMu

W

(
Ψα(u, v) + |ξα|Λα(u)

)
.

(3.63)

By (3.58), (3.40) and strict hyperbolicity, the second and third term in (3.52) satisfy

(3.64) E2 ≤ −κ1Ψ̃(u, v)

(3.65) E3 ≤ CMu
W Ψ̃(u, v).

By (3.56) and (3.61), the fourth term is estimated by

E4 ≤− κ1

∑

α∈§∪§′
Ψα(u, v) + CMu

W

∑

α∈§∪§′

(
Ψα(u, v) + |ξα|Λα(u)

)

+
∑

α∈§∪§′

[(
λ

(h)
kα

(yα+)− ẏα

)∣∣vkα(yα+)
∣∣− (

λ
(h)
kα

(yα−)− ẏα

)∣∣vkα(yα−)
∣∣
]
Wu

kα
(yα).

(3.66)

Next, consider any term in the summation E5. From the definition (3.47) it follows

(3.67) Wu
i (y∗α+) = Wu

i (y∗α−)− ε · sign
(
λ

(h)
i (y∗α−)− ẏα

)
.

If i 6= h, we simply have

(3.68) vi(y∗α+) = vi(y∗α−), λ
(h)
i (y∗α+) = λ

(h)
i (y∗α−),

hence

(
λ

(h)
i (y∗α+)−ẏα

)
Wu

i (y∗α+)
∣∣vi(y∗α+)

∣∣− (
λ

(h)
i (y∗α−)− ẏα

)
Wu

i (y∗α−)
∣∣vi(y∗α−)

∣∣

= −ε
∣∣∣λ(h)

i (y∗α)− ẏα

∣∣∣
∣∣vi(yα)∗)

∣∣.

(3.69)
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In the case i = h, recalling (3.30) and (3.42), for any ε′ > 0, by choosing η small in
(2.8) we can achieve the estimates

∣∣λ(h)
h (y∗α+)− λ

(h)
h (y∗α−)

∣∣ ≤ ε′ < ε3,
∣∣vh(y∗α+)− vh(y∗α−)

∣∣ = |ξα|
∣∣uh+

x − uh−
x

∣∣ ≤ ε′|ξα| ·min
{|uh+

x |, |uh−
x |},

(3.70)

∣∣λ(h)
h (y∗α±)− ẏα

∣∣ >
1
2

∣∣λh(ωα−1)− ẏα

∣∣ > cε > 0,

∣∣λ(h)
h (y∗∗α ±)− ẏα

∣∣ >
1
2

∣∣λh(ωα)− ẏα

∣∣ > cε > 0,

(3.71)

for some constant c > 0. To fix the ideas, assume h ≥ kα. The bounds (3.70),
(3.71) with ε′ sufficiently small imply

(
λ

(h)
h (y∗α+)− ẏα

)
Wu

h (y∗α+)
∣∣vh(y∗α+)

∣∣− (
λ

(h)
h (y∗α−)− ẏα

)
Wu

h (y∗α−)
∣∣vh(y∗α−)

∣∣

=
(
λ

(h)
h (y∗α+)− ẏα

)
Wu

h (y∗α+)
(∣∣vh(y∗α+)

∣∣−
∣∣vh(y∗α−)

∣∣
)

+
(
λ

(h)
h (y∗α+)− λ

(h)
h (y∗α−)

)
Wu

h (y∗α+)
∣∣vh(y∗α−)

∣∣
+

(
λ

(h)
h (y∗α−)− ẏα

)(
)Wu

h (y∗α+)−Wu
h (y∗α−)

)∣∣vh(y∗α−)
∣∣

≤
∣∣λ(h)

h (y∗α+)− ẏα

∣∣Mu
W ε′|ξα|

∣∣uh
x(y∗α+)

∣∣ + ε′Mu
W

∣∣vh(y∗α−)
∣∣− ε

∣∣λ(h)
h (y∗α−)− ẏα

∣∣∣∣vh(y∗α−)
∣∣

≤
∣∣λ(h)

h (y∗α+)− ẏα

∣∣Mu
W ε′|ξα|

∣∣uh
x(y∗α+)

∣∣.

(3.72)

Each term in the summations for E5 and E6 can be estimated in the same way.
Recalling the definition (3.50), we thus have

(3.73) E5 + E6 ≤ ε′Mu
W

∑

α∈§
|ξα|Λ∗α(u).

From (3.52), combining the estimates (3.63)–(3.66) and (3.73) we finally obtain

E1 + · · ·+ E6 ≤− κ1

2

∑

α∈§∪§′
|ξα|Λα(u)− κ1ε

∑

α∈§
|ξα|Λ∗α(u) + CMu

W

∑

α∈§∪§′

(
Ψα(u, v) + |ξα|Λα(u)

)

− κ1Ψ̃(u, v) + CMu
W Ψ̃(u, v)− κ1

∑

α∈§∪§′
Ψα(u, v) + ε′Mu

W

∑

α∈§
|ξα|Λ∗α(u).

(3.74)

We now choose κ1 = 4C, then let the total variation be small enough so that
Mu

W ≤ 2, and finally choose ε′, η > 0 so small that ε′Mu
W ≤ κ1ε. These choices

imply

(3.75)
d

dt

∥∥∥
(
v(t), ξ(t)

)∥∥∥
∗

u(t)
≤ 0,

at every time t where no shock interaction occurs and no small h-shock crosses one
of the lines y∗α, y∗∗α , α ∈ §.

Next, we show that the weighted norm (3.44) decreases at every time τ of
interaction. Let y′, y′′ be the locations of two h-shocks, let σ′, σ′′ < 0 be their
strengths and let ξ′, ξ′′ be their shift rates, before the interaction time τ . Call
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y, σ, ξ the corresponding quantities after the interaction. Since both shocks are
small, by the coincidence of shock and rarefaction curves it follows
(3.76)

σ(τ+) = σ′(τ−) + σ′′(τ−), ξ(τ+) =
σ′(τ−)ξ′(τ−) + σ′′(τ−)ξ′′(τ−)

σ′(τ−) + σ′′(τ−)
.

Moreover, since all weight functions decrease, we have

(3.77) Wu
h

(
y(τ+)

)
< min

{
Wu

h

(
y′(τ−)

)
, Wu

h

(
y′′(τ−)

)}
,

(3.78)
∥∥∥
(
v, ξ

)
τ+)

∥∥∥
∗

u(τ+)
<

∥∥∥
(
v, ξ

)
τ−)

∥∥∥
∗

u(τ−)
.

We do not need to consider the case where three or more small shocks interact at
the same point, because this situation is non-generic, and can be avoided by an
arbitrarily small perturbation of the evolution equations. More precisely, let ε∗ > 0
be given, together with a regular path θ 7→ uθ(t0), at some time t0. Then we can
find a smooth function ϕ, with ‖ϕ‖C3 < ε∗, such that, if we replace the h-wave
speed λ

(h)
h in (3.6) with the slightly perturbed value

(3.79) λ†h
.= λ

(h)
h + ϕ(t, x, θ),

then, for all but finitely many θ, the corresponding approximate solution uθ, for
t ≥ t0, has shocks interacting only two at a time.

Finally, consider the case of a small h-shock which enters (or exits from) a shock
layer. To fix the ideas, assume that the small h-shock crosses the line y∗α from left
to right, thus entering the shock layer around a large shock at yα. Observe that
the sizes of the two shocks satisfy

(3.80) σα < −ε, −3ε < σβ < 0

and do not change at the time τ when the crossing occurs. Call ξα the shift rate
of the large shock at yα (clearly, y∗α, y∗∗α shift at exactly )the same rate), and let
ξ−β , ξ+

β be the shift rates of the small h-shock before and after the crossing. An
elementary computation yields

ξ+
β =

ξα(ẏ−β − ẏ+
β )− ξ−β (ẏα − ẏ+

β )

ẏ−β − ẏα

= ξ−β +
(ξ−β − ξα)ẏ+

β − ẏ−β )

ẏ−β − ẏα

,(3.81)

where ẏ−β , ẏ+
β are the speeds of the small shock before and after the crossing, respec-

tively. At the time of crossing, the change in the weighted norm of the generalized
tangent vector is now computed by

∥∥∥
(
v, ξ

)
τ+)

∥∥∥
∗

u(τ+)
−

∥∥∥
(
v, ξ

)
τ−)

∥∥∥
∗

u(τ−)
= |σβ |

∣∣ξ+
β

∣∣W+
h (yβ) + |σα|

∣∣ξα

∣∣W+
kα

(yα)

− |σβ |
∣∣ξ−β

∣∣W−
h (yβ)− |σα|

∣∣ξα

∣∣W−
kα

(yα).

(3.82)

From the definitions (3.45)–(3.47) it follows

(3.83) W+
h (yβ)−W−

h (yβ) = −κ1ε, W+
kα

(yα)−W−
kα

(yα) = −κ1ε|σβ |.
Moreover, by (3.70)-(3.71) we have

(3.84) |ẏ+
β − ẏ−β | ≤ ε′, |ẏ−β − ẏα| > cε.
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Therefore, if ε′ is sufficiently small (which can be accomplished )by choosing η small
in (2.8)), by (3.83), (3.84) and (3.81) we again obtain (3.78).

By (3.75) and (3.78), the weighted length ‖γ‖∗ of a path of approximate ε-
solutions γt : θ 7→ uθ(t, ·) does not increase in time, as long as all functions uθ

retain their regularity, remaining piecewise Lipschitz continuous.

Remark . In order to obtain the previous estimates, we used the fact that the
amount of waves inside a shock layer [y∗α, y∗∗α ] \ {yα} is small compared with the
strength of the shock at yα. More precisely, both quantities

(3.85) [strength of waves inside the shock layer],

(3.86) [ change in the characteristic speed λ
(h)
h across the boundaries y∗α, y∗α∗∗]

should be << [strength of the shock at yα]2. This motivates the choices of the
exponents in Cases 2-3 of Definition 5, in Section 2.



CHAPTER 4

Restarting Procedures

In this section we complete the construction of the local semigroups, describing
the restarting procedures and carefully estimating how the various weighted norms
are changed at restarting times. For clarity of exposition, we shall write the state-
ments of the various lemmas one after the other, collecting all the proofs at the end
of the section.

Let δ1, δ2 > 0 be given, together with a Riemann data (u−, u+). As in the
previous section, call § = {j1, . . . , jν} ⊆ {1, . . . , n} the set of indices i such that
the solution of the Riemann problem (2.6)-(1.1) contains an i-shock of strength
|σi| ≥ 2ε. Let η > 0 be chosen small enough, so that every function u in the
domain D at (2.8) contains exactly one i-shock of strength > ε for each i ∈ §, while
all other jumps in u have strength < 3ε.

We now introduce the domain Dδ2 ⊂ D consisting of all piecewise Lipschitz
functions u ∈ D such that

- The large shocks of u are located at points yi, i ∈ §, with yj − yi > 2δ2

whenever i < j.
- u contains no jump inside the set

(4.1)
⋃

i∈§

(
[yi − δ2/3, yi[ ∪ ]yi), yi + δ2/3]

)
,

- Outside the set

(4.2)
⋃

i∈§
[yi − δ2/3, yi + δ2/3],

all jumps in u belong to a single characteristic family.

Definition 4.1. For a given δ > 0, we say that a function u : [0, +∞) → Dδ2 is a
δ-accurate approximate ε-solution of (1.1) if the following holds.
(1) u is continuous with values in L1, except for a countable set of times τ1 < τ2 <
. . ., with τi → +∞.
(2) Each interval J`

.= [τ`, τ`+1[ is contained in some Im,h, defined at (2.9). For t ∈
J` ⊆ Im,h, the function u satisfies the quasilinear hyperbolic equation (3.8) outside
the shocks, the conditions (2.3)-(2.4) along the large shocks and the conditions
(3.3), (3.9) along the small h-shocks.
(3) For every T > 0, the restartings performed at the times τ` satisfy

(4.3)
∑

τ`≤T

∥∥u(τ`+)− u(τ`−)
∥∥
L1 ≤ δT.

The construction of a δ-accurate approximate ε-solution can be achieved fol-
lowing Section 3 and using the three restarting procedures described below. For

45
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every function u ∈ Dδ2 we denote by Lip(u) its Lipschitz constant, and define the
weighted Lipschitz constant

(4.4) w-Lip(u) .= max
i

sup
x
|ui

x(x)| exp
[
βWu

i (x)
]
,

where the weights Wu
i are as in (3.45) and β is a suitably large constant, whose

precise value will be determined later. For convenience, some additional domains
are now defined.

- Dh,L is the set of all functions u ∈ Dδ2 whose weighted Lipschitz constant
is ≤ L and whose shocks, outside the set (4.2), all belong to the the h-th
family.

- D∗h,L is the set of all functions u ∈ Dh,L which satisfy the additional
condition

(4.5) uh
x(x) exp

[
βWu

h (x)
] ≥ −1,

outside the set

(4.6)
⋃

i∈§

(
[yi − 2δ2/3, yi + 2δ2/3]

)
.

- D′h,L is the set of all functions u ∈ Dh,L which are Lipschitz continuous
inside the set

(4.7)
⋃

i∈§

(
[yi − 2δ2/3, yi[ ∪ )]yi, yi + 2δ2/3]

)
.

Given an initial data ū ∈ Dδ2 , we now construct a δ-approximate ε-solution
u, defined for all t ∈ [0,∞[ , with u(t) ∈ Dh,L on every Im,h for some weighted
Lipschitz constant L = L(m,h).

By induction, assume that an approximate solution has been constructed on
the interval [0, τm,h−1] for some m, h as in (2.9), and assume that u(τm,h−1) ∈
D∗h,L ∩D′h,L for some L > 0. We shall prolong this solution up to time τm,h in such
a way that

(4.8) u(t) ∈ Dh,L′ ∀t ∈ Im,h,

(4.9) u(τm,h) ∈ D∗h+1,L′′ ∩ D′h+1,L′′ ,

for some constants L′, L′′ [if h = n, then u(τm,h) ∈ D∗1,L′′ ∩ D′1,L′′ ]. Iterating this
argument, we thus obtain an approximate solution u, defined for all t ≥ 0.

In the following, we refer to a piecewise Lipschitz solution of the quasilinear
system (3.8), satisfying the ε-Rankine-Hugoniot equations (2.3)-(2.4) along the big
jumps and (3.3), (3.9) along the small h-shocks. To retain the piecewise Lipschitz
regularity, three types of restartings will be needed.

(a) At the terminal time t = τm,h, we replace a function whose small shocks all
belong to the h-family with a new function whose small shocks belong to the (h+1)-
family [to the 1-family if h = n].

(b) When a small h-shock penetrates the set (4.7) around one of the large shocks
at yi, i ∈ §, the small shock is replaced by a smooth compressive wave. Since all
waves travel with speed < 1, to avoid the interaction between the two shocks (more
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precisely, )to prevent small shocks from entering the set (4.2)), it suffices that we
perform these restartings at times

(4.10) τm,h−1 + ∆′t, τm,h−1 + 2∆′t, . . . , τm,h−1 + M∆′t = τm,h

for a suitable time step ∆′t < δ2/12. More precisely, calling [[s]] the integer part of
s, we choose

(4.11) M
.= 1 +

[[
δ1/n

δ2/12

]]
, ∆′t .=

τm,h − τm,h−1

M
=

δ1

nM
.

(c) When the (genuinely nonlinear) gradient component uh
x becomes too large and

negative and a gradient catastrophe is about to occur, we replace steep compressive
h-waves with several small h-shocks. In this way, after the restarting, the new
function will satisfy uh

x(x) exp
[
βWu

h (x)
] ≥ −1 outside the set (4.6).

The two properties:

- u(t) is Lipschitz continuous on the set (4.1),

- u(t) does not develop new shocks,

are satisfied on every time interval between two consecutive restartings, thanks to
the intermediate strips of width δ2/3 around the big shocks, and to the choice of
∆′t in (4.11). After each restarting, we have the situation sketched in fig. 8.

y i
θ

yi
θ + δ /32 y i

θ + δ 2 /32 y i
θ + δ2

after rest. b)

after rest. c)
condition (4.5)

Intermediate strips

Lipschitz continuous

Fig.8

Hence in time ∆′t no small shocks can enter the set (4.2) and no wave, with large neg-
ative gradient component uh

x, can exit from the shock layers ∪i∈§
(
[yi− δ2, yi + δ2]

)
.

The first lemma provides a lower bound on the time where a gradient catastrophe
can occur.

Lemma 4.2 Assume t̄ ∈ Im,h, u(t̄) ∈ D∗h,L. Then there exists a positive time τ(L)
such that u(t) ∈ Dh,L for every t ∈ [t̄, t̄ + τ(L)] ∩ Im,h.
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Using a comparison argument, as τ(L) one can take the blow-up time of the
solution to the O.D.E. (2.18), with coefficients a, b, c depending only on L.

The next lemma states that, by a suitable restarting procedure, one can ap-
proximate any function u ∈ Dh,L with another function, having almost the same
weighted Lipschitz constant, whose gradient satisfies (4.5). The idea is to insert
several small h-shocks in regions where the gradient component uh

x is large and
negative.

Lemma 4.3 For every u ∈ Dh,L and ε0 > 0, there exists ũ ∈ D∗h,L+ε0
such that

‖ũ− u‖L1 < ε0.

If initially u(τm,h−1) ∈ D∗h,L ∩ D′h,L, we construct an approximate solution
on the first subinterval [τm,h−1, τm,h−1 + ∆′t] as follows. We choose a time step
∆′′t < τ(L + 1), say

(4.12) ∆′′t .=
∆′t
N

, N
.= 1 +

[[
∆′′t

τ(L + 1)

]]
.

We then apply the restarting described in Lemma 4.3 at the times

(4.13) τm,h−1 + ∆′′t, τm,h−1 + 2∆′′t, . . . , τm,h−1 + N∆′′t = τm,h−1 + ∆t,

choosing

(4.14) ε0
.= min

{
1
N

,
δ ·∆′′t

3

}
.

At the time t = τm,h−1 + ∆′t, an additional restarting procedure is used.

Lemma 4.4 For every u ∈ Dh,L, ε0 > 0 and every shock yα, there exists ũ ∈
Dh,L+ε0 and δ3 > 0 such that ũ ≡ u on IR \ [yα − ε0, yα + ε0], while ũ is constant
on the intervals [yα − δ3, yα[ and ]yα, yα + δ3].

Lemma 4.5 For every u ∈ Dh,L and ε0 > 0, there exist L′ > 0 and ũ ∈ D∗h,L′∩D′h,L′

such that ‖u− ũ‖L1 ≤ ε0.

Applying Lemma 4.5 with ε0 = δ · ∆′t/3, the condition (4.3) will hold for all
T ≤ τm,h−1 + ∆′t. The solution u is then prolonged to the next subinterval

(4.15) [τm,h−1 + ∆′t, τm,h−1 + 2∆′t],

applying the restarting described in Lemma 4.3 at time steps of some length ∆′′t
(depending on the new Lipschitz )constant L′), then the restarting in Lemma 4.5
at the time τm,h−1 + 2∆′t, etc. . . In a finite number of steps, we thus define the
approximate solution u on the whole interval Im,h = [τm,h−1, τm,h]. At the terminal
time τm,h a third type of restarting is needed.

Lemma 4.6 For every u ∈ Dh,L, ε0 > 0, there exist L′ > 0 and ũ ∈ D∗h+1,L′ ∩
D′h+1,L′ such that ‖ũ− u‖L1 ≤ ε0 [if h = n then ũ ∈ D∗1,L′ ∩ D′1,L′ ].

Applying Lemma 4.6 with ε0 = δ · δ1/3n, the condition (4.3) will hold for all
T ≤ τm,h. By induction, this achieves the construction of a δ-accurate approximate
ε-solution u for all times t ∈ [0,∞[ .
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At this stage, we could consider a sequence of approximate solutions and ob-
tain in the limit an ε-solution of the Cauchy problem (1.1)-(1.2), by a standard
compactness argument. Our main goal, however, is to prove the continuous depen-
dence of solutions on their initial data. For this purpose, in the remainder of this
section we consider any two δ-accurate approximate ε-solutions u, u′ constructed
as above (with the same choice of )δ1, δ2), and give an estimate on the distance∥∥u(t, ·)− u′(t, ·)

∥∥
L1 for all t ≥ 0.

The basic strategy is the following. We consider a Piecewise Regular Path
γ0 : [0, 1] → Dδ2 joining u(0) with u′(0). For each t > 0 we construct a path
γt : [0, 1] → Dδ2 joining u(t) with u′(t), whose weighted length satisfies

(4.16) ‖γt‖? ≤ ‖γ0‖? + C5δt.

Recalling (1.48), this will provide an estimate on the weighted distance d?

(
u(t), u′(t)

)
in terms of the initial distance d?

(
u(0), u′(0)

)
. For θ ∈ [0, 1], the maps t 7→ uθ(t) =

γt(θ) are approximate ε-solutions of (1.1), obtained by successive restartings at
times t1 < t2 < · · · (the same for all values )of θ). By the analysis in Section 3,
outside the restarting times the weighted norms of tangent vectors do not increase.
Hence the same is true of the weighted length of the path γt. In particular, on the
interval ]t`−1, t`[ between any two consecutive restarting times we have

(4.17)
∥∥γt′

∥∥
?
≤ ∥∥γt

∥∥
?

t`−1 < t < t′ < t`.

The following analysis will show that the restarting procedures described in Lemma s
4.3–4.6 can be performed simultaneously for all solutions uθ, in such a way that the
length of the path γt : θ 7→ uθ(t) changes very little across each restarting time. In
this way, our paths γt will satisfy (4.16) for every t ≥ 0.

The construction of the paths γt is achieved by induction on the intervals Im,h,
defined at (2.9). Fix an interval Im,h. For notational convenience, call t∗

.= τm,h−1,
t∗ .= τm,h. At the initial time t∗, let a piecewise regular path be given: γt∗ : [0, 1] →
D∗h,L ∩ D′h,L, with γt∗(0) = u(t∗), γt∗(1) = u′(t∗), satisfying (4.16) for t = t∗.
For every t ∈ Im,h we will construct a path γt : [0, 1] → Dδ2 with the following
properties:

(4.18) γt(0) = u(t), γt(1) = u′(t),

(4.19) γt(θ) = uθ(t) ∈ Dh,L′ θ ∈ [0, 1],

for some Lipschitz constant L′. Moreover, at the final time t∗ = τm,h we will have

(4.20) γt∗(θ) = uθ(t∗) ∈ D∗h+1,L′′ ∩ D′h+1,L′′

for some constant L′′, and the bound (4.16) will hold with t = t∗.

Let ∆′t be as in (4.11) and let τ(L + 1) be as in Lemma 4.2. By solving the
quasilinear system (3.8) together with the boundary conditions (2.3)-(2.4) and (3.3),
(3.9), for each θ ∈ [0, 1] the corresponding piecewise Lipschitz solution uθ can be
constructed up to the time t′ = min

{
t∗+∆′t, t∗+τ(L+1)

}
. By (3.75), the weighted

length of the path γt : θ 7→ uθ(t) does not increase in time. If τ(L + 1) < ∆′t then
we apply a first restarting procedure (Restarting 1 below), replacing the old path
γt′− with a new path γt′ : [0, 1] → D∗h,L+ε0

such that

(4.21) ‖γt′‖? ≤ ‖γt′−‖? + ε0,
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(4.22) ‖γt′(θ)− γt′−(θ)‖L1 < ε0 θ ∈ [0, 1].

We then join γt′(0) with u(t′) and γt′(1) with u′(t′), by means of two curves whose
length is bounded by Cδ(t′ − t∗) for some constant C > 0. As explained below, for
a technical reason the restarting procedure will be applied not exactly at the time
t̄ + τ(L + 1), but at a suitable time t′ ∈ [

t̄ + τ(L + 1)/2, t̄ + τ(L + 1)
]
.

In addition, a similar restarting procedure is performed at each time τ` where either
u or u′ is discontinuous, as a function with values in L1 (i.e., at each time τ` where
a restarting occurred in the )original construction of u or u′). In this way, the paths
γt will be defined for all t ∈ [t∗, t∗ + ∆′t], and satisfy (4.16).

At the time t′ = t∗ + ∆′t, a different restarting procedure (Restarting 2 below)
must be used. This produces a new curve γt′ : [0, 1] → D∗h,L′ ∩ D′h,L′ , for some
L′ > 0, such that (4.21) and (4.22) hold with ε0 > 0 suitably small. In addition,
we construct two small curves joining γt′(0) with u(t′) and γt′(1) with u′(t′).

The same construction is then repeated on the intervals [t∗ + ∆′t, t∗ + 2∆′t],
etc. . . In a finite number of steps, we thus obtain a path of solutions defined on the
whole interval Im,h. At the terminal time t∗ .= τm,h a third restarting procedure is
used (Restarting 3 below). An appropriate choice of the values of ε0 at the various
restarting times will guarantee the validity of (4.16).

We now describe in detail the three restarting procedures.

Restarting 1. Assume that t̄ ∈ Im,h, γt̄(θ) ∈ D∗h,L̄
for some L̄ > 0, and let the

restarting procedure occur at some time t′ ∈ [
t̄ + τ(L)/2, t̄ + τ(L)

]
, for a given

L > L̄ > 0. Moreover, assume that γt(θ) ∈ Dh,L and

(4.23) uθ(t, x) = uθ′(t, x) x /∈ [−M0, M0], θ, θ′ ∈ [0, 1],

for every t ∈ [
t̄ + τ(L)/2, t̄ + τ(L)

]
. As in Section 3, we denote by yθ

i (t), i ∈ §,
the locations of the big shocks in uθ(t), and by yθ

α(t), α ∈ §′, the locations of the
small h-shocks. Call σθ

i (t), σθ
α(t), the size of the shocks located at yθ

i (t), yθ
α(t),

respectively.

Remark . Since uθ(t) ∈ D for all θ ∈ [0, 1], t ≥ 0, all these functions have exactly
one large i-shock, for each family i ∈ §. On the other hand, the number of small
shocks may vary with θ, t. For notational simplicity, we still write §′ in place of
§′(θ, t), omitting the explicit dependence on θ, t.

By induction, we assume that the path θ 7→ γt̄(θ) is piecewise regular, i. e. there
exist finitely many values 0 = θ0 < θ1 < · · · < θr = 1 such that the restriction of
γt̄ to each subinterval ]θj−1, θj [ is a regular path. In particular, the generalized
gradient

(
vθ(t̄), ξθ(t̄)

) .= duθ(t̄)/dθ is well defined and continuous for θ /∈ Θ .=
{θ0, θ1, . . . , θr}.

Definition 4.7 We say that t is an interaction time for the approximate solution
uθ if at time t either two small h-shocks interact, or a small h-shock hits a shock
layer or the set (4.6), so that

∣∣yθ
α(t) − yθ

i (t)
∣∣ = δ2 or 2δ2/3, for some α ∈ §′, i ∈ §.

We define the set

(4.24) Θ̃ .=
{
(t, θ); either θ ∈ Θ or t is an interaction time for uθ

}
.
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Lemma 4.8 If (t†, θ†) /∈ Θ̃, then the generalized tangent vector

(4.25)
(
vθ(t), ξθ(t)

) .=
duθ(t)

dθ

is well defined and continuous for all (t, θ) in a neighborhood of (t†, θ†).

Define the set

(4.26) J(ε0)
.=

{
θ ∈ [0, 1]; θ ∈

r⋃

`=1

]θ` − ε0, θ` + ε0[
}

.

Let

(4.27)
⋃

k

[ak, bk] .= [0, 1] \ J(ε0).

By the continuity of the shock strengths, there exists σ̄(ε0) > 0 such that, on every
[ak, bk], for α ∈ §′ we have

∣∣σθ
α(t)

∣∣ > σ̄(ε0).

Remark . If t is an interaction time for uθ, then it may happen that §′(t, θ) is
not constant near θ. Indeed the number of small shocks may vary along the curve.
However, if two small shocks yα, yβ , interact generating a singe shock y′, we can
avoid changing the set §′ defining yα = yβ = y′ after time t. With this notation
the set §′ is constant and we obtain the following Lemma s.

Lemma 4.9 Let ξθ
α(t), ξθ

i (t), be the shifts of the shocks located at yθ
α(t), yθ

i (t),
respectively. The maps (t, θ) 7→ yθ

α(t), yθ
i (t), are continuous for t ∈ [0, 1] \ J(ε0).

The maps (t, θ) 7→ σθ
α(t), ξθ

α(t), σθ
i (t), ξθ

i (t) are continuous at every point (t, θ) /∈ Θ̃.

Lemma 4.10 For almost every time t, the set

(4.28) B(t) .=
{
θ; (t, θ) ∈ Θ̃

}

is finite.

Using Lemma 4.10, we choose a restarting time t′ ∈ [
t̄ + τ(L)/2, t̄ + τ(L)

]
such that B(t′) is finite. For notational convenience, in the following we use γ to
indicate γ(t′−) and γ̃ to indicate the new path γ(t′+) which is produced by the
restarting procedure. The next lemma states the continuity of the weight functions
Wu

i defined at (3.45).

Lemma 4.11 For every i ∈ § and α ∈ §′, the maps θ → W
γ(θ)
i (yθ

i ), θ → W
γ(θ)
h (yθ

α),
are continuous on [0, 1] \B(t′).
For each j ∈ {1, . . . , n}, the map (θ, x) 7→ W

γ(θ)
j (x) is continuous for θ /∈ B(t′)

and x /∈ {
yθ

i , yθ
i ± δ2, yθ

α ; i ∈ §, α ∈ §′}. The map θ 7→ W
γ(θ)
j is continuous from

[0, 1] \B(t′) into L1
loc.

Lemma 4.12 Call (vθ, ξθ) the generalized tangent vector to the map θ 7→ γ(θ).
Then vθ ∈ L∞ for every θ /∈ B(t′).

Consider the set of parameter values

(4.29) K = K(ε0)
.=

{
]θ − ε0, θ + ε0[ ; θ ∈ B(t′)

}
⊂ [0, 1].
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Choose δ3 < ε0δ2 in such a way that the sets [yθ
α − δ3, y

θ
α + δ3], α ∈ §, θ /∈ K, are

disjoint and do not intersect any of the intervals [yi − δ2/3, yi + δ2/3] around big
shocks.

Lemma 4.13 For every ε0 > 0, one can partition the interval [0, 1] inserting points
0 = θ0 < . . . < θN = 1 so that

(i) For every θ ∈ B(t′), there exists an index k such that θ − ε0 = θk,
θ + ε0 = θk+1.
In addition, for every k ∈ {1, . . . , N} such that [θk, θk+1]∩B(t′) = ∅, the
above partition will satisfy the conditions:

(ii) For each i ∈ § and α ∈ §′ one has

(4.30) sup
θ∈[θk,θk+1]

|yθ
i − yθk

i | < ε0δ3, sup
θ∈[θk,θk+1]

|yθ
α − yθk

α | < ε0δ3.

(iii) For every j = 1, . . . , n, the j-th component of uθ
x =

(
γ(θ)

)
x

satisfies

(4.31) sup
θ∈[θk,θk+1]

∥∥∥
(
γ(θ)

)j

x
− (

)γ(θk)
)j

x

∥∥∥
L1

< ε0.

(iv) For every x /∈ Jk
.=

{
yθ

i , yθ
α ; i ∈ §, α ∈ §′, θ ∈ [θk, θk+1]

}
, one has

(4.32) sup
θ∈[θk,θk+1]

∣∣γ(θ)x)− γ(θk)x)
∣∣ < ε0δ3.

(v) For every j = 1, . . . , n, and every x /∈ J∗k
.=

{
yθ

i , yθ
i ± δ2, yθ

α ; i ∈ §, α ∈
§′, θ ∈ [θk, θk+1]

}
, one has

(4.33) sup
θ∈[θk,θk+1]

∣∣∣W γ(θ)
j (x)−W

γ(θk)
j (x)

∣∣∣ < ε0.

Moreover, for every i ∈ § and α ∈ §′ one has
(4.34)

sup
θ∈[θk,θk+1]

∣∣∣W γ(θ)
j (yθ

i )−W
γ(θk)
j (yθk

i )
∣∣∣ < ε0, sup

θ∈[θk,θk+1]

∣∣∣W γ(θ)
j (yθ

α)−W
γ(θk)
j (yθk

α )
∣∣∣ < ε0.

(vi) Defining Jk as in (iv), the continuous part vθ of the generalized tangent
vector satisfies

(4.35)
∫ θk+1

θk

∫

IR\Jk

∣∣∣∣vθ(x)− γ(θk+1)x)− γ(θk)x)
θk+1 − θk

∣∣∣∣ dx dθ < ε0(θk+1 − θk).

(vii) Define cθ
k

.= (θk+1 − θ)/(θk+1 − θk), and let

(4.36) σ̃θ
α

.= cθ
kσθk

α + (1− cθ
k)σθk+1

α , σ̃θ
i

.= cθ
kσθk

i + (1− cθ
k)σθk+1

i ,

(4.37) ξ̃θ
α

.=
y

θk+1
α − yθk

α

θk+1 − θk
, ξ̃θ

i
.=

y
θk+1
i − yθk

i

θk+1 − θk
.

Then for each i ∈ §, α ∈ §′ one has

(4.38) |σ̃θ
i − σθ

i | < ε0, |σ̃θ
α − σθ

α| < ε0,



4. RESTARTING PROCEDURES 53

∣∣∣∣∣
∫ θk+1

θk

ξθ
ασθ

αW
γ(θ)
h (yθ

α)dθ −
∫ θk+1

θk

ξ̃θ
ασ̃θ

αW
γ(θk)
h (yθk

α )dθ

∣∣∣∣∣ < ε0(θk+1 − θk),

∣∣∣∣∣
∫ θk+1

θk

ξθ
i σθ

i W
γ(θ)
i (yθ

i )dθ −
∫ θk+1

θk

ξ̃θ
i σ̃θ

i W
γ(θk)
i (yθk

i )dθ

∣∣∣∣∣ < ε0(θk+1 − θk).

(4.39)

B(t’)

interaction

and boundary layer
interaction

and boundary layer
interaction

tangent vector

x

θ

θ k

small shock

small shock

not defined

small shocks

big shock

boundary layer

small shock

Fig.9

From now on, we consider a fixed partition 0 = θ0 < θ1 < · · · < θN = 1 of [0, 1],
such that the conclusions of Lemma 4.13 hold (fig. 9). Moreover, we define the set
of indices

(4.40) K
.=

{
k; [θk, θk+1] ∩B(t′) 6= ∅}.

The path γ̃ will be constructed separately on each interval [θk, θk+1]. The first
step is to apply the restarting procedure described in Lemma 4.3 to each function
uθk , with a suitable choice of δ4 > 0. On the “good” intervals [θk, θk+1] with
k /∈ K, where the tangent vector θ 7→ (vθ, ξθ) is continuous, the path γ̃ is defined
by suitably interpolating between γ̃(θk) and γ̃(θk+1). A different procedure is used
on the “bad” intervals, which intersect B(t′). Given δ4 > 0, let Pδ4 be the restarting
operator, which associates to every u ∈ Dh,L a new function ũ ∈ D∗h,L+ε0

, according
to the construction in the proof of Lemma 4.3. If δ4 is sufficiently small, then the
operator Pδ4 has a number of nice properties, listed in the following Lemma .



54 4. RESTARTING PROCEDURES

Lemma 4.14 For every ε0 > 0 there exists δ̄4 such that, for every δ4 ∈ ]0, δ̄4], the
following holds.

(4.41) sup
θ

∣∣∣¶
(
γ(θ)

)
(x)− γ(θ)x)

∣∣∣ < ε0 ·min
k

(θk+1 − θk) x ∈ IR,

(4.42) sup
θ

∥∥∥
(¶(γ(θ))

)j

x
− (

γ(θ)
)j

x

∥∥∥
L1

< ε0 j 6= h,

(4.43) (V + C1Q)
(
¶(

γ(θ)
))

< (V + C1Q)
(
γ(θ)

)
+ ε0.

We apply Pδ4 , with some δ4 < δ̄4, to every γ(θk).
In the next step, we define γ̃ on [θk, θk+1], k /∈ K, via suitable interpolations.

Since the Rankine-Hugoniot equations are nonlinear, if u−, u+ are joined by an
h-shock, and v−, v+ are also joined by an h-shock, it is not true in general that
the convex combinations λu− + (1 − λ)v−, λu+ + (1 − λ)v+ are joined by an h-
shock. For this reason, the interpolation between the values γ̃(θk) and γ̃(θk+1) must
be performed using an alternative coordinate system, where the integral curves
of the right eigenvectors rh coincide with coordinate lines. Moreover, a special
construction is needed in a neighborhood of the big shocks yi, i ∈ §, and of the
small shocks yα, α ∈ §′. Care must be taken in order to control the weighted
length of the new path, and to ensure that the new functions γ̃(θ) remain within
the domain Dδ2 . Indeed every function γ̃(θ) must contain a unique large i-shock
for every i ∈ §.
To define a suitable interpolation procedure, consider the set

(4.44) A .=
⋃

k/∈K

[θk, θk+1]×

[−M0, M0]\)

( ⋃

i∈§
[y−k,i, y

+
k,i] ∪ )

⋃

α∈§′
[y−k,α, y+

k,α]
)

 ,

where

y−k,i
.= min

{
yθk

i , y
θk+1
i

}− δ3, y+
k,i

.= max
{
yθk

i , y
θk+1
i

}
+ δ3,

y−k,α
.= min

{
yθk

α , yθk+1
α

}− δ3, y+
k,α

.= max
{
yθk

α , yθk+1
α

}
+ δ3.

(4.45)

Notice that, since δ3 ≤ ε0δ2, for ε0 sufficiently small the sets [y−k,i, y
+
k,i] are contained

inside the set (4.2).
We consider a smooth change of coordinates Φ on Ω such that DΦ(u)

(
rh(u)

) ≡ e1

for every u ∈ Ω, where e1 = (1, 0, . . . , 0) is the first unit vector in the canonical
basis of IRn. On A we define
(4.46)
γ̃(θ)x) .= Φ−1

[
cθ
kΦ

(¶(γ(θk))(x)
)

+ (1− cθ
k)Φ

(¶(γ(θk+1))(x)
)]

θ ∈ [θk, θk+1],

where the coefficients cθ
k were defined in (vii) of Lemma 4.13.

Remark . Interpolating as in (4.46), since yθk
i 6= y

θk+1
i it may happen that, for

some θ ∈ [θk, θk+1], γ̃(θ) contains a new h-shock inside the set (4.6). However, by
(ii) in Lemma 4.13, the distance of this shock from yi is ≥ 2δ2/3− ε0δ3. Hence, the
definition of ∆′′t in (4.11) still ensures that no h-shock can enter the set (4.2)
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It remains to define γ̃ on the small sets [y−k,i, y
+
k,i], i ∈ §, and [y−k,α, y+

k,α], α ∈ §′.
Fix an interval [θk, θk+1] and i ∈ §. Recalling that cθ

k
.= (θk+1 − θ)/(θk+1 − θk),

consider the sets (fig. 10)

(4.47) B = B(k, i) .= [θk, θk+1]× [y−k,i, y
+
k,i],

(4.48) B∗ = B∗(k, i) .=
{
(θ, x) ∈ B ; x = y∗k,i

.= cθ
kyθk

i + (1− cθ
k)yθk+1

i

}
,

(4.49)
B− = B−(k, i) .=

{
(θ, x) ∈ B ; x = y−k,i

} B+ = B+(k, i) .=
{
(θ, x) ∈ B ; x = y+

k,i

}
.

B

B *

y i

B
- +

θ

θ k

k+1

θ

x

θ

Fig.10

We will define γ̃ on B in such a way that, for every θ, the function γ̃(θ) has a
unique shock on the set [y−k,i, y+

k,i], located at y∗k,i. Since the values of γ̃ have
already been defined by (4.46) on B− ∪ B+, our goal can be achieved by assigning
the right and left limits on B∗ and then interpolating linearly w.r.t. the x-variable.
For (θ, x) ∈ B∗ we thus define
(4.50)
γ̃(θ, x−) .= cθ

kγ̃(θk)yθk
i −)+(1−cθ

k)γ̃(θk+1)y
θk+1
i −), γ̃(θ, x+) .= Ψε

i (σ̃
θ
i )

(
γ̃(θ)x−)

)
,

where Ψε
i was defined at (2.2) and σ̃θ

i in (vii) of Lemma 4.13. This definition
clearly guarantees that γ̃(θ) has an i-shock located at the point y∗k,i. Next, we
linearly interpolate between the values γ̃(θ)y−k,i), γ̃(θ)x−) over the interval where
x ∈ [y−i,k, y∗k,i[ , and between the values γ̃(θ)x+), γ̃(θ)y+

k,i) over the interval where
x ∈ ]y∗k,i, y+

i,k].

Remark . Notice that we slightly modified γ̃(θk). However, to ensure that γ̃ is
well defined, it is enough to change the data γ̃(θk), by linear interpolation, on the
sets [y−k,i, y

+
k,i] before starting the interpolating procedure.

The definition of γ̃ in a neighborhood of a small shock yθ
α, α ∈ §′ is entirely similar.

Thanks to the above construction, the functions γ̃(θ) have a number of useful
properties.
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Lemma 4.15 On the set A there holds

(4.51)
∣∣∣γ̃(θ)x)− γ(θ)x)

∣∣∣ < C(ε0 + δ4).

Lemma 4.16 For every j 6= h, on the set A one has

(4.52)
∥∥∥
(
γ̃(θ)

)j

x
− (

γ(θ)
)j

x

∥∥∥
L1

< C(ε0 + δ4).

Lemma 4.17 For every k /∈ K, every θ ∈ [θk, θk+1], j = 1, . . . , n, and every x ∈ A
except at most a set of measure < Cε0δ3, one has

(4.53)
∣∣∣W γ(θ)

j (x)−W
γ̃(θ)
j (x)

∣∣∣ ≤ C(ε0 + δ4), i = 1, . . . , n.

Lemma 4.18 For some constant C = C(L) one has

(4.54)
n∑

j=1

∣∣∣∣
∫

A

∣∣vj(x)
∣∣W γ(θ)

j (x)dxdθ −
∫

A

∣∣ṽj(x)
∣∣W γ̃(θ)

j (x)dxdθ

∣∣∣∣ < C(ε0 + δ4).

Lemma 4.19 For some constant C = C(L, ‖v‖L∞) there holds

(4.55) max
j=1,...,n

sup
(θ,x)∈A

∣∣∣
(
γ̃(θ)

)j

x
(x) exp[βW

γ̃(θ)
j (x)]

∣∣∣ < L̄ + C(ε0 + δ3 + δ4).

We now complete the construction of γ̃ on the “bad” set K, using the following
lemma.

Lemma 4.20 For every k such that ]θk, θk+1[⊂ K there exists a piecewise regular
curve γk, joining γ̃(θk) with γ̃(θk+1), such that ‖γk‖? < Cε0, ‖γk(θ)− γ(θk)‖L1 <
Cε0 and γk(θ) ∈ D∗h,L+ε0

for every θ ∈ [θk, θk+1].

Claim 1 The estimates (4.21) and (4.22) hold for δ3, δ4 and ε0 sufficiently small.
Moreover the new path γ̃ is piecewise regular.

Claim 2 If ε0 and δ4 are small enough then, for every θ ∈ [0, 1], one has

(4.56) w-Lip(γ̃
(
θ)

)
< L̄ +

1
N

,

(4.57) (V + C1Q)
(
γ̃(θ)

)
< δ0,

where N is defined in (4.12). Moreover, γ̃(θ) ∈ D∗h,L+1/N .

Claims 1 and 2 will be proved at the end of this section.
Now we have to construct the small curves γ1 and γ2 connecting γ̃(0) with u(t′)
and γ̃(1) with u′(t′). Let us describe the construction of γ1, since the construction
of γ2 is entirely similar. If t′ is not a restarting time for u, then γ̃(0) is obtained
from u(t′) applying the operator Pδ4 and the small modifications described above.
In particular u(t′) and γ̃(0) contain the same large shocks at the same locations yi.
We let γ1 be the path

(4.58) θ 7→ Φ−1
(
θΦ

(
u(t′)

)
+ (1− θ)Φ

(
γ̃(0)

))
, θ ∈ [0, 1].
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Since no shock is shifted we easily obtain

(4.59) ‖γ1‖? < C
∥∥u(t′)− γ̃(0)

∥∥
L1

for some constant C. If t′ is a restarting time for u, we use a similar construction
joining γ̃(0) with u(t′+). In this way we obtain

(4.60) ‖γ1‖? < C
(∥∥u(t′+)− u(t′−)

∥∥
L1 +

∥∥u(t′−)− γ̃(0)
∥∥

L1

)
≤ 2Cδ(t′ − t∗).

The other relevant properties for γ1 can be proved as for γ̃. Finally, we reparametrize
the path obtained by concatenating γ1, γ̃ and γ2, and obtain a path defined on [0, 1].
Remark . Notice that, if t′ is not a restarting time for u (respectively u′), then

γ1(θ) /∈ D∗h,L+1/N (respectively γ2(θ) /∈ D∗h,L+1/N ) for some θ. Indeed, u(t′) does
not necessarily satisfy the condition

(4.61) uh
x(t′, x) exp[βW

u(t′)
h (x)] ≥ −1.

However, since u is an approximate solution, it does not develop new shocks up to a
certain time t̃ > t′ at which a restarting happens. Let M

.= inf uh
x(t′, x) exp[βW

u(t′)
h (x)],

where the inf is taken outside the set (4.6). Since γ̃(0) satisfies the condition (4.5),
then for every θ it follows

(4.62) (γ1(θ))h
x(x) exp[βW

γ1(θ)
h (x)] ≥ M − Cε0.

From the proof of Lemma 4.2, we have that, for ε0 small enough, the approximate
solution corresponding to γ1(θ) is well defined up to time t̃, hence up to the next
restarting time. This completes the first restarting procedure.

Restarting 2. We follow the same procedure of Restarting 1 with the following
differences. We choose t′ such that B(t′) is finite and fix δ3 < ε0δ2. Again, the
set [0, 1] is partitioned inserting points θk in such a way that the conclusions of
Lemma 4.13 hold. Now, the operator ¶ is not applied. While, for every k, we
modify γ(θk) via the construction of Lemma 4.5 with parameter δ3/2. On the set
A, γ̃ is defined linearly interpolating on the set [θk, θk+1], k /∈ K. On the sets
B(k, i) the same procedure is used.
Fix now k /∈ K and α ∈ §′ such that yθk

α lies inside the set (4.6). In the construction
of γ̃, the shock is replaced by a smooth compressive wave on the set [yθk

α −δ3/2, yθk
α +

δ3/2]. Recall the definition of cθ
k. For θ ∈ [θk, θk+1] and x ∈ [−δ3/2, δ3/2], we define:

(4.63)
γ̃(θ)

(
cθ
k (yθk

α +x)+(1−cθ
k) (yθk+1

α +x)
)

.= cθ
k γ̃(θk)yθk

α +x)+(1−cθ
k) γ̃(θk+1)yθk+1

α +x).

In this way, γ̃(θ) has a compressive wave on the set

(4.64) [cθ
kyθk

α + (1− cθ
k)yθk+1

α − δ3/2, cθ
kyθk

α + (1− cθ
k)yθk+1

α + δ3/2],

that is obtained interpolating the compressive waves of γ̃(θk) and γ̃(θk+1). We
complete the construction on the set B(k, α) (defined )similarly to B(k, i)) via linear
interpolation w.r.t. the x variable.
The conclusions of Lemma 4.20 are still valid and the proof is similar. Claim 1 and
(4.57) can be proved in the same way thanks to the accurate construction on the
sets B(k, α).
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The construction of the curves γ1, γ2, can be done via linear interpolation. Indeed,
since ∆′t of (4.11) depends only on δ1, δ2 (and not on L), t′ is a restarting time also
for u and u′.
We produced a curve with values in D′h,L′ . Now, applying Restarting 1 again, we
are done.

Restarting 3. We first construct a new curve with values in Dh+1,L′ [D1,L′ if
h = n] for some L′. Then we apply again Restarting 1 in order to obtain a curve
with values in D∗h+1,L′+ε0

[D∗1,L′+ε0
if h = n].

For the first step, we follow the same procedure of Restarting 2 with the following
differences. We apply the construction of Lemma 4.5 to every shock yθk

α . Again,
the operator ¶ is not applied, so that the only discontinuities of each γ̃(θk) are the
big shocks. In particular γ̃(θk) ∈ Dh+1,L′ for some L′ > 0.

This completes the analysis of the restarting procedures. The remainder of the
section contains proofs of the various lemmas stated above.

Proof of Lemma 4.2. Let us define the functions

(4.65) wi(t, x) .= ui
x(t, x) exp

[
βW

u(t)
i (x)

]
, t ≥ 0, x ∈ IR, i = 1, . . . , n,

where the weights Wu
i are defined in (3.45), (3.46).

By assumption we have that maxi supx

∣∣wi(t̄, x)
∣∣ < L. We will achieve the proof

by contradiction.
Assume that there exist i ∈ {1, . . . , n} and a point (t1, y), t1 > t̄, such that

(4.66)
∣∣wi(t1, y)

∣∣ = L,
∣∣wj(t, x)

∣∣ < L ∀t ∈ [t̄, t1[, ∀x ∈ IR, ∀j = 1, . . . , n.

Let us consider first the case in which u(t1) is continuous at y. Let x = xi(t) be
the i–characteristic curve passing through (t1, y). Let τ ′ ∈]t̄, t1[, suitably close to
t1, such that

(4.67)
∣∣wi(t, xi(t))

∣∣ ≥ 1
2

∣∣wi(t1, y)
∣∣, ∀t ∈ [τ ′, t1],

and xi(t) does not intersect any shock for t ∈ [τ ′, t1]. Differentiating the map
t 7→ wi(t, xi(t)) one obtains

d

dt
wi(t, xi(t)) =

[
d

dt
ui

x + βui
x

d

dt
Wu

i

]
exp(βWu

i ) =

=





∑

j<k

Gijkuj
xuk

x−)
∑

j

(∇λi · rj)ui
xuj

x


 + βui

x

d

dt
Wu

i


 exp(βWu

i ).

(4.68)
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Let κ > 0 be the infimum of the quantities
∣∣λ(h)

j (u)− λ
(h)
k (u)

∣∣ for j 6= k and u ∈ Ω.
From (3.38) and (3.48), along the characteristic x = xi(t) one has

d

dt
Wu

i =κ1
d

dt
Ru

i + κ1κ2
d

dt
Q(u) ≤

≤κ1


−κ

∑

j 6=i

|uj
x|+ CΛ(u)


− κ1κ2

C0

2
Λ(u) ≤

≤− κκ1

∑

j 6=i

|uj
x|,

(4.69)

provided that κ2 ≥ 2C/C0. Let M
.= supi,j,k,|u|≤δ0

|Gijk(u)|.
If i 6= h, from (4.69) and the fact that ∇λi ≡ 0, one has
(4.70)

d

dt
|wi(t, xi(t))| ≤


M

∑

j<k

|uj
x||uk

x|+ C
∑

j 6=i

|ui
x||uj

x| − βκκ1

∑

j 6=i

|ui
x||uj

x|

 exp(βWu

i ).

Observe that, by (4.67),

(4.71)
∣∣wj(t, x)

∣∣ ≤ ∣∣wi(t1, y)
∣∣ ≤ 2

∣∣wi(t, xi(t))
∣∣,

for every x ∈ IR, t ∈ [τ ′, t1], j = 1, . . . , n. Henceforth, we can choose β large
enough, depending only on κ, κ1, κ2 and M in such a way that

(4.72)
d

dt

∣∣wi(t, xi(t))
∣∣ ≤ 0, ∀t ∈ [τ ′, t1],

in contradiction with (4.66).
In the case i = h, if wh(t1, y) = L then the inequality (4.70) still holds, since
∇λh · rh ≥ 0, and the contradiction is reached as above. It remains to analyze the
case wh(t1, y) = −L. Since u ∈ D∗h,L, we have that wh(t̄, x) ≥ −1 for every x ∈ IR.
It is not restrictive to assume wh(t, xh(t)) < 0 for every t ∈ [t̄, t1]. From (4.68) we
obtain

d

dt
|wh(t, xh(t))| =− d

dt
wh(t, xh(t)) =

=


−

∑

j<k

Gijkuj
xuk

x +
∑

j 6=h

(∇λh · rj)uh
xuj

x + (∇λh · rh)uh
x)2 − βuh

x

d

dt
Wu

h


 exp(βWu

h ).

(4.73)

It is possible to define some constants a, b and c, depending only on L and the
coefficients of (4.73), such that

∣∣wh(t, xh(t))
∣∣ is bounded from above by the solution

of the Cauchy problem

(4.74) ż = az2 + bz + c, z(t̄) = 1,

We can now define

(4.75) τ(L) =
1
2

inf
{
s > 0; z(t̄ + s) = L

}
.

Clearly
∣∣wh(t, xh(t))

∣∣ < L for every t ∈ [t̄, t̄ + τ(L)], completing the proof in this
case.

Let us examine what happens when a i-characteristic curve crosses a small h-
shock of strength σ, say at the point x. Let us call uj−

x , uj+
x respectively the j-th
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component of ux to the left and to the right of the shock. In the same manner we
define wj±.
If I and O denote respectively the set of incoming and outgoing components, from
(3.24) and (3.29) we deduce that

(4.76) uj±
x =

∑

i±∈I

∂U j

∂ui±
x

ui±
x =

∑

i>h

∂U j

∂ui−
x

ui−
x +

∑

i<h

∂U j

∂ui+
x

ui+
x , j± ∈ O.

If |wi±| ≤ w for every i± ∈ I, one obtains

(4.77) |uj±
x | ≤ w

[∑

i>h

∣∣∣∣
∂U j

∂ui−
x

∣∣∣∣ e−βW u
i (x−) +

∑

i<h

∣∣∣∣
∂U j

∂ui+
x

∣∣∣∣ e−βW u
i (x+)

]
, j± ∈ O.

Recalling (3.26) and (3.27), this implies

(4.78) |wj±| ≤ (
1 + C ′|σ|)w exp

[
β(Wu

j (x±)−Wu
j (x∓))

]
.

From (3.45) we have Wu
j (x±) −Wu

j (x∓) ≤ −κ1|σ|, so that, choosing β ≥ C ′/κ1,
we obtain

(4.79)
(
1 + C ′|σ|) exp

[
β(Wu

j (x±)−Wu
j (x∓))

] ≤ 1.

Finally, from (4.78) and (4.79), we deduce

(4.80) max
j±∈O

|wj±| ≤ max
i±∈I

|wi±|.

If u(t1) is discontinuous at x, then (4.80) gives the contradiction.

Proof of Lemma 4.3. Let yj1 < · · · < yjν be the positions of the large jumps of
u, and define y0

.= −M0−δ2, yν+1
.= M0 +δ2. Moreover, let Ii

.= [yi +2δ2/3, yi+1−
2δ2/3], i ∈ §.

Let δ4 > 0 be given. For a fixed index i, let ∆ .= {x0, . . . , xN}, yi + 2δ2/3 =
x0 < · · · < xN = yi+1 − 2δ2/3 be a partition of Ii such that

(4.81)
(
1 + w-Lip(u)

) ·max{xr+1 − xr; r = 0, . . . , N − 1} < δ4

and {yα ∈ Ii; α ∈ S ′} ⊂ ∆, where the yα are the locations of the small h-shocks.
On the interval Ii we define ũ as follows. On every subinterval [xr, xr+1[ let

U(x) be the solution of

(4.82)
d

dx
U(x) = rh(U(x))[uh

x(x)]+ +
∑

j 6=h

rj(U(x))uj
x(x), U(xr) = u(xr).

Now let us define

(4.83) ũ(x) .= U(x) +
x− xr

xr+1 − xr

[
(exp qrh)u(xr+1)−U(xr+1)

]
, x ∈ [xr, xr+1[,

where q
.=

∫ xr+1

xr
[uh

x(x)]− dx. In this way we can define ũ on ∪iIi, and we set ũ = u

outside ∪iIi.
Let ur

.= u(xr), Ur
.= U(xr). We want to estimate the difference (exp qrh)ur+1−

Ur+1. By the definition of the exponential map, we have that

(4.84) (exp qrh)ur+1 = ur+1 + qrh(ur+1) + O(q2).
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On the other hand, from (4.82) one has

Ur+1 =ur +
∫ xr+1

xr

∑

j 6=h

rj(u)uj
x dx +

∫ xr+1

xr

∑

j 6=h

(
rj(U)− rj(u)

)
uj

x dx+

+
∫ xr+1

xr

rh(ur+1)[uh
x]− dx +

∫ xr+1

xr

(
rh(U)− rh(ur+1)

)
[uh

x]− dx =

=ur+1 + qrh(ur+1) +
∫ xr+1

xr

∑

j 6=h

(
rj(U)− rj(u)

)
uj

x dx +
∫ xr+1

xr

(
rh(U)− rh(ur+1)

)
[uh

x]− dx.

We thus obtain
(4.85)∣∣(exp qrh)ur+1 − Ur+1

∣∣ ≤ CL‖U − u‖L∞(xr,xr+1) · (xr+1 − xr) + O
(
(xr+1 − xr)2

)
.

Let us define the absolutely continuous function z(x) .=
∣∣U(x) − u(x)

∣∣, x ∈
[xr, xr+1[. We have that z(xr) = 0, and

d

dx
z(x) ≤ ∣∣ux(x)− Ux(x)

∣∣ ≤

≤
∣∣∣∣∣∣
−[

uh
x(x)

]
− rh

(
u(x)

)
+

∑

j

U j
x(x)

(
rj(u(x))− rj(U(x))

)
∣∣∣∣∣∣
≤

≤ CL + CLz(x).

By Gronwall’s inequality one obtains, for every x ∈ [xr, xr+1[,

(4.86)
∣∣u(x)− U(x)

∣∣ ≤ eCL(x−xr) − 1 ≤ C ′L(xr+1 − xr).

From this last inequality and (4.85) we deduce that, for x ∈ [xr, xr+1[,∣∣u(x)− ũ(x)
∣∣ ≤ |u(x)− U(x)|+ |ũ(x)− U(x)| ≤
≤ z(x) +

∣∣(exp qrh)ur+1 − Ur+1

∣∣ ≤
≤ CL(xr+1 − xr) + O((xr+1 − xr)2) ≤ Cδ4 + O

(
δ2
4

)
.

(4.87)

It is clear that this inequality holds for every x ∈ ∪iIi. Since u = ũ outside ∪iIi,
the inequality ‖u− ũ‖L1 < ε0 follows by choosing δ4 small enough.

Combining (4.85) and (4.86), we obtain

(4.88)
∣∣(exp qrh)ur+1 − Ur+1

∣∣ ≤ Cδ4(xr+1 − xr).

Since, for x ∈ [xr, xr+1[,

(4.89) ũx(x) = Ux(x) +
1

xr+1 − xr

(
(exp qrh)ur+1 − Ur+1

)
,

we deduce that

(4.90) |ũx| ≤ |Ux|+ Cδ4 + O(δ2
4) ≤ |ux|+ Cδ4 + O(δ2

4).

Hence, since Uh
x = 0

ũh
x exp[βW ũ

h ] ≥ −C
(
|ũh

x − Uh
x |

)
≥

≥ −C
(
|ũ− U |+ |ũx − Ux|

)
≥ −C ′δ4,

for some C ′ > 0.



62 4. RESTARTING PROCEDURES

To prove that ũ ∈ D∗h,L+ε0
, it remains to check the value of the Glimm functional

and of the weighted Lipschitz constant. We claim that (V + C1Q)ũ) < δ0. Indeed
V (ũ) ≤ V (u) + Cδ4. Moreover, the effect of the transformation u 7→ ũ is to shift
the negative h-wave in a small interval (of measure ≤ δ4) into a small h-shock.
Hence Q(ũ) ≤ Q(u) + CLδ4. If δ4 is small enough we thus obtain (V + C1Q)ũ) ≤
(V + C1Q)u) + C ′δ4 < δ0. In the same way we obtain

∣∣Wu
i (x) −W ũ

i (x)
∣∣ ≤ Cδ4,

and hence, if δ4 is small enough, we have w-Lip(ũ) ≤ L + ε0.

Proof of Lemma 4.4. Choose δ3 > 0, and define

(4.91) uα(x) .=





u
(

x−yα

√
δ3+δ3

1−√δ3

)
, if x ∈]yα −

√
δ3, yα − δ3[,

u
(

x−yα

√
δ3−δ3

1−√δ3

)
, if x ∈]yα + δ3, yα +

√
δ3[,

u(yα−), if x ∈ [yα − δ3, yα[,
u(yα+), if x ∈]yα, yα + δ3].

Define the function

(4.92) ũ(x) .=

{
uα, if x ∈ Iα,

u(x), otherwise.

We prove that (V + C1Q)ũ) < δ0. Reasoning as in Lemma 4.3, it can be shown
that V (ũ) ≤ V (u) + Cδ3, Q(ũ) ≤ Q(u) + Cδ3, so that it suffices to choose δ3 small
enough. Finally

(4.93) w-Lip(ũ) ≤ w-Lip(u)
1−√δ3

+ Cδ3 ≤ L + ε0

for δ3 sufficiently small.

Proof of Lemma 4.5. Choose δ3 > 0, and for every α ∈ S ′ such that yα belongs
to the set (4.6), define

(4.94) uα(x) .=





u
(

x−yα

√
δ3+δ3

1−√δ3

)
, if x ∈]yα −

√
δ3, yα − δ3[,

u
(

x−yα

√
δ3−δ3

1−√δ3

)
, if x ∈]yα + δ3, yα +

√
δ3[,

(exp(−σα(x)rh))u(yα−), if x ∈ [yα − δ3, yα + δ3],

where σα(x) .= σα(x− yα + δ3)/(2δ3).
Let δ3 be small enough such that the sets Iα

.=
[
yα −

√
δ3, yα +

√
δ3

]
, α ∈ Sh, are

pairwise disjoint and do not intersect the set (4.2). Let us define the function

(4.95) u′(x) .=

{
uα, if x ∈ Iα for some α ∈ Sh,

u(x), otherwise.

Clearly u′ ∈ D′h,L′ for some L′ > 0. Moreover ‖ũ − u‖L1 ≤ Cδ3 for some C > 0.
We now apply to u′ the construction of Lemma 4.3 restricted to the complement
of the set (4.6), obtaining ũ. The estimate (V + C1Q)ũ) < δ0 is obtained as in
Lemma s 4.3 and 4.4.

Proof of Lemma 4.6. Choose δ3 > 0, and for every α ∈ Sh define uα as in (4.94).
Let

(4.96) u′(x) .=

{
uα, if x ∈ Iα for some α ∈ S ′,
u(x), otherwise.
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Now u′ is discontinuous only at the big shocks yi, i ∈ §, hence u′ ∈ Dh+1,L′ for
some L′ > 0. We apply the construction of Lemma 4.3 for the (h + 1)-th family
obtaining the required function ũ. The estimates on ‖ũ − u‖L1 , on w-Lip(ũ) and
on (V + C1Q)ũ) follows from the corresponding estimates in Lemma s 4.3 and 4.4.

Proof of Lemma 4.8. Since (t†, θ†) /∈ Θ̃ then the tangent vector is well defined.
We have that (vθ(t̄), ξθ(t̄)) is continuous at θ† as a function of θ and it satisfies
equations (1.34), (1.35) and (1.36). Moreover the interactions between small shocks
do not produce new waves. Hence the conclusion follows from the analysis in [B-
M1].

Proof of Lemma 4.9. Since σθ
α > σ̄(ε0) > 0, the function yθ

α must be continuous
in θ. Indeed, assume that there exists a sequence θµ, θµ → θ̃, such that y

θµ
α →

ȳ 6= yθ̃
α. There exists a constant C > 0 such that

∣∣γ(θ)yθ
α−)− γ(θ)yθ

α+)
∣∣ > Cσ(ε0).

Since γ(θ) is continuous in L1, γ(θµ)x) → γ(θ̃)x) for almost every x. There exist
x− < ȳ < x+, |x±−ȳ| < C min

{
σ̄(ε0)/2L, |ȳ−yθ̃

α|
}

such that γ(θµ)x±) → γ(θ̃)x±).
Since w-Lip

(
γ(θ)

) ≤ L for every θ we obtain that γ(θ) is discontinuous at θ̃. This
gives the contradiction. The proof of the continuity of yθ

i is entirely similar.
The fact that uθ solves a quasilinear system guarantees the continuity in t of yθ

α,
yθ

i , σθ
α, and ]θ

i .
The continuity of σθ

α, as a function of θ, follows from the continuity of γ in L1

and the uniform Lipschitz continuity of the maps γ(θ) for every θ ∈ [0, 1]. Indeed,
assume that σ

θµ
α → σ0 6= σθ̃

α. There exists ε1 > 0 such that the sets

A1
.=

{
(exp σ)rh)(x) : |x− γ(θ̃)yθ̃

α−)| < ε1, |σ − σ0| < ε1

}
,

A2
.=

{
(exp σ)rh)(x) : |x− γ(θ̃)yθ̃

α−)| < ε1, |σ − σθ̃
α| < ε1

}
,

are disjoint. It is clear that γ(θ̃)yθ̃
α+) ∈ A2 and there exists ε2 > 0 such that

B
(
γ(θ̃)yθ̃

α+), ε2

) ⊂ A2 (here B(y, ρ) denotes the ball centered in y with radius ρ).
Since γ(θ) is continuous in L1, there exist x− < yθ̃

α < x+ such that |x− − yθ̃
α| <

ε1/6L, |x+− yθ̃
α| < ε2/6L, γ(θµ)x±) → γ(θ̃)x±). Moreover, we can assume that for

θ sufficiently close to θ̃, |yθ
α − yθ̃

α| < min{ε1/6L, ε2/6L}, and γ(θ) has no shock in
[x−, x+] \ {yθ

α}. From w-Lip
(
γ(θ)

)
< L one has

(4.97)
∣∣γ(θ)x−)− γ(θ)yθ

α−)
∣∣ <

ε1

3
,

∣∣γ(θ)x+)− γ(θ)yθ
α+)

∣∣ <
ε2

3
.

Now

∣∣γ(θµ)yθµ
α −)− γ(θ̃)yθ̃

α−)
∣∣ ≤

∣∣γ(θµ)yθµ
α −)− γ(θµ)x−)

∣∣ + +|γ(θµ)x−)− γ(θ̃)x−)|
+

∣∣γ(θ̃)x−)− γ(θ̃)yθ̃
α−)

∣∣
<ε1,

(4.98)

for µ sufficiently large. In the same way it follows

(4.99)
∣∣γ(θµ)yθµ

α +)− γ(θ̃)yθ̃
α+)

∣∣ < ε2.
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For µ large enough we have |σθµ
α − σ0| < ε1, then from (4.98) it follows that

γ(θµ)yθµ
α +) ∈ A1. On the other hand from (4.99) we have that γ(θµ)yθµ

α +) ∈ A2,
reaching a contradiction.
Finally, the conclusion for the maps θ 7→ ξθ

i , ξθ
α, is provided by Lemma 4.8

Proof of Lemma 4.10. Let [ak, bk] be a connected component of [0, 1] \ J(ε0).
Recall the Remark before Lemma 4.9. From the definition of the ε-accurate Rie-
mann solver in Section 2, if two small h-shocks interact then they simply merge
together, without producing outgoing waves of any other family. This means that,
if yθ

α(t) = yθ
β(t) for some α, β ∈ §, then yθ

α(s) = yθ
β(s) for every s ≥ τ . For every

α, β ∈ § let us define the function

(4.100) fαβ(θ) .= sup
{
t ∈ [0, T ]; yθ

α(t) 6= yθ
β(t)

} ∧ (
t̄ + τ(L)

)
.

The maps fαβ : [ak, bk] → IR are Lipschitz continuous. Indeed, fix θ̃ ∈ [ak, bk] and
t̃

.= fαβ(θ̃). Assume for simplicity that only yθ̃
α and yθ̃

β interact at time t̃. Given
η > 0, there exists ρ > 0 such that, at time t̄ = t̃ − η, the shocks yθ

α and yθ
β are

not coinciding for θ ∈ Iρ
.= [θ̃ − ρ, θ̃ + ρ]. Hence the shifts ξθ

α, ξθ
β , are well defined

and continuous for θ ∈ Iρ. In particular the maps θ 7→ yθ
α, θ 7→ yθ

β , are Lipschitz
continuous on Iρ. Moreover, for every θ ∈ Iρ and t < fαβ(θ):

(4.101) ẏθ
α(t)− ẏθ

β(t) ≥ ẏθ̃
α(t)− ẏθ̃

β(t)− C|θ − θ̃|.
Then, choosing ρ small, for θ sufficiently close to θ̃ the two shocks will merge within
a time

(4.102) t(θ) ≤ t̃ + C|θ − θ̃|,
for some C > 0. Similarly we obtain t̃ ≤ t(θ) + C|θ − θ̃|. The Lipschitz continuity
of fαβ now follows from the compactness of [ak, bk].
The set B(t̄) is contained in ∪α,βf−1

αβ ({t̄}). By the coarea formula (see [E-G]) we
have that

(4.103) +∞ >

∫ 1

0

|f ′αβ(θ)| dθ =
∫ +∞

−∞
H0

(
f−1

αβ ({t})) dt,

where H0 is the counting measure. This implies that H0
(
f−1

αβ ({t})) < +∞ for
almost every t ∈ [0, T ], hence H0

(
B(t)

) ≤ ∑
α,β H0

(
f−1

αβ ({t})) < +∞ for a.e. t.
It remains to consider the case of interaction of a small shock with a shock layer
or with the set (4.6). This can be treated in the same way, using the Lipschitz
continuity of the maps θ → yθ

α and coarea formula.

Proof of Lemma 4.11. Recall (3.45), (3.47). The map θ 7→ (γ(θ))i
x is contin-

uous in L1 and a big shock does not interact with any other shock. Hence, from
Lemma 4.9 the map θ 7→ R

γ(θ)
i (yθ

i ) is continuous except if a small shock enters
or exits a shock layer around a big shock. Therefore, it is continuous for every
θ /∈ B(t′).
Recall (3.34). The map θ 7→ Q(γ(θ)) suffers a discontinuity only when the config-
uration changes. Thus it is continuous for every θ ∈ [0, 1] \ B(t′). We obtain the
conclusion for the map θ 7→ W

γ(θ)
i (yθ

i ).
Recall (3.45), (3.46). The map θ 7→ R

γ(θ)
h (yθ

α) is discontinuous only at points
θ ∈ B(t′). Indeed, the first and the third term in the summation (3.46) vary
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continuously with θ. The second term is discontinuous at θ only if two small shocks
of uθ interact at time t′. Moreover, the fourth term is discontinuous at θ only if a
small shock enters or exits a shock layer around a big shock. Therefore, the first
part of the lemma is proved.

Next, for a fixed x, the map θ 7→ W
γ(θ)
j (x) may suffer a discontinuity in θ only

if either x = yθ
i , yθ

i ± δ2, for some i ∈ § or x = yθ
α for some α ∈ §′. Thus the first

conclusion holds. Let |§| denote the cardinality of the set §. From (3.46) we have

(4.104)
∣∣Rγ(θ)

i (x)
∣∣ ≤ V

(
γ(θ)

)
+ 2ε|§|,

while from (3.47) and w-Lip
(
γ(θ)

)
< L

(4.105)
∣∣Rγ(θ)

i (yi)
∣∣ ≤ V

(
γ(θ)

)
+ 2εnLδ2,

so that

(4.106)
∣∣W γ(θ)

i (x)
∣∣ ≤ 1 + κ1

(
δ0 + ε)(2|§|+ 2nLδ2)

)
+ κ1κ2δ0.

Therefore, W
γ(θ)
l has values in L∞. The continuity in L1

loc follows from the first
part and Lebesgue dominated convergence theorem.

Proof of Lemma 4.12. The vector vθ satisfies the semilinear system (1.34),
with initial data in L∞ after each restarting time. Since there is no interaction
of big shocks and the interactions of small shocks do not produce new waves, the
conclusion follows from [B-M1].

Proof of Lemma 4.13. The conclusion (i) is obvious and (ii) follows from
Lemma 4.9. From the continuity in L1 of the map θ 7→ (γ(θ))i

x, we obtain (iii).
Moreover, (v) follows directly from Lemma 4.11.
From Lemma 4.12 and the piecewise Lipschitz continuity of γ(θ), it follows that the
map (θ, x) 7→ γ(θ)x) is Lipschitz continuous outside the jumps. Hence (iv) holds.
Since all jumps in the functions γ(θ), θ ∈ [θk, θk+1] are contained in Jk, by the
definition of generalized tangent vector we have
∫ θk+1

θk

∫

IR\Jk

∣∣∣∣
γ(θk+1)x)− γ(θk)x)

θk+1 − θk
− vθ(x)

∣∣∣∣ dx dθ ≤
∫ θk+1

θk

∫

IR\Jk

∫ θk+1

θk

∣∣∣∣∣
vθ′(x)− vθ(x)

θk+1 − θk

∣∣∣∣∣ dθ′ dx dθ

≤ (θk+1 − θk) · sup
θ,θ′∈[θk,θk+1]

∫

IR\Jk

∣∣vθ′(x)− vθ(x)
∣∣ dx.

Therefore, (vi) follows from the L1-continuity of the map θ 7→ vθ.
Finally, from Lemma s 4.9 and 4.11, we obtain (vii).

Proof of Lemma 4.14. The proof of (4.41) follows directly from Lemma 4.3.
Indeed, the estimate (4.87) depends only on the weighted Lipschitz constant L and
on the choice of the step δ4, and hence it is uniform in θ.
From (4.88) and (4.89) we have

(4.107) ũx = rh(U)[uh
x]+ +

∑

j 6=h

rj(U)uj
x + O(δ4).
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This implies

ũj
x =

〈
lj(ũ), ũx

〉
=

=
〈
lj(ũ), rh(ũ)[uh

x]+ +
∑

j 6=h

rj(ũ)uj
x

〉
+

〈
lj(ũ), (rh(U)− rh(ũ))[uh

x]+
〉

+
∑

j 6=h

〈
lj(ũ),

(
rj(U)− rj(ũ)

)
uj

x

〉
+ O(δ4).

For j 6= h, the first term of the last expression is uj
x, hence

(4.108) |uj
x − ũj

x| ≤ CL|ũ− U |+ Cδ4.

Recalling that γ(θ) and ¶(
γ(θ)

)
coincide outside [−M0,M0], (4.42) follows.

The estimate (4.43) follows from the analogous one in Lemma 4.3.

Proof Lemma 4.15. On the set A we have

∣∣∣¶
(
γ(θk)

)
(x)− γ̃(θ)x)

∣∣∣ ≤C
∣∣∣cθ

kΦ
(¶(γ(θk))(x)

)

+ (1− cθ
k)Φ

(¶(γ(θk+1))(x)
)− Φ

(¶(γ(θk))(x)
)∣∣∣

≤C
∣∣∣Φ

(¶(γ(θk+1))(x)
)− Φ

(¶(γ(θk))(x)
)∣∣∣

≤C
{∣∣¶(γ(θk+1))(x)− γ(θk+1)x)

∣∣

+
∣∣¶(γ(θk))(x)− γ(θk)x)

∣∣ +
∣∣γ(θk+1)x)− γ(θk)x)

∣∣
}

≤3Cε0,

(4.109)

where cθ
k

.= (θk+1 − θ)/(θk+1 − θk). The last inequality follows from (4.41) and
(4.32). From (4.109), using again (4.41) and (4.32) one obtains
∣∣γ(θ)x)− γ̃(θ)x)

∣∣ ≤
∣∣γ(θ)x)− γ(θk)x)

∣∣ +
∣∣γ(θk)x)− ¶(γ(θk))(x)

∣∣ +
∣∣¶(γ(θk))(x)− γ̃(θ)x)

∣∣
≤Cε0,

which proves the lemma.

Proof Lemma 4.16. Defining

(4.110) y(θ, x) .= cθ
kΦ

(¶(γ(θk))(x)
)

+ (1− cθ
k)Φ

(¶(γ(θk+1))(x)
)
,

we have

(
γ̃(θ)

)
x
(x) =DΦ−1(y(θ, x)) ·

[
cθ
kDΦ

(¶(γ(θk))(x)
) · (¶(γ(θk))

)
x
(x)

+ (1− cθ
k)DΦ

(¶(γ(θk+1))(x)
) · (¶(γ(θk+1))

)
x
(x)

]
.
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Hence, from the proof of Lemma 4.15 it follows

∣∣∣
(
γ̃(θ)

)j

x
(x)− (

γ(θ)
)j

x
(x)

∣∣∣ ≤

≤
∣∣∣
(
cθ
k)

(¶(γ(θk))
)j

x
(x) + (1− cθ

k)
(¶(γ(θk+1))

)j

x
(x)− (γ(θ))j

x(x)
)∣∣∣

+ C
∣∣∣DΦ−1(y(θ, x))−DΦ−1

[
Φ

(¶(γ(θk))(x)
)]∣∣∣

+ C
∣∣∣DΦ−1(y(θ, x))−DΦ−1

[
Φ

(¶(γ(θk+1))(x)
)]∣∣∣

+ C
(∣∣γ̃(θ)x)− ¶(γ(θk))(x)

∣∣ +
∣∣γ̃(θ)x)− ¶(γ(θk+1))(x)

∣∣
)

+ C
∣∣γ̃(θ)x)− γ(θ)x)

∣∣

≤cθ
k

∣∣∣
(¶(γ(θk))

)j

x
(x)− (γ(θk))j

x(x)
∣∣∣

+ (1− cθ
k)

∣∣∣
(¶(γ(θk+1))

)j

x
(x)− (γ(θk+1))j

x(x)
∣∣∣

+ cθ
k

∣∣(γ(θk))j
x(x)− (γ(θ))j

x(x)
∣∣ + (1− cθ

k)
∣∣(γ(θk+1))j

x(x)− (γ(θ))j
x(x)

∣∣
+ C

∣∣¶(γ(θk))(x)− ¶(γ(θk+1))(x)
∣∣ + Cε0

.=I1(x) + I2(x) + I3(x) + I4(x) + I5(x) + Cε0.

(4.111)

In the following we use ‖ · ‖L1 to indicate the L1 norm restricted to A. From (4.42)
of Lemma 4.14 we have

(4.112) ‖I1‖L1 + ‖I2‖L1 ≤ ε0.

Using (4.31) and Lemma 4.13 one obtains

(4.113) ‖I3‖L1 + ‖I4‖L1 ≤ ε0.

while, by Lemmas 4.14 and 4.13 one gets

(4.114) ‖I5‖L1 ≤ C‖γ(θk)− γ(θk+1)‖L1 + 2ε0 ≤ Cε0.

Proof of Lemma 4.17. We fix k /∈ K and θ ∈ [θk, θk+1]. Let us denote u
.= γ(θ),

ũ
.= γ̃(θ), and let §′, §̃′, denote respectively the set of small h-shocks of u and ũ.

Moreover, let yα, α ∈ §′, (resp. ỹα, α ∈ §̃′) be the locations of these shocks, and σα

(resp. σ̃α) their strengths. By construction, we clearly have §′ ⊂ §̃′. For notational
convenience, we let §′ = §̃′ defining σα = 0, yα = ỹα if α ∈ §̃′ \ §′. Notice that, for
every α, we have

(4.115) |σα − σ̃α| < Cδ4.

Recall (3.45), (3.46) and (3.34). We first consider the terms Ru
j . The third ad-

dendum of (3.46) is clearly the same for u and ũ. While, if yu
i 6= yũ

i , then the
last addendum is different for some x. However, this can happen only on a set
whose measure is bounded by 2 supθ∈[θk,θk+1]

|yθ
i − ỹθ

i | ≤ Cε0δ3 (here ỹθ
i denote the

locations of big shocks )of γ̃(θ) and the last inequality is guaranteed by (4.30) of
Lemma 4.13).
Let us now consider the first two terms of (3.46). If j = h then, from Lemma 4.16,
we obtain

(4.116) |Ru
h(x)−Rũ

h(x)| ≤ C(ε0 + δ4).
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Indeed, in this case, the sum in the second term is restricted to the set §.
Assume now j < h, being similar the other case. Let us define the set Z(x) .={

y ∈ ∪k,i[y−k,i, y
+
k,i]; y < x

}
. We have

(4.117)
∫

Z(x)

∣∣|ũj
x| − |uj

x|
∣∣ dy < C(δ3 + ε0).

Recall the construction in the proof of Lemma 4.3 and consider an interval [xl
r, x

l
r+1]

to the left of x. Let β = β(l, r) be such that ỹβ = xl
r+1. From Lemma 4.3 we deduce

that

(4.118)

∣∣∣∣∣
∫ xl

r+1

xl
r

(
)[uh

x]− + σ̃β − σβ

)
dx

∣∣∣∣∣ ≤ Cδ4.

We remark that there is at most one couple (l, r) such that x ∈]xl
r, x

l
r+1[, and the

corresponding integral term is estimated by Lδ4. For the h-waves, summing over
all (l, r) and using the estimate of Lemma 4.16, we obtain
(4.119)∣∣∣∣∣∣

∫ x

−∞

∣∣ũj
x(y)

∣∣ dy +
∑

α∈§̃′, ỹα<x

|σ̃α| −
∫ x

−∞

∣∣uj
x(y)

∣∣ dy −
∑

α∈§′, yα<x

|σα|
∣∣∣∣∣∣
≤ Cε0.

Using again Lemma 4.16, we can treat the first term of (3.46) for the other family
of waves, obtaining

(4.120)
∣∣∣Rγ(θk)

j (x)−R
γ̃(θk)
j (x)

∣∣∣ < C(δ3 + δ4 + ε0).

We now work toward an estimate on Q. We use again the notations of Lemma 4.3.
Let us consider two intervals [xl

r, x
l
r+1], [xm

s , xm
s+1] satisfying xl

r+1 ≤ xm
s . Let

β = β(l, r) be such that ỹβ = xl
r+1. Let us define

(4.121) E
.=

∫ xl
r+1

xl
r

∣∣uh
x(y)

∣∣ dy

∫ xm
s+1

xm
s

∣∣uj
x(y)

∣∣ dy + |σβ |
∫ xm

s+1

xm
s

|uj
x(y)| dy,

and let Ẽ be the corresponding quantity for ũ. By Lemma 4.16, and the above
arguments, we have the estimates

I1
.=

∫ xl
r+1

xl
r

∣∣uh
x(y)

∣∣ dy

∣∣∣∣∣
∫ xm

s+1

xm
s

(∣∣uj
x(y)

∣∣− ∣∣ũj
x(y)

∣∣
)

dy

∣∣∣∣∣ < C(ε0 + δ4)
∫ xl

r+1

xl
r

∣∣uh
x(y)

∣∣ dy,

I2
.=

∣∣∣∣∣
∫ xl

r+1

xl
r

∣∣∣
∣∣uh

x(y)
∣∣− ∣∣ũh

x(y)
∣∣
∣∣∣ dy

∫ xm
s+1

xm
s

∣∣uj
x(y)

∣∣ dy + |σβ |
∫ xm

s+1

xm
s

∣∣uj
x(y)

∣∣ dy

∣∣∣∣∣ ≤ C(ε0 + δ4)
∫ xm

s+1

xm
s

∣∣uj
x(y)

∣∣ dy,

I3
.= |σβ |

∫ xm
s+1

xm
s

∣∣∣
∣∣uj

x(y)
∣∣− ∣∣ũj

x(y)
∣∣
∣∣∣ dy < Cδ0(ε0 + δ4)|σβ |.

We thus obtain

(4.122) |E − Ẽ| ≤ I1 + I2 + I3 ≤ C(ε0 + δ4)T.V.{u, [xl
r, x

l
r+1] ∪ [xm

s , xm
s+1]}.

We then sum over all pairs of intervals.
The case of approaching j-waves and k-waves, with j, k 6= h is easily treated using
Lemma 4.16. Summing over all the intervals we can estimate the first two terms in
the expression (3.34) for Q.
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If α, β ∈ § ∪ §′, by (4.38) of Lemma 4.13, one obtains

(4.123)
∣∣∣
∣∣σ̃θ

ασ̃θ
β

∣∣−
∣∣σθ

ασθ
β

∣∣
∣∣∣ ≤ δ0

(|σ̃θ
α−)σθ

α|+ |σ̃θ
β − σθ

β |
) ≤ 2δ0ε0.

Again the other terms are estimated using Lemma 4.16 and (4.115). We thus obtain

(4.124)
∣∣∣Q

(
γ(θ)

)−Q
(
γ̃(θ)

)∣∣∣ < C(ε0 + δ4).

Recalling (3.46), from the estimates on Ru
j and Q the conclusion follows.

Proof Lemma 4.18. Fix k /∈ K, consider the set Ak
.=

(
[−M0,M0]× [θk, θk+1]

)∩
(A \ Jk) (see (iv) of Lemma 4.13 for the definition of Jk) and let ṽ be the tangent
vector associated to γ̃ on Ak. We have
(4.125)

ṽθ = DΦ−1
(
)cθ

kΦ
(¶(γ(θk))

)
+(1−cθ

k)Φ
(
)¶(γ(θk+1))

))·
(

Φ
(¶(γ(θk))

)− Φ
(
)¶(γ(θk+1))

)

θk+1 − θk

)

on the set Ak. For every i, we have to estimate the quantity∣∣∣∣
∫

Ak

{∣∣〈lj(γ(θ)), vθ〉
∣∣W γ(θ)

j −
∣∣〈lj(γ̃(θ)), ṽθ〉

∣∣W γ̃(θ)
j

}
dx dθ

∣∣∣∣
∣∣∣∣
∫

Ak

∣∣〈lj(γ(θ)), vθ〉
∣∣(W γ(θ)

j −W
γ̃(θ)
j

)
dx dθ

∣∣∣∣

+
∣∣∣∣
∫

Ak

(|〈lj(γ(θ)), vθ〉| − |〈lj(γ̃(θ)), vθ〉|)W γ̃(θ)
j dx dθ

∣∣∣∣

+
∣∣∣∣
∫

Ak

(|〈lj(γ̃(θ)), vθ〉| − |〈lj(γ̃(θ)), ṽθ〉|)W γ̃(θ)
j dx dθ

∣∣∣∣
.=I1 + I2 + I3.

Let us first prove that

(4.126)
∫

Ak

∣∣∣∣
γ(θk+1)x)− γ(θk)x)

θk+1 − θk
− ṽθ(x)

∣∣∣∣ dx dθ < C(ε0 + δ4)θk+1 − θk).

From (4.110), we have
∫

Ak

∣∣∣∣
γ(θk+1)x)− γ(θk)x)

θk+1 − θk
− ṽθ(x)

∣∣∣∣ dx dθ

=
∫

Ak

∣∣∣∣∣
γ(θk+1)x)− γ(θk)x)

θk+1 − θk
−DΦ−1(y(θ, x)) ·

(
Φ

(¶(γ(θk))(x)
)− Φ

(¶(γ(θk+1))(x)
)

θk+1 − θk

)∣∣∣∣∣ dx dθ

≤
∫

Ak

∣∣γ(θk+1)x)− ¶(γ(θk+1))(x)
∣∣ +

∣∣γ(θk)x)− ¶(γ(θk))(x)
∣∣

|θk+1 − θk| dx dθ

+ C‖vθ‖L∞
∫

Ak

∣∣∣DΦ−1(y(θ, x))−DΦ−1 (Φ (¶(γ(θk))(x)))
∣∣∣ dx dθ

+ C‖vθ‖L∞
∫

Ak

∣∣∣DΦ−1(y(θ, x))−DΦ−1 (Φ (¶(γ(θk+1))(x)))
∣∣∣ dx dθ + Cε0‖vθ‖L∞ .

The first integral is estimated by Cε0(θk+1 − θk), using (4.41). The integrands of
the last two integrals are estimated, using (4.41) and (4.32) of Lemma 4.13, by
(4.127)
C

∣∣∣¶
(
γ(θk)

)
(x)− ¶(

γ(θk+1)
)
(x)

∣∣∣ ≤ Cε0 + C
∣∣γ(θk)x)− γ(θk+1)x)

∣∣ ≤ C(ε0 + δ4).

Hence the last two integrals are estimated by C M0 (ε0 + δ4)θk+1 − θk).
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From Lemma 4.17 the following inequality holds:

(4.128)
∣∣∣∣
∫

Ak

[
W

γ(θ)
j (x)−W

γ̃(θ)
j (x)

]
dx dθ

∣∣∣∣ < C(ε0 + δ3 + δ4)θk+1 − θk).

Now, from Lemma 4.12 and (4.128) one has
(4.129)

I1 ≤ C‖vθ‖L∞
∣∣∣∣
∫

Ak

W
γ(θ)
j (x)−W

γ̃(θ)
j (x) dx dθ

∣∣∣∣ < C‖vθ‖L∞(ε0+δ3+δ4)θk+1−θk).

From Lemma 4.15

I2 ≤C

∫

Ak

(
|〈lj(γ(θ)), vθ

〉− 〈
lj(γ̃(θ)), vθ

〉|
)

dx dθ

≤C‖vθ‖L∞
∫

Ak

∣∣γ(θ)x)− γ̃(θ)x)
∣∣ dx dθ <

<C‖vθ‖L∞(ε0 + δ4)θk+1 − θk).

Finally, from (4.35) of Lemma 4.13 and (4.126) we get

I3 ≤C

∫

Ak

|lj(γ̃(θ))| |vθ − ṽθ| dx dθ ≤

≤C

∫

Ak

∣∣∣∣vθ(x)− γ(θk+1)x)− γ(θk+1)
θk+1 − θk

∣∣∣∣ dx dθ + C

∫

Ak

∣∣∣∣
γ(θk+1)x)− γ(θk+1)

θk+1 − θk
− ṽθ(x)

∣∣∣∣ dx dθ <

<C(ε0 + δ4)θk+1 − θk).

Now, since meas(Jk) ≤ ε0δ3(θk+1− θk), summing over k we obtain the conclusion.

Proof of Lemma 4.19. From the proofs of Lemma 4.3 and Lemma 4.14 we obtain,
for every i = 1, . . . , n and every k,

(4.130)
∣∣∣
(
γ̃(θk)

)j

x
− (

γ(θk)
)j

x

∣∣∣ ≤ C(ε0 + δ4),
∣∣∣W γ̃(θk)

j −W
γ(θk)
j

∣∣∣ ≤ C(ε0 + δ4).

These estimates imply
∣∣∣∣∣
∣∣(γ̃(θk))j

x(x)
∣∣eβW

γ̃(θk)
j (x)−

∣∣(γ(θk))j
x(x)

∣∣eβW
γ(θk)
j (x)

∣∣∣∣∣

≤C
∣∣(γ̃(θk))j

x(x)− (γ(θk))j
x(x)

∣∣ + Ceβ
∣∣∣W γ̃(θk)

j (x)−W
γ(θk)
j (x)

∣∣∣

≤C(ε0 + δ4).

From (4.45), on the set A, (γ̃(θ))x(x) is expressed as in Lemma 4.16. We can
estimate (γ̃(θ))x as in (4.111) obtaining

∣∣(γ̃(θ))x(x)
∣∣ ≤

∣∣∣cθ
k [¶(γ(θk))]x (x) + (1− cθ

k) [¶(γ(θk+1))]x (x)
∣∣∣

+ C
∣∣DΦ−1(y(θ, x))−DΦ−1(Φ

(¶(γ(θk))(x))
)∣∣

+ C
∣∣DΦ−1(y(θ, x))−DΦ−1Φ

(¶(γ(θk+1))(x)
)∣∣

≤cθ
k

∣∣(γ(θk))x(x)
∣∣ + (1− cθ

k)
∣∣(γ(θk+1))x(x)

∣∣ + C(ε0 + δ4).

(4.131)
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Let us now first consider the points x for which it holds the conclusion of Lemma 4.17.
Then, by Lemma 4.17, Lemma 4.13(v) and (4.130) we have

∣∣∣W γ̃(θ)
j (x)−W

γ̃(θk+1)
j (x)

∣∣∣ ≤
∣∣∣W γ̃(θ)

j (x)−W
γ(θ)
j (x)

∣∣∣

+
∣∣∣W γ(θ)

j (x)−W
γ(θk)
j (x)

∣∣∣ +
∣∣∣W γ(θk)

j (x)−W
γ̃(θk+1)
j (x)

∣∣∣
≤C(ε0 + δ4).

(4.132)

Hence by Lemma 4.13, (4.131) and (4.132) we obtain∣∣∣∣∣
∣∣(γ̃(θ))j

x(x)
∣∣eβW

γ̃(θ)
j (x)−cθ

k

∣∣(γ̃(θk))j
x(x)

∣∣eβW
γ̃(θk)
j (x) − (1− cθ

k)
∣∣(γ̃(θk+1))j

x(x)
∣∣eβW

γ̃(θk+1)
j (x)

∣∣∣∣∣

≤C

{
cθ
k

∣∣(γ̃(θk))j
x(x)

∣∣eβ
(

W
γ̃(θ)
j (x)−W

γ̃(θk)
j (x)

)

+ (1− cθ
k)

∣∣(γ̃(θk+1))j
x(x)

∣∣eβ
(

W
γ̃(θ)
j (x)−W

γ̃(θk+1)
j (x)

)}
+ C(ε0 + δ4)

≤C(ε0 + δ4).

Therefore we obtain the conclusion.
Consider now a point x for which the conclusion of Lemma 4.17 does not holds.
From the proof of Lemma 4.17, these are precisely the points x that lie inside a
shock layer of a big shock for γ(θ) but not for γ̃(θ). We can assume, for example,
that yθ

i − δ2 < x < ỹθ
i − δ2 for some i ∈ § (here )ỹθ

i , i ∈ §, denote the positions of
big socks of γ̃(θ)). In this case

(4.133) W
γ̃(θ)
j (x) ≥ W

γ(θ)
j (x) + ε− C(ε0 + δ4),

and the conclusion may fail. However, it is sufficient to modify the values of γ̃(θk)
in such a way that near the points yθ

i ±δ2, i ∈ §, the quantities |(γ(x))i
x| are smaller

then L/ exp[βε]. This can be done shifting some waves as in Lemma 4.3 or as
in Lemma 4.4. Since, by Lemma 4.13 (ii), the waves that should be shifted are
estimated by Lε0δ3, all the conclusions of the previous Lemma s still hold.

Proof Lemma 4.20. Fix k such ]θk, θk+1[⊂ K. We assume that there exists
a unique θ′ ∈ B(t′) such that θ′ ∈]θk, θk+1[. We distinguish two cases: a) θ′ ∈
Θ b) θ′ ∈ B(t′) \ Θ. First consider the case a). We possibly have some small

shocks yθ
α whose strengths go to zero as θ tends to θ′. These come precisely from

the interpolation (4.45) implemented at some restarting before t′. Indeed, it may
happen that γ(θk) presents a shock at a point where γ(θk+1) has no shock, so that
the strength of this shock tends to zero as θ tends to θk+1. Let §̃ ⊂ §′ be the set
of such shocks. If we neglect these small shocks, the estimates of Lemma 4.13 are
still valid separately on the two intervals ]θk, θ′[, ]θ′, θk+1[. On these two intervals,
we can perform the same construction used on the intervals contained in [0, 1] \ K,
neglecting the shocks yθ

α, α ∈ §̃. Possibly shrinking ε0, we can let |σθ
α|, α ∈ §̃, be

arbitrarily small obtaining the conclusion.
Now consider the case b). The case of interaction of a small shock with a shock

layer or with the set (4.6), can be easily treated following the construction of γ̃ on
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[0, 1] \ K. Without loss of generality we can assume that there is a simple shock
bifurcation at θ′. There exist α, β ∈ §′ such that ỹθk

α < ỹθk

β , ỹ
θk+1
α = ỹ

θk+1
β . We first

modify γ̃(θk), interpolating linearly the values γ̃(θk; ỹθk
α +), γ̃(θk; ỹθk

β −) on the set
[ỹθk

α , ỹθk

β ]. Let us define the curve γ1 as follows. Let d
.= ỹθk

β − ỹθk
α . For θ ∈ [0, 1[

we set
(4.134)

γ1(θ;x) .=

{
γ̃(θk; x) if x ∈ ]−∞, ỹθk

α [ ∪ ]ỹθk
α + θd, +∞[ ,

(1− c
θd )γ̃(θk)ỹθk

α ) + c
θd (exp(σ̃θk

α rh)(γ̃(θk; ỹθk
α + θd)) if x = ỹθk

α + c, c ∈ [0, θd],

while for θ = 1 we set
(4.135)

γ1(1; x) .=

{
γ̃(θk; x), if x ∈ ]−∞, ỹθk

α [ ∪ ]ỹθk

β , +∞[ ,
(1− c

d )γ̃(θk)ỹθk
α ) + c

d exp((σ̃θk
α +)σ̃θk

β )rh)(γ̃(θk; ỹθk

β +)) if x = ỹθk
α + c, c ∈ [0, d].

Since we shift a shock of strength σ̃θk
α for a length d, and the waves in [ỹθk

α , ỹθk

β ] are
estimated by (L + Cε0)d, we obtain

(4.136) ‖γ1‖? ≤ Cd(σ̃θk
α + L + ε0).

Now we have that d = O(ε0), hence ‖γ1‖? = O(ε0). Moreover, reasoning as in
Lemma 4.3, it follows that γ1(θ) ∈ D∗h,L+Cε0

, and it is easy to check that γ1 is a
regular path.
Since γ1(1) and γ̃(θk+1) have the same number of distinct shocks, then they can be
joined, using the construction implemented on ([0, 1]\K)× [−M0,M0], by a regular
path whose weighted length is still O(ε0). The other conclusions are easily verified.

Proof of Claim 1. Notice that the set

(4.137) ZZ
.=

( ⋃

k/∈K

[θk, θk+1]× [−M0,M0]
)
\ A

can be chosen of arbitrarily small measure, and the curves γk of Lemma 4.20 of
arbitrarily small length, letting δ3 and ε0 small. Moreover, for the set A we have
the estimate given in Lemma 4.18. Now, from Lemma 4.13(vii), for every α ∈ §

∣∣∣∣∣
∫ θk+1

θk

ξθ
ασθ

αW
γ(θ)
h (yθ

α)dθ −
∫ θk+1

θk

ξ̃θ
ασ̃θ

αW
γ̃(θ)
h (ỹθ

α)dθ

∣∣∣∣∣ ≤

≤ ε0(θk+1 − θk) + C

∫ θk+1

θk

∣∣∣W γ(θk)
h (yθk

α )−W
γ̃(θ)
h (ỹθ

α)
∣∣∣ dθ.

Reasoning as in the proof of Lemma 4.17 and using Lemma 4.13(v), we obtain

(4.138)
∣∣∣W γ(θk)

h (yθk
α )−W

γ̃(θ)
h (ỹθ

α)
∣∣∣ ≤ C(ε0 + δ4).

The argument can be repeated for every i ∈ §. Notice that the new small shocks of
γ̃ are not shifted, hence they give no contribution to the norm of the tangent vector
to γ̃. Thus, from (3.44) we obtain (4.21). The estimate (4.22) is easily verified
using Lemma s 4.13 and 4.20.
The curve γ̃ is piecewise regular. Indeed, on the sets [θk, θk+1], k /∈ K, it is defined
via suitable interpolations. Hence, γ̃ is regular on ]θk, θk+1[, k /∈ K. It may happen
that (ṽ, ξ̃) is not defined at some θk, because the strengths of some small shocks
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(generated by ¶) may tend to zero letting the set §′ be discontinuous at θk. Since
there is a finite number of θk’s, the conclusion follows from Lemma 4.20.

Proof of Claim 2. From Lemma 4.19 the estimate (4.46) holds on the set A.
Consider now the sets [y−k,i, y

+
k,i] and recall the definition of y∗k,i (in the same way

we can )treat the sets near the small shocks). From (4.30) and (4.32) of Lemma 4.13,
we have that:
(4.139)∣∣γ̃(θ, y−k,i)−γ̃(θ, y∗k,i−)

∣∣ ≤ L(δ3+ε0δ3)+Cε0δ3,
∣∣γ̃(θ, y∗k,i+)−γ̃(y+

k,i)
∣∣ ≤ L(δ3+ε0δ3)+Cε0δ3.

Moreover, γ̃ is defined by linear interpolations on the intervals [y−k,i, ỹ
θ
i [ and ]ỹθ

i , y+
k,i],

whose length are greater than δ3. We thus obtain the estimate

(4.140)
∣∣(γ̃(θ))x

∣∣ ≤ L(δ3 + ε0δ3) + Cε0δ3

δ3
= L + (L + C)ε0.

Choosing ε0 sufficiently small the estimate (4.46) is achieved. Finally, on the set
K × [−M0,M0], the estimate is guaranteed by Lemma 4.20.
Let us now consider the estimate (4.56). For ε0 sufficiently small, the estimate (4.43)
ensures the conclusion for every θk. Consider first θ ∈ [θk, θk+1] for some k /∈ K.
From the proof of Lemma 4.19, it follows that V (γ̃(θ)) ≤ V (γ(θ))+C(ε0 +δ4). The
estimate for Q has been computed in Lemma 4.17. Finally, the conclusion follows
by Lemma 4.20 for θ ∈ K.
From the proof of Lemma 4.3, we have that

(4.141) (γ̃(θk))h
x exp[βW

γ̃(θk)
h ] ≥ −Cδ4

outside the set (4.6). Following the proof of Lemma s 4.16 and 4.19, we obtain

(4.142) (γ̃(θ))h
x exp[βW

γ̃(θ)
h ] ≥ −C(δ4 + ε0).

Hence, using (4.56), (4.57), we conclude that, for δ4 and ε0 sufficiently small, γ̃(θ) ∈
D∗h,L+1/N .





CHAPTER 5

Proof of Proposition 5

Let us briefly summarize what has been accomplished in the two previous sec-
tions. Given two states u−, u+, our aim is to construct a Lipschitz continuous semi-
group of ε-solutions of (1.1) whose domain contains all suitably small BV pertur-
bations of the Riemann data (u−, u+). Toward this goal, for any given δ1, δ2, δ > 0
we proved that:

(i) There exists a domain Dδ2 consisting of piecewise Lipschitz continuous
functions u with u(−∞) = u−, u(+∞) = u+, Q(u) < ε2. As δ2 → 0, the
domains Dδ2 become dense on the set D in (2.8).

(ii) For every initial data ū ∈ Dδ2 , there exists a δ-accurate approximate
ε-solution u of (1.1), taking values inside Dδ2 .

(iii) Let u, u′ be any two δ-accurate approximations and let γ0 : [0, 1] 7→ Dδ2

be a Piecewise Regular Path joining u(0) with u′(0). Then for every t > 0
there exists a path γt : [0, 1] 7→ Dδ2 joining u(t) with u′(t). The weighted
length of this new path, in the metric determined by (1.39), (3.44), satisfies

(5.1) ‖γt‖? ≤ ‖γ0‖? + C5tδ

for some constant C5.

We can now complete the proof of Proposition 5. Choose a countable dense
subset

(5.2) D∗ .=
{
ūm; m ≥ 1

} ⊂ D
of piecewise Lipschitz initial data. For every m, ν ≥ 1, set δ1 = δ2 = δ = 1/ν, and
let (um,ν)ν≥1 be a corresponding sequence of approximate ε-solutions such that

(5.3) um,ν : [0,∞[ 7→ D1/ν , lim
ν→∞

um,ν(0) = ūm.

Relying on a compactness argument, by possibly taking a subsequence we can
assume

(5.4) lim
ν→∞

um,ν(t) = um(t) ∀t ≥ 0, m ≥ 1,

for some functions um : [0,∞[ 7→ D.
We claim that the flow Stūm

.= um(t) can be extended by continuity to a
uniformly Lipschitz semigroup defined on the whole set D. As in (1.40), consider
the distance d?

ν on D1/ν defined by
(5.5)
d?

ν
.= inf

{∥∥γ
∥∥

?
; γ : [0, 1] 7→ D1/ν is a Piecewise Regular Path connecting u with u′

}
.

75
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Because of the particular choice of the metric (3.44), it is clear that all these dis-
tances are uniformly equivalent to the L1 distance:

(5.6)
1
C6
‖u− u′‖

L1 ≤ d?
ν(u, u′) ≤ C6‖u− u′‖

L1 ∀u, u′ ∈ D1/ν , ν ≥ 1,

for some constant C6 independent of ν. Observe that (5.1) implies

(5.7) d?
ν

(
um,ν(t), un,ν(t)

) ≤ d?
ν

(
um,ν(0), un,ν(0)

)
+ C5tν

−1.

By the previous construction, for any m,n ≥ 1 and ε0 > 0, we can now choose
ν > 1/ε0 so large that

∥∥um(t)− un(t)
∥∥
L1 ≤

∥∥um,ν(t)− un,ν(t)
∥∥
L1 + ε0

≤ C6d
?
ν

(
um,ν(t), un,ν(t)

)
+ ε0

≤ C6

{
d?

ν

(
um,ν(0), un,ν(0)

)
+ C5tν

−1
}

+ ε0

≤ C6

{
C6

(
)
∥∥ūm − ūn

∥∥
L1 + ε0

)
+ C5tε0

}
+ ε0

≤ L
∥∥ūm − ūn

∥∥
L1 + C ′(t + 1)ε0,

(5.8)

with L = C2
6 and a suitable constant C ′. Since ε0 was arbitrary, (5.8) implies

(5.9)
∥∥Stūm − Stūn

∥∥
L1 ≤ L‖ūm − ūn‖L1.

The uniform Lipschitz continuity w.r.t. time is clear. By (5.9) the flow can thus be
extended by continuity to a globally Lipschitz semigroup S : D × [0,∞[ 7→ D.

It remains to prove that S behaves correctly on the set of piecewise constant
initial data. Let ū ∈ D be piecewise constant, say with jumps at the points y1 <
. . . < yN , and fix any positive time

(5.10) τ < min
α

yα+1 − yα

2
.

For t ∈ [0, τ ], call u(t) the ε-solution of (1.1) with initial data u(0) = ū, obtained by
piecing together the ε-solutions of the Riemann problems generated by the jumps
of ū. We need to show that

(5.11) Stū = u(t) ∀t ∈ [0, τ ].

Recalling that D∗ in (5.2) is a countable dense subset of D, one can extract a
sequence of functions ū` ∈ D∗ such that ū` → ū. We now have

(5.12) Stū = lim
`→∞

Stū`.

Because of (5.9), the limit in (5.12) is well defined and does not depend on the
particular choice of the sequence ū`.

Let ε0 > 0 be given. By the previous construction, there exists a sequence
of integers ν(`) → ∞ and a sequence of approximations ũ` with the following
properties. For each ` ≥ 1, the function ũ` is a δ-accurate approximate ε-solution
of (1.1), constructed as in the previous sections, with δ1 = δ2 = δ = ν(`)−1.
Moreover

(5.13)
∥∥ũ`(t)− Stū`

∥∥
L1 ≤ ε0 t ∈ [0, τ ].
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We claim that there exists a second sequence of approximations, say û`, with the
following properties. For each ` ≥ 1, the function û` is a δ-accurate approximate ε-
solution of (1.1), constructed as in the previous section, with δ1 = δ2 = δ = ν(`)−1.
Moreover,

(5.14) lim
`→∞

∥∥û`(t)− u(t)
∥∥
L1 = 0 ∀t ∈ [0, τ ].

The identity (5.11) is now an immediate consequence of (5.13), (5.14) and the fact
that ε0 was arbitrary. Indeed,
∥∥Stū− u(t)

∥∥
L1 ≤ lim sup

`→∞

{∥∥Stū` − ũ`

∥∥
L1 +

∥∥ũ`(t)− û`(t)
∥∥
L1 +

∥∥û`(t)− u(t)
∥∥
L1

}

≤ ε0 + lim sup
`→∞

∥∥ũ`(t)− û`(t)
∥∥
L1

≤ ε0 + C6 · lim sup
`→∞

d?
ν(`)

(
ũ`(t), û`(t)

)

≤ ε0 + C6 · lim sup
`→∞

{
d?

ν(`)

(
ũ`(0), û`(0)

)
+ C5tν(`)−1

}

≤ ε0.

We are thus left with the task of constructing the approximations û` satisfying
(5.14). By an approximation argument, we can restrict the analysis to the case
where each jump in ū determines a single wave. More precisely, for each α =
1, . . . , N there exists a family kα ∈ {1, . . . , n} such that the states u− = ū(yα−),
u+ = ū(yα+) are connected by a single kα-wave. Recalling the notation (2.2), this
means

(5.15) u+ = Ψε
kα

(σ)u−)

for some wave size σ. We now consider various cases.
CASE 1: The jump at xα is a large shock. This is the easiest case. Indeed, in a
neighborhood of yα, we can then construct approximate solutions û` which coincide
with u.
CASE 2: The jump at xα is a small shock, of size σ ∈ [−3ε, 0]. In this case, for
each `, an approximate solution û` is defined on a neighborhood of yα as follows.
Let the time intervals Im,h be as in (3.2), with δ1 = ν(`)−1. Recalling (3.4), define
the speed of a small shock joining u− with u+ as

(5.16) λε
kα

(u−, u+) .= (1− n)λ∗kα
+

n

|σ|
∫ 0

σ

λkα

(
Rkα(s)u−)

)
ds.

For each `, let y` be the polygonal function such that

(5.17) y`(0) = yα, ẏ`(t) =

{
λε

kα
(u−, u+) if t ∈ Im,kα for some m,

λ∗kα
otherwise.

Choosing a sequence ε` → 0 sufficiently fast, we can now define the approximate
ε-solutions û` by setting
(5.18)

û`(t, x) =





u− if x ≤ y(t),
u+ if x ≥ y(t) + ε`,

u+ if x ∈ [
y(t), y(t) + ε`

]
, t ∈ Im,kα for some m,

Rkα

(
(x− y(t))/ε`

)
(u−) if x ∈ [

y(t), y(t) + ε`

]
, t /∈ ⋃

m≥0 Im,kα .
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We now observe that, in a neighborhood of yα, the ε-solution u satisfies

(5.19) u(t, x) =

{
u− if x < yα + tλε

kα
(u−, u+),

u+ if x > yα + tλε
kα

(u−, u+).

As ` → ∞ and δ2 = ν(`)−1 → 0, the sequence y`(t) converges uniformly to
tλε

kα
(u−, u+). Comparing (5.18) with (5.19), the convergence û` → u is thus clear.

CASE 3: The jump at yα is a rarefaction wave, so that (5.15) holds for some σ > 0.
In this case, we choose a sequence ε` → 0 sufficiently fast and define the functions
û` in a neighborhood of yα as follows. Each û` is the Lipschitz continuous solution
of the quasilinear hyperbolic system

(5.20) ut + A(t, u)ux = 0,

with initial condition

(5.21) û`(0, x) =





u− if x < yα,

u+ if x > yα + ε`,

Rkα

(
(x− yα)/ε`

)
(u−) if x ∈ [yα, yα + ε`].

Here A(t, u) is the matrix having the same eigenvectors r1(u), . . . , rn(u) as A(u) =
DF (u), but whose eigenvalues are

(5.22) λ∗1, . . . , λ∗h−1, λ∗h + n
(
)λh(u)− λ∗h

)
, . . . , λ∗n if t ∈ Im,h.

The time intervals Im,h are as in (3.2), with δ1 = ν(`)−1. It is now clear that all
functions û` remain Lipschitz continuous in a neighborhood of yα, because they
only contain rarefaction waves. Moreover, the convergence û` → u holds. This
completes the proof of Proposition 5.



CHAPTER 6

Proof of Proposition 6

In this section we construct the semigroup Sε generated by the ε-approximate
Riemann Solver, and prove Proposition 6. This will accomplish Step 2 toward the
proof of Theorem 3.

Let ū be an initial data with compact support and suitably small total variation.
Using the wave-front tracking algorithm described in Section 2, we construct a
sequence of piecewise constant approximate solutions uν , with uν(0) → ū, such
that

(i) The total variation of uν(t, ·) remains uniformly small,
(ii) The maximum size of the rarefaction fronts in uν approaches zero,
(iii) The total strength of all non-physical waves in uν approaches zero.
By possibly taking a subsequence, we can assume that uν → u in L1

loc. We
claim that the limit function u is unique, and provides a viscosity ε-solution to the
corresponding Cauchy problem (1.1)-(1.2).

To prove uniqueness, let uν , wν , ν ≥ 1, be sequences of approximate solutions
constructed by wave-front tracking, and assume that

(6.1) lim
ν→∞

uν(0, ·) = lim
ν→∞

wν(0, ·) = ū,

while uν → u, wν → w in L1
loc. Since both u and w are continuous as maps from

[0,∞[ into L1, if u 6= w there exists a largest time τ such that u(t) = w(t) for all
t ∈ [0, τ ]. Fix any x̄ ∈ IR. We will prove that u(t, x) = w(t, x) a.e. in a region of
the form

(6.2) Γ .=
{

(t, x); t ∈ [τ, τ + δ], |x− x̄| ≤ ρ− (t− τ)
}

for some ρ, δ > 0. By possibly choosing subsequences, we can assume the weak
convergence

(6.3) Tot.Var.uν(τ, ·) ⇀ µ1, Tot.Var.wν(τ, ·) ⇀ µ2,

for some positive measures µ1, µ2. Choose ρ > 0 small enough so that

(6.4) µi

(
[x̄− ρ, x̄ + ρ] \ {)̄x}

)
≤ η3 i = 1, 2.

Here η << 1 is the constant in (2.8). For t ≥ τ , consider the interval

(6.5) J(t) .=
[
x̄− ρ + (t− τ), x̄ + ρ− (t− τ)

]
.

By [B5], for each t > τ the restriction of the interaction potential of uν , wν to J(t)
satisfies

(6.6) Q
(
uν

∣∣
J(t)

) ≤ 2η3, Q
(
wν

∣∣
J(t)

) ≤ 2η3,

for all ν suitably large (depending on t). Therefore, calling u− = u(τ, x̄−), u+ =
u(τ, x̄+) we can find a sequence of times tm decreasing to τ and integers ν(m) such
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that all functions ũν(tm, ·), w̃ν(tm, ·) with ν ≥ ν(m) lie in the domain D(u−,u+) of
the semigroup S constructed in Proposition 5. Here we define

(6.7) ũν(tm, x) .=





uν(tm, x) if x ∈ J(tm),
u− if x < x̄− ρ + (tm − τ),
u+ if x > x̄ + ρ− (tm − τ),

and similarly for w̃ν(tm, ·). For t ≥ τ we also define

(6.8) ũ(t, x) .=





u(t, x) if x ∈ J(t),
u− if x < x̄− ρ + (t− τ),
u+ if x > x̄ + ρ− (t− τ),

and similarly for w̃. We now observe that, on any region of the form

(6.9) Γm
.=

{
(t, x); t ∈ [tm, τ + δ], x ∈ J(t)

}
,

the functions u,w are limits of wave-front tracking approximations taking values
within the domain of the Lipschitz semigroup S. The same arguments used in
Theorem 1 of [B5] thus imply
(6.10)

u(t, x) =
(
St−tm ũ(tm)

)
(x), w(t, x) =

(
St−tmw̃(tm)

)
(x) for (t, x) ∈ Γm.

Calling L the Lipschitz constant of the semigroup S, for t > tm we now have the
estimate

∫

J(t)

∣∣u(t, x)− w(t, x)
∣∣ dx ≤

∥∥∥St−tm ũ(tm)− St−tmw̃(tm)
∥∥
L1 ≤ L

∥∥ũ(tm)− w̃(tm)
∥∥
L1

≤ L
(∥∥ũ(tm)− ũ(τ)

∥∥
L1 +

∥∥ũ(τ)− w̃(τ)
∥∥
L1 +

∥∥w̃(τ)− w̃(tm)
∥∥
L1

)
.

(6.11)

As m → ∞, for each fixed t > τ the right hand side of (6.11) approaches zero.
Hence u = w on Γ.

By the boundedness of the supports of u,w we can now choose a constant R
large enough so that u(t, x) = w(t, x) = 0 for t ∈ [τ, τ + 1], |x| > R. Moreover,
for every point (τ, x̄) with |x| ≤ R there exists a set Γ of the form (6.2) on which
u = w. By a compactness argument it follows that u = w on a strip of the form
[τ, τ + δ0] × IR. This contradicts the maximality of τ , proving that the limit
solution u obtained by wave-front tracking is unique. From now on, this limit will
be indicated by the semigroup notation

(6.12) u(t, ·) = Sε
t ū.

The continuity of the map Sε
t w.r.t. ū is an immediate consequence of uniqueness.

Indeed, consider a sequence of initial conditions with sufficiently small total varia-
tion ūν → ū. Given T > 0, for each ν ≥ 1 there exists an approximate solution uν

obtained by wave-front tracking such that

(6.13)
∥∥uν(0, ·)− ūν

∥∥
L1 ≤

1
ν

,
∥∥uν(t, ·)− Sε

t ūν

∥∥
L1 ≤

1
ν

t ∈ [0, T ].

By uniqueness it now follows

(6.14) Sε
t ū = lim

ν→∞
uν(t, ·) = lim

ν→∞
Sε

t ūν t ∈ [0, T ].

proving the continuity of the map Sε
t .
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To show that u is a viscosity ε-solution, we observe that, for any point (τ, x̄), for
ρ > 0 small enough, the truncated function ũ defined at (6.8) lies within the domain
D(u−,u+) of one of the local semigroups S constructed in Step 1. By uniqueness
and finite propagation speed, it follows that

(6.15) u(t, x) =
(
St−τ ũ(τ)

)
(x)

for all (t, x) with t ≥ τ , |x − x̄| < ρ − (t − τ). Since the right hand side of (6.15)
is a viscosity ε-solution of (1.1), the function u satisfies the estimates (1.13), (1.14)
at the point (τ, x̄). This completes the proof of Proposition 6.





CHAPTER 7

Proof of Proposition 7

Aim of this section is to show that, if ũ is a structurally stable ε-solution, then
all suitably accurate approximations constructed by our algorithm will have the
same wave-front structure as ũ. The first step in the proof is to establish a decay
estimate similar to (1.21), valid for the piecewise Lipschitz approximate solutions
constructed in Sections 3-4. We start with a simple estimate for an impulsive
O.D.E., based on a comparison argument.

Lemma 7.1 Let b, g be non-negative integrable functions on the interval [τ, t] and
let w : [τ, t] 7→ [0,∞[ satisfy the impulsive differential inequality
(7.1)
ẇ(s) ≤ b(s)w(s)−g(s), w(τ) = w0, w(τi+) ≤ bi ·w(τi−) (i = 1, . . . , N),

with jumps at times τi ∈ [τ, t]. Assume that w0 ≥ 0 and bi ≥ 1 for all i. Then

(7.2) w(t) ≤ exp
{∫ t

τ

b(s) ds

}
·
( N∏

i=1

bi

)
w0 −

∫ t

τ

g(s) ds.

Indeed, calling z the solution to the impulsive differential equation
(7.3)
ż(s) = b(s)z(s)− g(s), z(τ) = w0, z(τi+) = bi · z(τi−) (i = 1, . . . , N),

a comparison argument yields
(7.4)

w(t) ≤ z(t) = exp
{∫ t

τ

b(s) ds

}
·
( N∏

i=1

bi

)
w0−

∫ t

τ

( ∏

τi∈[s,t]

bi

)
exp

{ ∫ t

s

b(r) dr

}
·g(s) ds.

Since bi ≥ 1 for all i, this implies (7.2).

Now consider a piecewise Lipschitz approximate solution u = u(t, x) con-
structed as in Sections 3-4. More precisely, given a time step δ1 and a shock layer
width δ2, we consider an approximate solution u = u(t, x) satisfying the following.
- Each u(t, ·) is piecewise Lipschitz, with large shocks (of strength |σα| > ε9) at
points yα, α ∈ §, plus other small shocks (of strength )|σβ | < 3ε) at points yβ ,
β ∈ §′.
- For t ∈ Im,h, m ≥ 0, h ∈ {1, . . . , n} as in (3.2), u provides a solution to a quasi-
linear system of the form (3.8), where A(h) is a matrix with the same eigenvectors
as A(u). Concerning the eigenvalues λ

(h)
i of A(h), the following holds. All char-

acteristic speeds λ
(h)
i , i 6= h are locally constant, with jumps only along the big

shocks. The h-characteristic speed λ
(h)
h is constant inside the shock layers [y∗α, yα[ ,

83



84 7. PROOF OF PROPOSITION 7

]yα, y∗∗α ] around each big shock, and is genuinely nonlinear outside, so that

(7.5) ∇λ
(h)
h · rh > nκ′ > 0 x /∈ [y∗α, y∗∗α ] .= [yα − δ2, yα + δ2].

- If u has a shock in the kα-th family at yα, the wave speed λ
(h)
kα

across the shock
layer satisfies the estimates

(7.6) min
{∣∣λ(h)

kα
(yα+)− ẏα

∣∣, ∣∣λ(h)
kα

(yα−)− ẏα

∣∣
}

> κ′′|σα|
for some constant κ′′ > 0. Moreover, if kα = h one has

(7.7) max
{∣∣λ(h)

h (y∗α+)− λ
(h)
h (y∗α−)

∣∣,
∣∣λ(h)

h (y∗∗α +)− λ
(h)
h (y∗∗α −)

∣∣
}
≤ C|σα|

- Restartings are performed at due times, according to the procedures described in
Section 4, with a suitable degree of accuracy which will be made precise at a later
stage of the analysis.

Let there be given a time interval [τ, t̄], an index h ∈ {1, . . . , n} and η > 0. Our
aim is to estimate, at time t = t̄, the amount of positive h-waves in u with density
> η, i.e. the quantity

(7.8) V η+
h =

∑

σh
α>0

σh
α +

∫

{uh
x>η}

uh
x(t̄, x) dx.

We here assume that u(t̄, ·) has jumps at points yα and call σ1
α, . . . , σn

α the waves
in the Riemann problem determined by the jump at yα.

The only contributions to the first summation in (7.8) are due to h-rarefaction
fronts produced by the interaction of two large shocks at some time t ∈ [t̄− δ1, t̄].
This summation can thus be estimated in terms of the local amount of interaction,
namely

(7.9)
∑

σh
α>0

σh
α ≤ C

[
Q(t̄− δ1)−Q(t̄)

]

for some constant C. To estimate the integral term in (7.8), we study the evolution
of the gradient component uh

x along h-characteristics, for t ∈ [τ, t̄]. For any fixed x,
call t 7→ yx(t) the h-characteristic line through the point (t̄, x). Recalling (3.2) and
(3.4)–(3.7), yx is thus defined as the solution to the backward Cauchy problem

(7.10) yx(t̄) = x, ẏx(t) = λ
(j)
h

(
t, yx(t), u

)
if t ∈ Im,j for some m, j.

We distinguish two cases:
(a) The characteristic yx is defined for all t ∈ [τ, t̄] and uh

x remains positive
and uniformly bounded along yx.

(b) Either uh
x

(
t0, y

x(t0)) ≤ 0 at some time t0 ∈ [τ, t̄], or else the characteristic
yx originates from a centered rarefaction fan, generated by the interaction
of two shocks.

We shall consider separately the sets Ja, Jb of points x for which the alternative (a)
or (b) holds. Assume first x ∈ Ja. Consider the scalar functions

(7.11) v(t) .=
∂yx(t)

∂x
,

(7.12) z(t) .= uh
x

(
t, yx(t)

) · v(t).
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Observe that, for ∆x small, the quantity z(t) ·∆x roughly determines the amount
of h-waves contained in the infinitesimal segment

[
yx(t), yx+∆x(t)

]
. The scalar

quantities z, uh
x and v evolve continuously along the characteristic yx, except for

a finite number of times τi at which they experience a discontinuity. These dis-
continuities occur when the characteristic yx crosses a shock or a shock layer, and
when a restarting procedure is applied. Let us first describe the smooth evolution
equations and then treat the impulses due to discontinuities. On time intervals
where it is continuous, the function v satisfies the equation

(7.13) v̇(t) =
(
λ

(j)
h (t, yx(t), u)

)
x
· v(t) t ∈ Im,j ,

Similarly, on time intervals where it is continuous, the gradient component uh
x

satisfies an equation of the form (1.18). Hence, for t ∈ Im,j we have

ż(t) =
duh

x

dt
· v + uh

x ·
dv

dt

=
[
(uh

x)t + (uh
x)x λ

(j)
h (u)

] · v + uh
x · (λ(j)

h )x v =

=


−(λ(j)

h )x uh
x +

∑

i 6=k

G̃hik(u)ui
x uk

x


 · v + uh

x · (λ(j)
h )x v =

=


∑

i 6=k

G̃hik(u)ui
x uk

x


 · v

(7.14)

for some functions G̃hik whose expression is easily derived from (1.18).
When t ∈ Im,j , from (7.13) it follows

(7.15) v̇(t) =
n∑

i=1

(∇λ
(j)
h · ri)ui

x · v(t) ≥ a(t)z(t)− q(t)v(t),

where

(7.16) a(t) .= (∇λ
(j)
h · rh)

(
t, yx, u

)
, q(t) .= C

∑

i 6=h

∣∣∣ui
x

(
t, yx(t)

)∣∣∣.

Notice that a(t) = 0 whenever t /∈ ⋃
m Im,h. Recalling (7.5) we obtain

(7.17)
∫ t̄

τ

a(t) dt ≥ κ′(t̄− τ)− C(δ1 + δ2) ≥ κ′

2
(t̄− τ),

provided that δ1, δ2 > 0 are chosen so that

(7.18) δ1 + δ2 ≤ κ′(t̄− τ)
2C

.

Indeed, the characteristic yx(·) will spend a time O(δ2) inside the shock layers.
Moreover,

(7.19)

∣∣∣∣∣∣
t̄− τ

n
−meas


[τ, t̄] ∩

(
)

⋃

m≥0

Im,h

)


∣∣∣∣∣∣
≤ 2δ1

n
.

Concerning the impulses, observe that the function v is continuous at restarting
times and has jumps at times where the characteristic yx crosses either a large shock
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or a shock layer. In all such cases, denoting by yα the location of the large shock,
one has

(7.20) v(t+) =
ẏx(t+)− ẏα(t)
ẏx(t−)− ẏα(t)

· v(t−).

Therefore, at a crossing time τi we have the estimate

(7.21) v(τi−) ≤ biv(τi+), bi
.=

∣∣∣∣
ẏx(τi+)− ẏx(τi−)
ẏx(τi−)− ẏα(τi)

∣∣∣∣ .

We now observe that the integral of q in (7.16) is controlled by the amount of waves
that cross the line yx. Moreover, yx can cross at most one shock layer of a shock
yα with kα = h, because afterwards this h-characteristic will impinge on the shock.
For all other shocks, by strict hyperbolicity we have

(7.22)
∣∣ẏx(τi−)− ẏα(τi)

∣∣ ≥ ∆λ > 0.

Recalling (7.6)-(7.7) we thus have

(7.23)
∑

i

|bi − 1| = O(1).

The previous arguments yield an estimate of the form

(7.24)
∫ t̄

τ

q(t) dt ≤ C,
∏

i

bi ≤ exp
{ ∑

i

|bi − 1|
}
≤ C,

(7.25) exp

{∫ t̄

τ

q(t) dt

}
·
( ∏

i

bi

)
≤ C1

for some constant C1.

We now apply Lemma 7.1 to the function w(t) .= v(−t) on the time interval
[−t̄,−τ ]. By (7.5) it follows

(7.26) w(−τ) ≤ exp

{∫ t̄

τ

q(t) dt

} ( ∏

i

bi

)
w(−t̄)−

∫ t̄

τ

a(t)z(t) dt

Since w(−t̄) = v(t̄) = 1, by (7.25) this yields

(7.27) 0 ≤ v(τ) ≤ C1 −
∫ t̄

τ

a(t)z(t) dt.

Next, consider the evolution equation for z, along the h-characteristic yx. De-
fine the rate of interaction along yx, i.e.

(7.28) f(t) .=
∑

i<k

[
λ

(j)
k − λ

(j)
i

]|ui
x||uk

x| t ∈ Im,j ,

where the right hand side of (7.28) is computed at the point
(
t, yx(t)

)
. By strict

hyperbolicity, the differences λk − λi are uniformly positive. Recalling (7.14), on
time intervals where z is continuous there holds

(7.29)
∣∣ż(t)

∣∣ ≤ Cf(t) · v(t).
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Concerning the jumps in z, at a time τi where yx crosses a big shock, say at yα, we
have the estimate

(7.30)
∣∣z(τi+)− z(τi−)

∣∣ ≤ CΛα(τi) · v(τi−),

where Λα is the instantaneous rate of interaction along yα, defined as in (3.37).
From (7.27) and (7.29) we deduce

0 ≤ C1 −
∫ t̄

τ

a(t)

(
z(t̄)− C

∫ t̄

t

f(s)v(s) ds−
∑

i

∣∣z(τi+)− z(τi−)
∣∣
)

dt

≤ C1 − z(t̄)
∫ t̄

τ

a(t) dt + C2(t̄− τ)

(∫ t̄

τ

)f(t)v(t) dt +
∑

i

∣∣z(τi+)− z(τi−)
∣∣
)

(7.31)

for some constant C2. Dividing by
∫

a(t) and recalling (7.17) one obtains

(7.32) z(t̄) ≤ 1
κ(t̄− τ)

+ C3

(∫ t̄

τ

)f(t)v(t) dt +
∑

i

∣∣z(τi+)− z(τi−)
∣∣
)

for some constants C3, κ > 0. We now let x vary inside the set Ja, calling vx, zx, fx

the corresponding functions along the characteristic yx. Since zx(t̄) > η on Ja,
from (7.32) it follows

(
1− 1

ηκ(t̄− τ)

) ∫

Ja

zx(t̄) dx ≤
∫

Ja

(
1− 1

zx(t̄)κ(t̄− τ)

)
zx(t̄) dx

≤
∫

Ja

C3

(∫ t̄

τ

)fx(t)vx(t) dt +
∑

i

∣∣zx(τx
i +)− zx(τx

i −)
∣∣
)

dx.

(7.33)

Since v(t) is the Jacobian of the transformation x 7→ yx(t), by (7.28) the double
integral of f · v is controlled in terms of the total amount of interaction, i.e.

(7.34)
∫

IR

∫ t̄

τ

fx(s)vx(s) dsdx ≤ C
[
Q(τ)−Q(t̄)

]
.

Moreover, recalling (7.30) and estimating separately the sum of jumps in z occurring
at crossings of shocks and at restarting times, for any given ε0 > 0 we have the
estimates

(7.35)
∫

I

R


 ∑

τi∈Cross.

∣∣zx(τx
i +)− zx(τx

i −)
∣∣

 dx ≤ C

[
Q(τ)−Q(t̄)

]
.

(7.36)
∫

I

R


 ∑

τi∈Rest.

∣∣zx(τx
i +)− zx(τx

i −)
∣∣

 dx ≤ ε0,

provided that the restarting procedures are suitably accurate. Since zx(t̄) = uh
x(t̄, x),

the estimates (7.33)–(7.36) imply

(7.37)
∫

Ja

uh
x(t̄, x) dx ≤ C4

[
Q(τ)−Q(t̄) + ε0

] (
1− 1

ηκ(t̄− τ)

)−1

.

for some constant C4.
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Finally, we consider the integral of uh
x over Jb. Observe that, if x ∈ Jb, there

exists a time τ0 ∈ [τ, t̄] such that vx(τ0) = 0 or zx(τ0) ≤ 0. Therefore,

(7.38) zx(t̄) ≤ C3

(∫ t̄

τ

)fx(t)vx(t) dt +
∑

i

∣∣zx(τi+)− zx(τi−)
∣∣
)

.

Integrating over Jb and using (7.34)–(7.36) we obtain
∫

Jb

uh
x(t̄, x) dx ≤ C3

∫

Jb

(∫ t̄

τ

)fx(t)vx(t) dt +
∑

i

∣∣zx(τi+)− zx(τi−)
∣∣
)

dx

≤ C4

[
Q(τ)−Q(t̄) + ε0

]
.

(7.39)

where ε0 > 0 can be taken arbitrarily small by increasing the accuracy of the
restarting procedures. The bounds (7.9), (7.37) and (7.39) together yield

(7.40) V η+
h ≤ C

[
Q(τ)−Q(t̄) + ε0

] (
1− 1

ηκ(t̄− τ)

)−1

.

Toward the proof of Proposition 7, we establish another lemma. Roughly speak-
ing it shows that, if the L1 distance between u, ũ is small and if the amount of
steep positive waves in u can be estimated, then the total amount of waves in u
can be bounded in terms of the total amount of waves in ũ.

In the following we consider two intervals J = [a, b], J ′ = [a − δ0, b + δ0]. By
V (u;J) we denote the amount of waves in u inside the interval J . The total amount
of positive waves of density > η is written V η+(u; J).

Lemma 7.2. Consider two functions u, ũ : J ′ 7→ Ω. For some constant C, the
following holds. Assume that

(7.41)
∫

J′

∣∣u(x)− ũ(x)
∣∣ dx ≤ δ1, V (ũ; J ′) ≤ δ2, V η+(u, J ′) ≤ δ3.

Then the total amount of waves of u on J is bounded by

(7.42) V (u;J) ≤ C

[
δ2 + η(b− a + δ0) + δ3 +

δ1

δ0

]
.

Proof. We can assume that there exists c0 > 0 and a unit vector e such that

(7.43) c0 ≤
〈
e, ri(u)

〉 ≤ 1 i = 1, . . . , n, u ∈ Ω.

(7.44) σ ≤ 〈
e, Si(σ)u)− u

〉 ≤ c0σ i = 1, . . . , n, σ < 0, u ∈ Ω.

Here Si(σ)u) is the state connected to u by an i-shock of size σ < 0. The total
amount of positive waves of u on [a, b] is

(7.45) V +(u; J) ≤ δ3 + nη(b− a).

Call V −(u; J) the amount of negative waves of u on [a, b]. Then

(7.46)
〈
e, u(b)− u(a)

〉 ≤ V +(u;J)− c0V
−(u; J).
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On the other hand,

(7.47)
〈
e, ũ(b)− ũ(a)

〉 ≥ −V (ũ; J).

Define

(7.48) α1
.=

〈
e, u(a)− ũ(a)

〉
, α2

.=
〈
e, ũ(b)− u(b)

〉
.

Observe that
α1 + α2 =

〈
e, u(a)− u(b)

〉
+

〈
e, ũ(b)− ũ(a)

〉

≥ c0V
−(u; J)− V +(u;J)− V (ũ; J).

(7.49)

If α1 + α2 ≤ 0, from (7.6) it follows

(7.50) V −(u, J) ≤ 1
c0

(
V +(u; J)− V (ũ; J)

)
≤ 1

c0

[
δ3 + nη(b− a) + δ2

]
.

If α1 + α2 > 0, to fix the ideas assume α2 ≥ α1, the other case being entirely
similar. For x ∈ [b, b + δ0] we have
〈
e, ũ(x)− u(x)

〉 ≥ α2 − V
(
ũ; )[b, x]

)− V +
(
u; [b, x]

)

≥ 1
2

(
c0V

−(u; J)− V +(u, J)− V (ũ;J)
)
− V

(
ũ; [b, x]

)− V +
(
u; [b, x]

)

≥ c0V
−(u; J)
2

− V +
(
u; [a, x]

)− V
(
)ũ; [a, x]

)

≥ c0V
−(u; J)
2

− {
δ3 + nη(b− a + δ0)

}− V (ũ; J ′).

Therefore,

δ1 ≥
∫ b+δ0

b

∣∣u(x)− ũ(x)
∣∣ dx ≥

∫ b+δ0

b

〈
e, ũ(x)− u(x)

〉
dx

≥ δ0

[
c0V

−(u; J)
2

− V (ũ; J ′)− δ3 − nη(b− a + δ0)
]

.

This yields the bound

(7.51) V −(u; J) ≤ 2
c0

[
δ1

δ0
+ δ2 + δ3 + nη(b− a + δ0)

]
.

The bounds (7.50) and (7.51) clearly imply (7.42) for some constant C.

Proof of Proposition 7. For simplicity, we shall assume that our approximate solu-
tion satisfies the decay estimate (1.21). The same arguments can be easily adapted
to the case where (7.40) holds, provided that ε0 > 0 is sufficiently small.

Consider CASE 1 first. Define the intervals

(7.52) J ′(t) .=
[
x̄− 9(τ − t), x̄ + 9(τ − t)

]
, J(t) .=

[
x̄− 8(τ − t), x̄ + 8(τ − t)

]
.

By assumption (see [B-LF2]), there exists r0 > 0 such that

(7.53) V
(
ũ(t); J ′(t)

) ≤ 2ε2 ∀t ∈ [τ − r0, τ [ .

By (1.8), Q(u) ≤ C0 for all all functions u under consideration. Let N be an integer
such that Nε2 > C0. Define

(7.54) rm
.= (ε2κ)mr0 tm

.= τ − rm, m = 1, . . . , N,
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where κ is the constant in (1.21). We can assume that ε2κ < 1/2, so that rm−1 −
rm > rm−1/2. Consider any solution u ∈ D suitably close to ũ, so that

(7.55)
∫

J′(tm)

∣∣u(tm, x)− ũ(tm, x)
∣∣ dx < ε2rm m = 1, . . . , N.

Since the function t 7→ Q(t) .= Q
(
u(t)

)
is non-negative and Q

(
u(t0)

)
< C0, there

exists some integer m ≤ N such that

(7.56) Q(tm−1)−Q(tm) < ε2.

Choosing η = 4/κrm−1, the decay estimate (1.21) yields

(7.57) V η+
(
u(tm)

) ≤ C3

[
Q(tm−1)−Q(tm)

] (
1− 1

ηκ(tm − tm−1)

)−1

≤ 2C3ε
2.

Indeed, tm − tm−1 = rm−1 − rm > rm−1/2. Applying Lemma 7.2 to the intervals
J(tm), J ′(tm), again with η = 4/κrm−1, and using (7.53)–(7.55) and (7.57), we find

V
(
u(tm); J(tm)

) ≤ C

[
V (ũ(tm); J ′(tm)

)
+

4
κrm−1

· 17rm + 2C3ε
2 +

ε2rm

rm

]

≤ C
[
2ε2 + 68ε2 + 2C3ε

2 + ε2
]

≤ C ′ε2.

(7.58)

For t ∈ [τ − rm, τ ], define the interval

(7.59) Jm(t) .=
[
x̄− 8rm + (t− tm), x̄ + 8rm − (t− tm)

]
.

Recalling that all wave propagation speeds are < 1, the standard interaction esti-
mate (1.9) now yields

V
(
u(t); Jm(t)

) ≤ V
(
u(tm); J(tm)

)
+ C1V

2
(
u(tm); J(tm)

)

≤ C ′ε2 + C1

[
C ′ε2]2.

This establishes (2.25) with r∗ .= rN . Indeed, this choice of r∗ implies
(7.60)
[x̄−7r∗− r, x̄+7r∗+ r] ⊆ JN (τ − r) ⊆ Jm(τ − r) m = 1, . . . , N, r ∈ ]0, r∗].

Now consider CASE 2. Let the intervals J, J ′ be as in (7.52). From the as-
sumptions it now follows that, for some r0 > 0, the function ũ(t) has a shock of
size σ̃(t) < −ε3/2 at some point ỹ(t) ∈ J(t) for all t ∈ [τ − r0, τ ]. Moreover,

(7.61) V
(
ũ(t); J ′(t) \ {y(t)}) < ε8/2 t ∈ [τ − r0, τ ].

Choose an integer N so large that Nε16 > C0 and define

(7.62) rm
.= (ε16κ)mr0 tm

.= τ − rm, m = 0, . . . , N.

Now consider a solution u suitably close to ũ. For some m we must have

(7.63) Q
(
u(tm−1)

)−Q
(
u(tm)

)
< ε16.

Observe that, if the distance

(7.64) sup
t∈[τ−r0, τ ]

∥∥u(t)− ũ(t)
∥∥
L1
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is sufficiently small, then u(tm) will also have a shock of size σ(tm) at some point
y(tm) ∈ J(tm), with

(7.65)
∣∣σ(tm)− σ̃(tm)

∣∣ < ε7,
∣∣y(tm)− ỹ(tm)

∣∣ < ε7 t ∈ [tm−1, tm].

Indeed, call ũ−, ũ+ respectively the left and right limits of ũ(tm−1) around the
shock. For every ε0 > 0, if the quantity (7.64) is suitably small, there exists points
x1 < ỹ(tm−1) < x2 such that

(7.66) x2 − x1 < ε0,
∣∣u(tm−1, x1)− ũ−

∣∣ < ε,
∣∣u(tm−1, x2)− ũ+

∣∣ < ε.

Hence, on the small interval [x1, x2], the function u(tm−1) contains waves which
connect a state very close to ũ− with a state very close to ũ+. Since all these waves
are located within an interval of length < ε0, if the interaction potential of these
waves did not satisfy

(7.67) Q
(
u(tm−1); [x1, x2]

)
< ε15,

by choosing ε0 > 0 suitably small a substantial amount of interaction would take
place within the time interval [tm−1, tm], in contradiction with (7.63). Hence (7.67)
holds, and on the interval [x1, x2] the function u(tm−1) contains a shock satisfying
(7.65), plus possibly other waves of small total strength. The remainder of the
proof is similar to CASE 1.

In CASE 3, for some r0 > 0 and all t ∈ [τ − r0, τ [ , on the interval J(t) the
function ũ(t) will contain two shocks, say of sizes σ̃1(t), σ̃2(t). In this case, we first
show that for any ε0 > 0, every solution u(t) suitably close to ũ also contains two
shocks of sizes σ1, σ2, with

(7.68)
∣∣σi(t)− σ̃i(t)

∣∣ < ε0 i = 1, 2, t ∈ [τ − r∗, τ ].

Then we proceed as in CASE 1.





CHAPTER 8

Proof of Proposition 8

Proposition 8 is a consequence of the Lemma s 1, 2, 3 stated in Section 2. This
entire section is thus devoted to proving these lemmas.

Proof of Lemma 1. By assumption, every point (t, x) is contained in the interior
of a stabilizing block. The conclusion will thus follow from the compactness of the
set [−M, M ] × [t∗, T ]. Indeed, let ũ be a structurally stable ε-solution. Fix any
τ ∈ [t∗, T ]. For each x ∈ [−M, M ] the conclusions of Proposition 7 hold at the
point (τ, x), for some r∗ = r∗(x) > 0. Choose finitely many points x1, . . . , xν so
that

(8.1) [−M, M ] ⊆
ν⋃

j=1

[
xj − r∗(xj), xj + r∗(xj)

]
.

Define

(8.2) ρ(τ) .= min
j=1,...,ν

r∗(xj).

Repeat the same construction for each τ , then choose times τ1 < · · · < τN such
that

(8.3) [t∗, T ] ⊆
N⋃

i=1

]
τi − ρ(τi), τi + ρ(τi)

[
.

By inserting points 0 < t0 < τ1 < t1 < · · · < τN < tN = T with

(8.4) [ti−1, ti] ⊆
[
τi − ρ(τi), τi + ρ(τi)

]
,

all conclusions of Lemma 1 are satisfied.

Proof of Lemma 3. It suffices to consider a regular path γ : [a, b] 7→ BV , with
each uθ = γ(θ) having the same number of jumps, say at xθ

1 < · · · < xθ
N , with

xθ
α ∈ [−M, M ] for all θ, α. Moreover, let all functions uθ coincide outside the

interval [−M, M ]. For a given ν ≥ 1, define

(8.5) θm
.= a +

m

ν
(b− a) m = 0, . . . , ν.

If ν is sufficiently large, for each m there exist points pα (= pm,α) such that

(8.6) −M < p0 < xθ
1 < p1 < · · · < pN−1 < xθ

N < pN < M ∀θ ∈ [θm−1, θm].

We now replace the restriction of the original path γ to [θm−1, θm] with a new path
γ′ defined as follows. If ϑ ∈ [−M,p0] ∪ [pN , M ] we set

(8.7) γ′′(ϑ) .= uθm · χ
]−∞, ϑ]

+ uθm−1 · χ
]ϑ, ∞[

.

93
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The same definition (8.7) is valid if ϑ ∈ ]pα−1, pα] and x
θm−1
α ≤ xθm

α . On the other
hand, if ϑ ∈]pα−1, pα] but x

θm−1
α > xθm

α , we set
(8.8)
γ′′(ϑ) .= uθm · χ

]−∞, pα−1] ∪ ]pα−1+pα−ϑ, pα]
+ uθm−1 · χ

]pα−1, pα−1+pα−ϑ] ∪ ]pα, ∞[
.

Clearly, γ′′ is a piecewise regular path, with γ′′(−M) = γ(θm−1), γ′′(M) = γ(θm).
We now perform a suitable parameter rescaling: θ 7→ ϑ(θ), mapping [θm−1, θm]
onto [−M, M ], and define the path

(8.9) γ′(θ) .= γ′′
(
ϑ(θ)

)
θ ∈ [θm−1, θm].

Applying the same procedure to each subinterval [θm−1, θm] we thus obtain a path
γ′ : [a, b] 7→ BV which has localized variation and coincides with γ at each point
θm, m = 0, . . . , ν.

We can now consider a sequence of paths (γ′ν)ν≥1, constructed as above. Letting
ν →∞, from the regularity of the original path γ it follows

(8.10) lim
ν→∞

sup
θ∈[a,b]

∥∥γ′ν(θ)− γ(θ)
∥∥
L1 = 0, lim

ν→∞
‖γ′ν‖? = ‖γ‖? .

Hence, choosing ν suitably large, all conclusions of Lemma 3 are satisfied.

Proof of Lemma 2. As a preliminary, we give a formula for the weighted length
of a tangent vector, providing the appropriate extension of (2.32)–(2.35) to the case
of a function u with arbitrary jumps, not necessarily consisting of a single shock.
Let u be a piecewise Lipschitz function having jumps at the points x1 < . . . < xN .
Assume that the ε-solution of the Riemann problem determined by the jump at xα

consists of waves of sizes σ1
α, . . . , σn

α. Let the components of v, ux be as in (2.31).
The weighted norm of a generalized tangent vector (v, ξ) ∈ Tu

.= L1 × IRN is then
defined as

(8.11)
∥∥(v, ξ)

∥∥?

u

.=
n∑

i=1

∫ ∞

−∞

∣∣vi(x)
∣∣Wu

i (x)dx +
N∑

α=1

n∑

i=1

∣∣ξα

∣∣|σi
α|Wu

i (xα).

The weight Wu
i (x) assigned to an i-wave located at x has the form

(8.12) Wu
i (x) .= 1 + κ1R

u
i (x) + κ1κ2Q(u),

where

Ru
i (x) .=


∑

j≤i

∫ ∞

x

+
∑

j≥i

∫ x

−∞


 ∣∣uj

x(y)
∣∣dy +




∑
j≤i

xα>x

+
∑
j≥i

xα<x


 |σj

α|

+

{
σi

α if x = xα and σi
α > 0,

0 otherwise.

(8.13)

Q(u) .=
∑

i≤j

∫ ∫

x<y

∣∣uj
x(x)

∣∣∣∣ui
x(y)

∣∣ dxdy +
∑
i≤j

xα<xβ

∣∣σj
ασi

β

∣∣ +
∑
i,α

σi
α>0

(σi
α)2

+
∑

α,j


∑

i≤j

|σj
α|

∫ ∞

xα

∣∣ui
x(x)

∣∣dx +
∑

i≥j

|σj
α|

∫ xα

−∞

∣∣ui
x(x)

∣∣dx


 ,

(8.14)
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and κ1, κ2 are suitably large constants. In terms of the measures µi introduced in
Section 1, the quantities (8.13), (8.14) can be written as

(8.15) Ru
i (x) .=

∑

j≤i

µj

(
]x, ∞[

)
+

∑

j≥i

µj

(
]−∞, x[

)
+

[
µi

({x})
]
+

,

(8.16) Q(u) .=
∑

i≤j

(|µj | × |µi|
)({

)(x, y); x < y
})

+
∑
i,x

µi({x})>0

µi

({x})2
.

The weighted length ‖γ‖? of a piecewise regular path and the weighted distance
d?(u, u′) between two functions are then defined by (1.47), (1.48), respectively.

To simplify the notations, we assume that

(8.17) Γ =
{
(t, x); t ∈ [0, T ], |x| ≤ 4ρ− t

}

with ρ > T . Moreover, we assume that all functions ūθ .= uθ(0, ·) coincide out-
side the interval [−ρ, ρ] and satisfy one of the conclusions (i) or (ii) or (iii) in
Proposition 7 on the interval [−4ρ, 4ρ]. In particular, the values

(8.18) u− .= ūθ(−4ρ) u+ .= ūθ(4ρ)

are independent of θ. For each θ ∈ Θ, define the truncated functions

(8.19) ûθ(x) .=





ūθ(x) if x ∈ [−4ρ, 4ρ],
u− if x < −4ρ,

u+ if x > 4ρ.

By the assumptions in Lemma 2, all functions ûθ lie within a domain D consisting
of:
CASE 1. Functions having no large shocks, and total variation < Cε2.
CASE 2. Functions having exactly one large shock, say in the k-th family, and total

variation (outside this shock) < Cε8.
CASE 3. (a) Functions having exactly two large shocks, and total variation < Cε20

outside these two shocks, together with (b) functions generated by the
interaction of the two shocks in a solution of type (a).

Observe that, in Cases 1 and 2, our present domain D is a special case of
the domains D(u−,u+) considered in Proposition 5. The constructive procedures
developed in Sections 3, 4 can thus be used. Case 3 is somewhat different, and the
construction of piecewise Lipschitz approximations therefore needs to be suitably
modified, taking into account the possible interaction of the two large shocks. In
the following, we will work out a detailed proof of Lemma 2 in Case 2. The same
arguments can be easily adapted to Case 1, which is much easier. The modifications
needed to cover Case 3 will be discussed at the end of the section.

In the main part of the proof, we show that the weighted length of the path
γt : θ 7→ Sε

t uθ does not increase in time, under the additional assumption that
ūθ = ûθ for all θ. Afterwards, we show that the result remains true in the general
case, relying on the fact that all functions uθ coincide outside the region Γ.

The basic idea is to construct a path γ̃ : θ 7→ wθ of approximate ε-solutions such
that:
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- The weighted length of the path γ̃0 : θ 7→ wθ(0, ·) is arbitrarily close to
the weighted length of the path γ0 : θ 7→ ūθ.

- For all t ∈ [0, T ] and θ ∈ Θ, the distance
∥∥wθ(t, ·) − uθ(t, ·)∥∥

L1 remains
arbitrarily small.

- The increase in the weighted length of the path γ̃t : θ 7→ wθ(t, ·) is arbi-
trarily small, as t varies from 0 to T .

We remark that, for a path γ̃ of piecewise Lipschitz approximate solutions
constructed as in Sections 3-4, the increase in the weighted length ‖γ̃t‖? defined by
(3.44)–(3.47) can be kept arbitrarily small. Our present goal is to show that the
same result holds if (3.34) and (3.46) are replaced respectively by (8.14) and (8.13),
provided that the width δ2 of the shock layers in (3.5) is sufficiently small. The
proof will be accomplished by first reducing the problem to a few special cases.

1. Observe that a family of approximate ε-solutions of (1.1) can be obtained by
choosing a time step ∆t = δ1 > 0 and performing a cyclical concatenation of n
distinct flows:

(8.20) wθ(t) = · · ·S2
∆t ◦ S1

∆t ◦ Sn
∆t ◦ · · · ◦ S2

∆t ◦ S1
∆tw̄

θ,

where each Sh is a semigroup related to the hyperbolic system (1.44), with n −
1 linearly degenerate fields. For h = 1, . . . , n, a convenient way to define the
semigroup Sh : D× [0,∞[ 7→ D is to specify how it acts on piecewise Lipschitz data.
This is done as follows.

Let D be as in (2.8), with η = O(ε8). Observe that every u ∈ D has a single
large k-shock, say located at the point yk. Introduce the speeds

λ∗i = λi(u−) i 6= k,

λ∗k =λk(u−), λ∗∗k = λk(u+).
(8.21)

We are of course in a special case of (3.1), with § = {k}. Consider the hyperbolic
system

(8.22) ut + Ah(x, u)ux = 0

where Ah is the matrix with the same eigenvectors as A(u), and whose eigenvalues
λ

(h)
1 , . . . , λ

(h)
n are as follows:

(8.23) λ
(h)
i =





λ∗i if i 6= k,

λ∗i if i = k, x < yk,

λ∗∗i if i = k, x > yk.

in the case i 6= h, while

(8.24) λ
(h)
h = λ∗h + n

(
λh(u)− λ∗h

)

if h 6= k, and

(8.25) λ
(h)
h =

{
λ∗h + n

(
λh(u)− λ∗h

)
if x < yk,

λ∗∗h + n
(
λh(u)− λ∗∗h

)
if x > yk

if h = k.
Concerning the shocks, we require that the single large jump at yk satisfies the

ε-Rankine Hugoniot equations (2.3)–(2.5) with i = k. Every small shock, say of the
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j-th family, located at yα, satisfies the relations

(8.26) u(yα+) = Rj(σα)
(
u(yα−)

)
,

for some wave size σα. If j 6= h, the speed of a small j-shock is

(8.27) ẏα =





λ∗j if j 6= k,

λ∗j if j = k, yα < yk,

λ∗∗j if j = k, yα > yk.

Finally, the speed of a small h-shock is

(8.28) ẏα = (1− n)λ∗h +
n

|σα|
∫ 0

σα

λh

(
Rh(s)

(
u(yα−)

))
ds,

if h 6= k or if h = k, yα < yk, while

(8.29) ẏα = (1− n)λ∗∗h +
n

|σα|
∫ 0

σα

λh

(
Rh(s)

(
u(yα−)

))
ds,

if h = k, yα > yk. We now define Sh as the unique Lipschitz semigroup with
domain D as in (2.8) with the following property. If ū ∈ D is piecewise constant,
then for t > 0 small Sh

t ū is the unique piecewise Lipschitz function which satisfies
the quasilinear hyperbolic system (8.22) a.e., together with the relations (8.26)–
(8.29) along the shock lines.

Observe that, if in the approximations constructed in Sections 3-4 we vary the
width of the shock layer δ2 > 0 and keep the time step δ1 > 0 fixed, then on
each subinterval Im,h (m ≥ 0) at (3.2) in the limit δ2 → 0 we obtain precisely
the flow of Sh. The existence and uniqueness of the semigroup Sh thus follows
from the analysis in Sections 3–5 as a special case. If we can show that each Sh

is contractive for the weighted distance determined by (8.11)–(8.14), the same will
of course hold for every concatenation of the form (8.20). Letting ∆t → 0, by
possibly taking a convergent subsequence, we thus obtain a Lipschitz semigroup Ŝ.
The same arguments used in the proof of Proposition 5 now show that Ŝtū = Sε

t ū for
every piecewise constant ū and every t > 0 small enough. By uniqueness, Ŝ = Sε.
In particular, by taking ∆t > 0 small enough, we can assume that the distance
between the flow of Sε and the corresponding concatenation of flows in (8.20) is as
small as we like.

The proof is thus reduced to showing that the flow of each semigroup Sh,
h = 1, . . . , n, is contractive w.r.t. the metric (8.11)–(8.14). More precisely, given a
regular path of initial data γ0 : θ 7→ ūθ ∈ D, for each ε′ > 0 it suffices to exhibit a
path γ̃T : θ 7→ wθ(T, )·) such that

(8.30) ‖γ̃T ‖? ≤ ‖γ0‖? + ε′,

(8.31)
∥∥γ̃T (θ)− Sh

T ūθ
∥∥
L1 < ε′ θ ∈ Θ.

2. As a second reduction, we observe that any path γ can be approximated by a
path γ′ having localized variation. More precisely, γ′ can be chosen to be a finite
concatenation of paths of the form (8.7) or (8.8). Furthermore, any path of the
form (8.7) or (8.8) can be approximated by another path where uθm , uθm−1 are
piecewise constant.
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Now consider a path of the form

(8.32) γ(θ) = u · χ
]−∞,θ]

+ u′ · χ
]θ,∞[

θ ∈ Θ .= [a, b],

assuming that u, u′ are piecewise constant and u(x) = u[, u′(x) = u] for all x ∈
[a, b]. Let ω0 = u[, ω1, · · · , ωn = u] be the states determined by the ε-solution of
the Riemann problem with data u[, u]. Then the concatenation γn ◦ · · · ◦ γ1, with

(8.33) γi(θ) = u · χ
]−∞,a]

+ ωi−1 · χ]a,θ]
+ ωi · χ]θ,b]

+ u′ · χ
]b,∞]

has the same weighted length as the original path γ.

3. Thanks to the above remarks, it suffices to construct a path of approximate
solutions γ̃ : θ 7→ wθ, satisfying (8.30)-(8.31), under the following additional as-
sumptions:

(A) The path γ0 : θ 7→ ūθ has the form (8.32), with u, u′ piecewise constant,
u(x) = u[, u′(x) = u] for x ∈ [a, b], and each Riemann problem determined
by a jump in ūθ is solved by a single wave. Moreover, [a, b] ⊆ [−ρ, ρ].

We shall distinguish four cases, assuming that the jump (u[, u]) is

(i) the large k-shock,
(ii) a small h-shock,
(iii) a small j-rarefaction, for some j ∈ {1, . . . , n},
(iv) a small j-shock, for some j 6= h.

In all cases, we insert a thin shock layer of width δ2 > 0 around the large
k-shock, say

(8.34) [y∗k, y∗∗k ] .= [yk − δ2, yk + δ2],

and construct piecewise Lipschitz approximate solutions following the same pro-
cedure used in Sections 3-4. Observe that we are here in the special case where
§ = {k} and all the small shocks belong to the h-th family. A straightforward ap-
plication of the estimates (3.52)–(3.75) on tangent vectors, however, is not possible.
Indeed, the weighted norm introduced at (8.11)–(8.14) is different from the norm
(3.44)–(3.47) because:

- waves of the same family are now always regarded as approaching,
- in (8.13) there is no term related to the shock layer around the big shock.

To keep track of how the weighted length of a path γt : θ 7→ uθ(t, ·) changes in time,
we consider an auxiliary weighted norm, defined as follows. Let u be piecewise
Lipschitz with jumps at points yα, α ∈ §∪ §′ = {k}∪ §′. To fix the ideas, let h > k,
the other cases being similar. Let u have a small h-shock of strength |σα| at each
point yα, α ∈ §′, together with a large k-shock at yk. Let y∗k, y∗∗k be as in (8.34).
We then define
(8.35)

∥∥(v, ξ)
∥∥♦

u

.=
n∑

i=1

∫ ∞

−∞
W̃u

i (x)
∣∣vi(x)

∣∣dx +
∑

α∈§∪§′
W̃u

kα
|σα|

∣∣ξα

∣∣− ε3

∫ yk

y∗k

∣∣vh(x)
∣∣ dx,

(8.36) W̃u
i (x) .= 1 + κ1R̃

u
i (x) + κ1κ2Q(u).
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Here Q(u) is the interaction potential (8.14), while for x 6= yk we set

R̃u
i (x) .=


∑

j≤i

∫ ∞

x

+
∑

j≥i

∫ x

−∞


 ∣∣uj

x(y)
∣∣ dy +




∑
α∈§∪§′

kα≤i, yα>x

+
∑

α∈§∪§′
kα≥i, yα<x


 |σα|

+





0 if x /∈ [y∗k, y∗∗k ],
−ε3 if x ∈ [y∗k, yk[ , i ≥ k, or if x ∈ ]yk, y∗∗k ], i ≤ k,

ε3 if x ∈ [y∗k, yk[ , i < k, or if x ∈ ]yk, y∗∗k ], i > k.

(8.37)

For the large k-shock located at yk we define

R̃u
k(yk) .=


∑

j≤k

∫ ∞

yk

+
∑

j≥k

∫ yk

−∞


 ∣∣uj

x(y)
∣∣ dy +




∑
α∈§′

kα≤k, yα>yk

+
∑
α∈§′

kα≥k, yα<yk


 |σα|

+ ε ·
{∫ yk

y∗k

( ∑

j<k

∣∣uj
x(x)

∣∣−
∑

j≥k

∣∣uj
x(x)

∣∣
)
dx +

∫ y∗∗k

yk

( ∑

j>k

∣∣uj
x(x)

∣∣−
∑

j≤k

∣∣uj
x(x)

∣∣
)
dx

+
∑
β∈§′

yβ∈]yk,y∗∗
k

]

|σβ | −
∑
β∈§′

yβ∈[y∗
k

,yk[

|σβ |
}

.

(8.38)

The weighted length of a path γ corresponding to the metric (8.35)–(8.38) will
be denoted by ‖γ‖♦, while ‖γ‖? always refers to the metric (8.11)–(8.14). The
definitions (8.35)–(8.38) are chosen so that, for a fixed u and a tangent vector
(v, ξ), letting δ2 → 0 we have y∗k, y∗∗k → yk and hence

(8.39) lim
δ2→0

∥∥(v, ξ)
∥∥♦

u
=

∥∥(v, ξ)
∥∥?

u
.

4. Let the assumptions (A) hold. We then construct approximate solutions wθ as
in Sections 3-4. During a time interval between two consecutive restarting times,
a minor modification of the estimates (3.52)–(3.75) shows that the weighted length
‖γ̃t‖♦ of the path γ̃t : θ 7→ wθ(t, ·) is a non-increasing function of time. Let us
examine in more detail what happens at a time t where a restarting algorithm is
used.

- When a steep compressive h-wave is replaced by several small h-shocks, the
weighted norm of tangent vectors decreases. Indeed, when a family of negative
h-waves are collapsed into a single point, they are no longer regarded as approach-
ing each other.

- When a small h-shock penetrates inside the shock layer around the big shock at
yk, it is replaced by a steep compression wave. In this case, the weighted norm of
tangent vectors still decreases, because of the last term in (8.35).

- At the initial time t = 0, we need to replace each piecewise constant function
uθ(0, ·) = ūθ by some other function wθ(0, ·) having one large k-shock, possibly
several small h-shocks, and no other jumps. More precisely, let uθ have a jα-jump
of size σα at each point yα (independent of θ), a large k-shock at the point yk, and



100 8. PROOF OF PROPOSITION 8

a j-shock of strength |σ̄| at x = θ. The restarting procedure will replace each jump
with jα 6= h with a continuous wave. In a neighborhood of each point yα, if jα 6= h,
the new function γ̃0(θ) = wθ(0, ·) will have the form

(8.40) wθ(0, x) =





ūθ(yα−) if x < yα,

Rjα

(
(x− yα)σα/δ∗

)(
ūθ(yα−)

)
if x ∈ [yα, yα + δ∗],

ū(yα+) if x > yα + δ∗.

Here Rj denotes a j-rarefaction curve and δ∗ > 0 is a suitably small constant.
Similarly, in a neighborhood of the point x = θ, in cases (iii) and (iv) the function
wθ(0, ·) is given by

(8.41) wθ(0, x) =





u[ if x < θ,

Rj

(
(x− θ)σ̄/δ∗

)
(u[) if x ∈ [θ, θ + δ∗],

u] if x > θ + δ∗.

Here σ̄ is the size of the jump (u[, u]), at x = θ. If jα = h, then on a neighborhood
of yα we simply have wθ(0, x) = ūθ(x). The same holds on a neighborhood of the
big k-shock at yk. Since uθ does not change with θ outside [a, b], by (8.41), in cases
(iii)-(iv) the generalized tangent vector (v, ξ) to the path γ̃0 is computed by

(8.42) vj = − σ̄

δ∗
· χ

[θ, θ+δ∗]
, vi ≡ 0 for i 6= j, ξ ≡ 0.

In cases (i), (ii) and (iii), choosing δ2 sufficiently small, the weighted length of the
new path γ̃0 : θ 7→ wθ(0, ·) is

(8.43) ‖γ̃0‖♦ = ‖γ̃0‖? = ‖γ0‖? + κ1κ2(b− a)|σ̄| ·
∑

jα 6=h,
σα<0

|σα|2,

where |σ̄| is the strength of the jump at x = θ. The increase is due to the change
in Q at (8.14). In case (iv) we have

(8.44) ‖γ̃0‖♦ = ‖γ̃0‖? = ‖γ0‖?+κ1(b−a)|σ̄|2+κ1κ2(b−a)|σ̄|


|σ̄|2 +

∑
jα 6=h,
)σα<0

|σα|2

 .

For any given ε′ > 0, if δ2, δ
∗ in (8.34) and (8.40)-(8.41) are small enough and if all

restarting procedures are suitably accurate, we then have

(8.45)
∥∥γ̃t(θ)− Sh

T ūθ
∥∥
L1 < ε′ for all θ ∈ [a, b], |t− T | < δ,

for some δ > 0. Our main concern is thus to control the weighted length of the
paths γ̃t : θ 7→ wθ(t, ·).

5. Before proceeding with the proof, let us point out the two main difficulties that
we are facing.

(a) By (8.43) or (8.44), in general one has ‖γ̃0‖♦ = ‖γ̃0‖? > ‖γ0‖?. This is because
the restarting performed at the initial time t = 0 “spreads out” all small j-shocks
(j 6= h), thus increasing the length of the path.
To compensate for this, at the terminal time t = T we shall replace the steep
compressive j-waves (j 6= h) with j-shocks. This will shorten the weighted length
of the path γ̃T by the appropriate amount.
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(b) The norms
∥∥(v, ξ)

∥∥♦
w

and
∥∥(v, ξ)

∥∥?

w
are constructed assigning different weights

to waves inside the shock layer [y∗k, y∗∗k ] in (8.34). Hence, the weighted lengths
‖γ̃T ‖♦ and ‖γ̃T ‖? may be substantially different.
Roughly speaking, this difficulty is overcome by choosing a time τ ∈ [T, T + ε0]
when “most part” of the tangent vector (vθ, ξθ) has already flowed out from the
shock layer [yθ

k−δ2, yθ
k +δ2], for most values of θ. In this way, the weighted lengths

‖γ̃τ‖♦ and ‖γ̃τ‖? will be almost the same.

We first address (b). Observe that, for any given ε′ > 0 and δ > 0 as in (8.45),
we can choose ε0 ∈ ]0, δ] with the following property. If

(8.46)
n∑

i=1

∫ y∗∗k

y∗k

∣∣wi
x(x)

∣∣ dx +
∑

yα∈[y∗k,y∗∗k ]

|σα| < ε0,

(8.47)
n∑

i=1

∫ y∗∗k

y∗k

∣∣vi(x)
∣∣ dx +

∑

yα∈[y∗k,y∗∗k ]

|σα|
∣∣ξα

∣∣ < ε0

for all θ /∈ Θ′, for some set Θ′ ⊂ Θ with

(8.48) meas(Θ′) < ε0,

then

(8.49) ‖γ‖? < ‖γ‖♦ + ε′.

In (8.46)-(8.47), it is understood that w = wθ(t, ·) = γt(θ), while (v, ξ) = (vθ, ξθ)
is the corresponding tangent vector. To establish (8.30), we thus need to prove the
following

CLAIM: For any given ε0 > 0, by choosing δ2 > 0 sufficiently small, there exists at
least one time τ ∈ [T, T + ε0] such that the corresponding estimates (8.46)-(8.47)
hold for all θ in a set Θ ⊂ [a, b] satisfying (8.48).

Toward a proof of the above claim, the key observation is that all waves of all
characteristic families cross the boundary region

(8.50) B
.= [yk − δ2, yk[ ∪ ]yk, yk + δ2]

transversally. Roughly speaking, if some function wθ(T, ·) contains a large amount
of waves inside the shock layer B, we can simply wait until a later time T + ∆t,
with ∆t = O(δ2), when all these waves will have moved outside B. Since ε0 is fixed
and δ2 can be chosen arbitrarily small, our claim holds. We now turn this intuitive
argument into a rigorous proof.

Recalling (1.9), call

(8.51) Υθ(t)
.= V

(
wθ(t)

)
+ C1 ·Q

(
wθ(t)

)
,

so that the quantity Υθ(t1)−Υθ(t2) provides an upper bound for the total amount
of interaction and cancellation in the solution wθ during the time interval [t1, t2].
Moreover, define

(8.52) Υ′θ(t)
.=

∥∥∥
(
vθ(t), ξθ(t)

)∥∥∥
♦

wθ(t)
.
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Observe that, for every fixed θ, the positive variation of both functions Υθ, Υ′θ can
be made arbitrarily small by increasing the accuracy of the restarting procedure.

In the following, we fix a lower bound ∆λ > 0 for the absolute value of the
difference between the speed of the large shock at yk and every other wave speed,
for every function wθ. Given any solution wθ, if

(8.53) x ∈ [
yk(t)− δ2, yk(t) + δ2

]
,

then for every i ∈ {1, . . . , n} either the forward or the backward generalized i-
characteristic through (t, x) crosses the big k-shock at some time

(8.54) t′ ∈ It
.= [t− δ2/∆λ, t + δ2/∆λ].

In particular, if (8.46) does not hold for wθ at time t, then a uniformly positive
amount of interaction and cancellation must take place within the time interval It,
hence

(8.55) Υθ(t− δ2/∆λ)−Υθ(t + δ2/∆λ) > κε0,

for some constant κ > 0. Similarly, if (8.47) fails, then

(8.56) Υ′θ(t− δ2/∆λ)−Υ′θ(t + δ2/∆λ) > κε0.

Let K be a constant such that

(8.57) V (u) + C1 ·Q(u) < K

for all functions u in the domain of the semigroup, and such that

(8.58) Υ′θ(0) =
∥∥∥
(
vθ(0), ξθ(0)

)∥∥∥
♦

wθ(0)
< K ∀θ ∈ [a, b].

Choose a large integer N and a value δ2 > 0 so small that

(8.59) N >
2K(b− a)

κε2
0

,
2δ2N

∆λ
< ε0.

By the second inequality in (8.59), the interval [T, T + ε0] contains N disjoint
subintervals of the form

(8.60) [t−i , t+i ] .=
[
ti − δ2/∆λ, ti + δ2/∆λ

]
.

Assume that, for every ti, (8.46) fails on a set Θi and (8.47) fails on a set Θ′i, with

(8.61) meas(Θi) + meas(Θ′i) ≥ ε0.

In this case we would have

(8.62) Υθ(t−i )−Υθ(t+i ) > κε0 Θ ∈ Θi,

(8.63) Υ′θ(t
−
i )−Υ′θ(t

+
i ) > κε0 Θ ∈ Θ′i.
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Therefore,

2K(b− a) ≥
∫ b

a

Υθ(T )−Υθ(T + ε0) dθ +
∫ b

a

Υ′θ(T )−Υ′θ(T + ε0) dθ

≥
N∑

i=1

∫ b

a

Υθ(t−i )−Υθ(t+i ) dθ +
N∑

i=1

∫ b

a

Υ′θ(t
−
i )−Υ′θ(t

+
i ) dθ

≥
N∑

i=1

κε0 ·
(
meas(Θi) + meas(Θ′i)

)

≥ Nκε2
0,

in contradiction with the choice of N in (8.59). Hence, at some t = ti, both (8.46)
and (8.47) hold for θ in the set

(8.64) Θ .= [a, b] \ (Θi ∪Θ′i)

satisfying (8.48). This proves the claim.
By the previous analysis, for every ε′ > 0 we have shown the existence of a

path γ̃τ : θ 7→ wθ(τ, ·) such that

(8.65) ‖γ̃τ‖? ≤ ‖γ̃0‖? + ε′,
∥∥γ̃τ (θ)− Sh

T ūθ
∥∥
L1 < ε′ θ ∈ Θ.

6. If now ‖γ̃0‖? = ‖γ0‖?, i.e. if the initial functions ūθ do not contain any small
i-shock, for all i 6= h, then the proof is completed. In the general case, we need to
show that, at some terminal time τ ∈ [T, T +ε0], one can collapse the i-compression
waves (i 6= h) back into a single shock and reduce the length of the path γ̃τ by the
appropriate amount.

To fix the ideas, let case (iii) hold, so that the jump (u[, )u]) is solved by a single
j-rarefaction, say with j > k, and (8.43) holds. The other cases can be handled by
similar techniques. For i 6= h, consider the linear equation

(8.66) zt + λ
(h)
i zx = 0.

Recall that, as in (3.4),

(8.67) λ
(h)
i =





λ∗i if i 6= k,

λ∗i if i = h, x < yk(t),
λ∗∗i if i = h, x > yk(t).

We now introduce the auxiliary functions v̂i, ŵ
i
x (also depending on θ), defined as

follows. For i 6= h, v̂i is the solution of (8.66) with initial data

(8.68) v̂i(0, x) =

{
0 if i 6= j,

−(σ̄/δ∗) · χ[θ, θ+δ∗](x) if i = j,

while ŵi
x is the solution of (8.66) with initial data

(8.69) ŵi
x(0, x) = wi

x(0, x).

Moreover, we set

(8.70) v̂h ≡ 0, ŵh
x ≡ 0,

(8.71) ṽi
.= vi − v̂i, w̃i

x
.= wi

x − ŵi
x i = 1, . . . , n.
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Consider the auxiliary weighted norm
∥∥(v, ξ)

∥∥♥
w

, defined as in (8.35)–(8.38) and
(8.14), replacing the quantity |vi| by |ṽi|+ |v̂i| and |wi

x| by |w̃i
x|+ |ŵi

x| throughout.
In particular

∥∥(v, ξ)
∥∥♥

u

.=
n∑

i=1

∫ ∞

−∞
W̃w

i (x)
(∣∣ṽi(x)

∣∣ +
∣∣v̂i(x)

∣∣
)
dx

+
∑

α∈§∪§′
W̃w

kα
|σα|

∣∣ξα

∣∣− ε3

∫ yk

y∗k

∣∣vh(x)
∣∣ dx,

where the weights W̃w
i are obtained from (8.37)-(8.38) and (8.14) with the due

replacements.
Call ‖γ̃‖♥ the corresponding weighted length of the path γ̃. As in the previous

cases, the positive variation of the function t 7→ ‖γ̃t‖♥ can be made arbitrarily
small by increasing the accuracy of the restarting procedures. In particular, for
any given ε′ > 0 we can assume

(8.72) ‖γ̃t‖♥ ≤ ‖γ̃0‖♥ + ε′ t > 0.

At the initial time we have

(8.73) v̂h = 0, ŵh
x = 0, ṽi = 0, w̃i

x = 0 if i 6= h.

Therefore,

(8.74) ‖γ̃0‖♦ = ‖γ̃0‖♥.

We now show that, at any time τ , from γ̃τ one can construct a shorter path γ̄τ by
collapsing each compressive i-wave in wθ(τ, ·) into a single point. Let {yα; α ∈ §′′}
be the set of points (independent )of θ) where the initial functions ūθ have a small
shock, in some family jα 6= h. By construction, wθ(0, ·) will thus have a steep
compressive jα-wave on each interval [yα, yα + δ∗]. At a given time τ > 0, consider
the intervals

(8.75) Jα
.= [yα + λατ, yα + λατ + δ∗],

where

(8.76) λα
.=





λ∗jα
if jα 6= k,

λ∗k if jα = k, yα < yk,

λ∗∗k if jα = k, yα > yk.

Moreover, call

(8.77) J
.=

⋃

α∈§′′
Jα.

The new path γ̄τ : θ 7→ w̄θ(τ, ·) is now obtained by collapsing each interval Jα into
a single point. More precisely, we define w̄θ implicitly by setting

(8.78) w̄θ
(
τ, x−meas

(
J \ (−∞, x]

)) .= wθ(τ, x)

Observe that, for any given ε0 > 0, by choosing δ∗ sufficiently small there exists
some time τ ∈ [T, T + ε0] where all intervals Jα are disjoint. Moreover, we can
assume that there exists a small set of parameters Θ′ ⊂ Θ satisfying (8.48), such
that the relations (8.46)-(8.47) hold together with

(8.79) yθ
k(τ) /∈ J
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for all θ /∈ Θ′. We now estimate the weighted length of the new path γ̄τ . For θ /∈ Θ′,
define

(8.80) §′′k .=
{

α ∈ §′′; jα = k, yα + λαt = yθ
k(t) for some t ∈ [0, τ ]

}
.

When a k-compression wave of strength |σα| impinges on the big k-shock of strength
|σk|, an interaction of magnitude |σkσα| >> |σα|2 takes place, and the functional
Q decreases accordingly. This yields an estimate of the form

(8.81)
∥∥(v, ξ)τ)

∥∥♥
w(τ)

≤ ∥∥(v, ξ)0)
∥∥♥

w(0)
+ ε′ − κ1κ2|σ̄| ·

∑

α∈§′′k
|σα|2.

Moreover, for θ /∈ Θ′, when we replace wθ by w̄θ the norm of the corresponding
tangent vector satisfies the estimate

(8.82)
∥∥(v̄, ξ̄)

∥∥♦
w̄
≤ ∥∥(v̄, ξ̄)

∥∥♥
w̄
≤ ∥∥(v, ξ)

∥∥♥
w
− κ1κ2|σ̄| ·

∑

α∈§′′\§′′k
|σα|2.

Together, (8.49), (8.81)-(8.82) and (8.43) yield
(8.83)
‖γ̄τ‖? ≤ ‖γ̄τ‖♦+ε′ ≤ ‖γ̃0‖♦+2ε′−κ1κ2(b−a−ε0)|σ̄|·

∑

α∈§′′
|σα|2+Cε0 ≤ ‖γ0‖?+2ε′+C ′ε0

for some constants C, C ′. Since ε′, ε0 > 0 can be taken arbitrarily small, the result
is proved.

7. The previous arguments yield a proof of Lemma 2 under the additional assump-
tion that, for all θ ∈ Θ, in (8.19) we have ûθ = ūθ, i.e. that all initial data are
constant outside the interval [−4ρ, 4ρ].
To cover the general case, we first construct a path of approximate solutions wθ on
the trapezoid Γ, using the same procedures as before. Then we consider the path
γ̂ : θ 7→ ŵθ, where

(8.84) ŵθ(x) =





wθ(0, x) if |x| > 4ρ,

wθ(T, x) if |x| < 4ρ− T ,

wθ
(
4ρ− |x|, x

)
if |x| ∈ [4ρ− T, 4ρ].

We then extend each wθ on the outer region

(8.85) Γ′ .=
{
(t, x); t ∈ [0, T ], |x| > 4ρ− t

}
,

letting wθ be an approximate ε-solution constructed by wave-front tracking, with
initial data assigned on the space-like curve

(8.86) t = Λ(x) =





0 if |x| > 4ρ,

4ρ− |x| if |x| ∈ [4ρ− T, 4ρ],
T if |x| < 4ρ− T .

Observe that these extensions on Γ′ are independent of θ. Indeed, all functions
wθ(T, ·) coincide for |x| ≥ 2ρ. In particular, the tangent vectors (vθ, ξθ) for the
two paths γ̂ : θ 7→ ŵθ and γT : θ 7→ wθ(T, ·) are supported inside the interval
[−ρ− T, ρ + T ] and coincide. Since the weights Wu

i in (8.12) can only decrease as
a result of wave interactions, we conclude

(8.87) ‖γT ‖? ≤ ‖γ̂‖? ≤ ‖γ0‖?.
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This completes the proof of Lemma 2 in Case 2, i.e. when all functions ūθ contain
exactly one big shock inside the trapezoid Γ.

Construction of approximate solutions, Case 3.

In the remainder of this section we describe the construction of piecewise Lip-
schitz approximate ε-solutions in Case 3, on a domain of functions containing two
large approaching shocks. Since the flow of our semigroup S can be approximated
by a cyclical concatenation of n distinct flows as in (8.20), it suffices to describe
how to construct approximate trajectories for each semigroup Sh, h = 1, . . . , n. We
will also introduce a weighted norm

∥∥(v, ξ)
∥∥♦

u
for tangent vectors, which is non-

increasing along piecewise Lipschitz approximate solutions. This weighted norm
incorporates some small terms due to the presence of shock layers with some width
δ2 > 0 around the big shocks. As δ2 approaches zero, for all piecewise Lipschitz u
and (v, ξ) ∈ Tu we will have the convergence

(8.88) lim
δ2→0+

∥∥(v, ξ)
∥∥♦

u
=

∥∥(v, ξ)
∥∥?

u
,

where ‖ · ‖? is the norm at (8.11)–(8.14). The contractivity of the semigroup Sh

w.r.t. the distance d? is proved by the same arguments as in Case 2.

The domain of Sh has the form D .= D1 ∪ D2. There exists some constant
states u−, u+ such that

(8.89) lim
x→−∞

u(x) = u−, lim
x→∞

u(x) = u+

for all u ∈ D. Moreover, each function u ∈ D1 contains two large approaching
shocks, say of the k1, k2-characteristic families (with )k1 ≥ k2), located at points
y1 < y2. These shocks have strength |σ1|, |σ2| > ε9, and the total strength of all
other waves in u is < ε20. On the other hand, D2 .= D(u−,u+) as in (2.8). If
u(0, ·) ∈ D1, the solution u will remain inside D1 up to some time τ when the two
large shocks interact, then it will evolve inside D2.
Let u† .= ū

(
(y1 + y2)/2

)
be a middle state for some fixed function ū ∈ D1. By

possibly shrinking the domain, since the total amount of small waves in any u ∈ D1

is < ε20, we can assume
(8.90)
max

{∣∣u(y1−)−u−
∣∣, |u(y1+)−u†

∣∣, ∣∣u(y2−)−u†
∣∣, ∣∣u(y2+)−u+

∣∣
}
≤ Cε20 u ∈ D1.

An approximate flow for the semigroup Sh will be constructed separately on the
two domains D1 and D2.

We begin with the flow on D1. Introduce the following constant speeds. If
k1 > k2, define

(8.91) λ∗j
.= λj(u−) if j 6= k1, k2,

(8.92) λ∗k1

.= λk1(u
−), λ∗∗k1

.= λk1(u
†), λ∗k2

.= λk2(u
†), λ∗∗k2

.= λk2(u
+).



8. PROOF OF PROPOSITION 8 107

In the case k1 = k2 define
(8.93)
λ∗j = λ∗∗j

.= λj(u−) if j 6= k1, λ∗k1

.= λk1(u
−), λ∗∗k1

.= λk1(u
+), λ†k1

.= λk1(u
†).

For a fixed h ∈ {1, . . . , n} and a given δ2 > 0, we now introduce a system of
equations which define our approximate solutions on the domain D1. In this system,
all characteristic fields j 6= h are linearly degenerate. On the other hand, the h-th
eigenvalues are constant inside the two shock layers

(8.94) [y∗1 , y∗∗1 ] .= [y1 − δ2, y1 + δ2], [y∗2 , y∗∗2 ] .= [y2 − δ2, y2 + δ2],

and genuinely nonlinear outside. More precisely, we consider the quasilinear hyper-
bolic system

(8.95) ut + Ah(x, u)ux = 0,

where A(x, u) is the matrix with the same eigenvectors as A(u) = DF (u), but
whose eigenvalues λ

(h)
j are defined as follows. If j 6= h, then

(8.96) λ
(h)
j

.=





λ∗j if j 6= k1, k2,

λ∗k1
if j = k1, x < y1,

λ∗∗k1
if j = k1 6= k2, x > y1,

λ∗k2
if j = k2 6= k1, x < y2,

λ∗∗k2
if j = k2, x > y2,

λ†k1
if j = k1 = k2, y1 < x < y2.

If h /∈ {k1, k2}, then

(8.97) λ
(h)
h

.= λ∗h + n
(
λh(u)− λ∗h

)
.

If h = k1 6= k2, then

(8.98) λ
(h)
h

.=





λ∗k1
+ n

(
λk1(u)− λ∗k1

)
if x < y∗1 ,

λ∗∗k1
+ n

(
λk1(u)− λ∗∗k1

)
if x > y∗∗1 ,

λ∗k1
if x ∈ [y∗1 , y1[ ,

λ∗∗k1
if x ∈ ]y1, y

∗∗
1 ].

The definition of λ
(h)
h in the case h = k2 6= k1 is analogous. Finally, if h = k1 = k2

we set

(8.99) λ
(h)
h

.=





λ∗h + n(λh(u)− λ∗h) if x < y1,

λ∗∗h + n(λh(u)− λ∗∗h ) if x > y2,

λ†h + n(λh(u)− λ†h) if y2 − y1 > 2δ2 and x ∈]y∗∗1 , y∗2 [,
λ∗h if x ∈ [y∗1 , y1[,
λ∗∗h if x ∈]y2, y

∗∗
2 ],

λ†h if y2 − y1 > 2δ2 and x ∈]y1, y
∗∗
1 [∪[y∗2 , y2[,

or if y2 − y1 ≤ 2δ2 and x ∈]y1, y2[.

Within the domain D1, an approximate ε-solution u = u(t, x) is defined by the
following requirements:

- At each time t, the function u(t, ·) is piecewise Lipschitz, with two large
shocks at points y1 < y2, and possibly other small h-shocks at points yβ ,
β ∈ §′.
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- The quasilinear equations (8.95) hold a.e. outside the shocks.
- The two large shocks satisfy the ε-Rankine Hugoniot equations (2.3)-(2.4).
- At each small h-shock yβ , the left and right state are related by (3.3).

The speed ẏβ of the shock is determined by (3.9).
This determines the evolution up to the time τ where the two large shocks

interact. To preserve the piecewise Lipschitz continuity of approximate solutions,
restarting procedures are performed exactly as in Section 4. Notice that the defi-
nition of the characteristic speeds is given in such a way that when the two shock
layers merge together we can replace them with a single shock layer [y∗1 , y∗∗2 ].

After the interaction time, since D2 = D(u−,u+) is a special case of the domains
considered at (2.8), the construction of approximate solutions is much the same as
in Sections 3-4. The only difference is that now, immediately after the interaction
time, the various shock layers around the big shocks emerging from the interaction
are not well separated. Therefore, some care must be taken in defining the charac-
teristic speeds and the weighted norm of tangent vectors in a neighborhood of the
interaction point (τ, x̄).

Call ω0 = u−, ω1, . . . , ωn = u+ the constant states in the ε-solution of the
Riemann problem with data (u−, u+). Let {yk ; k ∈ §} be the new set of large
shocks. Define

(8.100) y∗(t) .= x̄− δ2 + t− τ, y∗∗(t) .= x̄ + δ2 − t + τ.

The characteristic speeds λ∗i , λ∗∗i are now defined as in (3.1), while the λ
(h)
i are

defined as in (3.4) for i 6= h. Concerning the genuinely nonlinear eigenvalues λ
(h)
h ,

on the time interval [τ, τ + δ2/3] immediately after the interaction, we set

(8.101) λ
(h)
h

.=





λ∗h if h ∈ §, x ∈ [
y∗(t), yh(t)

[
,

λ∗∗h if h ∈ §, x ∈ ]
yh(t), y∗∗(t)

]
,

λ∗h if h /∈ §, x ∈ [
y∗(t), y∗∗(t)

]
,

λ∗h + n(λh(u)− λ∗h) if x < y∗(t),
λ∗∗h + n(λh(u)− λ∗∗h ) if x > y∗∗(t).

Due to the strict hyperbolicity, there exists a width δ′2 ∈ ]0, δ2[ such that the inter-
vals

(8.102)
[
y∗i , y∗∗i ] .= [yi − δ′2, yi + δ′2], i ∈ §

are pairwise disjoint at time t = τ + δ2/3. We can thus replace the shock layer
[y∗, y∗∗] with |§| new shock layers of width δ′2 around the big shocks, and define λ

(h)
h

as in (3.6) or (3.7). Since u(τ +δ2/3) ∈ D(u−,u+), a piecewise Lipschitz approximate
solution can now be constructed for all t ∈ [τ + δ2/3, ∞[ , as in Sections 3-4.

In turn, letting the width of the shock layers δ2, δ
′
2 → 0+, in the limit we

obtain the flow of the semigroup Sh. The proof of the contractivity of Sh w.r.t. the
distance d? is obtained by first showing that a suitable weighted norm

∥∥(v, ξ)
∥∥♦

u
for tangent vectors decreases along our piecewise Lipschitz approximate solutions,
and then arguing as in Case 2, exploiting the convergence (8.88) as δ2 → 0.
In the present case, the analysis is somewhat longer, since we need to distinguish
four evolution phases (fig. 11):

(a) Before the interaction, when the two shock layers are still disjoint, with
u(t) ∈ D1 and y2 − y1 > 2δ2.
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(b) Slightly before the interaction, when the two shock layers have already
merged together, with u(t) ∈ D1 and y2 − y1 ≤ 2δ2.

(c) Immediately after the interaction, when all big shocks still remain inside
a unique shock layer, with u(t) ∈ D2, t ∈ [τ, τ + δ2/3].

(d) After the interaction, when the shock layers around the large shocks are
mutually disjoint, with u(t) ∈ D2, t > τ + δ2/3.

We now define a weighted norm ‖ ·‖♦ in each of these four phases. Let u ∈ D1∪D2

be piecewise Lipschitz, with big shocks at points yα, α ∈ §, plus several small shocks
at points yβ , β ∈ §′. In analogy with (8.35), we set
(8.103)

∥∥(v, ξ)
∥∥♦

u

.=
n∑

i=1

∫ ∞

−∞
W̃u

i (x)
∣∣vi(x)

∣∣dx +
∑

α∈§∪§′
W̃u

kα
|σα|

∣∣ξα

∣∣− ε19

∫

I

∣∣vh(x)
∣∣ dx,

where W̃u
i is defined as in (8.36). The terms R̃u

i are now defined by
(8.104)

R̃u
i (x) .=


∑

j≤i

∫ ∞

x

+
∑

j≥i

∫ x

−∞


 ∣∣uj

x(y)
∣∣ dy +




∑
α∈§∪§′

kα≤i, yα>x

+
∑

α∈§∪§′
kα≥i, yα<x


 |σα|+ Pi(x).

In the case u ∈ D1, the weights assigned to the big shocks at yl, l = 1, 2 are defined
by
(8.105)

R̃u
kl

(yl)
.=


∑

j≤kl

∫ ∞

yl

+
∑

j≥kl

∫ yl

−∞


 ∣∣uj

x(y)
∣∣ dy+




∑
α∈§′

kα≤kl, yα>yl

+
∑
α∈§′

kα≥kl, yα<yl


 |σα|+εP̂kl

(yl),

while, if u ∈ D2, k ∈ §,
(8.106)

R̃u
k(yk) .=


∑

j≤k

∫ ∞

yk

+
∑

j≥k

∫ yk

−∞


 ∣∣uj

x(y)
∣∣ dy+




∑
α∈§′

kα≤k, yα>yk

+
∑
α∈§′

kα≥k, yα<yk


 |σα|+εP̂k(yk).
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The terms Pi, P̂i and the domain I ⊂ IR of the last integral in (8.103) are
defined in different ways, according to the four cases (a)–(d) considered above.

Case (a). I = [y′1, y
′′
1 ] ∪ [y′2, y

′′
2 ], where

(8.107) y′l
.=

{
y∗l , if h ≥ kl,

yl, if h < kl,
y′′l

.=

{
yl, if h > kl,

y∗∗l , if h ≤ kl,
l ∈ {1, 2},

(8.108) Pi(x) .=





0, if x 6∈ [y∗1 , y∗∗1 ] ∪ [y∗2 , y∗∗2 ],
−ε19, if x ∈ [y∗l , yl[, i ≥ kl, or

if x ∈]yl, y
∗∗
l ], i ≤ kl, for some l ∈ {1, 2},

ε19, if x ∈ [y∗l , yl[, i < kl, or
if x ∈]yl, y

∗∗
l ], i > kl, for some l ∈ {1, 2},

and, for l = 1, 2,

P̂kl
(yl)

.=
∫ yl

y∗l

( ∑

j<kl

∣∣uj
x(x)

∣∣−
∑

j≥kl

∣∣uj
x(x)

∣∣
)
dx +

∫ y∗∗l

yl

( ∑

j>kl

∣∣uj
x(x)

∣∣−
∑

j≤kl

∣∣uj
x(x)

∣∣
)
dx+

+
∑
β∈§′

yβ∈[y∗
l

,y∗∗
l

]\[y′
l
,y′′

l
]

|σβ | −
∑
β∈§′

yβ∈[y′
l
,y′′

l
]

|σβ |.

Case (b). I = [y′, y′′], where

(8.109) y′ .=

{
y∗1 , if h ≥ k1,

y1, if h < k1,
y′′ .=

{
y∗∗2 , if h ≤ k2,

y2, if h > k2,
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(8.110) Pi(x) .=





0, if x < y∗1 or x > y∗∗2 ,

−ε19, if x ∈]y1, y2[, or
if x ∈ [y∗1 , y1[, and i ≥ k1, or
if x ∈]y2, y

∗∗
2 ], and i ≤ k2,

ε19, if x ∈ [y∗1 , y1[, and i < k1, or
if x ∈]y2, y

∗∗
2 ], and i > k2,

and if h 6= k1

P̂k1(y1)
.=

∫ y1

y∗1


 ∑

j<k1

|uj
x(x)| −

∑

j≥k1

|uj
x(x)|


 dx−

∫ y∗∗2

y1

∑

j≤k1

|uj
x(x)| dx+

+ sgn(h− k1)




∑
β∈§′

yβ∈]y1,y∗∗2 ]

)|σβ | −
∑
β∈§′

yβ∈[y∗1 ,y1[

|σβ |


 ,

while if h = k1 the last term is replaced by

(8.111) −
∑
β∈§′

yβ∈[y∗1 ,y∗∗2 ]

|σβ |,

and if h 6= k2

P̂k2(y2)
.= −

∫ y2

y∗1

∑

j≥k2

|uj
x(x)| dx +

∫ y∗∗2

y2


)

∑

j>k2

|uj
x(x)| −

∑

j≤k2

|uj
x(x)|


 dx+

+ sgn(h− k2)




∑
β∈§′

yβ∈]y2,y∗∗2 ]

)|σβ | −
∑
β∈§′

yβ∈[y∗1 ,y2[

|σβ |


 ,

while if h = k2 the last term is replaced by

(8.112) −
∑
β∈§′

yβ∈[y∗1 ,y∗∗2 ]

|σβ |.

Case (c). I = ∅,

(8.113) Pi(x) .=

{
ε19, if x < y∗ or x > y∗∗,
2ε19, if x ∈ [y∗, y∗∗],

and, for k ∈ §,

(8.114) P̂k(ŷk) .=
∫ +∞

−∞

∑

j

|uj
x(x)| dx +

∫ y∗∗

y∗

∑

j

|uj
x(x)| dx.

Case (d). I =
⋃

k∈§[y
′
k, y′′k ], where

(8.115) y′k
.=

{
y∗k, if h ≥ k,

yk, if h < k,
y′′k

.=

{
yk, if h > k,

y∗∗k , if h ≤ k,
k ∈ §,
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(8.116) Pi(x) .=





−ε19, if x ∈ [y∗k, yk[, i ≥ k, or
if x ∈]yk, y∗∗k ], i ≤ k, for some k ∈ §,

ε19, if x ∈ [y∗k, yk[, i < k, or
if x ∈]yk, y∗∗k ], i > k, for some k ∈ §,

0, otherwise,

and, for k ∈ §, if h 6= k

P̂k(yk) .=
∫ yk

y∗k

( ∑

j<k

∣∣uj
x(x)

∣∣−
∑

j≥k

∣∣uj
x(x)

∣∣
)
dx +

∫ y∗∗k

yk

( ∑

j>k

∣∣uj
x(x)

∣∣−
∑

j≤k

∣∣uj
x(x)

∣∣
)

dx+

+ sgn(h− k)




∑
β∈§′

yβ∈]yk,y∗∗
k

]

)|σβ | −
∑
β∈§′

yβ∈[y∗
k

,yk[

|σβ |


 ,

while if h = k the last term is replaced by

(8.117) −
∑
β∈§′

yβ∈[y∗
k

,y∗∗
k

]

|σβ |.

Let us denote by Ia, Ib, Ic and Id the set I defined in the cases (a), (b), (c),
(d) respectively, and the same for the Pi’s and the P̂i’s. By the same arguments
in Sections 3-4, one checks that the weighted norm

∥∥(v, ξ)
∥∥♦

u
of any tangent vector

is non-increasing along our piecewise Lipschitz approximate solutions. Moreover,
at every restarting time, the increase in the weighted norm can be kept arbitrarily
small by increasing the accuracy of the restarting procedure. It remains to check
that, at each time of transition from one of the phases (a)–(d) to the next, these
weighted norms do not increase. Transition from phase (a) to phase (b).

Let t̄ be the transition time from Case (a) to Case (b). It is easy to check that
Ia ⊂ Ib, P b

i (x)− P a
i (x) ≤ 0 and P̂ b

kl
(yl)− P̂ a

kl
(yl) ≤ 0. Therefore,

(8.118) ‖(v, ξ)‖♦u(t̄+) ≤ ‖(v, ξ)‖♦u(t̄−).

Transition from phase (c) to phase (d).
Let t̄ denote the transition time. Since Ic = ∅, we clearly have Ic ⊂ Id. Due to

the splitting of the shock layers, we may have an increase in ‖v‖L1 . More precisely,
recalling that the strength of the waves outside the big shocks is bounded by ε20,
we get

(8.119) ‖v(t̄+)‖L1 ≤ (1 + Cε20)‖v(t̄−)‖L1 .

On the other hand, from the definition of Pi and P̂i, it easily follows that

(8.120) W̃
u(t̄+)
i (x)− W̃

u(t̄−)
i (x) ≤ −κ1ε

19

so that
(8.121)
∑

i

∫ +∞

−∞

[
|v+

i (x)|W̃u(t̄+)
i (x)− |v−i (x)|W̃u(t̄−)

i (x)
]

dx ≤
∑

i

‖v−i ‖L1(Cε20−κ1ε
19) ≤ 0,
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for ε small enough. This again implies (8.118).

Transition from phase (b) to phase (c).
We recall that x̄ denotes the point of interaction of the two big shocks at time τ .

Define u± .= u(τ, x̄±). Let us denote by {ξj}j∈§ the shifts of the shocks generated
by the interaction. We recall that, since no rarefaction waves are generated by the
interaction, we have
(8.122)

lim
t→τ+

∫ +∞

−∞

∣∣ui
x(t, x)− ui

x(τ−, x)
∣∣ dx = 0, lim

t→τ+

∫ +∞

−∞
|vi(t, x)− vi(τ−, x)| dx = 0, i = 1, . . . , n.

In order to compute the variation of the norm of a generalized tangent vector
at the interaction time t = τ , we can assume that only one wave is shifted at time
t < τ . Let us denote by ξ ∈ IR the shift of this wave and by σ its strength. We
shall distinguish the four cases (i)-(iv) as in CASE 2.

Due to the possible change in Pi, the terms R̃u
i satisfy the estimate

(8.123) R̃
u(τ+)
i (x) ≤ R̃

u(τ−)
i (x) + 3ε19.

On the other hand, the interaction potential decreases at time τ :

(8.124) Q(τ+) ≤ Q(τ−)− |σ1σ2|.

Since |σ1|, |σ2| > ε9, we get for every x 6= x̄, i = 1, . . . , n,

(8.125) W̃
u(τ+)
i (x)− W̃

u(τ−)
i (x) ≤ 3κ1ε

19 − κ1κ2|σ1σ2| ≤ −Cκ1|σ1σ2|,

for ε small. In a similar way, at the interaction point,

W̃
u(τ+)
i (ŷk1)− W̃

u(τ−)
i (y1) ≤ 3κ1ε · ε20 − κ1κ2|σ2| ≤ −Cκ1|σ2|,

W̃
u(τ+)
i (ŷk2)− W̃

u(τ−)
i (y2) ≤ −Cκ1|σ1|.

(8.126)

Let us first consider the case k1 6= k2. In the case (i), we can assume that the
shifted wave is the large k1-shock, the other case being entirely similar. By (5.11)
in [B4], the new shifts are given by

(8.127) ξi =
λi(ωi−1, ωi)− ẏ−2

ẏ−1 − ẏ−2
ξ, i ∈ §.

From well-known estimates (see [B4]) we get

(8.128) |ξk1 − ξ| ≤ C|σ1σ2| |ξ|, |ξk2 | ≤ C|σ1σ2| |ξ|, |ξi| ≤ C|ξ|, i ∈ §.
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From (8.103), (8.122), (8.125) and (8.126) we obtain

‖(v+, ξ+)‖♦u(τ+) − ‖(v−, ξ−)‖♦u(τ−) ≤
∑

i∈§
|σ+

i | |ξi|W+
i (yi)− |σ1| |ξ|W−

k1
(y1)+

+
n∑

i=1

∫ +∞

−∞
|v−i (x)| [W+

i (x)−W−
i (x)

]
dx+

+ ε19

∫ y∗∗

y∗
|vh(x)| dx ≤

≤nC|ξ| |σ1σ2|Mu(τ+)
W + |σ1| |ξk1 − ξ|W+

k1
(yk1)+

+ |σ1| |ξ|
[
W+

k1
(yk1)−W−

k1
(y1)

]
+

+ (ε19 − Cκ1|σ1σ2|)
∫ y∗∗

y∗
|vh(x)| dx ≤

≤nC|ξ| |σ1σ2|Mu(τ+)
W − Cκ1|σ1σ2| |ξ| ≤

≤0,

(8.129)

if κ1 is large enough. The other cases (ii), (iii) and (iv) can be treated similarly.

Let us now consider what happens when k1 = k2. We shall treat in detail the
case (i), since the other cases can be treated in the same way. Following [B4], the
estimate (8.128) is replaced by

(8.130) |ξk1 | ≤
|σ1|+ C|σ1σ2|
|σ1|+ |σ2| |ξ|, |ξi| ≤ C|ξ|

|σ1|+ |σ2| , i ∈ §,
(8.131)
|σ+

k1
− σ1 − σ2| ≤ C|σ1σ2|(|σ1|+ |σ2|), |σ+

i | ≤ C|σ1σ2|(|σ1|+ |σ2|), i ∈ §,
while the estimates (8.125) and (8.126) remain valid. Using (8.125), (8.126), (8.130)
and (8.131) we obtain
∑

i∈§
|σ+

i | |ξi|W+
i (yi)− |σ1| |ξ|W−

k1
(y1) ≤nC|σ1σ2|(|σ1|+ |σ2|) C|ξ|

|σ1|+ |σ2|M
u(0+)
W +

+
∣∣ |σ+

k1
| |ξk1 | − |σ1| |ξ|

∣∣W+
k1

(yk1) + |σ1| |ξ|
[
W+

k1
(yk1)−W−

k1
(y1)

] ≤
≤− C1|σ1σ2|.

The same arguments used in (8.129) now yield

(8.132) ‖(v+, ξ+)‖♦u(τ+) − ‖(v−, ξ−)‖♦u(τ−) ≤ 0.



CHAPTER 9

Proof of Proposition 9

As in Section 2, consider a regular path γ0 : θ 7→ ūθ of initial data, defined
for θ ∈ Θ .= ]a, b[ . Call Θ∗ the set of all parameter values θ ∈ Θ for which the
corresponding solution uθ is structurally unstable. If θ̄ is an isolated point of Θ∗,
the conclusion of Proposition 8 is clear. We thus study the case where θ̄ is a limit
point of Θ∗. Let us sketch the main ingredients of the proof.

1. By induction on the integer m, we can assume that the weighted length of a
path

(9.1) θ 7→ γt(θ)
.= uθ(t, ·) = Sε

t−τuθ(τ, ·) t ∈ [τ,∞[

is non-increasing provided that

(9.2) sup
θ

Q
(
uθ(τ)

) ≤ (m− 1)ε20.

It then suffices to prove that the same conclusion holds when

(9.3) sup
θ

Q
(
uθ(τ)

) ≤ mε20.

2. Let (9.3) hold, and assume that uθ̄ is structurally unstable. From the definitions,
it is clear that uθ̄ can have only finitely many points of instability. Let (tθ̄, xθ̄) be
the first such point (w.r.t. time). Arguing as in Section 7, we can choose r, ρ > 0
such that, setting

(9.4) τ
.= tθ̄ − r, J

.= [xθ̄ − 4r, xθ̄ + 4r], Iρ
.= [θ̄ − ρ, θ̄ + ρ],

all functions uθ(τ, ·), θ ∈ Iρ, have the same wave structure on the interval J .

3. We then consider a modified path γ̃τ : θ 7→ ũθ(τ), having the form

(9.5) ũθ(τ, x) = uθ
(
τ, x− ϕ(x)

)
,

where ϕ is a smooth scalar map. For any given ε′ > 0, we will show that the map
ϕ can be chosen with

(9.6) ‖ϕ‖C3 < ε′,

and such that, for all but finitely many values of θ, the solution

(9.7) ũθ(t, ·) .= Sε
t−τ ũθ(τ)

is structurally stable on some strip [τ, τθ]× IR and satisfies

(9.8) Q
(
ũθ(τθ)

) ≤ Q
(
uθ(τ)

)− ε20.

Thanks to (9.8), the contractivity property can thus be extended to all times t > τθ

by the inductive assumption (9.2).
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As in (2.24), define the rescaled functions

(9.9) uη(t, x) .= uθ̄(tθ̄ + ηt, xθ̄ + ηx),

(9.10) ω(t, x) .= lim
η→0+

uη(t, x).

To clarify the main ideas, we first give a proof in the typical case where, for t < 0,
ω contains exactly three incoming shocks, all of strength ≥ ε2, and no other waves
(fig. 12).

stableunstable
Fig.12

Under these assumptions, thanks to a structural stability argument (see [B-
LF2]), one can find r, ρ > 0 such that the following holds. Defining τ, J, Iρ as in
(9.4), all functions uθ(τ, ·), θ ∈ Iρ, have three large shocks of strength > cε on J ,
plus possibly other waves of total strength < Cε6, for some constants C, c > 0.

Call xθ
i , i = 1, 2, 3, the positions of the three large shocks in uθ. By possibly

shrinking the size of ρ, we can find some r∗ > 0 such that the intervals [xθ̄
i −

3r∗, xθ̄
i + 3r∗] are mutually disjoint and

(9.11) |xθ
i − xθ̄

i | ≤ r∗ θ ∈ Iρ, i = 1, 2, 3.

Let ψ : IR 7→ [0, 1] be a smooth function such that

(9.12) ψ(s) =

{
1 if |s| ≤ 1,

0 if |s| ≥ 2.

For every ζ = (ζ1, ζ2, ζ3) ∈ IR3, define

(9.13) ϕζ(θ, x) .=
3∑

i=1

ζi ψ

(
x− xθ̄

i

r∗

)
.

Now fix any θ ∈ Iρ and call uθ,ζ the ε-solution of (1.1) with initial data

(9.14) uθ,ζ(τ, x) = uθ
(
τ, x− ϕζ(x)

)
.
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Call xθ,ζ
i the locations of the corresponding shocks. The next step of the proof will

establish that, roughly speaking,

(9.15)
∂

∂ζj
xθ,ζ

i (t) ≈ δij
.=

{
1 if i = j,

0 if i 6= j,

for all times t ≥ τ before the first interaction between two large shocks.
Observe that the two sides of (9.15) coincide at time τ . Moreover, if only a

minimal amount of interaction takes place during the interval [τ, t], then the shift
rates of the shocks xi (w.r.t. the parameter ζ) will remain almost unchanged. Based
on these ideas, we now work out a rigorous argument. For notational simplicity, the
dependence on θ will henceforth be omitted. Since the map ζ 7→ xζ

i (t) is Lipschitz
continuous but possibly not differentiable, the estimate (9.15) must be reformulated
in terms of Clarke’s generalized gradient [Cl]. More precisely, for i = 1, 2, 3 and all
ζ sufficiently close to the origin, we claim that

(9.16) sup
j=1,2,3

|ξj − δij | ≤ Cε5,

for every vector ξ = (ξ1, ξ2, ξ3) contained in the generalized gradient of the scalar
map ζ 7→ xζ

i (t).
To establish (9.16), we show that the same estimate holds uniformly for the

generalized gradients of piecewise Lipschitz approximate solutions. Indeed, for
any fixed θ ∈ Iρ, consider a piecewise Lipschitz approximation w(τ, ·) of uθ(τ, ·),
containing three large shocks located at the same points xθ

i as uθ, plus other waves
of total strength < Cε6. Then the regular path

(9.17) ϑ 7→ uϑ(x) .= w
(
τ, x− ϑϕζ(x)

)

generates a generalized a tangent vector (vϑ, ξϑ). Its continuous part is

(9.18) vϑ(τ, x) = −wx

(
τ, x− ϑϕζ(x)

)
ϕζ(x).

Moreover, denoting by ξϑ
i , i ∈ § .= {1, 2, 3} the shifts of the big shocks at xϑ

i and
by ξϑ

α, α ∈ §′ the shifts of the small shocks at xϑ
α, from (9.11)–(9.14) it follows

(9.19) ξϑ
i (τ) = ζi,

∣∣ξϑ
α(τ)

∣∣ ≤ max
i
|ζi|.

As long as the large shocks remain separated, we can construct piecewise Lipschitz
approximations, as in Sections 3-4, with restartings that do not change the positions
of these three shocks. We claim that, as long as these shocks do not interact, for
any such path of approximate solutions wϑ(t, ·), the tangent vector

(
vϑ(t), ξϑ(t)

)
satisfies

(9.20)
∣∣ξi(t)− ξi(τ)

∣∣ ≤ Cε4
∣∣ξ(τ)

∣∣.
A proof of (9.20) will be obtained from (9.18)-(9.19), by showing that the tangent
vector remains almost unchanged during the time interval [τ, t], since the amount
of interaction is very small.

Call σi, σα the sizes of the shocks at xi, i ∈ § and at xα, α ∈ §′. Let these shock
belong to the families ki, kα, respectively. Fix i ∈ §. By the same type of arguments
used in Section 3 for proving the decrease in the weighted norm of tangent vectors,
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as long as
∣∣ξi(t)− ξi(τ)

∣∣ ≤
∣∣ξi(τ)

∣∣/2, we have

d

dt

[
W

w(t)
ki

(
xi(t)

)∣∣]i(t)
∣∣∣∣ξi(t)− ξi(τ)

∣∣ +
∑

α∈§′∪§\{i}
W

w(t)
kα

(
xα(t)

)∣∣]α(t)
∣∣∣∣ξα(t)

∣∣

+
n∑

j=1

∫ +∞

−∞
W

w(t)
j (x)

∣∣vj(t, x)
∣∣dx

]
≤ 0.

(9.21)

Let us estimate the increase of ξi and ξα at times when an interaction between a
big shock and a small shock takes place. In this case, denoting by ξ±i and ξ±α the
shifts before and after the interaction, one has

(9.22) |ξ+
i − ξ−i | ≤

|ξ−α ]−α |
|σ−i |

|ξ−i | |ξ+
α − ξ−α | ≤

|ξ−i ]−α |
|σ−i |

|ξ−α |.

For interactions between two small shocks, the identities (3.76) hold.
Furthermore, as long as the three large shocks remain separated, one has

(9.23)
3∑

i=1

∣∣∣Ww(t)
ki

(
xi(t)

)∣∣]i(t)
∣∣∣∣ξi(t)

∣∣−W
w(τ)
ki

(
xi(τ)

)∣∣]i(t)
∣∣∣∣ξi(τ)

∣∣
∣∣∣ ≤ Cε6|ζ|,

(9.24)
n∑

j=1

∣∣∣∣
∫ +∞

−∞

(
)Ww(t)

j (x)
∣∣vj(t, x)

∣∣−W
w(τ)
j (x)

∣∣vj(τ, x)
∣∣
)

dx

∣∣∣∣ ≤ Cε6|ζ|.

The estimates (3.76) and (9.21)–(9.24) together imply

(9.25)
∣∣ξi(t)− ξi(τ)

∣∣ ≤ Cε6

∣∣ξi(τ)
∣∣

∣∣σi(τ)
∣∣ ≤ Cε5

∣∣ξi(τ)
∣∣.

Since (9.25) is uniformly valid for all suitably accurate approximate solutions, com-
bining (9.25) with (9.19) and passing to the limit we obtain (9.16).

We now consider solutions

(9.26) uθ,ζ(t) = Sε
t−τuθ,ζ(τ)

obtained with the special choice ζ = (0, ζ2, 0). By genuine nonlinearity, the speeds
of the three large shocks are strictly separated, i.e.

(9.27) inf
t

{
ẋθ,ζ

1 (t)− ẋθ,ζ
2 (t), ẋθ,ζ

2 (t)− ẋθ,ζ
3 (t)

}
> cε2.

By (9.16) and (9.27), for each θ ∈ Iρ there exists a unique value ζ∗2 (θ) such that,
taking ζ = (0, ζ∗2 , 0), the three large shocks in the corresponding solution (9.26)
interact together at a single point. Moreover, the map θ 7→ ζ∗2 (θ) is Lipschitz
continuous. Applying the coarea formula (see [E-G]), we obtain

(9.28)
∫ +∞

−∞
H0

{
θ ; ζ∗2 (θ) = ]

}
d] =

∫

Iρ

∣∣∣∣
∂ζ∗2 (θ)

∂θ

∣∣∣∣ dθ < +∞,

where H0 is the zero dimensional Hausdorff measure, i.e. the counting measure. It
follows that H0{θ ; ζ∗2 (θ) = ]} < +∞ for almost every ]. Observing that ‖ϕζ‖C3 ≤
C|ζ|, for any ε′ > 0 we can now choose ζ = (0, σ, 0) so small that (9.6) holds, and
such that the set

{
θ ; ζ∗2 (θ) = σ

}
is finite.
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The previous analysis shows that the path θ 7→ uθ can be uniformly approxi-
mated by a path θ 7→ uθ,ζ such that, for all but finitely many θ, the solution uθ,ζ

is structurally stable. The conclusion thus follows from Corollary 1 and the lower
semicontinuity of the weighted length.

The general case can be handled by similar techniques. By a structural stability
argument (see [B-LF2]) we can choose r, ρ > 0 such that, defining τ, J, Iρ as in (9.4),
the following holds. There exist disjoint closed intervals J1, . . . , Jm ⊂ J such that
all functions uθ(τ, ·), θ ∈ Iρ contain a similar “wave packet” inside each J`. More
precisely, one of the two cases occurs:

(a) Inside J`, each uθ(τ) contains a k`-shock of strength ≥ ε4, plus other
waves of total strength < ε6.

(b) Inside J`, each uθ(τ) contains an amount V −
k`

of negative k`-waves, with

(9.29) V −
k`

(
u(τ); J`

) ∈ [ε3, 2ε3],

• while the total strength of positive k`-waves and of all other j-waves,
j 6= k` is ≤ ε6.

We then construct smooth functions ψ` : IR 7→ [0, 1] with disjoint compact
supports, such that ψ` ≡ 1 on a neighborhood of J`. Given ζ = (ζ1, . . . , ζm), we
define the modified functions uθ,ζ(τ, x) as in (9.14), with

(9.30) ϕζ(x) .=
m∑

`=1

ζ`ψ`(x).

Now fix θ ∈ Iρ and a unit vector ζ ∈ IRm, and consider the one-parameter family
of solutions

(9.31) ũϑ(t, ·) .= Sε
t−τuθ,ϑ·ζ(τ).

At the initial time τ , by construction each wave packet shifts with ϑ at rate ξ`(τ) =
ζ`. As long as the interaction remains small, say

(9.32) Q
(
ũϑ(τ)

)−Q
(
ũϑ(t)

) ≤ ε20,

in the solution ũϑ we can still identify m wave packets whose barycenters shift with
ϑ at rates ξ`(t) ≈ ζ`. By a genericity argument based on the coarea formula [E-G],
for any ε′ > 0 we can thus choose ζ ∈ IRm so small that (9.6) holds, and such
that, for all but finitely many θ ∈ Iρ, the corresponding function ũθ,ζ in (9.26)
is structurally stable up to some time τθ where at least two wave-packets have
interacted so that (9.8) holds. The conclusion of Proposition 8 now follows from
the inductive assumption at (9.2).





CHAPTER 10

Completion of the proof

At this final stage, for every ε > 0 our previous analysis has established the
existence of a semigroup Sε : Dε × [0,∞[ 7→ Dε of ε-solutions of (1.1). All these
semigroups are continuous with a uniform Lipschitz constant L, and all domains
Dε contain a set

{
u ∈ L1; Tot.Var.(u) < η0

}
, with η0 > 0 independent of ε. We

can now choose δ0 > 0 small enough so that every function u in the corresponding
set D in (1.3) has total variation < η0. In particular, this choice implies D ⊆ Dε

for every ε. We claim that, as ε → 0, the limit

(10.1) Stū
.= lim

ε→0+
Sε

t ū

exists for all t ≥ 0 and all initial data ū ∈ D, and that S is a Standard Riemann
Semigroup generated by the system of conservation laws (1.1).

To prove the claim, let ū ∈ D, δ > 0 be given. Then there exists a piece-
wise constant approximate solution w = w(t, x) of the Cauchy problem (1.1)-(1.2),
constructed by wave-front tracking, with w(t) ∈ D for all t ≥ 0, such that

(i)
∥∥w(0)− ū

∥∥
L1 < δ,

(ii) all rarefaction fronts have size < δ,
(iii) at every time t, the total strength of non-physical wave-fronts is < δ.

In the following, we indicate by S,R and NP respectively the set of shock,
rarefaction and non-physical wave-fronts of w(t). Using the Lipschitz continuity of
the semigroups Sε and the definition of ε-solutions, we obtain

∥∥w(τ)− Sε
τ ū

∥∥
L1 ≤ L ·

∥∥w(0)− ū
∥∥
L1 + L

∫ τ

0

lim sup
h→0+

∥∥w(t + h)− Sε
hw(t)

∥∥
L1

h
dt

≤ Lδ + Lτ ·


C ·

∑

α∈§

(
min

{
)|σα|, ε

})2

+ C ·
∑

α∈R
|σα|2 + C ·

∑

α∈NP
|σα|





≤ Lδ + LCτ
{

ε ·
∑

α∈§
|σα|+ δ ·

∑

α∈R
|σα|+ δ

}

≤ Lδ + LCτ
{
(ε + δ)C ′ · Tot.Var.(ū) + δ

}

(10.2)

for some constants C, C ′. We use here the fact that the total strength of waves
in w(t) can be bounded in terms of the total variation of ū. Repeating the above
estimate with the same approximate solution w but with a different semigroup Sε′ ,
we obtain

(10.3)
∥∥w(τ)− Sε′

τ ū
∥∥
L1 ≤ Lδ + LCτ

{
(ε′ + δ)C ′ · Tot.Var.(ū) + δ

}
.
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Since δ > 0 can be chosen arbitrarily small, from (10.2)-(10.3) it follows

(10.4)
∥∥Sε

τ ū− Sε′
τ ū

∥∥
L1 ≤ LC ′′τ(ε + ε′)

valid for some constant C ′′ and all ū ∈ D, ε, ε′ > 0. This proves that the limit in
(10.1) is well defined. The uniform continuity of S and the semigroup property are
clear. To show that S acts correctly on piecewise constant initial data, let ū ∈ D
be piecewise constant, say with jumps at the points x1 < . . . < xN . Define

(10.5) τ
.= min

i=2,...,N

|xi − xi−1|
2

.

Since by assumption all wave speeds are < 1 in absolute value, for every t ∈ [0, τ ]
and ε > 0, the function uε(t, ·) = Sε

t ū is obtained by piecing together the ε-
solutions of the N Riemann problems corresponding to the jumps in ū. As ε → 0,
by our definitions it is clear that each ε-solution tends to the exact solution of the
corresponding Riemann problem. Hence, for t ∈ [0, τ ], the function Stū satisfies
the condition (iii) in the statement of Theorem 1. This completes the proof, in the
case where all characteristic fields are genuinely nonlinear.

The linearly degenerate case.

We conclude this section by describing the minor changes needed in the case
where one or more characteristic fields are linearly degenerate. In the proof of
Theorem 3, the assumption of genuine nonlinearity is used on three occasions.
Namely, it guarantees the following properties:
- The boundary layers around each big shock are crossed transversally by waves of
all characteristic families.
- For approximate solutions constructed by wave-front tracking, the local interaction
potential in a forward neighborhood of every point in the t-x plane is arbitrarily
small, as stated in (6.6).
- The decay estimates (1.21) for positive waves hold. These estimates are essential
for proving results on structural stability.

To fix the ideas, assume now that the k-th family in the system (1.1) is linearly
degenerate. To handle this case, we shall approximate (1.1) with another system
where all characteristic fields are genuinely nonlinear. More precisely, the definition
of ε-solutions is modified as follows.

Choose a unit vector ek such that

(10.6)
〈
ek, rk(u)

〉
> 0

for all u. Introduce the modified characteristic speed

(10.7) λ̃ε
k(u) .= λk(u) + ε

〈
ek, rk(u)

〉
.

For each ε > 0, we then define Sε as the semigroup which acts on piecewise constant
initial data according to the following approximate Riemann solver.

Modified ε-Riemann Solver: Given u−, u+, determine intermediate states ω0 =
u−, . . . , ωn = u+ and wave sizes σ1, . . . , σn such that

(10.8) ωi = Ψε
i (σi)ωi−1) i 6= k,
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(10.9) ωk = Rk(σk)ωk−1).

- If σi ≥ 0 and i 6= k, the states ωi−1, ωi are connected by a centered rarefaction
wave, as usual.
- If σi < 0 and i 6= k, the states ωi−1, ωi are connected by a single jump, travelling
with the speed ẏ

.= λε
i (ωi−1, )ωi) defined at (2.4).

- If σk > 0, then ωk−1 and ωk are connected by a centered rarefaction k-wave
travelling with characteristic speed λ̃ε

k. In the sector where tλ̃ε
k(ωk−1) < x <

tλ̃ε
k(ωk), the ε-solution u thus satisfies

(10.10)
〈
li(u), ux

〉
= 0 i 6= k, ut + λ̃ε

k(u)ux = 0.

- If σk < 0, then ωk−1 and ωk are connected by a k-jump satisfying (10.9) and
travelling with speed

(10.11) ẏ =
1
|σk|

∫ 0

σk

λ̃ε
k

(
Rk(s)u−)

)
ds.

The construction of piecewise Lipschitz approximate solutions is performed
as before, except that we no longer insert boundary layers around big k-shocks.
Indeed, such boundary layers are not needed in the present situation, because by
construction shock and rarefaction curves of the k-th family always coincide. The
rest of the analysis is entirely similar.





CHAPTER 11

Appendix

11.1. Estimates (3.17), (3.18), (3.22)

Let u−, u+ ∈ Ω. We shall denote by E(u−, u+) .= (E1, . . . , En)u−, u+) the wave
sizes corresponding to the solution of the Riemann problem (u−, u+), obtained
by the ε-Riemann Solver described in Section 2. By definition, for a fixed kα ∈
{1, . . . , n} we have

Ekα
(u−, Ψε

kα
(σ)u−)) = σ, ∀σ,

Ekα(u−, Ψε
i (σ)u−)) = 0, ∀σ, ∀i 6= kα.

Assume u+ = Ψε
kα

(σα)u−). Differentiating w.r.t. σ the above relations one obtains

(11.1) D2Ekα(u−, u+) · (rkα(u+) + O(σα
2)) = 1,

(11.2) D2Ekα(u−, u−) · ri(u−) = 0, ∀i 6= kα.

From (11.2) we can deduce that

(11.3) |DEkα(u−, u+) · (0, v)| ≤ C|σα|, ∀|v| = 1, 〈v, rkα(u+)〉 = 0.

In the same way we can obtain the relation

(11.4) |DEkα(u−, u+) · (v, 0)| ≤ C|σα|, ∀|v| = 1, 〈v, rkα(u−)〉 = 0.

Let us define r±i
.= ri(u(yα±)). From (11.1) we get

(11.5) |DEkα(u−, u+)0, r+
kα

)− 1| ≤ C|σα|2.
Furthermore, by a similar argument one can deduce that

(11.6) |DEkα(u−, u+)r−kα
, 0) + 1| ≤ C|σα|2.

Since σα = Ekα(u−, u+), differentiating w.r.t. w+
kα

one obtains

∂σα

∂w+
kα

= DEkα(u−, u+)


 ∑

j<kα

r−j
∂W j

∂w+
kα

, r+
kα

+
∑

j>kα

r+
j

∂W j

∂w+
kα


 =

= DEkα(u−, u+)0, r+
kα

) + DEkα(u−, u+)


 ∑

j<kα

r−j
∂W j

∂w+
kα

,
∑

j>kα

r+
j

∂W j

∂w+
kα


 .

From (3.16) and (11.5) it easily follows that

(11.7)

∣∣∣∣∣
∂σα

∂w+
kα

− 1

∣∣∣∣∣ ≤ C|σα|2.

125



126 11. APPENDIX

In a similar way, using (11.6), one can prove that

(11.8)

∣∣∣∣∣
∂σα

∂w−kα

+ 1

∣∣∣∣∣ ≤ C|σα|2.

The simpler estimate (3.17) can be obtained from (11.3) and (11.4) observing
that

∂σα

∂w+
i

= DEkα
(u−, u+)


 ∑

j<kα

r−j
∂W j

∂w+
i

, )r+
i


 , i+ ∈ I, i 6= kα,

∂σα

∂w−i
= DEkα(u−, u+)


r−i , )

∑

j>kα

r+
j

∂W j

∂w−i


 , i− ∈ I, i 6= kα.

Concerning (3.22), the first relation is an easy consequence of the fact that, for
a small h-shock, the left and the right states lie on the same h-rarefaction curve.
The second relation in (3.22) follows from the identities

(11.9) DEkα(u−, u+)r−kα
, 0) = −1, DEkα(u−, u+)0, r+

kα
) = 1,

(11.10) DEkα(u−, u+)r−i , 0) = DEkα(u−, u+)0, r+
i ) = 0, ∀i 6= kα.

11.2. Estimates (3.19), (3.20), (3.21), (3.23)

The estimate (3.19) is trivial. We now prove (3.21); (3.20) can be obtained by
a similar argument. Let us assume α ∈ S. At the point yα the ε-Rankine-Hugoniot
conditions (2.3)-(2.5) hold with σ = σα. More precisely, we have that

(11.11) ẏα = ϕ
(σα

ε

)
λs

kα
+

(
1− ϕ

(σα

ε

))
λr

kα
,

where λs
kα

= λkα(u−, Skα(σα)u−)) and

(11.12) λr
kα

=
1
|σα|

∫ 0

σα

λkα(Rkα(s)u−)) ds.

Observe now that

(11.13) |λs
kα
− λr

kα
| ≤ C|σα|2.

Indeed the two functions σ 7→ 1
|σ|

∫ 0

σ
λkα(Rkα(s)u−)) ds and σ 7→ λkα(u−, Skα(σ)u−)),

defined for σ ≤ 0, have a tangency of the first order at σ = 0.
By differentiating (11.11) w.r.t. w+

kα
, using (11.13) and by the fact that ϕ′(σα/ε) =

0 if σα ≤ −4ε or σα ≥ −3ε, we obtain the estimate
(11.14)∣∣∣∣∣

∂ẏα

∂w+
kα

− ϕ
(σα

ε

) ∂λs
kα

∂w+
kα

−
(
1− ϕ

(σα

ε

)) ∂λr
kα

∂w+
kα

∣∣∣∣∣ ≤
1
ε

∣∣∣ϕ′
(σα

ε

)∣∣∣
∣∣∣∣∣

∂σα

∂w+
kα

∣∣∣∣∣ |λ
s
kα
−λr

kα
| ≤ C|σα|.

We remark that, by (3.16),

(11.15)

∣∣∣∣∣
∂u−

∂w+
kα

∣∣∣∣∣ =

∣∣∣∣∣
∑

i<kα

r−i
∂W i

∂w+
kα

∣∣∣∣∣ ≤ C|σα|2.
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From (2.5), recalling σα < 0, we get

∂λr
kα

∂w+
kα

=
1

|σα|2
∂σα

∂w+
kα

∫ 0

σα

λkα(Rh(s)u−)) ds− 1
|σα|

∂σα

∂w+
kα

λkα
(u+)+

+
1
|σα|

∫ 0

σα

Du− [λkα(Rh(s)u−))]
∂u−

∂w+
kα

ds =

=
1
|σα|

∂σα

∂w+
kα

(λr
kα
− λkα(u+)) +

1
|σα|

∫ 0

σα

Du− [λkα
(Rh(s)u−))]

∂u−

∂w+
kα

ds.

(11.16)

From (11.15), the last term in (11.16) can be estimated by C|σα|2, hence from
(3.18) we get

(11.17)

∣∣∣∣∣
∂λr

kα

∂w+
kα

− λr
kα
− λkα(u+)
|σα|

∣∣∣∣∣ ≤ C|σα|.

From (11.13) now it easily follows that

(11.18)

∣∣∣∣∣
∂ẏα

∂w+
kα

− ẏα − λkα(u+)
|σα|

∣∣∣∣∣ ≤ C|σα|.

In order to obtain (3.21), it suffices to observe that, since α ∈ S,

(11.19)
∣∣∣λkα(u+)− λ

(h)
kα

(yα+)
∣∣∣ ≤ Cε2 ≤ C|σα|2.

In the case α ∈ S ′, recalling (3.22), the estimates in (3.23) are obtained differ-
entiating (3.9) w.r.t. w±kα

.

11.3. Estimates (3.31), (3.32)

Recalling that σα = Ekα(u−, u+), the time derivative of σα is computed by

(11.20) σ̇α = DEkα(u−, u+)

(
−

n∑

i=1

w−i r−i , )
n∑

i=1

w+
i r+

i

)
,

where w−i
.= (λ(h)

i (yα−) − ẏα)ui−
x , w+

i
.= (ẏα − λ

(h)
i (yα+))ui+

x . We now split the
r.h.s. of the above equation in the following way:

σ̇α =[DEkα(u−, u+)−DEkα(u+, u+)](w−kα
(r+

kα
− r−kα

), 0) + DEkα(u+, u+)w−kα
(r+

kα
− r−kα

), 0)+

+ [DEkα(u−, u+)−DEkα(u+, u+)](−w−kα
r+
kα

, w+
kα

r+
kα

) + DEkα(u+, u+)− w−kα
r+
kα

, w+
kα

r+
kα

)+

+ [DEkα(u−, u+)−DEkα(u+, u+)]


−

∑

i 6=kα

w−i r−i ,
∑

i 6=kα

w+
i r+

i


+

+ DEkα(u+, u+)


−

∑

i6=kα

w−i r+
i ,

∑

i 6=kα

w+
i r+

i


 + DEkα(u+, u+)


 ∑

i 6=kα

w−i (r+
i − r−i ), 0


 .=

.=I1 + · · ·+ I7.

From the definition of w±i we have that

(11.21) |w±i | ≤ C|ui±
x |, ∀i±, |w±kα

| ≤ C|σα| |ukα±
x |.
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Recalling that r−kα
= r+

kα
− σα(∇rkα · rkα)u+) + O(σα

2) and 〈rkα , ∇rkα · rkα〉 = 0,
we get

|I1| ≤ C|σα|2 |w−kα
| ≤ C|σα|3 |ukα−

x |,
|I3| ≤ C|σα|2(|w+

kα
|+ |w−kα

|) ≤ C|σα|3(|ukα+
x |+ |ukα−

x |).
Moreover, by (11.3), it easily follows that

(11.22) |I2| ≤ C|σα|2 |w−kα
| ≤ C|σα|3 |ukα−

x |.
The term I4 gives

(11.23) I4 = w−kα
+ w+

kα
= (λ(h)

kα
(yα−)− ẏα)ukα−

x + (ẏα − λ
(h)
kα

(yα+))ukα+
x .

Concerning I5, we have that

(11.24) |I5| ≤ C|σα|
∑

i 6=kα

(|w+
i |+ |w−i |).

Let us compute
∑

i 6=kα
|w+

i |. If i± ∈ O, by the linearity of the maps W j we have
that

(11.25) w±i =
∑

j±∈I

∂W i

∂w±j
w±j , i± ∈ O,

so that, recalling (3.14)-(3.16) and (11.21),

∑

i 6=kα

|w+
i | ≤

∑

i<kα

|w+
i |+

∑

i>kα


 ∑

j±∈I
)

∣∣∣∣∣
∂W i

∂w±j

∣∣∣∣∣ |w
±
j |


 ≤

≤
∑

i<kα

|w+
i |+

∑

i>kα

|w−i |(1 + C|σα|) + C|σα|(|w+
kα
|+ |w−kα

|) ≤

≤C
∑

i±∈I
i 6=kα

|ui±
x |+ C|σα|2(|ukα+

x |+ |ukα−
x |).

Since
∑

i6=kα
|w−i | can be estimated in the same way, from (11.24) we obtain

(11.26) |I5| ≤ C|σα|
∑

i±∈I
i 6=kα

|ui±
x |+ C|σα|3(|ukα+

x |+ |ukα−
x |).

It is easily seen that I7 satisfies the same estimate, while (11.3) implies that I6 = 0.
Now (3.31) follows easily.

In order to obtain the estimate (3.32), it is enough to remark that, if α ∈ S ′,
then from (11.9)-(11.10) one has I1 + I2 + I3 = 0, and from (3.22) the estimate
(11.26) is replaced by the sharper one

(11.27) |I5| ≤ C|σα|
∑

i±∈I
i 6=kα

|ui±
x |.
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Formula (3.42) Let λ±h
.= λ

(h)
h (y∗α(τ)±). Fix ∆x > 0, and let ∆t

.= ∆x/λ+
h .

Let θ 7→ uθ be a curve which generates the tangent vector v, and assume u0 = u.
Assume that y∗α(τ) = 0. We have that, for θ > 0 small enough,

(11.28) uθ
h(τ + ∆t, ∆x) = uθ

h

(
τ,

λ+
h − λ−h

λ+
h − ẏα

ξαθ

)
, uh(τ + ∆t, ∆x) = uh(τ, 0),

so that

uθ
h(τ + ∆t, ∆x)− uh(τ + ∆t,∆x)

θ
=

uθ
h

(
τ,

λ+
h−λ−h

λ+
h−ẏα

ξαθ
)
− uθ

h(τ, 0)

θ
+

uθ
h(τ, 0−)− uh(τ, 0−)

θ
≈

≈uh
x(τ, 0−) · λ+

h − λ−h
λ+

h − ẏα

ξα + vh(τ, 0−).

Passing to the limit for θ → 0 and then for ∆x → 0 we thus obtain

(11.29) v+
h = v−h + ξαuh−

x · λ+
h − λ−h

λ+
h − ẏα

.

Recalling (3.30), we have that

(11.30) uh−
x · λ+

h − λ−h
λ+

h − ẏα

= uh−
x

(
1− λ−h − ẏα

λ+
h − ẏα

)
= uh−

x − uh+
x ,

hence the first relation in (3.42) follows. The simpler relation v+
i = v−i for every

i 6= h can be proved in the same way.

11.4. Estimate (3.61)

We recall that at a point of shock yα, α ∈ S ∪ S ′, the equations (3.13) are
satisfied with w±i defined as in (3.41). Now let i 6= kα. Assume, for example,
i > kα, so that i+ ∈ O. From (3.13) we have that
(11.31)

ξαui+
x + v+

i =
∑

j±∈I
j 6=i

∂W i

∂w±j
(ξαuj±

x + v±j ) +
(

∂W i

∂w−i
− 1

)
ξαui−

x + v−i ) + ξαui−
x + v−i .

From (3.14)-(3.16) we get
(11.32)
|v+

i −v−i | ≤ |ξα| |ui+
x −ui−

x |+C|σα|
∑

j±∈I
|ξαuj±

x +v±j |+C|σα|2
(|ξαukα+

x + v+
kα
|+)|ξαukα−

x + v−kα
|) .

The same estimate holds if i < kα. Recalling the definition (3.37) and (3.56) of Λα

and Ψα we get (3.61).

11.5. Estimate (3.62)

We have that
(11.33)∣∣∣(λ(h)

kα
(yα−)− ẏα)η− + (ẏα − λ

(h)
kα

(yα+))η+ − |σα|Dλ
(h)
kα

(u−, u+)η−r−kα
, η+r+

kα
)
∣∣∣ ≤ |σα|(|η−|I1+|η+|I2),
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where

I1
.=

∣∣∣∣∣
λ

(h)
kα

(yα−)− ẏα

|σα| −Dλ
(h)
kα

(u−, u+)r−kα
, 0)

∣∣∣∣∣ ,

I2
.=

∣∣∣∣∣
ẏα − λ

(h)
kα

(yα−)
|σα| −Dλ

(h)
kα

(u−, u+)0, r+
kα

)

∣∣∣∣∣ .

Observe that, from

(11.34)
∣∣∣ẏα − λ

(h)
kα

(u−, u+)
∣∣∣ ≤ C|σα|2,

one obtains

(11.35)

∣∣∣∣∣
∂ẏα

∂w+
kα

−Dλ
(h)
kα

(u−, u+)

(
∂u−

∂w+
kα

,
∂u+

∂w+
kα

)∣∣∣∣∣ ≤ C|σα|.

Now one has
(11.36)

Dλ
(h)
kα

(u−, u+)

(
∂u−

∂w−kα

,
∂u+

∂w−kα

)
= Dλ

(h)
kα

(u−, u+)


r−kα

+
∑

j<kα

r−j
∂W j

∂w−kα

, )
∑

j>kα

r+
j

∂W j

∂w−kα


 ,

so that, from (3.16),
(11.37)∣∣∣∣∣Dλ

(h)
kα

(u−, u+)

(
∂u−

∂w+
kα

,
∂u+

∂w+
kα

)
−Dλ

(h)
kα

(u−, u+)r−kα
, 0)

∣∣∣∣∣ ≤ C
∑

j±∈O

∣∣∣∣∣
∂W j

∂w−kα

∣∣∣∣∣ ≤ C|σα|2.

From (11.35) and (11.37) one obtains

(11.38)

∣∣∣∣∣
∂ẏα

∂w−kα

−Dλ
(h)
kα

(u−, u+)r−kα
, 0)

∣∣∣∣∣ ≤ C|σα|,

so that, recalling (3.20), it follows that

(11.39) I1 ≤
∣∣∣∣∣
λ

(h)
kα

(yα−)− ẏα

|σα| − ∂ẏα

∂w−kα

∣∣∣∣∣+
∣∣∣∣∣

∂ẏα

∂w−kα

−Dλ
(h)
kα

(u−, u+)r−kα
, 0)

∣∣∣∣∣ ≤ C|σα|,

and a similar estimate holds for I2.
In the case α ∈ S ′, from the definition (3.9) it easily follows that I1 = I2 = 0.

11.6. Estimates (3.70), (3.71)

The first estimate in (3.70) is a consequence of the fact

(11.40) |λ(h)
h (yα

∗+)− λ
(h)
h (yα

∗−)| ≤ C · [strength of external waves] ≤ Cη.

Concerning the second estimate, by (3.30) we have that either uh−
x = uh+

x = 0 or
uh−

x · uh+
x 6= 0. In the first case the estimate is trivial. Assume now 0 < |uh−

x | ≤
|uh+

x |. Recalling (3.30), by strict hyperbolicity we get
(11.41)

|vh(yα+)−vh(yα−)| = |ξα| |uh+
x −uh−

x | = |ξα| |uh−
x | |λ

(h)
h (yα

∗+)− λ
(h)
h (yα

∗−)|
|λ(h)

h (yα
∗+)− ẏα|

≤ C|ξα| |uh−
x |η.

The estimates (3.71) follows from the strict hyperbolicity and |σα| ≥ ε.
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11.7. Estimate (3.76)

The first relation is an easy consequence of the coincidence of shock and rar-
efaction curves.

Concerning the second relation, from (5.11) in [B4] we have that
(11.42)

ξ(τ+) =
ξ′(τ−)λ(h)

h (ωh−1, ωh)− ẏ′(τ−))− ξ′′(τ−)λ(h)
h (ωh−1, ωh)− ẏ′(τ−))

ẏ′(τ−)− ẏ′′(τ−)
.

Since shock and rarefaction curves coincide, one has

(11.43) λ
(h)
h (ωh−1, ωh) =

σ′(τ−)ẏ′(τ−) + σ′′(τ−)ẏ′′(τ−)
σ′(τ−) + σ′′(τ−)

.

Substituting in (11.42) we now obtain the second relation in (3.76).
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