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ABSTRACT. This paper is concerned with the initial value problem for a strictly
hyperbolic n x n system of conservation laws in one space dimension:
(%) u + [F(u)] =0, u(0,z) = a(x).

Each characteristic field is assumed to be either linearly degenerate or gen-
uinely nonlinear. We prove that there exist a domain D C LY, containing
all functions with sufficiently small total variation, and a uniformly Lipschitz
continuous semigroup S: D X [0, 0o[ — D with the following properties. Every
trajectory t — u(t,-) = S¢@ of the semigroup is a weak, entropy-admissible so-
lution of (). Viceversa, if a piecewise Lipschitz, entropic solution u = u(t, z)
of () exists for t € [0,T), then it coincides with the semigroup trajectory,
i.e. u(t,r) = Stu. For a given domain D, the semigroup S with the above
properties is unique.

These results yield the uniqueness, continuous dependence and global
stability of weak, entropy-admissible solutions of the Cauchy problem (), for
general n X n systems of conservation laws, with small initial data.

Received by the editor February 25, 1997; and in revised form March 9. 1998.
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CHAPTER 1

Introduction

Consider the Cauchy problem for a strictly hyperbolic n x n system of conser-
vation laws in one space dimension:

(1.1) up + [F(u)] =0,

x

(1.2) u(0,z) = u(x).

For initial data @ € L' with small total variation, a well known theorem of Glimm
[G] provides the global existence of weak solutions. Aim of the present paper is
to show that these solutions are unique and depend continuously on the initial
conditions, with a Lipschitz constant in L' which is uniform w.r.t. time. More
precisely, the following holds.

Theorem 1. Let 2 C IR™ be an open set containing the origin, and let F' : Q) — IR"
be a smooth map. Assume that the system (1.1) is strictly hyperbolic and that
each characteristic field is either linearly degenerate or genuinely nonlinear. Then
there exists a closed domain D C L!(IR; IR"), constants 7o, L, and a continuous
semigroup S : D x [0, co[+— D with the properties:

(i) Every function @ € L! with Tot.Var.(a) < 1 lies in D.

(ii) For all @, v € D, t,s > 0 one has ||Syu — SST)HL1 < L(|t—s|+)|lu— T)HLl).

(iii) If w € D is piecewise constant, then for ¢ > 0 sufficiently small the function
u(t,-) = St coincides with the solution of (1.1)-(1.2) obtained by piecing
together the standard self-similar solutions of the corresponding Riemann
problems.

The positively invariant domain D will have the form
(1.3) D =cl{ueL'(IR;IR"); u is piecewise constant, V(u)+ C - Q(u) < o},

for some constants C,dy > 0. Here V(u) and Q(u) denote the total strength of
waves and the wave interaction potential of u, while ¢l denotes closure.

Following [B5], we say that a map S with the properties (i)—(iii) is a Standard
Riemann Semigroup (SRS). The existence of such a semigroup was proved in [B1,
B3] for special classes of n x n systems with coinciding shock and rarefaction curves,
and in [B-C1] for general 2 x 2 systems. The present theorem, dealing with general
n X n systems, contains all previous results in this direction.

Observe that the statement of Theorem 1 does not explicitly say that the tra-
jectories of the semigroup are actually weak solutions of (1.1). This fact, however,
can be deduced as a consequence of (i)—(iii), together with a number of additional
properties which are collected below.
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Theorem 2. For a given domain D of the form (1.3), there can be at most one
continuous semigroup S : D X [0, oo[+— D satisfying the conditions (i)—(iii) listed in
Theorem 1. If a SRS does exist, then the following properties also hold:

(iv) Each trajectory ¢t — u(t,-) = Syt is a weak, entropy-admissible solution
of the corresponding Cauchy problem (1.1)-(1.2).

(v) Let (uy,),>1 be a sequence of approximate solutions of (1.1)-(1.2) gener-
ated by a wave-front tracking algorithm, or by the Glimm scheme with
uniformly distributed sampling. Then, as v — oo we have L1-limu, (¢, -) =
Siu for every t > 0.

(vi) Let u = u(t,x) be a piecewise Lipschitz, entropic solution of (1.1)-(1.2)
defined on some strip [0,7] x IR. Then u(t,-) = S;a for all ¢ € [0,T).

A proof of Theorem 2 is contained in [B5]. In turn, from the existence of the
semigroup, one can prove the uniqueness of the entropy-weak solution of a given
Cauchy problem, under a mild assumption on the growth of the total variation [B-
LF1] or on the decay of positive waves [B-G|. Another application which is worth
mentioning is the error estimate [B-M2], concerning the L' distance between the
exact solution of a Cauchy problem and an approximate solution generated by the
Glimm scheme with uniformly distributed sampling [L].

There are three types of estimates which play a fundamental role in our analysis.
These are: the estimates of Glimm on the total strength of waves [G, Sm]|, the local
integral estimates used in the definition of Viscosity Solution [B5], and the decay
estimates for positive waves of genuinely nonlinear families [B-C3].

A precise statement of these a-priori bounds requires some notation. Call
A(u) = DF(u) the Jacobian matrix of F' at u. Smooth solutions of (1.1) thus
satisfy the equivalent quasilinear system

(1.4) us + A(u)ugy = 0.
Let A\(u) < -+ < Ap(u) be the eigenvalues of A(u) and choose right and left
eigenvectors r;(u), l;(u), i = 1,...,n, normalized so that
Ni(u+ i () — A
(1.5) VA -ri(u) = lim (uthritw) = Xifw)
h—0 h

1 ifi=j,
(16) ‘T1| = ]-7 <l17 rj> = . .

0 ifi#j.

Following [B-C2, Sch], we now extend the definition of the Glimm functional to
a general BV function. Let u : IR — IR™ have bounded variation. Then yu = D, u is
a vector measure, which can be decomposed into a continuous and an atomic part:
pw=p°+p* Fori=1,...,n, define the signed measure p; = pu§ + p¢ as follows.
The continuous part of u; is the Radon measure such that

[odni= [0 due

for every scalar continuous function ¢ with compact support. The atomic part of
i is the measure concentrated on the countable set {z,; a = 1,2,...} where u
has a jump, such that uf({ma}) is the strength of the i-th wave in the solution
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of the Riemann problem with data u(xs—), u(ze+). Call uf, u; the positive and
negative parts of the signed measure p;, so that
i = =y il = "+ i
The total strength of waves in u is defined as
(1.7) V() = Vi(w), Vi(w) = [l (IR),
while the interaction potential of waves in u is
(18) Q) = 3 (sl xlual) ({5 @ <y} )+ 3 (g <l ({(w)s = £ 1}).
i<j i
With the above notations, the classical interaction estimates [G, Sm] can be stated

as follows.

Proposition 1 (Bounds on wave strengths). There exists a constant C; such
that, for every solution u = u(¢,z) of (1.1) with small total variation, obtained as
limit of wave-front tracking approximations, the following holds. Let t = A;(x),
j = 1,2 be the equations of two space-like curves in the t-z plane, with A; < As.
Then, calling u;(z) = u(A;(z), ), one has

Q(u2) < Q(u1),
(1.9) V(UQ) + C1 - Q(Ug) < V(ul) +C - Q(ul)
Vi(uz) + C1 - Q(uz) < Vi(ur) + C1 - Q(uy) i=1,...,n.

It is well known that the estimates (1.9) actually hold not only for exact so-
lutions but also for approximate solutions constructed by various algorithms [B2,
G, R]. For convenience, at various stages of this paper we shall work with slightly
different definitions of the interaction potential Q(u). Indeed, one may consider
two waves of the same family as being always approaching, regardless of their sign,
or as being never approaching. This second definition is useful in connection with
systems where shock and rarefaction curves coincide. In all cases, we will make
sure that the basic interaction estimates (1.9) remain valid.

As proved in [B5], the trajectories of a Standard Riemann Semigroup can be
characterized by a set of local integral estimates. Two types of local approximate
solutions for (1.1) are considered. One is derived from the self-similar solution
of a Riemann problem, the other is obtained by “freezing” the coefficients of the
corresponding quasilinear hyperbolic system in a neighborhood of a given point.

Let w : [0,T] x IR — IR™ be a locally integrable function, and fix any point
(1,€) in the domain of u. Assuming u(7,-) € BV, consider the limits

u” = lim w(r, z), ut = lim u(T, x).
r—E&— r—§+

Call w = w(t, x) the self-similar solution of the Riemann problem

u- ifx<O
1.10 F =0 0 = ’
(1.10) ut + [F(u)], =0, u(0, ) {u+ if z > 0.
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Let \ be an upper bound for all characteristic speeds. For ¢t > 7, define

)(t,x)ﬁ {W(t—T, x—&) if |z —¢| ij(t—q-),

g
(1.11) U u(r ) if o — & > A(t — 7).

(wsT.€
Observe that the function ¢ — U(u - g)( -) is Lipschitz continuous w.r.t. the L*
distance, and approaches u(r,-) as t — 7+.

Next, call A = DF (u(7,€)) the Jacobian matrix of F' computed at the point
u(r,€). For t > 7, define U(bu;T@(t,a:) as the solution of the linear hyperbolic
Cauchy problem with constant coefficients

(1.12) wy + Aw, =0, w(r, z) = u(T, ).

In the following, by Tot.Var.{u(T); I } we denote the total variation of the function
u(T,-) over the set I.

Proposition 2 (Local integral estimates). Let u(t, ) = Siu be any semigroup
trajectory. Then, for some constant Cs, at each point (7,&) one has
(1.13)

1 [Ete—mA
. / [ulrn,2)=Uf, o) (70, 2) | dz < CoTotVar.{u(r); J6—p, (V¢ &+l },
E—ptnA

(1.14)

1 [Ete—nA 2
- / - [u(r1,2) Uy (74, 2) | da < Co-(TotVar u(r); Je=p, €[})
M Je—p+ni

for every p,n > 0 sufficiently small. Viceversa, let u : [0,7] — L' be a continuous
map taking values inside the domain D of the semigroup. If the bounds (1.13),
(1.14) hold for all £ € IR and all but countably many times 7 € [0,T], then u
coincides with a semigroup trajectory.

Following [B5], a continuous function u : [0,7] — L' will be called a Viscosity
Solution of (1.1) if the inequalities (1.13), (1.14) hold at every (7, &).

To motivate the decay estimates for waves of genuinely nonlinear families, we
consider first the scalar case, assuming F”' > x > 0. In this case, if u = u(t,z) is a
smooth solution of (1.1) defined for ¢ > 7, one has

(1.15) (ug)e + F'(w)ug)e = —F" (u)u?.
Integrating (1.15) along characteristics, one obtains the pointwise estimate [O, Sm)]
1
1.16 () < ————.
(1.16) ualt7) < ey
In the vector-valued case, introduce the gradient components
(1.17) ul = (L;(u), ug).
By (1.4), if u = u(t, x) is a smooth solution of (1.1)7 one has (see [Bl], p.412)
(118) (U;)t + [)‘l(uﬂ (’U,;) [V)‘l TZ + Z GZJk z :m

J#k
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where G, i (u) = Aj(uw)(li(w), [1;(w), 75 (w)]). Assume that the i-th field is genuinely
nonlinear, so that VA; - r;(u) > & > 0, and let v = u(¢,z) be a smooth solution
defined for ¢ > 7. If Gy, = 0 for all 4, j, k, then the gradient component ul would
clearly satisfy an estimate of the form (1.16). In general, (1.16) may fail because of
the last term on the right hand side of (1.18). Observe that this summation essen-
tially depends on the (instantaneous) amount of wave interaction. This suggests
that the amount by which (1.16) fails, measured by

(1.19) / u' (t,x) dv
{ui>n}

for any n > 1/k(t —7), can be estimated in terms of the total amount of interaction
taking place during the interval [7,¢]. This quantity, in turn, can be bounded by
Q(7) — Q(t), i.e. by the decay in the wave interaction potential. To state the result
in the most general case of a BV solution, one more piece of notation is needed.
Let u € BV, and let pu; be the measure determined by the i-waves in u, as in (1.7),
(1.8). Call m the Lebesgue measure on IR and split p; = puf + p¢¢ according to its
singular and absolutely continuous part. For any n > 0, define

(1.20) v = ) i ({n %) @) > 0} ).

where uf’+ denotes the positive part of uf. Observe that (1.20) coincides with
(1.19) if u is Lipschitz continuous. With the above notation, one has

Proposition 3 (Decay Estimates). Assume that the i-th characteristic field is
genuinely nonlinear. Then there exist constants Cs5, x > 0 such that any solution
u(t,) = Syu of (1.1) satisfies

(121) V(e ) < Gala) - Qo) (1- )

Ikt —7
for every t > 7 >0 and n > 1/k(t — 7).

A proof of (1.21) was first derived in [B-C3], for weak solutions obtained as
limits of wave-front tracking approximations. In Section 7 of this paper we will
show that similar estimates hold for our piecewise Lipschitz approximate solutions
as well.

Towards a proof of Theorem 1, the basic strategy for obtaining a Lipschitz
semigroup of solutions of (1.1) is to construct suitable approximate solutions, care-
fully controlling how their distance varies in time. We recall that, for a scalar
conservation law, the entropic solutions constitute a contractive semigroup in L!
[C, K]. Indeed, any two solutions u, u' can be directly compared, showing that the
distance

(1.22) Jult,) = 't )| 10

is a non-increasing function of time. This is definitely not true for systems [T2].
In the present case, following [B1], we consider a one-parameter family of (suitably
regular) solutions u?, 6 € [0,1], with u® = u, u* = u/. For each t, the distance
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(1.22) is clearly bounded by the L!-length of the path v; : @ — u?(t,-), defined by
||ry75||L1 = sup Z Hu‘g‘7 (t? ) - U’gj_l(ta .)HLl’ 0= 90 < 91 << 91/ = 17 v=>1
j=1

Therefore, if we show that this length satisfies
(1.23) Ivll, < Z-Tholl,,

for every curve 7y, joining u(0) with u'(0), it will follow that

(1.24) Ju(t) =’ ()|, < L [[u(0) =/ (0)]| vt > 0.

If the path ~y is suitably regular, its length can be computed by integrating the
norm of a tangent vector:
d~(0)

1
(1.25) g = [ |5

An estimate of the form (1.24) can thus be obtained by showing that the norm of
any tangent vector increases at most by a factor L.

de.

L1

We shall implement the above strategy using paths of piecewise Lipschitz func-
tions. Let 6 — uf be a one-parameter family of piecewise Lipschitz functions, each
u? having the same number of jumps, say at the points y¢ < ... < y?\,. Assume
that there exist the functions (fig. 1):

u?th(z) — uf(x)

1.2 O(z) = li for a.e.
(1.26) v’ (z) Lim - or a.e. x
and the numbers

. yoth — P
(1.27) & = %{r%) B a=1,...,.N

Fig.1
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Then, under suitable regularity conditions, the L'-length of the path 7 : 6 — u? is
computed by

1 N 1
128 il = [ 1+ Y [ ) — o ol .
a=1

We stress the fact that, in general, the path 6 — u? is not differentiable w.r.t. the
usual differential structure of L. Indeed, if the shift rates ¢¢ are not equal to zero,
as h — 0 the ratio [u’*" — u?)/h does not converge to any limit in L!. In order
to correctly measure the length of a path ~, it is essential to work with a class of
“generalized tangent vectors” of the form (v, &) € T, = L'(IR; IR™) x IR . Observe
that the tangent space T, actually depends on the function u, through the number
of points of discontinuity.

Next, assume that each function u?(t,-) is a solution of the system of conser-
vation laws (1.1). A set of linearized evolution equations for the corresponding
tangent vectors (v%,¢%) was derived in [B-M1]. To write down these equations,
some notation must be introduced. Let A(u) be the Jacobian matrix of f at u and
call \;(u),l;(u), r;(u) respectively its eigenvalues and left and right eingenvectors.
For u,u € IR™, define the averaged matrix

(1.29) A, ) = /OIA(Gu—&- (1— 0)u')do

with eigenvalues \;(u,u’), and choose right and left eigenvectors r;(u,u’), ;(u,u’)
of A(u,u’) according to (1.6). The differential of \; at (u,u’) is written DA;(u,v’).
We thus have

(1.30) DX;(u,u') - (v,0") = 1iII(l)€_1 [Ai(u+ev,u’ +ev’) — Ai(u, u))].
E—

The same notation will be used for the differentials of the eigenvectors r; and [;.
Let u = u(t,x) be a piecewise Lipschitz continuous weak solution of (1.1). At

almost every point (¢, ), the function u thus satisfies the quasilinear system (1.4)

while, along the shock lines = y,(¢), the Rankine-Hugoniot equations hold:

(1.31) Jalu® —uT] = [f(u®) = f(u7)],
with ut = u(t,ya+), u= = u(t,yo—). If the jump at y, occurs in the k,-th

characteristic family, this implies that u* — u™ is a right eigenvector of the matrix
A(u™,u™), with corresponding eigenvalue

(1.32) o = Mo (007,
The eigenvector condition can also be written as
(1.33) (li(utu™), vt —u") =0 Vi # kq.

A system of linearized evolution equations for the generalized tangent vector (v, &)
can now be derived from (1.4), (1.32) and (1.33). Namely

(1.34) ve + A(u)vg + [DA(u) - v]uz =0
outside the lines of discontinuity, together with the conditions
<Dli(u+’u7) : (gauj + U+7) oy +07), ut — u*>
(1.35)
+<li(u+7u_)a gaui+v+_£au;_v_> =0 VZ#I{:Q,



8 1. INTRODUCTION

(1.36) o = DX, (u™,u7) - (Eaud) + 0T, Euug +v7),

on each line = y,(t) where u has a shock (or contact discontinuity) in the k,-th
characteristic field. Observe that the equations (1.34) are formally derived from
(1.4), replacing u by w + ev and differentiating w.r.t. €. Similarly, the equations
(1.35), (1.36) are obtained from (1.33), (1.32) replacing the right and left limits
ut,u” by ut +evt +euf €, and u” +ev™ +euy &, respectively, and differentiating
w.r.t. e. For a rigorous derivation of (1.34)—(1.36) see [B-M1].

According to (1.28), the standard L'-length of a path v can be computed by
integrating the norm of its tangent vector, defined as

(1.37) 10,0 = ol + D Ju(at) — ulya—)]IEal.

Example 1. In the scalar case, it is well known that the conservation law (1.1)
generates a contractive semigroup in L'. In particular, the L!-length of a path of
solutions does not increase in time, and the same holds for the norm (1.37) of a
tangent vector. It is an instructive exercise to carry out the computations in this
simple case. Let F' be convex and let v = u(t, z) be a piecewise Lipschitz solution
of (1.1), with jumps at the points © = y,(¢), a =1,..., N. Calling A(u) = DF(u)
the characteristic speed, (1.4) takes the form

(1.38) ut + A(w)u, = 0.
At points of jump, the Rankine-Hugoniot and the entropy conditions yield

_ L 0 u _ ) ds — F(u(ya+)) - F(u(ya_))
00 e =g [ Moo +e) an - LR
(1.40) 00 = U(Yat) — u(ya—) < 0.

The linearized evolution equations (1.34)-(1.36) for a generalized tangent vector
(v, &) take the form

(1.41) ve + [A(u)v] =0,

x

(1.42) €a=DXNu",u") - (v + &y, W+ Eau)) a=1,...,N.

Here and in the following, we use the shorter notation u* = u(y,=+), and similarly
for v*, ur. Observing that

(1.43) Op = ()\(u_) — y'a)u; + (y'a — A(uﬂ)ui, oo =uT—u" <0,

(1.44)
B _ L d [Flu 4+en”)—F(u" +enh)
D)\(u ,’LL+> : (77 a77+) = diz’:‘ (u* T 67]7) — (qu + 577+) o
AT = Aw)nt fwT) = fwh) T -t
u~ —ut u™ —ut u™ —ut

() = )+ (g = A L

ool |00z‘7
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from (1.41), (1.42) we obtain

[ oo S e
= - {Z (Au™) —ya) v~ |+ Z (Yo — )\(U+))|U+}

(1.45) .
+ Y DAu",ut) - (v 4+ &auy, )T 4 Eaul) (sign &4)|oq]

+ 37 lal [(A@T) = ga) s — (o — AMh)) ]

<0.

In the case of systems, on the other hand, the norm (1.37) may well increase
along solutions of (1.34)—(1.36). In [B4], however, the following was proved.

Proposition 4. There exists a set U, containing all piecewise Lipschitz functions
with sufficiently small total variation, and a family of weighted norms || - ||,,, defined
for w € U, with the following properties.

(i) If u = u(t,z) is a piecewise Lipschitz continuous solution of (1.1) with
u(t) € U, and if the pair (v(t),£(t)) is any solution of the correspond-
ing linearized system, then the norm || (v (%), f(t))Hu(t) is a non-increasing
function of time, even at times where two shocks interact.

(ii) There exists a constant L such that, for all u € U and (v, &) € T, one has

(1.46) 1, Ol < Nl O, < L[|, |-

In turn, the Riemann metric || - ||, determines a weighted distance d, on U.
Roughly speaking, d,(u,u) is the infimum of the weighted length of paths joining
u with u/. A more careful construction goes as follows.

Definition 1. We say that a continuous map 7 : § +— u’ = ~(f) from an open
interval J into Lj . is a Regular Path (RP) if the following holds. For 6 € J, all
functions u? are piecewise Lipschitz continuous, with the same number of jumps, say
at 2§ < - < ac?v, and the same Lipschitz constant outside these points of jump.
They all coincide outside some fixed interval [—M, M]. Moreover, the function
6 — u? is continuous from .J into L'. The map 6 +— 1 admits a generalized tangent

vector Dvy(0) = (v9,¢%) € Ty = L(IR; R™) x RN, continuously depending on 6.

Definition 2. A continuous map v : [a,b] — L' is a Piecewise Regular Path
(PRP) if there exist finitely many values a = 6y < 0; < --- < Ox = b such that the
restriction of v to each open subinterval J, =]0y_1, 6,[ is a regular path.

Given any two piecewise Lipschitz continuous functions u, v’ € U, call ¥, the

family of all regular paths v : [0,1] — U with v(0) = u, v(1) = «’. The weighted
length of a path v € X, is then defined, using the notation of Proposition 4, as

(1.47) ol = [ 1030 gy,
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while the Riemannian distance between u and v is given by
(1.48) di(u,u') =inf {||7lls; 7€ Suw}-

As proved in [B-B], the weighted length (1.47) is lower semicontinuous: if (7,),>0
is a sequence of piecewise regular paths such that

lim  sup |7,,(8) —0(60) ||, = 0,
vV—00 06[0,1]

then

[oll« < liminf [, ||
v—00

Because of (ii) in Proposition 4, the distance d, is uniformly equivalent to the
standard L' distance. Hence, it can be extended by continuity to the L' closure
of U. Moreover, by (i), the length of every regular path does not increase in time
along the flow of (1.1). This suggests that the flow generated by (1.1) should be
globally contractive w.r.t. the weighted distance d,, and hence uniformly Lipschitz
continuous w.r.t. the usual L! distance.

Unfortunately, a rigorous proof of this fact runs into a major difficulty. Indeed,
the estimates on the norm of a tangent vector, and on the length of a path 8 — ~;(9),
are valid assuming that all solutions remain piecewise Lipschitz throughout a given
interval [0, T']. This is not the case in general. Indeed, a piecewise Lipschitz solution
may lose its regularity in two ways (fig. 2):

(i) The number of shock fronts may become infinite in finite time, due to
repeated shock interactions.

(ii) The Lipschitz constant outside the shocks may become infinite, due to the
genuine nonlinearity of some characteristic fields.

We recall that, in the special case where all characteristic fields are linearly degen-
erate, solutions which are initially smooth remain smooth for all times. In this case,
as soon as Proposition 4 has been established, the construction of the semigroup
is straightforward [B1]. The purpose of the present paper is to show that this con-
struction can still be accomplished, for general n x n genuinely nonlinear systems,
with the aid of three technical tools:

(1) A restarting procedure, which replaces a path 7, : § — u?(7) with a new path
Yr+. This is used when some of the functions u’ are about to lose their regularity
and cannot be prolonged further in time.

(2) A slight modification of the Rankine-Hugoniot equations, which forces shock
curves to coincide with rarefaction curves, for small amplitudes.

(3) A cyclical concatenation of flows generated by quasilinear systems where n — 1
characteristic fields are linearly degenerate and only one is genuinely nonlinear. In
the limit, this yields the flow generated by a general system, with an arbitrary
number of genuinely nonlinear fields.
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Infinite number of discontinuities Gradient catastrophe

Fig.2

Restarting procedures, applied to approximate solutions, are well known in the
literature. A classical example is the Glimm scheme. Another one, consisting of
periodic mollifications, occurs in [B3]. We remark that, in our case, the new path
~-+ should satisfy

(149) ||FYT+(0) - 77(6)“111 <e¢o vov

(1‘50) ||7T+||* < H'VTH* +€o

for some gg > 0 suitably small. In other words, the new path must be close to the
old one, and its length should be almost the same. In addition, the solutions u?
should be well defined and remain regular on some interval [r,7 + §], with § > 0
independent of ¢g. Working with exact solutions, it is apparently not possible to
meet all these requirements. This is why the approximations (2)-(3) are used.

The idea of interpolating between shock and rarefaction curves was introduced
in [B-C1]. In an e-approximate solution, shocks of strength |o| > 4e satisfy the
Rankine-Hugoniot equations exactly. On the other hand, shocks of strength < 3¢
connect a right and a left state lying on the same rarefaction curve. Observing that
any solution contains at most finitely many shocks of strength > 3¢, the advantage
of this approximation is clear. Indeed, outside a finite number of lines in the t-z
plane (which we regard as “free boundaries”), we are now dealing with a system
where shock and rarefaction curves coincide.

The cyclical concatenation of flows, a particular kind of flux-splitting method,
is the main new technique introduced in the present paper. It provides the key
for extending the result in [B-C1] to the general n x n case. The construction
goes as follows. Given the system (1.4), fix a state u* and let \j < --- < A% be
the eigenvalues of A(u*). For h = 1,...,n, call Ap(u) the matrix with the same
eigenvectors 71 (u), ..., r,(u) as A(u), but whose eigenvalues are

(1.51) Lo N A0 ) = AL, ., AL
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Clearly, for each h, the system

(1.52) us + Ap(w)u, =0
has n—1 linearly degenerate fields. Call (¢, %) — S the corresponding flow. Given
a time step At > 0, we now concatenate the flows of the semigroups S*,...,S™

cyclically, on subintervals of length At¢/n. Letting At — 0, in the limit we obtain
the flow determined by (1.4).



CHAPTER 2

Outline of the proof

We collect here the basic steps in the proof of Theorem 1. Technical details
will be worked out in the remaining sections.

By possibly performing a linear rescaling of time, it is not restrictive to assume
that all wave speeds are < 1 in absolute value. Moreover, throughout the main
construction we shall assume that all characteristic fields are genuinely nonlinear.
When one or more linearly degenerate fields are present, the minor modifications
needed in the proof will be described in the last section of the paper.

We begin by defining, for a given € > 0, a set of approximate Rankine-Hugoniot
conditions. These coincide with the usual ones for shocks of strength |o| > 4e. For
a given state u € IR™ and ¢ = 1,...,n, denote by

o Si(o)u), o — Ri(o)u),

$(49(0)

Fig.3

the usual i-shock and i-rarefaction curves through w, parametrized by arclength.
As customary, the orientation is chosen so that the i-th characteristic speed is
increasing along the curves S;, R;. Consider a smooth, non-increasing map ¢ :
IR — [0,1] such that

(2.1)

{<p(a)_1 if o < —4 b2

p(lo)=0 ifo> -3

13
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Define the interpolated curves (fig. 3)
(2.2) Ui (0)u) = @(o/e) - Si(o)u™) + (1= p(o/e)) - Ri(o)u”).

Definition 3. We say that the jump (u~,u™"), located at z = y(t) and travelling
with speed g, satisfies the e-Rankine-Hugoniot conditions (e-RH) if, for some ¢ < 0
and some i € {1,...,n}, we have

(2.3) )
(2.4) =X u") = p(0/e)A] + (1 - plo/2)) .
Here A{ is the speed of a true shock connecting u~ with S;(c)u™), while

re 1 0~ (s)u™)) ds
(25) 3= o [ aE) s

The modified Rankine-Hugoniot conditions introduced above, in turn, deter-
mine a new way of approximately solving a Riemann problem. More precisely,
consider the initial data

u” ifax<0
2.6 u(0,z) = ’
(2:6) 0,2) {u+ if 2 > 0.
We seek a self-similar, piecewise Lipschitz function w = w(t,z) which satisfies

the quasilinear system (1.4) almost everywhere, and the e-approximate Rankine-
Hugoniot conditions along each shock line. The solution to this problem is provided
by the following

e-Riemann Solver: Using the implicit function theorem, determine wave sizes
o1,...,0y, such that

(2.7) ut =V (g,) 00 W(or)u").

Let wp = u™, wy = ¥§(01)wo), --- » wn = ¥E (0, )wn—1) = u™ be the corresponding
intermediate states. If o; > 0, the states w;_; and w; are connected by a centered
rarefaction wave of the i-th family, as usual. If o; < 0, these two states are connected
by a single jump, travelling with the speed § = A5 (w;_1, w;) defined at (2.4).

Definition 4. An L!'-continuous map u : [0,T[— BV is a Viscosity e-solution
of (1.1) if at each point (7,&) the inequalities (1.13), (1.14) hold for all p,n > 0
sufficiently small, with U” the solution of (1.12), and

(t x)i{wﬁ(tT, z—¢&) ifjlz—¢<t—T,

Ut
u(T, x) if |l —¢& >t—r.

(u;T,8)

Here w® is the e-solution of the Riemann problem with data w(r,&—),u(r,&+).
Observe that, by our initial assumption, we can take here A = 1 as an upper bound
for all wave speeds.

For the most part, our work will be devoted to a proof of
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Theorem 3. With the same assumptions of Theorem 1, for some constants L, ng >
0 the following holds. For each € > 0 there exists a closed domain D¢ C L (IR; IR™)
and a continuous semigroup S¢ : D¢ x [0, oo[+— D with the properties:

(i) Every function @ € L! with Tot.Var.(a) < 7 lies in D=,
(ii) For all @,v € D=, t, s > 0 one has HStEﬂ—SgT)HLl <L- (|t—s|+||ﬂ—17HL1).

(iii) If @ € D= is piecewise constant, then for ¢ > 0 sufficiently small the
function u(t,-) = Sa coincides with the solution of (1.1)-(1.2) obtained
by piecing together the solutions of the corresponding Riemann problems
determined by the e-Riemann Solver.

As soon as Theorem 3 is established, letting ¢ — 0 it will be an easy matter
to show that the semigroups S¢ converge to a unique semigroup S, having all the
properties stated in Theorem 1. Throughout the following, we thus fix some € > 0
and concentrate on the construction of the semigroup S¢, with constants L,n9 > 0
independent of €. This requires several steps.

STEP 1. We begin by showing that a Lipschitz semigroup exists, whose domain
contains all suitably small perturbations of a Riemann data.

Proposition 5. There exists a neighborhood of the origin ¢ C IR™ and positive
constants L,n = n(e) > 0 for which the following holds. For every v, u™ € Q,
there exists a closed domain D = D(,- ,+) of the form

(2.8)

0 [e'S)
Di{uEBV; / ’u(x)—uﬂdx—i—/ lu(z) — uT| dz < oo, Q(u)<77}7
—0o0 0

and a Lipschitz semigroup S on D satisfying (ii) and (iii) in Theorem 3 (with D¢
replaced by D). Such a semigroup is unique, up to the domain. Its trajectories are
Viscosity e-solutions of (1.1).

It should be noted that Proposition 5 is much weaker than Theorem 3. Indeed,
in the theorem the constant 7y is independent of €. This is essential, since we
eventually need to consider the limit as € — 0. In Proposition 5, however, we allow
ourselves to choose 7 small depending on e. In particular, by taking 7 << £2, we
can assume that every function u € D(,~ ,+) has the same number of large shocks
of strength |o| > € (i.e. the same “qualitative structure”) as the solution of the
Riemann problem with data v, u™.

The construction of the semigroup S relies on the ideas described in the In-
troduction. For sake of clarity, we first describe the constructive procedure in the
special case where the solution of the Riemann problem (2.6) does not contain any
shock of strength > 2¢. In this case, by choosing 1 > 0 sufficiently small, we can
assume that all functions u in the set D = D,~ ,+) in (2.8) contain shocks only of
strength < 3e. Because of the definitions (2.1)-(2.2), inside the positively invari-
ant domain D the time evolution is thus determined by a system where shock and
rarefaction curves coincide.

On a given interval [0, 7], our approximations will be piecewise Lipschitz so-
lutions of a quasilinear system, except for a finite number of times 0 = tg < t; <
... < t, < T where a restarting procedure is used. Namely, to prevent a loss of
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regularity, at suitable times t;, we shall replace u(t;—, ) with a “nicer” function
u(tet, ).

First of all, we choose a time step At = d; > 0 and partition the time axis into
intervals of the form

(2.9) I = [Tmh—1, Tmn|[ = {(m-Fh;l)&, (m—&—Z))él{,

with m € IN, h € {1,...,n}. Moreover, we fix a constant state u* and call \} <
... < A¥ the eigenvalues of the matrix A(u*). For h = 1,...,n, let Ap(u) be the
matrix with the same eigenvectors as A(u), but whose eigenvalues are

(2.10) TN A n(An(w) = AR, LA

In other words,

(2.11)

Ap(u)v = n(Ay(w) = X5) (I () - v)ra(u) + ZA; (Li(u) - v)ri(u) v e R

On each subinterval I, , our approximation u will have the following properties.
Each u(t,-) is piecewise Lipschitz continuous and satisfies

(2.12) us + Ap(w)u, =0

a. e. outside the jumps. At every point x,(t) where u(t,-) is discontinuous, the
jump occurs always in the h-characteristic family and the following approximate
Rankine-Hugoniot conditions hold:

(2.13) u(t, ta+) = Ru(0a) (ult, 2a—)),

/UO Ah (Rh(s) (u(t,x&f))) ds,

for some o, < 0. As usual, o — Ry (0)u) describes the h-rarefaction curve through
the state u.

For a given piecewise Lipschitz initial data, the local existence and uniqueness
of a piecewise Lipschitz solution to (2.12)—(2.14) follows from the standard theory of
quasilinear hyperbolic equations. Let us briefly examine for how long this solution
can retain its piecewise Lipschitz regularity. To fix the ideas, assume that, at some
time 7 € I, 5, the gradient components u’, = I;(u) - u, of u(r,-) satisfy the bounds
(for a. e. z € R)

(2.15) lul| < M i=1,...,n,

1

04|

(2.14) o

(2.16) ul > 1.

(i) Whenever two or more h-shocks interact, they simply join together forming a
single h-shock, without generating outgoing waves of any other family. Indeed, by
construction all shocks in u belong to the h-family. Moreover, according to our
modified dynamics, shock and rarefaction curves coincide. As a consequence, the
number of shock fronts can only decrease in time.

(ii) For i # h, the i-th eigenvalue of the matrix Aj(u) is constantly equal to
Af. Hence, for the system (2.12), the i-th family is linearly degenerate. As a
consequence, all gradient components u’, ¢ # h, remain uniformly bounded. To

T
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estimate the growth in the (genuinely nonlinear) component u”, let = = x(t) be an
h-characteristic line, so that

#(t) = AL+ n()\h(u(t,a:)) - A;;).

Differentiating along this line, from (2.12) we obtain an equation of the form

d o
(2.17) gu’; (t,z(t)) = —n[VAy - ra(w)] - (ul)? + Z Ghij(u)uyul,
i#]
where the functions G,;; are uniformly bounded. Due to the squared term on the
right-hand side, the component u” may well approach —co in finite time. However,

by (2.17) and (2.16), this component can be bounded from below in terms of the
solution to the O. D. E.

(2.18) Z=—aZ*+bZ —c, Z(0) = —1,

where the positive constants a,b,c depend only on the coefficients G;; and on
the uniform bounds already available on the other components u’, i # h. This
provides a lower bound on the time when the solution u of (2.12)-(2.14) may lose
its piecewise Lipschitz regularity.

Since the regularity of solutions is not preserved globally in time, the construc-
tion of piecewise Lipschitz approximate solutions on a given interval [0,7] must
involve some restarting procedures. These restartings are of two types.

(1) At time t = 0 we approximate the initial data @ with a piecewise Lipschitz
function u(0+,-) containing only 1-shocks. At each time t = 7,5 at (2.9), we
replace the function u(t—,-) (which contains only )h-shocks) with a new function
u(t+, ) containing only (h + 1)-shocks [only 1-shocks in the case h = n].

(2) At atime t € I,,, 5, when inf, u/(¢, z) is getting close to —oo, we replace u(t—, )
with a new function wu(t+,-), still containing only h-shocks, which satisfies (2.16).
This can always be accomplished by inserting several small downward jumps in
regions where u” is large and negative (fig. 4).

Uy

Fig.4

In all cases, at each restarting time ¢, we require that the distance Hu(t—i—, )=
u(t—, -)HL1 be suitably small. Moreover, we make sure that the total strength
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of waves and the interaction potential are changed very little by the restarting
procedure.

By the analysis in (i)-(ii), the construction of an approximate solution on a
given interval [0, T'] can be accomplished with a finite number of restartings. Indeed,
on each subinterval I,,, ,, we can derive an a-priori bound of the form (2.15) on every
linearly degenerate component u’, i # h. Hence, by (2.16) and (2.17), the difference
tey1 — te between two restarting times is bounded from below by the length of the
interval where the solution of (2.18) is defined.

We can now repeat the above construction with different values of the time
step 01, letting 61 — 0, and obtain a sequence of approximate solutions (u,),>1.
By possibly taking a subsequence, a compactness argument yields some function
u = lim, u,,. We claim that this limit provides an e-solution to (1.1)-(1.2).

Intuitively, this is seen as follows. Consider any wave, say of the k-th family. In
an exact solution, this wave should travel with speed Ag(u). On the other hand, in
an approximate solution with time step At = d1, by (2.10) such a wave will travel
with speed

et it ¢ ¢ Upoy Lo
/\Z + n()\k(u) — )\Z) ift € Umzl Im,k~

Therefore, on any interval of the form
[m§1, (m + 1)(51[ = IpaU---U Im’n,

the average speed of a k-wave coincides with Ag(u). Letting 6; — 0 we thus obtain
an exact solution.

Of course, one could construct approximate solutions by a less sophysticated tech-
nique, such as the Glimm scheme or wave-front tracking. The use of piecewise
Lipschitz approximations with successive restartings, however, offers a major ad-
vantage compared with all other methods. Namely, the distance between any two
approximate solutions can now be carefully estimated. This is done as follows

(fig. ).
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Fig.5

For a fixed ;1 > 0, let u,u’ be any two approximate solutions, constructed on the
interval [0, 7] according to the above procedure. Consider any piecewise regular
path v : 6 +— u%(0,) joining u(0,-) with «/(0,-). We can then construct a one-
parameter family of approximate solutions u’ within the class of piecewise Lipschitz
functions, implementing a restarting procedure at suitable times t, and carefully
controlling the length of the path v, : 0 — uf(¢, ).

At times where all functions 1’ solve the same quasilinear system (2.12) with
jump conditions (2.13)-(2.14), the weighted length of the generalized tangent vector
||du? /df)|| .o does not increase. Moreover, a careful construction guarantees that, at
each time ¢ where a restarting procedure is applied (simultaneously )to all functions
u?(t—,-)), the weighted length of the path ~; changes only by a very small amount.
In the end, we obtain a bound on the length of the path g and hence on the

distance ||u(T, ) =/ (T, -)||L1, based on the length of the path ~y. Letting 6; — 0,
this yields the Lipschitz estimate (ii) in Theorem 3.

It is worth observing that, if (1.1) is a special system where all shock and
rarefaction curves coincide [T1], then the above construction already provides a
complete proof of Theorem 1. For general systems, however, we still have to describe
a proof of Proposition 5, in the case where the solution of the Riemann problem
(u™,u™) contains one or more shocks with strength |o;| > 2e.

To fix the ideas, assume that the e-solution of the Riemann problem (1.1)-(2.6)
has v shocks of strength > 2e, say in the families ji,...,j, € {1,...,n}, plus
possibly other shocks of smaller strength. Then, if we choose 7 << &2 sufficiently
small, every function u € D(,~ ,+) Will contain exactly one shock of strength > ¢
for each of the families ji,...,j,, plus possibly other shocks (of different families)
all with strength < 3e. For any fixed 01,02 > 0, a piecewise Lipschitz continuous
approximation v = wu(t,x) is constructed by choosing a time step At = §; and
inserting v “shock layers” of width &5 around the large shocks, say located at
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Y, (t) <---<wyj, (t). Fort € I, 5 as in (2.9), the function u will have the following
properties.

e At each point y;, @ € {j1,...,J.}, the e-Rankine-Hugoniot conditions
(2.3)-(2.4) hold.
e Inside each shock layer

(2.19) B; = [yi(t) — 62, yi(t) + 02] i€ {1,y du s

the evolution of u is determined by a quasilinear system where all char-
acteristic speeds are constant (hence all fields are linearly degenerate).

e Outside the shock layers B;, the function u is a solution of the quasilinear
system (2.12), with jumps occurring only in the h-characteristic field. All
these jumps have strength |o| < 3e and satisfy the e-Rankine-Hugoniot
equations (2.13)-(2.14).

The reason for inserting the shock layers is the following. Within a time interval
I n, if @ small h-shock were to hit one of the large shocks, the interaction could
produce several outgoing shocks of various families. By subsequent interactions,
the total number of shocks could thus approach +oo within a very short time, and
the algorithm would break down. To avoid this, we adopt an additional restarting
procedure:

(3) At a time ¢ when an h-shock has penetrated inside one of the shock layers B;,
this shock is replaced by a steep Lipschitz continuous compression wave, before
hitting the big shock at y;(t).

By letting all wave speeds be constant inside B;, we make sure that this steep
compression wave (of the h-family) does not “break”, reforming an h-shock almost
immediately. Since all wave speeds are bounded, it takes a positive amount of
time for an h-wave to penetrate the shock layer B; of width d2 > 0 and hit the
shock at y;(t). Therefore, the length of the interval [ty, ty41] between two consec-
utive restarting times remains uniformly positive. In a finite number of steps, our
approximate solution can thus be constructed on the whole interval [0, T].

A detailed construction of approximate solutions in this more general case will
be given in Section 3, together with the estimates on the weighted length of a
generalized tangent vector. The restarting procedures are carefully analyzed in
Section 4. The proof of Proposition 5 is then completed in Section 5, showing that,
as 01,02 — 0, our approximate solutions converge to a unique limit, continuously
depending on the initial data.

STEP 2. For a given € > 0, we now construct a continuous semigroup S€ on a
domain D¢, satisfying (i) and (iii) in Theorem 3.

Observe that, in Step 1, we obtained a family of semigroups with the properties
(ii) and (iii) but not (i), because the domains D(,- ,+) would shrink to a point
as € — 0. On the other hand, the domains D° which we now consider remain
uniformly large, satisfying (i) for some 7y > 0 independent of €. The trajectories
of the semigroup S® are constructed by a wave-front tracking algorithm. This
algorithm is essentially the same as described in [B-J, B6], except for the use of the
g-approximate Riemann solver (2.7).
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The basic idea in the wave-front tracking method is well known [D, DP2, B2, R].
Start with a piecewise constant function (0, -) close to the initial data @. At each
point of jump, one approximately solves the corresponding Riemann problem within
the class of piecewise constant functions.
This yields an approximate solution defined up to the first time ¢; where one or
more wave-front interactions take place. The new Riemann problem is then solved
again within the class of piecewise constant functions, prolonging the solution up
to some time ¢ where the second set of interactions takes place, etc. In order to
keep finite the total number of wave-fronts, we shall use two distinct procedures
for approximately solving a Riemann problem: an accurate method, which possibly
introduces several new fronts, and a simplified method, which avoids the introduc-
tion of new wave-fronts. The algorithm involves two (strictly positive) parameters:
&, bounding the maximum size of rarefaction fronts, and p, determining which
Riemann problems will be accurately solved.

For a given Riemann problem with data u~,u™, these two solution methods
are described below. By [s] we denote here the integer part of s.

Accurate e-Riemann solver: Let wg = ™, wi,...,w, = ut be the states present
in the e-approximate solution of the Riemann problem, as in (2.7). The piecewise
constant approximation u is then obtained by replacing each rarefaction wave with
a rarefaction fan. More precisely, if w; = ¥5(0;)(wg—1) with o; > 0, we divide this
jump into p; = 1 + [o;/7] equal parts, inserting the intermediate states

Wi 0 = Wi—1, Wil, --- , Wip, = Wi.

Each small jump (w; ¢—1,w;,¢) travels with speed A;(w; ¢), i.e. with the characteristic
speed of its right state.

Simplified e-Riemann Solver: Assume that the Riemann problem is determined
by the interaction of two waves of distinct families, say ¢ < j, with sizes 0;,0;. Call
ul,u™,u" the left, middle and right states before the interaction. Clearly, u™ =
e (oj)ul), u" = U5(o;)u™). We then solve the Riemann problem in terms of two
outgoing wave-fronts of the same families, still with sizes 0y, 0;. The solution will
thus involve a middle state @™ = W5 (0;)u') and a new right state 4" = Ve (aj)(a™).
In general, 4" # u". The jump (@",u") is then propagated along a non-physical
wave-front, travelling with a fixed speed 5\, larger than all characteristic speeds.
In the case where both incoming wave-fronts belong to the same i-th family and
have sizes o;, 0}, the Riemann problem is solved by a single outgoing i-wave of size
0;+0!, together with a non-physical wave-front connecting the states W$ (o; +0/)u!)
and u", travelling with speed A

Finally, in the case where a non-physical front hits an i-wave of size o;, the Riemann
problem is solved in terms of an outgoing i-wave of the same size o;, and a non-
physical front always travelling with speed A

To complete the description of the algorithm, it remains to specify which Rie-
mann solver is used at any given interaction:

- The accurate method is used at time ¢ = 0, and at every interaction where
the product of the strengths of the incoming waves is > p.
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- The simplified method is used at every interaction involving a non-physical
wave-front, and also at interactions where the product of the strengths of
the incoming waves is < p.

In the above, we tacitly assumed that only two wave-fronts interact at any
given point. This can always be achieved by an arbitrarily small change in the
speed of one of the interacting fronts.

Given any initial data @ with sufficiently small total variation, consider a se-
quence of piecewise constant functions such that @, — @ in L'. Calling N, the
number of jumps in @,, choose the parameter values
b, = e (Nvitv),

5'1/:7a Pv
1%

For each v > 1, using the above algorithm we now construct a piecewise constant
approximate solution u,, with u, (0, ) = 4,. Each w, is defined for all ¢ € [0, co[ and
has a finite number of lines of discontinuity in the ¢-z plane. By a straightforward
adaptation of the estimates in [B-J, B6] one checks that, as v — oo,

(i) The total variation of u, (¢, -) remains uniformly small,
(ii) The maximum strength of rarefaction fronts in u, approaches zero,

(iii) The total strength of all non-physical waves approaches zero.

By (i), Helly’s theorem guarantees the existence of a subsequence which con-
verges to some function u in L},.. By (ii) and (iii), u is an e-solution of (1.1).
Moreover, relying on the lengthy construction performed in Step 1, we can show
that this limit function u is unique and depends continuously on the initial data.

Proposition 6. Let # € L' have sufficiently small total variation. Then any se-
quence of approximations u, generated by the above wave-front tracking algorithm
converges to a unique limit u = u(t, x), continuously depending on the initial data
. The map

(t7ﬂ) = ’I.L(t, ) = Sffb
is a continuous semigroup. Every trajectory is a Viscosity e-solution of the corre-
sponding Cauchy problem (1.1), (1.2).

The key step in the proof of Proposition 6 is to show that, locally in the t-

x plane, the limit solution u coincides with a trajectory of one of the Lipschitz
semigroups constructed in Step 1. More precisely, fix any point (7,Z) and define
the one-sided limits v~ = u(7,z—), u* = u(7,z+). Choosing p > 0 small enough,
the truncated function

u(r,x) fzelx—p, T+p),
(2.20) w(r) =< u~ ite<z—p,

ut ite>z+p,
lies in the domain D, - ,+) of one of the semigroups S constructed in Step 1. One
then has
(2.21) (Si—rt)z) = u(t, x) V(t,z) €T,

where I is the domain of dependency

(2.22) F={(tx);t>7 lz—z[<p—(t—7)}.
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From the uniqueness of the semigroup S, proved as in [B4], it thus follows the
uniqueness of the limit function w.

STEP 3. All the remaining analysis aims at establishing the uniform Lipschitz
continuity of the semigroup S¢, with a Lipschitz constant independent of e, thus
proving (ii) in Theorem 3. This is not an easy task: at this stage we can compare
different solutions, and show the Lipschitz continuity on the initial data, only within
a narrow class of functions with the same wave-front structure. Roughly speaking,
by “wave-front structure” or “configuration” we refer here to the number of shocks
of strength > £, and to the order in which they interact. As shown in Step 1, we
can construct suitable approximations by choosing artificial wave speeds A} and
inserting the buffer zones (2.19) around each big shock. The distance between
two approximations can then be estimated, but only if these approximations are
obtained by the same choice of the A}, and by the insertion of the same number
of shock layers. Of course, this cannot be the case for solutions with different
wave-front configurations (fig. 6).

\
va

Fig.6

Our basic approach is the following. Consider a regular path of initial data ~q :
0 — u’ 6 € [0,1]. For each ¢t > 0, define the corresponding path

(2.23) v 00— SEad.

First, we prove that the weighted length of v does not increase in time if all solutions
u? have the same wave-front structure. By the continuity of the semigroup S¢,
proved in Step 2, the result can be extended to the case where the configuration
changes only at finitely many values of the parameter 6. Finally, we show that any
path ~ of solutions can be uniformly approximated by a path 4 such that the wave-
front structure of the function @’ = 5(6) changes only at finitely many parameter
values.
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To implement the above program, we introduce a set of conditions providing
the structural stability of an e-solution . They will imply that any e-solution u’
sufficiently close to u has the same number of large shocks as u, interacting in the
same order. In particular, v’ can be obtained as limit of the same type of piecewise
Lipschitz approximations used in the construction of u.

As a preliminary, given an e-solution u and a point (¢, z) with ¢ > 0, define

(@20) W) Sultt, o), (#) = lim w(Ea).

By the analysis in [DP1, B-LF2], the self-similar limit in (2.24) is well defined in
L} .. On the upper half plane where ¢ > 0, W(t,z) coincides with the solution of the
standard Riemann problem with data w(t,z—), u(f,z+). On the lower half plane
where ¢’ < 0, the function W(t,z) May contain a set of incoming waves, including
shocks and centered compression waves of various families. We shall distinguish

three cases.

CASE 1: The strength of all incoming waves is < &2.

CASE 2: There exists an incoming shock of strength > &3 while the total strength
of all other incoming waves is < 5.

CASE 3: There exist two incoming shocks, both of strength > £, while the total

strength of all other incoming waves is < £2°.

Observe that the above cases are not mutually exclusive, nor do they cover all
possibilities. A suitable definition of structural stability can now be introduced.

Definition 5. An e-solution w of (1.1) is Structurally Stable at the point (t,z) if
the corresponding function w; .y in (2.24) satisfies one of the Cases 1, 2, 3. We
say that u is Structurally Stable on [¢t*,T] iff u is stable at each point (¢,z) with
t<t<T,zecR.

There are two typical examples where structural stability fails:

- Three shocks, each with strength > ¢, interact at a single point (¢, z).
- The point (¢, z) is the center of a compression wave, of strength > ¢.

Observe that, in both cases, an arbitrarily small perturbation may destroy the
wave-front configuration of the solution w. The next proposition states that this
does not happen for a structurally stable solution .

In the following, by V' (u(t); J) we denote the total strength of waves in u(t)
inside the set J.

Proposition 7. Let @ be an e-solution of (1.1), structurally stable at the point
(7,Z). Then there exists r* > 0 such that, for every fixed r €]0,7*], on the interval
J = [Z—"Tr*—r, T+ 7r*+7r] the following holds. For every e-solution u sufficiently
close to @ in the L! norm, one has:

(i) In Case 1, u(r — r) satisfies
(2.25) V(u(r —r); J) < Ce

(ii) In Case 2, u(r — ) has a shock of strength > £3/2, located at some point
y € J. Moreover,

(2.26) V(u(r —r); J\{y}) < Ce.
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(iii) In Case 3, u(r — ) has two approaching shocks, both of strength > £%/2,
located at points y,y’ € J. Moreover,

(2.27) V(u(r —r); J\{y,y'}) < C*.

As usual, by C' we denote a constant depending only on the system, and not on
u, U, 7,7, &... On the other hand, it is understood that the conclusion of Proposi-
tion 7 holds for every solution wu satisfying

Ju(t) —a®)]|, <& ¥,

with €, > 0 possibly depending on r. For exact solutions of the system (1.1),
or approximations obtained by wave-front tracking, a more general result in this
direction is established in [B-LF2], relying on the decay estimates (1.21). All proofs
remain valid for e-solutions, without any change. In Section 7 we will show that the
same conclusions (i)—(iii) also hold if u is a sufficiently accurate piecewise Lipschitz
approximation, constructed according to our algorithm.

In the above setting, a trapezoid of the form

(2.28) Fi{(t,x); telr—r, 7+r"], |z — 7 §7’/‘*—(t—7')}

with ;7" €]0,7*] will be called a Stabilizing Block for the solution @ around the
point (7,Z). Observe that, by Proposition 7, every solution u suitably close to @
in the L norm has the same wave-front configuration as 4 inside the trapezoid T.
This motivates our definition. We say that the stabilizing block T is of type 1, 2 or
3 according to the three cases considered in Proposition 7.

A straightforward compactness argument yields the following covering lemma.

Lemma 1. Let M, t, > 0 be given and let @ be structurally stable on [t., T]. Then
there exist times 0 <ty <71 <t <72 <--- <7y <ty =T, points z;; and values
rij > 0, j = 1,...,N; with the following properties. For each ¢ = 1,..., N, the
intervals [x;; — 1i;, 2j + 3] cover [—M, M]. Moreover,

(229) [t*,T} C [to,tN}, max{ti—n, Ti—tifl} gminrij Z:].,N
J

Each trapezoid

(230) Fij = {(t,:c), te [ti—la ti], |£L‘ — xij‘ < 77’1']' — (t — Tz)}

is a stabilizing block for @ around the point (7, z;;).

Example 2. Consider an e-solution v = u(t,z) with the following wave-front
structure (fig. 7). Initially, u contains only one large shock, say at a point y;, plus
other small waves. As time progresses, a second shock is formed, say located at ys.
The strength of this shock increases continuously from 0 to some value > e. At
some time 7o, the two shocks interact, generating three outgoing shocks.
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Fig.7

In this case, u is structurally stable. A covering in terms of stabilizing blocks is
illustrated in fig. 7. The block T'15 is of type 1, T'11, 91,92 are of type 2, while
'3y is of type 3.

We can now take the main step toward establishing the Lipschitz continuity
of the semigroup S°. More precisely, we will show that S¢ is contractive w.r.t. a
weighted distance defined as follows. Let u be a piecewise Lipschitz function having
jumps at the points z; < --- < zy. Assume that the e-solution of the Riemann
problem determined by the jump at z, consists of a single shock in the k,-th
characteristic family, of strength |o,|. For any v € L, define the components

(2.31)  vi(z) = {li(u(z)), v(z)), ul(z) = (li(u()), ua(z)) i=1,...,n.

The weighted norm of a generalized tangent vector (v,¢) € T,, = L! x IRY is then
defined as

n 00 N
(2.32) (v, 0], = Z/ |0i(2)|Wi () dx + Y [éaloal Wi, (2a)-
i=1v 7% a=1
Here W} (z) is the weight assigned to an i-wave located at . It has the form
(2.33) Wit (z) =1+ m R (2) + r1r2Q(u),
where

es)  m@= Y[ +X [ el | X+ 3 el

j<i V% j>i YT ko <i ko >i
To>T o <m
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0w =% [[ i@l ddy+ Y lowol

i<j <y ka<kg, To>Ts

-I-Z Z |Ja|/oo|u;(m)’d{l}+ Z |0a‘[x“ |u;(x)’d$ s

a |i<ka i>ka

(2.35)

and K1, ko are suitably large constants. Thinking of ’u; (x) ‘dw as the strength of an
infinitesimal i-wave in u located at x, the weight (2.33) can thus be interpreted as

WH(x) =1+ k1 [amount of waves in u which approach an i-wave located at x]
+ K1ko [global interaction potential of waves in u]

A general formula for the weighted length of a tangent vector, valid for functions u
with arbitrary jumps, will be given in Section 8. Here and in the sequel there will
be slight variations in the definitions of @, due to the fact that couples of waves of
the same family may or may not be regarded as approaching. The different choices
made at various stages of the paper aim at simplifying the computations in the
proofs. They are all essentially equivalent in that the basic interaction estimates
(1.9) always hold.

In turn, the weighted length of a piecewise regular path can then be defined
as in (1.47), by integrating the norm of a tangent vector. To make sense of the
weighted length of an arbitrary path v : @ — u? in the case where the u’ are
general BV functions, we set

(2.36)
17l = 11%5r inf {||*y’||* ; 7' is a piecewise regular path, ||7/(6) — v(ﬁ)HLl < ¢ for all 9}.

Proposition 8. Let 7 : 6 — @’ be a regular path of initial data, say defined for
6 € © = [a,b]. For some value 0, assume that the corresponding e-solution u’ of
(1.1) is structurally stable on [0,7]. Then there exists p > 0 such that the weighted
length of the path 6§ — S;u?, restricted to 6 € [#’,0"], is a non-increasing function
of time, for every subinterval [0’,0"] C [0 — p, 0 + p].

As a first step toward the proof of Proposition 8, we show that the conclusion
holds in the special case where the solutions u? vary with 6 only within a single
isolating block.

Lemma 2. Let I be as in (2.28) and let § — u? be a family of e-solutions of
(1.1), defined for t € [t',¢"] = [t =7, 7+ 7"], 0 € © = [a,b]. Assume that, at
the initial time ¢ = 7 — 7/, all functions u?(#',-) satisfy one of the conclusions of
Proposition 7: either (i), or (ii), or (iii). Moreover, assume that for all § one has

(2.37) WOt x) =ul (' x) z ¢ [T—r*, T4+

Then the weighted length of the path v : 6 +— u®(t”,-) is smaller or equal to the
length of the path vy : 6 +— uf (¥, ).

The proof of Lemma 2 is achieved by constructing a path 7/ of piecewise Lips-
chitz approximate solutions, arbitrarily close to ~y, whose length does not increase
in time. Observe that, inside the trapezoid I', all solutions u? have the same wave-
front structure as u’. Namely:
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- in Case 1 no large shock is present,

- in Case 2 there is exactly one large shock,

- in Case 3 there are initially two large incoming shocks. At some time ¢
these shocks interact, generating a number of outgoing waves determined
by the corresponding Riemann problem.

Inside the region I', the construction of approximate solutions, continuously
depending on the initial data, can thus be carried out by the same algorithm used
in the proof of Proposition 5. Actually, in Cases 1 and 2, we are dealing with a
set of functions all contained in one of the domains Dy, ,+) considered at (2.8) (if
suitably extended outside )I'). Case 3, on the other hand, forces us to consider a
domain D of functions which possibly contain two large approaching shocks. In this
more general case, the construction of piecewise Lipschitz approximate solutions will
be given in Section 8.

Outside the stabilizing block I', our approximate solutions will be constructed
by wave-front tracking. Observe that, in this outer region, nothing is known about
the wave-front structure of the functions u’. However, by (2.37) and finite prop-
agation speed, all these solutions coincide. Their continuous dependence on the
parameter # is thus trivial.

In order to apply Lemma 2, we shall need to replace an arbitrary path v with
a new path 7 : @ +— @’ such that the values @%(z) locally vary with  only inside
one single stabilizing block. A suitable localization procedure is described below.

Definition 6. A path v : 0 — u? has Localized Variation if, for every * > 0 and
every 0%, there exists § > 0 and a point z* such that

(2.38) u(z) = u? (z) whenever |0 — 0*| < 6, |z —z*| > ".

In other words, as @ varies in a neighborhood of #*, the values of u’ are allowed
to change only inside a small neighborhood of some point z*. For example, if u, v
are two distinct continuous functions, then the path 6 — u - X|_ o] +v- X900 has

localized variation, while the path 6 — 6u + (1 — 8)v does not. The approximation
of piecewise regular paths with paths having localized variation will play a key role
in the sequel.

Lemma 3. Let v : § — u? be a piecewise regular path. Then, for every £* > 0,
there exists another piecewise regular path ' with localized variation such that

(2.39) 17l < Myl + €7, [V(0) =), <& V.

The proof of Proposition 8 now goes as follows. For ¢t in a small interval
[0,20], all solutions u’ remain piecewise Lipschitz, and the result is an immediate
consequence of Proposition 4. Choose M large enough so that all supports of
the functions u’(t,-) are contained inside [—~M, M]. We then apply Lemma 1 to
the structurally stable solution u? and obtain a covering of the rectangle [to,T] x
[—M, M] in terms of stabilizing blocks I';;. Let (7;, ;) and r;; be as in (2.30). For
some p > 0 small and all § € © = [§ — p, § + p|, we can thus assume that every
suitably accurate approximation to a solution u? has the same wave-front structure

as u’, on each trapezoid L.
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By Lemma 3, the path vy, : 0 — Sfoﬁe can be replaced by a new path 'ytf) 10—
BV, having localized variation and almost the same length as ~;,. By compactness,
we can cover the interval © with finitely many subintervals Oy = [0y_1,0%], k =
1,...,my, so that, as @ varies inside Oy, the values of u?(to+,) = q/;g (0) vary inside
a single interval, say Iv; = [x1; — 71, %15 + r1;]. Here j = j(k).

By applying Lemma 2 to each subinterval Oy, we conclude that the weighted
length of the path

(2.40) Ve, 10— S5y (- (0))
is less than or equal to the weighted length of Vi -

We now apply Lemma 3, replacing ~,, with a new path 'ytt , having localized
variation and almost the same length as Vo Then we use Lemma 2 to estimate
the length of the path v, = 5§, _, (v;1), etc... Since at every step the increase in
the weighted length [;" || — |4 ||« can be kept arbitrarily small, after N steps we
obtain a path v, , arbitrarily close to Vo 0 — S’; @%, and whose weighted length

is bounded by the length of 79 up to an arbitrary small correction. This achieves
the proof.

From Proposition 8 and the continuity of the semigroup S€, one obtains

Corollary 1. If the e-solution u? is structurally stable on ]0, 7] for all but finitely
many values of 6, then the weighted length of the path «; : @ — u? is non-increasing
in time.

The proof of Theorem 3 is completed by showing that the above assumption of
structural stability can be removed, relying on a perturbation argument.

Proposition 9. Let 7o : 6 — @’ be a regular path of initial conditions. Then the
conclusion of Proposition 8 remains valid, even without assuming the structural

stability of the e-solution u?.

The proof is based on the following argument. Call ©* the set of all values of
6 for which Y is structurally unstable. If § ¢ ©*, or if § is an isolated point of
©*, the result is clear. Consider the remaining case, where @ is a limit point of or.
Observe that there exists only finitely many points (¢, z¢) in the t-z plane where u’
is unstable. Indeed, by Definition 5, at every such point an amount of interaction
> ¢ must take place.

To fix the ideas, assume, for example, that for infinitely many 8 € ©* in a
neighborhood of 6, the corresponding e-solution u’ contains three large shocks
interacting at the single point (¢?,)z?), with (t,2%) — (t%,2%) as @ — 0. At a
suitable time 7 < t? we can then perform an arbitrarily small perturbation of the
path v, : 6 — u?(7), in such a way that all but finitely many of the perturbed
solutions are structurally stable. More precisely, given any & > 0, we consider a
smooth scalar map ¢ = ¢(0, x) with

(2.41) lolles <&
and construct a new path 7, : @ — @?(7), where

(2.42) @ (r,2) = u? (17—, x4+ ¢)(0,2)).
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Because of (2.41), the new path will be close to the old one and have almost the
same weighted length. In addition, by (2.42) the locations of the three large shocks
in each u? will be slightly shifted. Therefore, an application of the coarea formula
[E-G] will show that, for a “generic” function ¢, these three shocks will no longer
interact at a single point, but only two at a time, for all except finitely many values
of the parameter . The previous estimates can thus be applied to the perturbed
path 7, for t > 7.

This will complete the proof of Theorem 3. Letting ¢ — 0, since the constants
L,n9 > 0 are independent of ¢, we establish Theorem 1.



CHAPTER 3

Construction of local semigroups

Throughout the following we fix € > 0 and consider a fixed set of right and
left eigenvectors r;(u),l;(u) of A(u) = DF(u), normalized as in (1.5)-(1.6). Let
two states u~,u™ be given, and call w = w(¢, ) the e-approximate solution of the
Riemann problem with initial data (2.6). Aim of this section is to construct a
semigroup S whose trajectories are e-approximate solutions of (1.1) according to
Definition 2, and whose domain contains all sufficiently small perturbations of the
Riemann data (2.6).

Let wo = u™,wi,...,w, = ut be the intermediate states in the self-similar
e-solution w. Let § = {j1,...,45,} € {1,...,n} be the set of indices i for which
the wave connecting w;_; with w; is a shock of strength |o;| > 2. By choosing
n < &2 sufficiently small in (2.8), we can assume that every function u € D contains
v shocks with strength > ¢, one for each of the families ji,...,j,, located at points
Yj; < -+ < y;,, plus possibly other shocks (of different families) with strength
< 3e. Define the characteristic speeds

A7 = Ai(wio1), AT = Ai(wi) ifies,

(31) AF == N (um if i ¢ §.

Given an interval [0,7] and §; > 0, we will construct an approximate solution
u = u(t,x) with the following properties. There exists a finite partition of [0, 7]
into subintervals J; = [1¢, T¢41[, such that the restriction of u to each strip J; x IR
is piecewise Lipschitz continuous, with jumps located along finitely many lines
T = yo(t). At each time 7y, a restarting procedure is used, producing a new
function u(7e, ), suitably close to u(7y—,-) in a sense which will be made precise
later.

Each subinterval Jy is entirely contained in some interval of the form

(3.2) Imp = [(m+h;1)5l, (m+)hn)51] (m=>0, hefl,...,n}).

The restriction of u to the strip J; x IR contains v large jumps of strength |o| > ¢,
corresponding to the large shocks in the self-similar solution w of the Riemann prob-
lem. These are located at the points y;, () < --- < y;, () and occur respectively in
the ji,..., j,-characteristic families. The corresponding e-Rankine-Hugoniot con-
ditions (2.3)—(2.5) hold at each one of these points.

In addition, if J; C I, p, the function u has finitely many small h-shocks, say
located along the lines z = yg(t), 5 € § (here § is some index set, disjoint from §).
These small shocks satisfy

(3.3) u(ys+) = Ru(op) (u(ys—)) peg

31
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for some og € [—3¢,0[, so that the left and right states at yg lie on the same
h-rarefaction curve. To describe the evolution equation satisfied by u outside the
shocks, we introduce the matrix A® = A(h)(t,x,u), whose eigenvectors coincide

with the eigenvectors r;,l; of A(u), and whose eigenvalues /\Z(-h) = )\gh)(t,x,u) are
defined as follows:

Xfigs,
(3.4) AW LN ties x <),

A ifie§, x> y(t),
for all ¢ # h, so that n — 1 characteristic fields are linearly degenerate. The def-
inition of the h-th eigenvalue requires more care. Indeed, we want the h-field to
be genuinely nonlinear, except inside some artificial “shock layers” of width do > 0
around the large shocks, where )\,(lh) will be constant. For « € §, consider the lines

(3-5) Ya(t) = ya(t) — 52, Yo (1) = Yal(t) + 02.

If h € §, we then define

A+ n(An(wa1) = A)  if @ € [yi(t), ya(t)] for some a € §,
Mt n(An(wa) =A%) if o€ Jya(t), yi*(t)] for some o € §,
A4 n(An(u) = Xy) if @ <yn(t) and = ¢ U [ya (1), vi* (t)],
A+ n(An(u) — ApF) if 2>y, (t) and @ ¢ U [y2(0), vi ()]
In the case h ¢ §, the last two cases in (3.6) are replaced by

(3.7) A =N () = xp) i x g (a0, v o).

The definitions (3.4)-(3.7) completely determine the matrix A®. If J, C I, 5,
then on the strip J; x IR we require that the piecewise Lipschitz function u be a
solution of the quasilinear hyperbolic system

(3.8) uy + AN (8, 2, u)u, =0

h
(3.6) AWM =

outside the shock lines. Finally, recalling (3.3), we assign the speed of a small
h-shock located at ygs:

0
(39) i) = o [0 (6 v JR(s) ut=)) .

The quasilinear system (3.8), together with the e-Rankine-Hugoniot equations (2.3)-
(2.4) valid for the big shocks at y,, o € §, and with the relations (3.3), (3.9) valid
for the small h-shocks at yg, 8 € §', entirely determine the evolution of our piece-
wise Lipschitz approximate solution wu, within each time interval J, = [14, To41].
The piecewise Lipschitz regularity of w will be preserved until one of the following
situations occurs:

- A gradient catastrophe takes place, in the h-family.

- A small h-shock interacts with one of the large shocks.
Before this happens, a restarting procedure will be used, replacing u(7p11—) with
a new (better behaved) function. An additional restarting is performed at the end
of each interval I, 5 in (3.2), where the evolution of u changes type. All these
restarting procedures will be described in Section 4. In the present section we
study solutions of the above evolution equations on a time interval J, bounded by
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two consecutive restarting times. A-priori bounds will be obtained on the total
strength of waves and on the weighted norm of generalized tangent vectors.

We begin by deriving a set of evolution equations for the gradient components
ul, = (l;(u), ug) and for the strength of the shocks, valid on the time intervals I, p,

of the form (3.2). Using a continuous version of the Glimm interaction functional,
this will imply a uniform bound on the total variation of u(¢,-).
As in [B1, B-M1], from (3.8) we obtain

(310) (uh)e + (A ub)e = > O = A0, e l)udul =D Gg(wulul,
i<k i<k

valid outside the shock lines y,, & € §U§" and outside the lines y%, y**, o € §, where
the h-characteristic speed /\gb) is discontinuous. Asusual, [rg,7;] = Vr;-rg—Vrg-r;
denotes the Lie bracket of the vector fields ry,r;.

Let k. be the family of the shock at y,. According to our previous notation,
we thus have k, = a if a € §, k, = h if @ € §'. Define the sets Z and O (incoming
and )outgoing) of signed indices

IT={it i<ka}U{i™;i>kal,
O={j"; j<kalU{j"; j>ka}.

In a neighborhood of (u(ya—), u(ya+)) we use the coordinate system

(3.12)
7) +ZT1(U(ya*))w;, +ZT2 ya+

Recalling (2.2), the relation (2.3) can now be written as a system of n — 1 scalar

(3.11)

equations in the 2n variables w; w , 4 =1,...,n. By the implicit function theo-
rem, the equations (2.3) can then be solved for the n — 1 outgoing components:
(3.13) wy =W (wh) jfeo

where w? denotes the set of incoming components.

In order not to interrupt the flow of the main argument, in the following we state
without proof a number of a priori estimates. Most of these estimates are entirely
standard. The others will be proved in the Appendix. For notational convenience,
we denote by C' a constant which depends only on the system (1.1), and not on
the parameters €,d01,d2 or on the particular solution. In a chain of inequalities,
the value of C' may change from one term to the next. Constants which play a
distinguished role will be written as Co, Cy, . ..

Let 0, < 0 be the size of the shock at y,. The derivatives of the functions W7
at w? = 0 satisfy

J
(3.14) ‘gwi <C ol i4) iFeT, jFeo,
w;
Wi
(3.15) ‘gi—l <O o] i# ke, it €I, iT €O,
w;
Wi
(3.16) ;TE <C-|oal? jteo.
koc
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Concerning the size and speed of the shock at y,, we have the estimates

(3.17) gai <C o] €T, i #ka,
w;
(3.18) | 2% 21| SO ol
ko
Yo o+ .
3.19 <cC €T, ke,
( ) ’aw;t > ¢ i #
. (h) .
)\ a— ) T Ja
(3.20) O _ My WoT) Zlo|
ow, |oa|
, NG
o T )\ a+
(3.21) ayj Ve A Wat)) ENE
ow,’ ||

In the case of a small h-shock, from the relations (3.3)-(3.5) we deduce
oW B 0o,

3.22 =0, = =41,
( ) 8w,fa Bw,iE
. h . . . h
(3 23) 6ya _ A;(ca)(ya_) — Ya Bya _ Ya — )\;a)(ya"r)
‘ s, ol duy ol

By )\Eh) (Yat), )\Eh) (yo—) we denote respectively the right and left limits of )\Eh) (u(x))
at T = Yq.

Next, call u’~, uit respectively the i-th component of u, to the left and to the
right of the shock. From the jump equations (2.3) we derive a family of n— 1 linear
relations

(3.24) wE = U7 (ul).
We now observe that the gradient components uF satisfy (3.24) iff the components
(325)  wi = (A (a) —via)ul, wl = (o = N (o))"

satisfy the corresponding equations (3.13), linearized at w? = 0. By strict hyper-
bolicity, from the estimates concerning the components wli it thus follows

ou’

(3.26) B < C-|og i#j, it el jTeo,
U’
(3.27) FuE ! < C|og i# ke, iT €T, iT €O,
uZE
Ui . :
(3.28) ooz | < O loal’IN (o) — v jfeo.

In case of a small h-shock located at x = y,(¢), a € §, the estimates (3.26), (3.27)
still hold, while (3.22) implies

U™

5| =0 jteo.

(3.29)
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Finally, if a € §, across the two lines x = y%(t), + = y=*(¢t) the function u is
continuous while the only component of the gradient that suffers a jump is u.
Observing that v, = " = ™", one checks that the left and right values of u" are
related by

(3.30) AP i) —ya)ul™ = O i) —ga)ul™  ata =y,

and a similar equality holds at x = y;*.

Next, consider the time derivative of the size o, < 0 of a shock at & = y,(¢).
For a € § there holds

G = (N (Wa—) = Y ) ub™ — (v — A (ya+))u’;a+‘

(3:31) 3 (|, kat ko —
<O loal (lubt 4 ) +loal D Jub|

it CT itkq

Moreover, for « € §', the size 0, € [—3¢,0] of a small h-shock located at © = y,(t)
satisfies the sharper estimate

Ga= (N a=) =va)ul™ = (o= A (ot ul | < C-loul DT Jutf],
iT €T, ith

It might help the reader to compare (3.31) and (3.32) with the identity (1.43), valid
in the scalar case.
To obtain a bound on the total variation, define the total strength of waves as

(3.33) Z/ ul(z)| dz+ > Joal.

acegus’

(3.32)

The interaction potential is defined as

(3 34)
Z// |l (2)][ul(2)] dada’
1<
+ ) w[Z/ |dx+Z/ jui(@) dz| + Y oaos
ac§us’ i<k i>ka N (;I?EZU§</1/
a>kg ya<yg
oo
=3 ol / @|de+ S logl
i€§ - Be’, kg=i

Observe that in (3.34) two waves of the same family are never regarded as
“approaching”, except in the case where one of them is a large shock. Such a
definition is natural in the present context. Indeed, due to the coincidence of shock
and rarefaction curves (for small shock strengths), the interaction of small waves
of the same family does not increase the total amount of waves.

The instantaneous amount of interaction is

(3.35) Aw) = Au)+ > Aa(u)

a€cegus’
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with

(3.36) =3[ o A () ol )] o ()] i,
and

(3.37)

Aa(u) = |04l Z)(Aﬁ’“(ya—)—y'a>|u;<ya—>|+Z<)ya—A§h><ya+>)|ui<ya+)| ,

>k i<ka
Aa(u)i ‘O'a| <Z)()‘§h)(ya_)_ya)‘u;(ya_)}+ Z () _)‘ )‘u ya+)’>
i>kq i<ka

in the cases @ € § and « € §, respectively. Using the bounds (3.26)—(3.32), a
lengthy but straightforward computation yields

W) <Y Y |G|l lluf| + Y 1ol

i j<k ac§ug’
(h) . FESR (h) . it
+ Z )Z P\j (Yat) yaHuw | Z ‘)‘j (YaT) ya“u |
ac§ug’ jteo jtezr

for some constant Cy. Moreover,

d 1
(3.38) QW) = —A(w) + Cih(w)V () < =5 Aw),
provided that the total variation remains suitably small. Observe that V, @ both
remain constant at times where two small h-shocks join together. The previous
inequalities together imply

(3.39) % [V(u) +C Q)] <0

for some constant C1, as in (1.9). In particular, if [u™ — u~| and 75 are sufficiently
small, then the domain D in (2.8) is positively invariant.

We now consider the linearized system of equations for a generalized tangent
vector (v,€) € LY(IR; R") x RN, with N = #(§u)§'). Call v; = (I;,v) the i-th
component of v. Outside the jumps, one has

(3.40)
(vi)e + (/\l(,h) (u)Uz)I = Z {(V)\gh) 'Tk)(uivi - uivk)) + ()\Sh) _ )\z(4h))<li7 [rj,rk]>uivk}
7k
= Z Hij (w)ul vy,
J#k
At a point of shock y,, a € §U §’ the (n — 1) equations (3.13) are satisfied with
(3.41) w; =v; +&uy , wi = vl + Euult.

At the points y2,y:* where only the h-characteristic speed is discontinuous, we
have

(3.42) v Eauy” = of + ot v =vf (i #h).
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Recalling (3.30), from (3.42) we obtain a relation between v, and v;. Finally,
(3.43) €a = DAL (u(ya=)s u(ya+)) - ( Do (07 +€)ui e, 3o (0F +&aust ).
Here )\,(CT (u™,uT) is the speed of an e-approximate shock, as defined at (2.4), while

the differential D)\,(C’:) is defined as in (1.30). We recall that if a € §, then the shock

speed )\,(c]z) is determined by (2.4). In the case o € §, the speed )\,(c]z) is given by the
right hand side of (3.9).

We can now introduce the weighted norm

(3.44) Z / Wr@)|oi(@)| de+ S W (ya)loal - [€al,

ac§usg’
where the weight functions W;* are defined as
(345) Wlu({l?) =1+ HlR?(ZIJ) + m/ng(u)

for some constants k1, ko whose precise value will be determined later. Here Q(u)
is the interaction potential (3.34), while R¥(x) measures the total amount of waves
which approach an i-wave located at x. More precisely, for a point z not coinciding
with a large shock, we set

(3.46)

RISV AES oY BN EIUIRUES IS SEETED SEN I ESD DA

j<iv® j>i aegug’ aegug’ ka=i€§
ka<i,ya>w ka>i,ya <z
aEf ael
kq<iyi>z ka>iyh <z ko <i,yi*>z ka>i,yi* <z

Of course, the third summation in (3.46) contains at most one term: the strength
of the i-th big shock, if i € §. The last summations take care of the fictitious wave-
fronts at v, yi*, regarded as waves of the a-th family, of strength €. The presence
of these terms takes into account the fact that some wave speeds may experience a
small change across these lines. In the case x = y,, for some « € § we set

(3.47)

S DRSS S IEEIESS I DR Sl I

i<ka j>ka Begug’ Begus’
kg<ka,yg>va kg>ka,yg<vya

e o (3 oo 3 e [ (3 kel = 5 )

j<ka @ j>ka j<ka

+ Z |og|sign [(yg — Ya)Yp — ya)] }

Bes’
yg€Elvd vd*]
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Following [B4], we now observe that the derivative of R; along an i-characteristic
satisfies the estimate

(3.48) (R%); + A\ (u < =T AP () = AP ()| |ud | + CA(w).
J#i

Moreover, recalling (3.37), along a shock we have

DR (a() < = 3 (o= A et D)= 3 A (e = via) | + CA(w)

jgka ]>ka

—= | DA i) = sl [k a0+ 20 A ) = il [l (" )] | + - CAalw)

J j |al

in case a € §. We use here the notation
(3.50) A Z‘)\ yaHuJ ynt+ ‘—i—Z‘)\ yaHuj )|

Since the constant C' is independent of € and we are eventually interested in the
limit € — 0, in (3.49) it was not restrictive to assume eC' < 1/2. When « € § we
have the simpler estimate

(3.51)
SR (5a0) <

A
I
—
<
Q
>
<~
Z
—~
<
Q
_|_
=
g
<
_t
—
>
<~
=
<
Q
<
Q
=
£
<
_|_
Q
=
~—

IN
|
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The time derivative of the weighted norm of a tangent vector can now be computed
as

(3.52)
L), €,

< 30 [(OW (a)l€al + [0al Wi, (ya) €al + | Wi, (ya)sign €a)ée]

ac§usg’

+ ZI/Z (W), +AE’” (WW)g]|vi| do

+ zn: /O:o Wi - (sign 'Ui)((’Ui)t + (/\Eh)(u)vi)x) dz

+ 3 3 W e ) A ) = 3ia) [oilsa )] = W 0a=) A (=) = ) |03 (9=

ac§uy i=1
303 W O i) = sia) [ )| = Wit —) 8 i) = i) st - |
act i=1
D W P e+ = o) [ e 0)] = W =) N (=) = ) [ty =) ]
aeg i=1

=FE1+Ey+Es+ Ey+ Es + Eg.

We claim that the right hand side of (3.52) is non-positive, as long as u remains
in the domain D in (2.8), for n suitably small. Before embarking in the lengthy
computations that follow, the reader is advised to review the Example 1 given in
the Introduction. In the scalar case, thanks to the identities (1.41)—(1.44), one
can choose the weight function W* = 1 and obtain (1.45) by a straightforward
computation. To handle the vector valued case, we try to use a similar argument
for each component of the tangent vector. More precisely, we replace (1.41) by
(3.40), (1.42) by (3.43), (1.43) by (3.31), and (1.44) by (3.62). In contrast with
the scalar case, the relations (3.40), (3.31) and (3.62) now contain a non-zero right
hand side. The key point is that all these extra terms are due to some kind of
interaction. Therefore, their contribution to the growth of the norm H(v, f)HZ can
be more than compensated by the decrease of suitable weight functions.

The estimation of (3.52) follows [B4], with suitable modifications. By choosing
7 sufficiently small, we can assume that all the quantities

(3.53)
”U,(y;) — Wa-1|, ’u(ya_) — Wa-1

h * h *
A ) = A ()

o uat) = wa u(ys) — wa
PP E ) = AP ),

b )

are as small as we like. Define the instantaneous amount of interaction between u
and v by setting

(3.54) (u,v) = U(u,v) + Z U, (u,v),

a€egus’
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(3.55) U(u,0) = / - A () = AP () || (2)] v ()| da,

i
(3.56)
U, (1, 0) = ool | Xiska ()‘z(‘h)(ya—) — Ya) [i(ya—)] + Zz<k )\Eh) (Yat))|vilyat)|| €S,
o l7al | Xis k. ()‘z(h)(ya*) = Ya) [viWa—)| + Xick, ( ~ 2" (ya H)|vilat)|| faef.

Define also the upper bound for all weights
(3.57) My, =sup {W(z);z € R, i=1,...,n}.

By (3.48), (3.38), the time derivative of W}* along an i-characteristic satisfies

(3.58)
0 0 . :
<6t + )\(h (u )8) W < —k Z ’)\(h) )\gh) (u)||ul| + k1CA(u) + K1K2Q(u)
J#i
< =1 3 A () = AP ()|,
J#i

provided that ko is chosen sufficiently large. Along a shock, by (3.49) and (3.38)
one has

GV (a(0) <~ G k1A )+ 1 (CA) + raQ(w)
(3.59) A e
> 1 2|0a| 1€4,(U

if « € §. In the case a € §’, we have the simpler estimate

d A, (u . Ay (u
(3.60) — Wi (ya(t)) < —k1 (w) + k1 (CA(u) + k2Q(u)) < —mﬁ

dt |owl |oa]
We now observe that for every « € § U §’ there holds
(3.61) D [vilyat) = vilga—)| < O ([€alAa(u) + Va(u,v)).

ik

Moreover, for « € § and any n~,n" € IR we have
(3.62)
] (A o) = ga)n™ + (o = M2 (a )0 = loal - DAL (ulya—) u(ya)) - (07, 0PI

<C- Ioal2(ln‘|+)|n+|)

for some constant C. In the case « € § the same result holds with C' = 0. These
estimates should be compared with the identity (1.44), valid in the scalar case.
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We are now ready to estimate each term on the rlght hand side of (3.52). Using
(3.31), (3.59), (3.60), (3.43), then (3.62) with n* = yle* v,f , we obtain

(3.63)
B <— > {(A;i}fx))(ya—) — Ya)ub® " + (Yo — Aé@(yﬁ))U’;‘”}Wé‘a (Ya)l€al
aegus’
+C<Zloal3(IU’§“+l)+IU§“‘I)+ > oal D ( u1+|+lu“)> oo, (Yo ) [
o€l aegus’ i#ka
7% Z ‘§Q|A 7”1£Z|SQ|A*
aegus’ a€Eg
+ Y foalWi (adsign &) - DAY (ulya—), ulyat)) - ( 307 + €adui )iy s 3o + auittyr)
aegus’ [ 7
=T Y lalhaw) —rie Y lalALw)
acgus’ a€gsg
)\(h : _)\(h) + : W
+ ) —Ya) Vs, + (Yo — A (Yo t)) v | (sign €)W, (Ya)léal
aegug’
+ Y CM#V(ma<u,v>+ [€alha(u))-
aegug’

By (3.58), (3.40) and strict hyperbolicity, the second and third term in (3.52) satisfy

(3.64) Ey < —k1W(u,v)

(3.65) E3 < CME U (u,v).

By (3.56) and (3.61), the fourth term is estimated by

(3.66)
E4§—KJ1 Z\IJ(’UJ’U)“‘CMW Z ( UU)+|§Q|A())
aE§uUs/ ae§us/
s [ A (gat) = o) [0k (W) = (A (9 )—ya)lvka(ya—)l}wé‘a(ya)
acfus’

Next, consider any term in the summation E5. From the definition (3.47) it follows

(3.67) Wi (yit) = Wi(yi—) — e -sign (A (y5=) = gia).-

If ¢ # h, we simply have

(3.68) vilyet) =vilyi-), A i) =AM i),
hence
(3.69)
A e ) —ga) W ) o (wa) | — A (=) = ga) Wiy —) |vi (w5 |

(y;) — Yo |Ui(ya)*)|'
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In the case i = h, recalling (3.30) and (3.42), for any &’ > 0, by choosing 1 small in
(2.8) we can achieve the estimates
M) =AY o) <& <

(3.70)
‘vh(yg—i—)—vh ‘— \§a|}uh+—uh |<5|§a\ mln{|uh+\ |u _|},

1
M W) = | > 5[ An(wam1) = Ga| > e >0,
(3.71) .
AR W) = | > 5 An(wa) = da| > 2 >0,
for some constant ¢ > 0. To fix the ideas, assume h > k,. The bounds (3.70),
(3.71) with &’ sufficiently small imply
(3.72)
O i) = 90) WE i) o (e = (A Wa—) = da) Wit (v =) [on (4 -)|
= (A (i) — da) Wi ya+)(|vh +)| - !vh(yé—ﬂ)
+ (A et = MY e =) Wik ya ) |on(yi-)|
+ (MY Wa) = ) QW (i) — Wik —)) [on (i)
<A (i) = G| M€ el [ult (v )| + € M |on (v )| — €[ AL (=) = bia | [on (1)
< A (i) — o | M [l ().

Each term in the summations for E5 and Fg can be estimated in the same way.
Recalling the definition (3.50), we thus have

(3.73) Es + Eg < &/ My Y [€al A% (u).

a€§
From (3.52), combining the estimates (3.63)—(3.66) and (3.73) we finally obtain
(3.74)

E1+-~~+E6§—% D [ealAa(w) = m1e Y [Eal AL (u) + CMY ( (1, v) + [€al Aa (u ))

ac§ug’ acg aegug’
— kW (u,0) + OMGW(u,v) — k1 > Ualu, )+ M Y [€al AL (w).
aegus’ acg

We now choose k1 = 4C, then let the total variation be small enough so that
My, < 2, and finally choose e’,m > 0 so small that E’M{}V < k1e. These choices
imply

(3.75) a [CORI0)

at every time ¢t where no shock interaction occurs and no small A-shock crosses one
of the lines y*, y**, o € §.

Next, we show that the weighted norm (3.44) decreases at every time 7 of
interaction. Let y',y” be the locations of two h-shocks, let ¢’,0” < 0 be their
strengths and let £,£” be their shift rates, before the interaction time 7. Call
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y,0,& the corresponding quantities after the interaction. Since both shocks are
small, by the coincidence of shock and rarefaction curves it follows

(3.76)
o) =o'+ (rm), () = TR TS,
Moreover, since all weight functions decrease, we have
(3.77) Wi (y(t+)) < min {W;‘f (W' (m=)), Wiy (t-)) },
(3.78) (v,§)7+)Hu(T+) <|@em) .

We do not need to consider the case where three or more small shocks interact at
the same point, because this situation is non-generic, and can be avoided by an
arbitrarily small perturbation of the evolution equations. More precisely, let ¢* > 0
be given, together with a regular path 6 — u’(ty), at some time ¢y. Then we can
find a smooth function ¢, with ||¢|cs < €*, such that, if we replace the h-wave

speed )\Ebh) in (3.6) with the slightly perturbed value
(3.79) A=A 4ot 2,0),

then, for all but finitely many 6, the corresponding approximate solution u?, for
t > to, has shocks interacting only two at a time.

Finally, consider the case of a small h-shock which enters (or exits from) a shock
layer. To fix the ideas, assume that the small h-shock crosses the line y}, from left
to right, thus entering the shock layer around a large shock at y,. Observe that
the sizes of the two shocks satisfy

(3.80) On < —€, —3e<03<0

and do not change at the time 7 when the crossing occurs. Call &, the shift rate
of the large shock at y, (clearly, y*, y** shift at exactly )the same rate), and let
&5 §g be the shift rates of the small h-shock before and after the crossing. An
elementary computation yields

Gl )~ 5 e — ) (€5 —&)iE —05)
= : =gy 4

(3.81) & —
Y = Yo Ys — Ya

)

where g5, y;{ are the speeds of the small shock before and after the crossing, respec-
tively. At the time of crossing, the change in the weighted norm of the generalized
tangent vector is now computed by

(3.82)
H (v,6)7+)

vy~ @[] = loslles Wi ) + loallea Wi (50)
—loal|&5 Wy (s) — loal|éa| Wi (ya)-

From the definitions (3.45)—(3.47) it follows

(3.83) W (ys) — W, (ys) = —rae, Wi (Ya) = Wi (ya) = —raelog|.

Moreover, by (3.70)-(3.71) we have

(3.84) g — 951 <€, U5 — ol > ce.
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Therefore, if €’ is sufficiently small (which can be accomplished )by choosing 7 small
in (2.8)), by (3.83), (3.84) and (3.81) we again obtain (3.78).

By (3.75) and (3.78), the weighted length |||« of a path of approximate e-
solutions ; : 6 — u?(t,-) does not increase in time, as long as all functions u’
retain their regularity, remaining piecewise Lipschitz continuous.

Remark . In order to obtain the previous estimates, we used the fact that the
amount of waves inside a shock layer [y%,y*] \ {ya} is small compared with the
strength of the shock at y,. More precisely, both quantities

(3.85) [strength of waves inside the shock layer],

(3.86) [ change in the characteristic speed )\gh) across the boundaries y, y ]

should be << [strength of the shock at y,]?. This motivates the choices of the
exponents in Cases 2-3 of Definition 5, in Section 2.



CHAPTER 4

Restarting Procedures

In this section we complete the construction of the local semigroups, describing
the restarting procedures and carefully estimating how the various weighted norms
are changed at restarting times. For clarity of exposition, we shall write the state-
ments of the various lemmas one after the other, collecting all the proofs at the end
of the section.

Let 61,62 > 0 be given, together with a Riemann data (u~,u%). As in the
previous section, call § = {j1,...,4,} C {1,...,n} the set of indices i such that
the solution of the Riemann problem (2.6)-(1.1) contains an 4-shock of strength
|o;] > 2e. Let n > 0 be chosen small enough, so that every function w in the
domain D at (2.8) contains exactly one i-shock of strength > ¢ for each ¢ € §, while
all other jumps in u have strength < 3e.

We now introduce the domain D% C D consisting of all piecewise Lipschitz
functions u € D such that

- The large shocks of u are located at points y;, ¢ € §, with y; — y; > 262

whenever ¢ < j.
- u contains no jump inside the set

(4.1) U ([yi —02/3, yil Ulyi), yi + 52/3]),

i€§
- Outside the set
(4.2) U[yz —062/3, yi +62/3],

i€§
all jumps in u belong to a single characteristic family.

Definition 4.1. For a given § > 0, we say that a function u : [0, +00) — D% is a
J-accurate approximate e-solution of (1.1) if the following holds.

(1) w is continuous with values in L', except for a countable set of times 71 < 75 <
..., with 7; — +o0.

(2) Each interval J; = [14, Te41[ is contained in some I, , defined at (2.9). For ¢ €
J¢ C Ly p, the function u satisfies the quasilinear hyperbolic equation (3.8) outside
the shocks, the conditions (2.3)-(2.4) along the large shocks and the conditions
(3.3), (3.9) along the small h-shocks.

(3) For every T > 0, the restartings performed at the times 7, satisfy

(4.3 S [futrit) - (), < 6T
T <T

The construction of a d-accurate approximate e-solution can be achieved fol-
lowing Section 3 and using the three restarting procedures described below. For

45
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every function u € D% we denote by Lip(u) its Lipschitz constant, and define the
weighted Lipschitz constant

(4.4) w-Lip(u) = max sgp \u;(x)| exp [BWZ“(;U)],

where the weights W} are as in (3.45) and [ is a suitably large constant, whose
precise value will be determined later. For convenience, some additional domains

are now defined.

- Dy, 1, is the set of all functions u € D2 whose weighted Lipschitz constant
is < L and whose shocks, outside the set (4.2), all belong to the the h-th

family.
- D;) 1, is the set of all functions v € Dy 1 which satisfy the additional
condition
(4.5) ujy(z) exp [BWi(x)] > -1,
outside the set
(4.6) U ([yi —202/3, yi + 262/3])-
i€§

- D;l, 1, is the set of all functions u € Dy, ; which are Lipschitz continuous
inside the set

(4.7) U (I = 262/3, il U)lwis v +202/3])-
ic§

Given an initial data @ € D2, we now construct a d-approximate e-solution
u, defined for all ¢ € [0,00[, with u(¢t) € Dy on every I, for some weighted
Lipschitz constant L = L(m, h).

By induction, assume that an approximate solution has been constructed on
the interval [0, Ty, p—1] for some m,h as in (2.9), and assume that u(7m,,5-1) €
Dj; ,NDy, 1, for some L > 0. We shall prolong this solution up to time 7,, , in such
a way that

(48) U(t) S Dh,L’ Vit € Im,ha

(4.9) w(Tym,n) € Dhyyy o VDhyyy oo,

for some constants L', L" [if h = n, then u(7m,n) € Di 1» N D] ] Iterating this
argument, we thus obtain an approximate solution u, defined for all ¢ > 0.

In the following, we refer to a piecewise Lipschitz solution of the quasilinear
system (3.8), satisfying the e-Rankine-Hugoniot equations (2.3)-(2.4) along the big
jumps and (3.3), (3.9) along the small h-shocks. To retain the piecewise Lipschitz
regularity, three types of restartings will be needed.

(a) At the terminal time t = 7, 5, we replace a function whose small shocks all
belong to the h-family with a new function whose small shocks belong to the (h+1)-
family [to the 1-family if h = n].

(b) When a small h-shock penetrates the set (4.7) around one of the large shocks
at y;, © € §, the small shock is replaced by a smooth compressive wave. Since all
waves travel with speed < 1, to avoid the interaction between the two shocks (more
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precisely, )to prevent small shocks from entering the set (4.2)), it suffices that we
perform these restartings at times

(410) Tm,h—1 T A/t, Tm,h—1 T QA/t, cev s Tmh—1 1 MAt = Tm,h

for a suitable time step At < d5/12. More precisely, calling [s] the integer part of
s, we choose

N d1/n hoo Tmh — Tmh—1 _ 01
(411) M=1+ [[62/12]] ’ Athan.

(c) When the (genuinely nonlinear) gradient component u” becomes too large and
negative and a gradient catastrophe is about to occur, we replace steep compressive
h-waves with several small h-shocks. In this way, after the restarting, the new
function will satisfy u/(z) exp [8W}*(z)] > —1 outside the set (4.6).

The two properties:
- u(t) is Lipschitz continuous on the set (4.1),
- u(t) does not develop new shocks,

are satisfied on every time interval between two consecutive restartings, thanks to
the intermediate strips of width d2/3 around the big shocks, and to the choice of
At in (4.11). After each restarting, we have the situation sketched in fig. 8.

Intermediate strips

| | | |

y? yo+35,/3 ye+23,13 yo+3d,
Lipschitz continuous

| after rest. b)

condition (4.5)
after rest. ¢) |
Fig.8

Hence in time At no small shocks can enter the set (4.2) and no wave, with large neg-
ative gradient component u”, can exit from the shock layers Uics ([yz — 02,y + 62]).
The first lemma provides a lower bound on the time where a gradient catastrophe
can occur.

Lemma 4.2 Assume t € Iy 5, u(t) € D}, ;. Then there exists a positive time 7(L)
such that u(t) € Dy, for every t € [t, t + 7(L)] N I p-
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Using a comparison argument, as 7(L) one can take the blow-up time of the
solution to the O.D.E. (2.18), with coefficients a, b, ¢ depending only on L.

The next lemma states that, by a suitable restarting procedure, one can ap-
proximate any function u € Dy ;, with another function, having almost the same
weighted Lipschitz constant, whose gradient satisfies (4.5). The idea is to insert
several small h-shocks in regions where the gradient component u is large and
negative.

Lemma 4.3 For every u € Dy, 1, and €9 > 0, there exists « € Dj, ;. such that
||1~1, — u||L1 < €p.

If initially u(7mn-1) € D}, NDj 1, we construct an approximate solution
on the first subinterval [T, p—1, Tm h—1 + At] as follows. We choose a time step
ANt < 1(L+1), say

At At
4.12 Nt = — N =1 —| .
(4.12) N’ * [[T(L + 1)ﬂ
We then apply the restarting described in Lemma 4.3 at the times
(4.13) Tm,h—1 —&-A”t, Tm,h—1 —|—2A//t, -v+ s Tm,h—1 —i—NA//If:Tmﬁ_l—FAt,
choosing

1 6 A%

4.14 =minq —, — ».
(4.14) €0 = min { N 3 }

At the time t = 7, p—1 + At, an additional restarting procedure is used.

Lemma 4.4 For every u € Dy 1, €9 > 0 and every shock y,, there exists @ €
D, L+, and 03 > 0 such that & = w on IR\ [yo — €0, Ya + €0}, While @ is constant
on the intervals [y, — d3, Ya| and |ya, Yo + 03).

Lemma 4.5 For every u € Dy, 1, and g9 > 0, there exist L' > 0 and @ € D}, 1, "D,
such that ||u — ||z < eg.

Applying Lemma 4.5 with g = § - At/3, the condition (4.3) will hold for all
T < Ty p—1 + At. The solution u is then prolonged to the next subinterval

(415) [’Tmyhfl + Alt, Tm,h—1 QA/t],

applying the restarting described in Lemma 4.3 at time steps of some length A
(depending on the new Lipschitz )constant L'), then the restarting in Lemma 4.5
at the time 7, ,—1 + 2A%, etc... In a finite number of steps, we thus define the
approximate solution v on the whole interval I, j, = [Ty h—1, Tm,n]. At the terminal
time 7, a third type of restarting is needed.

Lemma 4.6 For every u € Dy, 1, 0 > 0, there exist L' > 0 and @ € D}, 1, N
Dj, 41 1 such that [|@ —ullpr < &g [if h=n then @ € D} 1, N Dy ]

Applying Lemma 4.6 with 9 = § - §1/3n, the condition (4.3) will hold for all
T < T, By induction, this achieves the construction of a d-accurate approximate
e-solution u for all times ¢ € [0, oo].
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At this stage, we could consider a sequence of approximate solutions and ob-
tain in the limit an e-solution of the Cauchy problem (1.1)-(1.2), by a standard
compactness argument. Our main goal, however, is to prove the continuous depen-
dence of solutions on their initial data. For this purpose, in the remainder of this
section we consider any two d-accurate approximate e-solutions u, u’ constructed
as above (with the same choice of )d,d2), and give an estimate on the distance
u(t,-) —u'(t,-)|| . for all £ > 0.

The basic strategy is the following. We consider a Piecewise Regular Path
Y0: [0,1] — D% joining u(0) with u’(0). For each t > 0 we construct a path
¢ : [0,1] — D2 joining u(t) with u/(t), whose weighted length satisfies

(4'16) ”'715”* < ||'70||* + Cs0t.

Recalling (1.48), this will provide an estimate on the weighted distance d, (u(t), v'(t))
in terms of the initial distance d, (u(0), u/(0)). For 6 € [0,1], the maps t — u’(t) =

~:(0) are approximate e-solutions of (1.1), obtained by successive restartings at

times ¢1 < t2 < --- (the same for all values )of ). By the analysis in Section 3,

outside the restarting times the weighted norms of tangent vectors do not increase.

Hence the same is true of the weighted length of the path ;. In particular, on the

interval Jt;_1, tg[ between any two consecutive restarting times we have

(4.17) |

The following analysis will show that the restarting procedures described in Lemma s
4.3-4.6 can be performed simultaneously for all solutions u?, in such a way that the
length of the path ; : 6 +— u®(t) changes very little across each restarting time. In
this way, our paths v; will satisfy (4.16) for every ¢ > 0.

* < H%“H* ti—1 <t< t < ty.

The construction of the paths 7, is achieved by induction on the intervals I,,, p,
defined at (2.9). Fix an interval I,,, . For notational convenience, call t, = 7, 51,
t* = Tpnp. At the initial time ., let a piecewise regular path be given: 7, : [0,1] —
D; 1, N D,y with 7, (0) = wu(ts), v, (1) = u/(t), satisfying (4.16) for t = t..
For every t € I, we will construct a path 7;: [0,1] — D% with the following
properties:

(4.18) v:(0) = u(t), (1) = u'(t),

(4.19) v:(0) = u®(t) € Dy 1 0 €[0,1],

for some Lipschitz constant L'. Moreover, at the final time t* = 7,,, ,, we will have
(420) Y (0) = U0 (t*) S D;+1,L” n D;L-i-l,L”

for some constant L, and the bound (4.16) will hold with ¢ = ¢*.

Let At be as in (4.11) and let 7(L + 1) be as in Lemma 4.2. By solving the
quasilinear system (3.8) together with the boundary conditions (2.3)-(2.4) and (3.3),
(3.9), for each 6 € [0,1] the corresponding piecewise Lipschitz solution u? can be
constructed up to the time ¢’ = min {¢,+At, ¢, +7(L+1)}. By (3.75), the weighted
length of the path 7; : @ — u’(t) does not increase in time. If 7(L + 1) < At then
we apply a first restarting procedure (Restarting 1 below), replacing the old path
Y— with a new path v : [0,1] — Dj ;. such that

(4.21) lver s < llver=l« + €0,
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(4.22) |72 (0) — v~ (O)[| 2 < €0 6 €[0,1].

We then join 4 (0) with u(t’) and ~ (1) with «'(¢'), by means of two curves whose
length is bounded by Cé(t' —t,) for some constant C > 0. As explained below, for
a technical reason the restarting procedure will be applied not exactly at the time
t+ 7(L+1), but at a suitable time ¢’ € [t +7(L+1)/2, t+7(L+1)].

In addition, a similar restarting procedure is performed at each time 7, where either
w or u' is discontinuous, as a function with values in L! (i.e., at each time 7y where
a restarting occurred in the )original construction of v or u'). In this way, the paths
v will be defined for all ¢ € [t., t. + At], and satisfy (4.16).

At the time t' = t, + A, a different restarting procedure (Restarting 2 below)
must be used. This produces a new curve v : [0,1] — D} ;, ND;, ;,, for some
L’ > 0, such that (4.21) and (4.22) hold with £y > 0 suitably small. In addition,
we construct two small curves joining 7 (0) with w(t') and v (1) with «/'(¢').

The same construction is then repeated on the intervals [t. + At, t, + 2A%],
etc. .. In a finite number of steps, we thus obtain a path of solutions defined on the
whole interval I,,, . At the terminal time t* = 7,, ;, a third restarting procedure is
used (Restarting 3 below). An appropriate choice of the values of & at the various
restarting times will guarantee the validity of (4.16).

We now describe in detail the three restarting procedures.

Restarting 1. Assume that ¢ € I, 5, v£(0) € D; ; for some L > 0, and let the

restarting procedure occur at some time ' € [t + 7(L)/2, t + 7(L)], for a given
L > L > 0. Moreover, assume that v,(0) € Dy, 1, and

(4.23) uf(t,x) = u? (t, ) z & [~My, My, 6,6" € [0,1],

for every t € [t + 7(L)/2, t+ 7(L)]. As in Section 3, we denote by y/(t), i € §,
the locations of the big shocks in u’(t), and by y%(t), a € §/, the locations of the
small h-shocks. Call o?(t), o?(t), the size of the shocks located at y?(t), y9(t),
respectively.

Remark . Since u%(t) € D for all § € [0,1], t > 0, all these functions have exactly
one large i-shock, for each family ¢ € §. On the other hand, the number of small
shocks may vary with #,¢. For notational simplicity, we still write §' in place of
§/(0,t), omitting the explicit dependence on 6, t.

By induction, we assume that the path 6 — ~z(0) is piecewise regular, i. e. there
exist finitely many values 0 = 6y < #; < --- < 6, = 1 such that the restriction of
vi to each subinterval |6;,_1, 6,[ is a regular path. In particular, the generalized
gradient (v%(?),£%(¢)) = du’(f)/d6 is well defined and continuous for § ¢ © =
{60,01,...,60,}.

Definition 4.7 We say that ¢ is an interaction time for the approximate solution
u? if at time ¢ either two small h-shocks interact, or a small h-shock hits a shock
layer or the set (4.6), so that |y (t) — y?(t)| = 62 or 265/3, for some o € §', i € §.
We define the set

(4.24) 0= {(t,0); either § € © or ¢ is an interaction time for ua}.



4. RESTARTING PROCEDURES 51

Lemma 4.8 If (t7,607) ¢ ©, then the generalized tangent vector

UG
(4.25) ()€ ) = 20

is well defined and continuous for all (t,0) in a neighborhood of (t,6%).

Define the set

(4.26) J(So)i {96 [0, 1]; 0 € 0]95—50, 944—60[ }
=1
Let
(4.27) U lak, bi] = [0, 1]\ J (o).
k

By the continuity of the shock strengths, there exists g(gp) > 0 such that, on every
[ak, bg], for o € §' we have |Jg(t)} > 0 (eo)-

Remark . If ¢ is an interaction time for u?, then it may happen that §'(¢,6) is
not constant near 6. Indeed the number of small shocks may vary along the curve.
However, if two small shocks y,, yg, interact generating a singe shock y', we can
avoid changing the set § defining y, = yg = ¢’ after time ¢. With this notation
the set §' is constant and we obtain the following Lemma s.

Lemma 4.9 Let £9(t), £/(¢), be the shifts of the shocks located at y? (), ye(t),
respectively. The maps (t 79) — ya( ), yf( ), are continuous for ¢ € [0,1] \
The maps (t,0) — o?(t), (1), a?(t), £9(t) are continuous at every point (¢, 6

Lemma 4.10 For almost every time ¢, the set
(4.28) B(t) = {6; (t,0) € 6}

is finite.

Using Lemma 4.10, we choose a restarting time ¢’ € [t 4+ 7(L)/2,t + 7(L)]
such that B(t') is finite. For notational convenience, in the following we use v to
indicate v(t'—) and 4 to indicate the new path +(¢'+) which is produced by the
restarting procedure. The next lemma states the continuity of the weight functions
W} defined at (3.45).

Lemma 4.11 For every i € § and a € §', the maps 6 — W?(G) (v?), 0 — Wg(e)(yg),
are continuous on [0, 1] \ B(t').

For each j € {1,...,11}7 the map (0,z) — WJ7(0) (x) is continuous for 6 ¢ B(t)
and z ¢ {yz, 946y, Yl i€ ac §’}. The map 6 — ij(e) is continuous from
[0,1]\ B(t') mto L}

loc®

Lemma 4.12 Call (v?,¢%) the generalized tangent vector to the map 6 +— ~(6).
Then v € L for every 6 ¢ B(t').

Consider the set of parameter values

(4.29) K = K(0) = {}9 0,0+ O € B(t’)} c [0,1].
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Choose 3 < €00 in such a way that the sets [y? — 93,98 +63], « € §, 0 ¢ K, are
disjoint and do not intersect any of the intervals [y; — d2/3, y; + d2/3] around big
shocks.

Lemma 4.13 For every £y > 0, one can partition the interval [0, 1] inserting points
0=060y<...<0Oy =1so0 that

(i) For every 6 € B(t'), there exists an index k such that 6 — ey = 0y,
0+ g0 = 9k+1~
In addition, for every k € {1,..., N} such that [0x, Ox+1]NB(¢') = 0, the
above partition will satisfy the conditions:

(ii) For each i € § and « € §' one has

(4.30) sup |yf — yfk| < 903, sup |yfY — yg’“| < £¢03.
0€[0k,0k+1] 0€[0r,0k+1]

(i) For every j =1,...,n, the j-th component of uf, = (v(6))_ satisfies

(4.31) sw [ (O)] = 067 <=0

0€[0k,0k+1]

L1
(iv) For every x ¢ Ji, = {y?, y2; i €§, a€¥§, 0€ [0, 0,41}, one has

(4.32) sup  |y(0)z) — y(0k)z)| < £0ds.
O€([0k,0k+1]

(v) For every j =1,...,n, and every = ¢ J; = {yf, vl £, y0; i€ ac
8, 0 e [91@,91:-5—1}}7 one has

(4.33) sup ’W]“)(z) - W]wk)(z)\ < <.
0€(0k,0k+1] ’

Moreover, for every i € § and « € § one has

(4.34)
sup W7 (wl) = Wi ()] < o, sup (W7l = Wl < oo
0€(0k,0k+1] 0€(0k,0k+1]

(vi) Defining Jj as in (iv), the continuous part v’ of the generalized tangent
vector satisfies

Or41
(4.35) / /

(vii) Define ¢f = (0x+1 — 0)/(0k+1 — Ok), and let

v@(x) _ 7(9k+1)x) — V(Qk)x)' dzd < 50(9k+1 o 91@)
Orr1— O

(4.36) 60 = ol + (L= f)otir, ol =cfolt + (1= oy,
Ok+1 6 - Okr1 Ok

(437) 50 - Ya yak’ f - yi yi .
Ori1 — Ok Orp+1 — Ok

Then for each ¢ € §, « € § one has

(4.38) lo? —o?| < eo, |08 — o?| < e,

[



4. RESTARTING PROCEDURES 53

Ot ©) A (02)
[ ot tas — [ atw O )d8] < zo(6r — 60
0 (4
(4.39) " )
Ok+1 0) Ok+1 . . 00), 0
[ atwy s [ QoW 8| < zo(6ri — 60
Qk ak

small shocks interaction

small shock and boundary layer
interaction

small shock and boundary layer
interaction

not defined tangent vector

Fig.9

From now on, we consider a fixed partition 0 = 6y < 61 < --- < Oy =1 of [0, 1],
such that the conclusions of Lemma 4.13 hold (fig. 9). Moreover, we define the set
of indices

(4.40) K = {k; [0k,0c41) N B(t') # 0}.

The path 4 will be constructed separately on each interval [fy, x1]. The first
step is to apply the restarting procedure described in Lemma 4.3 to each function
u%, with a suitable choice of d; > 0. On the “good” intervals [,0k41] with
k ¢ K, where the tangent vector 6 — (v?,£%) is continuous, the path 7 is defined
by suitably interpolating between 5(6x) and 4(6x+1). A different procedure is used
on the “bad” intervals, which intersect B(t'). Given d4 > 0, let Pj, be the restarting
operator, which associates to every u € Dy, 1, a new function o € D}, ;. _ , according
to the construction in the proof of Lemma 4.3. If §, is sufficiently small, then the
operator Ps, has a number of nice properties, listed in the following Lemma .
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Lemma 4.14 For every & > 0 there exists d4 such that, for every 6, €]0,,], the
following holds.

(4.41) Sl;p ‘ﬂ(w(@))(aj) - 7(9)3:)’ <é&g- mkin (Op+1 — Ok) z € R,
(4.42) sup [ (96:00)), — @), <=0 j#h,
(4.43) (V+C1Q) (we))) < (V+G1Q)(v(9)) + co-

We apply Ps, , with some 6, < d4, to every ().

In the next step, we define 4 on [0, 0r+1], k ¢ K, via suitable interpolations.
Since the Rankine-Hugoniot equations are nonlinear, if u~,u" are joined by an
h-shock, and v—,vt are also joined by an h-shock, it is not true in general that
the convex combinations Au™ + (1 — A)v™, Au™ + (1 — A\)v™ are joined by an h-
shock. For this reason, the interpolation between the values ¥(6y) and 5(0;41) must
be performed using an alternative coordinate system, where the integral curves
of the right eigenvectors r;, coincide with coordinate lines. Moreover, a special
construction is needed in a neighborhood of the big shocks y;, ¢ € §, and of the
small shocks y,, a € §. Care must be taken in order to control the weighted
length of the new path, and to ensure that the new functions 7(¢) remain within
the domain D%. Indeed every function ¥(f) must contain a unique large i-shock
for every i € §.

To define a suitable interpolation procedure, consider the set

(444) A= 0n 001 x | Mo, Mo\ (Ui i) U) U i vital) | -

kEK i€ =l

where

. . 9 0 . 0, Ok
yk;g = mln{yik7yik+l} - 535 y]-:ﬂ = max {yikvyik-H} +637

O

(4.45) o .
Ypo =min {yfF yfn} — 65, gl =max {ylr, ylr} + 6.

Notice that, since d3 < €42, for g9 sufficiently small the sets [y, ;. y,jl] are contained
inside the set (4.2).
We consider a smooth change of coordinates ® on € such that D®(u)(ry(u)) = e

for every u € , where e; = (1,0,...,0) is the first unit vector in the canonical
basis of IR". On A we define
(4.46)

3(0)2) = @7 L@ (1(0)(@)) + (1= D) (TOks1))@)| 0 € 04, O],
where the coefficients ¢ were defined in (vii) of Lemma 4.13.
Remark . Interpolating as in (4.46), since yf k£ yfk“ it may happen that, for
some 0 € [0k, 0,11], 7(0) contains a new h-shock inside the set (4.6). However, by

(ii) in Lemma 4.13, the distance of this shock from y; is > 265/3 —od3. Hence, the
definition of At in (4.11) still ensures that no h-shock can enter the set (4.2)
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It remains to define 4 on the small sets [yk_i,y,':i], i € §, and [y,;a,y,':a], a€f.
Fix an interval [k, 0k+1] and i € §. Recalling that c¢f = (6x11 — 0)/(Ok+1 — Ok),
consider the sets (fig. 10)

(4.47) B = B(k,i) = [0k, Ox+1] X [Ypis Vi),
(4.48) B* = B*(k,i) = {(8,z) € B; v =y ; = cly? + (1 — )yl
(4.49)

B~ =B (k,i)={(0,x)€B;z= yl;i} Bt =Bt (ki) ={(0,2) € B; z = y,jz}

6

k+l

Fig.10

We will define 4 on B in such a way that, for every 6, the function §(6) has a
unique shock on the set [y,;l, y]jl], located at yy ;. Since the values of 4 have
already been defined by (4.46) on B~ U BT, our goal can be achieved by assigning
the right and left limits on B* and then interpolating linearly w.r.t. the z-variable.
For (0, z) € B* we thus define

(4.50)

30, 2-) = A0y )+ (1= O )y =), (0, 2+) = W5 (60 (5(0)z—)),

where W$ was defined at (2.2) and & in (vii) of Lemma 4.13. This definition
clearly guarantees that 5(f) has an i-shock located at the point yj ;. Next, we

linearly interpolate between the values ¥(6)y, ,), 7(6)xz—) over the interval where

T € [Y; p» Yiil, and between the values (6)z+), ﬁ(@)y,jz) over the interval where

x € }yliiv yz—t_k]

Remark . Notice that we slightly modified 4(6). However, to ensure that ¥ is
well defined, it is enough to change the data 4(6y), by linear interpolation, on the
sets [y, lech before starting the interpolating procedure.

The definition of 4 in a neighborhood of a small shock 2, € §' is entirely similar.
Thanks to the above construction, the functions 4(#) have a number of useful
properties.
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Lemma 4.15 On the set A there holds

(4.51) [5(6)2) = 1(0)2)| < Cleo + b4).

Lemma 4.16 For every j # h, on the set A one has

(4.52) H (3(0)), - (10));

. < C(z’:‘o + 54).

Lemma 4.17 For every k ¢ K, every 0 € [0k,0r11], 7 =1,...,n, and every z € A
except at most a set of measure < Ceydsz, one has

(4.53) ’W]“”(z) . Wj(‘”(x)‘ <Cleo+61), i=1,...,n.

Lemma 4.18 For some constant C' = C'(L) one has

(4.54) zn:

/ ‘vj(x)’W](e) (x)dxdf —/ ’ﬁj(a:)‘Wj(e)(x)dde’ < C(eg + 04).
A A

Lemma 4.19 For some constant C = C(L, ||v||L=) there holds

(455)  max S ](w)))j; () expl W] (x)}‘ < L+ Cleo + 05 + 0a).
=1,..., no(9,z)eA

We now complete the construction of 4 on the “bad” set K, using the following
lemma.

Lemma 4.20 For every k such that |6y, 0;11[C K there exists a piecewise regular
curve 7y, joining J(6y) with 5(0x41), such that ||vx|/x < Ceo, [|7£(0) — v(0r)|lLr <
Ceo and v4(0) € Dy, 1., for every 0 € [0k, Op11].

Claim 1 The estimates (4.21) and (4.22) hold for 03, d4 and e sufficiently small.
Moreover the new path 7 is piecewise regular.

Claim 2 If ¢y and 4 are small enough then, for every 6 € [0,1], one has

(4.56) w-Lip(7(0)) < L+ %

(4.57) (V 4+ C1Q) (¥(6)) < do,
where N is defined in (4.12). Moreover, 5(6) € D} |\, /n-

Claims 1 and 2 will be proved at the end of this section.

Now we have to construct the small curves v; and «, connecting 4(0) with wu(t)
and 4(1) with u/(¢'). Let us describe the construction of 71, since the construction
of 75 is entirely similar. If ¢’ is not a restarting time for w, then 4(0) is obtained
from u(t') applying the operator Ps, and the small modifications described above.
In particular u(t") and 4(0) contain the same large shocks at the same locations y;.
We let 1 be the path

(4.58) 6 oL (9¢(u(t’)) +(1- 0)@(&(0))), 0 e [0,1].
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Since no shock is shifted we easily obtain

(4.59) Il < ClJu) —40)| .

for some constant C. If ¢’ is a restarting time for u, we use a similar construction
joining 4(0) with w(¢'4). In this way we obtain

(460) |l < C(JJult'+) = u@ =)l + e’ =) = 30)] ) < 205 ).

The other relevant properties for 1 can be proved as for 7. Finally, we reparametrize
the path obtained by concatenating 71, 4 and 2, and obtain a path defined on [0, 1].
Remark . Notice that, if ¢’ is not a restarting time for u (respectively u'), then

71(0) & D}, 1/n (respectively 42(0) ¢ Dj ;) for some 0. Indeed, u(t') does
not necessarily satisfy the condition

(4.61) uh (¥ z) exp[BWE) (2)] > —1.

However, since u is an approximate solution, it does not develop new shocks up to a
certain time ¢ > ¢’ at which a restarting happens. Let M = inf u”(#', x) exp[ﬁW;;(t/) ()],
where the inf is taken outside the set (4.6). Since 7(0) satisfies the condition (4.5),
then for every 6 it follows

(4.62) (1 (0))2(x) exp[BW,;" V) (2)] = M — Ceo.

From the proof of Lemma 4.2, we have that, for g small enough, the approximate
solution corresponding to v1(6) is well defined up to time ¢, hence up to the next
restarting time. This completes the first restarting procedure.

Restarting 2. We follow the same procedure of Restarting 1 with the following
differences. We choose ¢’ such that B(t’) is finite and fix d3 < €¢ds. Again, the
set [0,1] is partitioned inserting points €; in such a way that the conclusions of
Lemma 4.13 hold. Now, the operator § is not applied. While, for every k, we
modify v(0x) via the construction of Lemma 4.5 with parameter d3/2. On the set
A, 7 is defined linearly interpolating on the set [0, 0r41], ¥ ¢ K. On the sets
B(k, i) the same procedure is used.

Fix now k ¢ K and o € §' such that 39 lies inside the set (4.6). In the construction
of 7, the shock is replaced by a smooth compressive wave on the set [y% —d3/2, %+
63/2]. Recall the definition of ¢f. For 6 € [0k, 0)+1] and x € [—33/2, 03/2], we define:
(4.63)

3(0) (¢, (i +)+(1=cf) (vl +2) ) = o 7Oyl +2)+ (=) F(Ohs1 )yl +2).
In this way, 4(6) has a compressive wave on the set
(4.64) [chyes + (1= cQyasst = 63/2, Gyl + (1= R)yar+t + 63/2],

that is obtained interpolating the compressive waves of 7(6x) and ¥(6x11). We
complete the construction on the set B(k, a) (defined )similarly to B(k,)) via linear
interpolation w.r.t. the = variable.

The conclusions of Lemma 4.20 are still valid and the proof is similar. Claim 1 and
(4.57) can be proved in the same way thanks to the accurate construction on the
sets B(k, ).
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The construction of the curves 71, 72, can be done via linear interpolation. Indeed,
since At of (4.11) depends only on d1, d3 (and not on L), ¢’ is a restarting time also
for u and u’.

We produced a curve with values in D;I’ ;.- Now, applying Restarting 1 again, we
are done.

Restarting 3. We first construct a new curve with values in Dpyq 1/ [Dyr if
h = n] for some L’. Then we apply again Restarting 1 in order to obtain a curve
with values in Dy 1.\ [D} 4o, if h=n].

For the first step, we follow the same procedure of Restarting 2 with the following
differences. We apply the construction of Lemma 4.5 to every shock y%. Again,
the operator q is not applied, so that the only discontinuities of each ¥(0y) are the
big shocks. In particular ¥(6x) € Dp41,1/ for some L' > 0.

This completes the analysis of the restarting procedures. The remainder of the
section contains proofs of the various lemmas stated above.

Proof of Lemma 4.2. Let us define the functions
(4.65) w'(t,x) = ul(t, ) exp [ﬁWiu(t) ()], t>20,z€e R, i=1,...,n,

where the weights W are defined in (3.45), (3.46).
By assumption we have that max;sup,, |w ‘ i(t, )‘ < L. We will achieve the proof
by contradiction.

Assume that there exist ¢ € {1,...,n} and a point (¢1,y), t1 > t, such that
(4.66) |w'(ty,y)| =1L, |w/(t,z)|<LVteltt], Vee R, ¥Yji=1,...,n

Let us consider first the case in which w(¢1) is continuous at y. Let = x;(t) be
the i—characteristic curve passing through (¢1,y). Let 7 €]¢,#1[, suitably close to
t1, such that

(4.67) |w'(t, 2 ()] > |w'(tr,y)|, Vt e[, t],

DN =

and x;(t) does not intersect any shock for ¢ € [r/,#1]. Differentiating the map
t — w'(t,2;(t)) one obtains
(4.68)

S (0) = |l + s | explomwy) =

ZG”ku uk— Z(V)\yrj)u;ui + Bul —W“ exp(BW*).

- rdt
i<k J
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Let £ > 0 be the infimum of the quantities |)\§.h)(u) — )\;h)(u)| for j # k and u € Q.
From (3.38) and (3.48), along the characteristic = x;(t) one has

d d d

- o - <

g Vi = g R ek Q) <

69 <ki |—k |u§6| + CA(u) | — K1k —CO Alu) <
4 2 B)
J#i
< —kky Y|l

i#i

provided that kg > 2C/Cy. Let M = sup; ; . /<5, |Gijr(u)]-
If i # h, from (4.69) and the fact that VA; = 0, one has
(4.70)

d i k u
W't s(t))] < MY fud|fuf] + C Y Jubl[ud] — Brra Y fub|ud] | exp(BW).

Jj<k Jj#i J#i
Observe that, by (4.67),
(4.71) |wj(t,x)| < |w'(ty,y)| < 2}wi(t,:17i(t))},
for every x € R, t € [7/,t1], j = 1,...,n. Henceforth, we can choose (3 large

enough, depending only on s, K1, k2 and M in such a way that
d. .
(4.72) %]wl(t,xi(t))] <0, Vtelr, t],

in contradiction with (4.66).

In the case i = h, if w"(t;,y) = L then the inequality (4.70) still holds, since
VAp -1y > 0, and the contradiction is reached as above. It remains to analyze the
case w"(ty,y) = —L. Since u € Dh 1, we have that w"(¢,z) > —1 for every z € IR.

It is not restrictive to assume w (t zp(t)) < 0 for every t € [¢,¢1]. From (4.68) w
obtain

(4.73)
S ()] = - St n(0) =

=Y Gigrudul + D (VA -ry)ulud + (VA - rp)ul)® = B
J<k J#h
It is possible to define some constants a, b and ¢, depending only on L and the
coefficients of (4.73), such that |w” (¢, z,(t))| is bounded from above by the solution
of the Cauchy problem

g dt

(4.74) t=az’ +bz+c, 2(t) =1,
We can now define

1
(4.75) (L) = fmf {s>0; 2(t+s)=L}.

Clearly |w"(t,zx(t))| < L for every t € [t,¢ + 7(L)], completing the proof in this
case.

Let us examine what happens when a i-characteristic curve crosses a small h-
shock of strength o, say at the point z. Let us call u)~, u/* respectively the j-th

iy | exp(BWy).
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component of u, to the left and to the right of the shock. In the same manner we
define wi*.

If 7 and O denote respectively the set of incoming and outgoing components, from
(3.24) and (3.29) we deduce that

; ou’ -, ou’ Ui,
(4.76) w*F = Z ult = Z uy + Z ST utt, jEeo.

it Yo i— Ug
iter Oug i>h g i<h 007

If |w**| < w for every i* € T, one obtains

, ou’ u ou’ u
4.77 I* < | =B (=) 4 et | E o,
(@70 et <w [Z ouy Z oult J
i>h i<h
Recalling (3.26) and (3.27), this implies
(4.78) [wE| < (1+ C'|o|)wexp [BW} (z£) — Wi (aF))].

From (3.45) we have Wi (z4) — Wi (2¥F) < —k1|o|, so that, choosing 8 > C”/k1,
we obtain

(4.79) (L4 C'|o]) exp [BW}' (x£) — W} (2F))] < 1.
Finally, from (4.78) and (4.79), we deduce

(4.80) max |w/¥| < max |w'|.
j£te0 i€l

If w(ty) is discontinuous at x, then (4.80) gives the contradiction.

Proof of Lemma 4.3. Let y;, < --- <y;, be the positions of the large jumps of
u, and define yg = — My — b2, Y41 = Mo+ 2. Moreover, let I; = [y; +202/3, yir1 —
205/3], 1 € §.

Let 64 > 0 be given. For a fixed index 4, let A = {zg,...,zn}, yi +262/3 =
o < -+ < TN = Yir1 — 202/3 be a partition of I; such that

(4.81) (1 + w-Lip(v)) - max{z,41 — x,; r=0,...,N =1} < &,

and {y, € I;; o € §'} C A, where the y, are the locations of the small h-shocks.
On the interval I; we define @ as follows. On every subinterval [z, ;1] let
U(x) be the solution of

(4.82) %U(w) = (U @)l (@) + 3 r(UE)d (@), Ulz,) = uz,).
Jj#h

Now let us define

(188) a(x) = Ua) + = [(expamularn) = Ulrn)], 7 € ool

where ¢ = ff“ [ul(z)]_ dz. In this way we can define @ on U;I;, and we set @ = u
outside U, I;.

Let u, = u(z,.), U, = U(z,). We want to estimate the difference (exp qry)u, 41—
U,+1. By the definition of the exponential map, we have that

(4.84) (exp qra)urs1 = trg1 + qra(urs1) + O(g%).
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On the other hand, from (4.82) one has

Tr41

Tr41 . '
Ur1 :“”L/ > ri(wd d$+/ > (1) = rj(u))u da+

N /$T+1 rh(ur+1)[ug]7 de' + /xTJrl (Th(U) - rh(urﬁ*l))[u:]* dil' =

Cr r
Trt1

w4 [ Y (50 = @) dot [ () = ra(urs)) o) de.

Ty j#h Ty

Trt1

We thus obtain
(4.85)
!(exp qrh)ur-i-l - Ur+1| < CLHU - UHL‘X‘(wT,a:,,.Jrl) ' (mr-i-l - xr) + O((xr—i-l - x?")Q)'

Let us define the absolutely continuous function z(z) = |U(z) — u(z)|, = €
[, Tr+1][- We have that z(x,) = 0, and
d

%z(x) < |um(x) - Um(x)| <

< |~ [uz(@)] _ra(u(@)) +ZU£(SE)(TJ'(U($)) —rj(U(x)))] <

< CL + CLz(x).
By Gronwall’s inequality one obtains, for every x € [z, Z,41],
(4.86) lu(z) — U(z)| < L7 — 1 < C'L(wpg1 — ).
From this last inequality and (4.85) we deduce that, for = € [z, Z,4+1],
lu(e) — a(2)] < Ju(z) - U@)| + [a(z) — U()] <
(4.87) < z(x) + [(expgrn)ur1 — Uppa| <
< CL(zrq1 — 2p) + O((zr g1 — x,)%) < C4 + O(03).

It is clear that this inequality holds for every z € U;I;. Since u = @ outside U;I;,
the inequality ||u — @||p1 < & follows by choosing ¢4 small enough.
Combining (4.85) and (4.86), we obtain

(4.88) ’(exp qrp)Up41 — UT+1‘ < Coy(Tri1 — xr).
Since, for x € [z, Xr11],

(4.89) fe(2) = Uale) + ———((exp s = Upsa).
we deduce that

(4.90) |tz < |Uyz| + C6s + O(33) < |uz| + Coy + O(83).

Hence, since U = 0

Y
\
—_
<3}
\
S
+

for some C’ > 0.
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To prove that @ € D} ;. , it remains to check the value of the Glimm functional
and of the weighted Lipschitz constant. We claim that (V + C1Q)a) < dp. Indeed
V(a) < V(u) + Cdy. Moreover, the effect of the transformation u +— @ is to shift
the negative h-wave in a small interval (of measure < d4) into a small h-shock.
Hence Q(u) < Q(u) + CLdy. If §4 is small enough we thus obtain (V + C1Q)u) <
(V + C1Q)u) + C'64 < §y. In the same way we obtain |W(z) — Wi(z)| < Cdy,
and hence, if 4 is small enough, we have w-Lip(a) < L + €.

Proof of Lemma 4.4. Choose d3 > 0, and define
U M ) ifxe]ya_\/g7ya_63[7

1—/83
T—Ya\/03—0 .
(4.91) ua() = 4 U)o 10 et 0,90 + V],
U(ya*), ifz e [ya - 537904[7
u(ya+)> if x G]yow Yo + 53]

Define the function

) f IOH
(4.92) () = {u e

u(x), otherwise.

We prove that (V + C1Q)u) < dp. Reasoning as in Lemma 4.3, it can be shown
that V(2) < V(u) + Cés3, Q(0) < Q(u) + Cdg, so that it suffices to choose d3 small
enough. Finally

w-Lip(u)

(4.93) w-Lip(a) < =G,

+ Cd3 < L+¢gg
for d3 sufficiently small.

Proof of Lemma 4.5. Choose d3 > 0, and for every o € 8’ such that y, belongs
to the set (4.6), define
u (Bt ) if @ €]y — VO3, Yo — 03,

(494) UQ(,CE) =qu % s if x E]ya + 637 Ya + \/g[a

(exp(—aa(x)rh))u(ya—), ifz e [ya - 533ya + 53]7
where 04 (x) = 04(T — Yo + I3)/(203).
Let 03 be small enough such that the sets I, = [ya — V03, Yo + \/EL a € Sy, are
pairwise disjoint and do not intersect the set (4.2). Let us define the function

(4.95)

, ) ua, if x € I, for some a € Sy,
u'(z) = .
u(x), otherwise.

Clearly u' € Dy, ;, for some L' > 0. Moreover [i — uL1 < Cd; for some C' > 0.
We now apply to v’ the construction of Lemma 4.3 restricted to the complement
of the set (4.6), obtaining 4. The estimate (V + C1Q)%) < dp is obtained as in
Lemma s 4.3 and 4.4.

Proof of Lemma 4.6. Choose d3 > 0, and for every a € S, define u,, as in (4.94).
Let

(4.96)

, . | ue, ifx eI, for some a € S,
u'(z) = .
u(x), otherwise.
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Now «’ is discontinuous only at the big shocks y;, ¢ € §, hence v’ € Dy4q 1 for
some L' > 0. We apply the construction of Lemma 4.3 for the (h + 1)-th family
obtaining the required function @. The estimates on ||& — /L1, on w-Lip(@) and
on (V + C1Q)a) follows from the corresponding estimates in Lemma s 4.3 and 4.4.

Proof of Lemma 4.8. Since (t',6") ¢ © then the tangent vector is well defined.
We have that (v?(f),£%(f)) is continuous at #' as a function of # and it satisfies
equations (1.34), (1.35) and (1.36). Moreover the interactions between small shocks
do not produce new waves. Hence the conclusion follows from the analysis in [B-
M1].

Proof of Lemma 4.9. Since 0 > 5(gg) > 0, the function y? must be continuous
in 6. Indeed, assume that there exists a sequence 0,, 0, — é, such that yg“ —
g # ygz. There exists a constant C' > 0 such that |y(8)yf—) —v(0)y5+)| > Co(eo).
Since v(0) is continuous in L', y(6,)x) — ~(f)x) for almost every z. There exist
2~ <y <at, |z*—g| < Cmin{5(s0)/2L, |gjfyf;|} such that v(6,)z*) — v(0)zF).
Since w-Lip(7(6)) < L for every 6 we obtain that (6) is discontinuous at 6. This
gives the contradiction. The proof of the continuity of 3¢ is entirely similar.

The fact that u? solves a quasilinear system guarantees the continuity in ¢ of y?,
y?, 0% and #Y.

The contlnulty of 6%, as a function of 6, follows from the continuity of v in L!
and the umform Lipschitz continuity of the maps (¢) for every 6 € [0,1]. Indeed,

assume that aa — 09 # 0‘9 There exists €1 > 0 such that the sets
A = {(eXPU)Th)(x) L — (é) g )| <er,|o—o0| < 61}7
Ay = {(expo)ri) (@) : |z — (0)yh—

are disjoint. It is clear that v(0)y? o4 +) € Ay and there exists €2 > 0 such that
B(’y(é)yg—l-) 2) C Ay (here B(y,p) denotes the ball centered in y with radius p).

Since (6) is continuous in L', there exist 2~ < y? < T such that |2~ — ya‘ <

)‘ < 61,|O’—0’§| < 61},

£1/6L, |zt —ya| < e3/6L, ¥(0,)xF) — v(0)2*). Moreover, we can assume that for

0 sufficiently close to 8, [y% — 49| < min{e, /6L, e5/6L}, and () has no shock in
[z=, %]\ {y%}. From w-Lip(7(#)) < L one has

(@9 @) =) <5 O — @) < T
Now
(4. 98)

V(098 =) = 3Oy )| <[1(0)y% =) = 1(0,)27)| + +1(0,)27) = (@)

+ |y (@)z7) — 7(0)y2-)|
<€1,

for p sufficiently large. In the same way it follows

(4.99) 7 (0,)y8+) = 1(0)ye+)| < .
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For u large enough we have |az“ — 0p| < €1, then from (4.98) it follows that
’y(ﬁu)ygf—l—) € A;. On the other hand from (4.99) we have that y(ﬁu)yg“—i—) € A,
reaching a contradiction.

Finally, the conclusion for the maps 6 — ff , €9 is provided by Lemma 4.8

Proof of Lemma 4.10. Let [aj, ] be a connected component of [0,1] \ J(eg).
Recall the Remark before Lemma 4.9. From the definition of the e-accurate Rie-
mann solver in Section 2, if two small h-shocks interact then they simply merge
together, without producing outgoing waves of any other family. This means that,
if 42 (t) = yg(t) for some a, 8 € §, then y(s) = y5(s) for every s > . For every
a, B € § let us define the function

(4100)  fup(6) = sup {t € [0,T); 42(t) # 50} A (F+ (D).

The maps fop: [ak, br] — IR are Lipschitz continuous. Indeed, fix e [ax, bg] and
t= fag(é). Assume for simplicity that only yi and yg interact at time . Given
n > 0, there exists p > 0 such that, at time £ = £ — 7, the shocks y? and yg are
not coinciding for 6 € I, = [0 — p,d + p]. Hence the shifts &7, &}, are well defined

and continuous for @ € I,. In particular the maps 0 — y?, 01— yg, are Lipschitz
continuous on I,. Moreover, for every § € I, and ¢t < fo3(0):

(4.101) 308 — 558 = 90t — g5t — 1o — 8.

Then, choosing p small, for 8 sufficiently close to 6 the two shocks will merge within
a time

(4.102) t(0) <t+Clo— 6,

for some C' > 0. Similarly we obtain ¢ < #(#) + C|# — |. The Lipschitz continuity
of fop now follows from the compactness of [a, by].

The set B(t) is contained in Uaﬁf;ﬁl({ﬂ) By the coarea formula (see [E-G]) we
have that

1 +oo
(4.103) o> / 1£15(0)] do = / HO(f2H({D)) dt,

where H° is the counting measure. This implies that H°(f,;({t})) < +oo for
almost every ¢ € [0,T], hence H*(B(t)) <3, s HO(fo; ({t})) < +oc for a.e. t.

It remains to consider the case of interaction of a small shock with a shock layer
or with the set (4.6). This can be treated in the same way, using the Lipschitz
continuity of the maps 6 — y? and coarea formula.

Proof of Lemma 4.11. Recall (3.45), (3.47). The map 6 +— (y(6)) is contin-

uous in L' and a big shock does not interact with any other shock. Hence, from

Lemma 4.9 the map 6 — R;’(Q) (yf ) is continuous except if a small shock enters
or exits a shock layer around a big shock. Therefore, it is continuous for every
0 ¢ B(t).

Recall (3.34). The map 6 — Q(v(0)) suffers a discontinuity only when the config-
uration changes. Thus it is continuous for every § € [0,1] \ B(t'). We obtain the

conclusion for the map 6 — W,-’Y(G)(yf )-

Recall (3.45), (3.46). The map 0 — Rz(e) (y?) is discontinuous only at points
6 € B(t'). Indeed, the first and the third term in the summation (3.46) vary
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continuously with 6. The second term is discontinuous at 6 only if two small shocks
of u? interact at time t'. Moreover, the fourth term is discontinuous at 6 only if a
small shock enters or exits a shock layer around a big shock. Therefore, the first
part of the lemma is proved.

Next, for a fixed =, the map 6 — ij(e) (z) may suffer a discontinuity in 6 only
if either 2 = y¢, y? + s, for some i € § or # = y? for some o € §'. Thus the first
conclusion holds. Let |§| denote the cardinality of the set §. From (3.46) we have

(4.104) IR} ()| < V(7(8)) + 28],

while from (3.47) and w-Lip(v(6)) < L

(4.105) IR} (y:)] <V (1(0)) + 2enLds,
so that
(4.106) (WO (@)] <1+ k1 (0 + €)(218] + 2nLds)) + K1R2d.

Therefore, Wlﬂ’(g) has values in L. The continuity in Lj . follows from the first
part and Lebesgue dominated convergence theorem.

Proof of Lemma 4.12. The vector v? satisfies the semilinear system (1.34),
with initial data in L°° after each restarting time. Since there is no interaction
of big shocks and the interactions of small shocks do not produce new waves, the
conclusion follows from [B-M1].

Proof of Lemma 4.13. The conclusion (i) is obvious and (ii) follows from
Lemma 4.9. From the continuity in L' of the map 6 — (v(6))., we obtain (iii).
Moreover, (v) follows directly from Lemma 4.11.

From Lemma 4.12 and the piecewise Lipschitz continuity of v(6), it follows that the
map (0, x) — ~(0)z) is Lipschitz continuous outside the jumps. Hence (iv) holds.
Since all jumps in the functions v(0), 0 € [0, 0k+1] are contained in Jj, by the
definition of generalized tangent vector we have

Ok+1 Ok+1 Or+1
L e an [
Qk lR\Jk 9k R\Jk 9k

9k+1 - 9k
< (Ory1 —0Ok) - sup / [ (@) = (2)| da.
0,0’ €[0k,0k1+1]Y R\ Jy,

v (x) —v%(z)

9k+1 — O

do’ dx df

Therefore, (vi) follows from the L!-continuity of the map 6 — v?.

Finally, from Lemma s 4.9 and 4.11, we obtain (vii).

Proof of Lemma 4.14. The proof of (4.41) follows directly from Lemma 4.3.
Indeed, the estimate (4.87) depends only on the weighted Lipschitz constant L and
on the choice of the step d4, and hence it is uniform in 6.

From (4.88) and (4.89) we have

(4.107) iy = ully + > (U)ud + O(6s).
j#h
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This implies

a]:r :<lj(a)7ﬂz> =
=(1; (@), rp(@)[ul]e + > ri(@ud) + (1(@), (ra(U) = ru(@))[ul]+)
i#h
+ 3 (@), () — @)l ) + 0(6)
i#h

For j # h, the first term of the last expression is u/, hence
(4.108) |ud — @l | < CL|i— U| + Céy.

Recalling that () and §(y(8)) coincide outside [— My, Mo), (4.42) follows.
The estimate (4.43) follows from the analogous one in Lemma 4.3.

Proof Lemma 4.15. On the set A we have

(4.109)
9(+(0)) (@) = 3(0))| <C

AR (T(v(00)) (x))

(= D (I0(6)(@) — 2(1(1(6)(@))]
<o‘q> Y(Or41)) () — (9 (w(ak»(x))\
<901 011)) (@) = 1 (Ors1)2)|

+ |9 (6k)) () = v(Ok)2)| + |y(Ort1)x) — 7(91@)@’}
SBCE()?

where ¢! = (Ox41 — 0)/(0k+1 — Ox). The last inequality follows from (4.41) and
(4.32). From (4.109), using again (4.41) and (4.32) one obtains

v(0)x) — 3(0)x)| <[7(0)x) — v(0k)z)| + |7(Ok)x) — (v (0k)) (@)] + [(v(6k)) (x) — F(0)z)|
<Cey,

which proves the lemma.

Proof Lemma 4.16. Defining
(4.110) y(0.2) = D (10(6:))(@)) + (1 = D@ (I(1(Br41)) (@),
we have
(59)) (&) =D& (y(0,2)) - [LD@(T(+(60)) () - (14(6r), (=)
+ (1= )DO(I((04:1)) (@) - (T(0k1))),, (@)
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Hence, from the proof of Lemma 4.15 it follows
(4.111)

T (0ks1)2 (@) = (VB4 ()|
) = (1) ()| + (1 = )| (v (Or1))2 () — (v(0)5(2)]
+ C9(v(01)) (@) — T(¥(Ok+1)) ()] + Ceo

In the following we use || - ||p1 to indicate the L' norm restricted to .A. From (4.42)
of Lemma 4.14 we have

(4.112) il + 2L < eo-

Using (4.31) and Lemma 4.13 one obtains

(4.113) sl + [LallLr < €o.

while, by Lemmas 4.14 and 4.13 one gets

(4.114) [15]|Le < Cllv(0k) = ¥(Or41) s + 20 < Ceo.

Proof of Lemma 4.17. We fix k ¢ K and 0 € [0, 0x+1]. Let us denote u = (0),
@ = (), and let §, §, denote respectively the set of small h-shocks of u and .
Moreover, let yq, o € §, (resp. Ja, a € §') be the locations of these shocks, and o
(resp. G4) their strengths. By construction, we clearly have § C §'. For notational
convenience, we let § = § defining o = 0, Yo = §a if @ € § \ §'. Notice that, for
every «, we have

(4.115) |00 — Gal < Cdy.

Recall (3.45), (3.46) and (3.34). We first consider the terms RY. The third ad-
dendum of (3.46) is clearly the same for u and 4. While, if y* # y%, then the
last addendum is different for some xz. However, this can happen only on a set
whose measure is bounded by 2supgeig, ,.,] ly? — 9] < Ceds (here 77 denote the
locations of big shocks )of 4(f) and the last inequality is guaranteed by (4.30) of
Lemma 4.13).

Let us now consider the first two terms of (3.46). If j = h then, from Lemma 4.16,
we obtain

(4.116) |RY(z) — Ri(z)| < Cl(eo + d4).
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Indeed, in this case, the sum in the second term is restricted to the set §.
Assume now j < h, being similar the other case. Let us define the set Z(z) =

{yGUkz[ykl,ykl] y<z} We have
(4.117) / |[@] — |ull| dy < C (65 + €o).
()

Recall the construction in the proof of Lemma 4.3 and consider an interval [z!, 2. ]
to the left of z. Let 3 = (I, ) be such that §g = 2! ;. From Lemma 4.3 we deduce

that

/"*1 ()[ug]_Jr(Nfngﬁ) dx| < Céy.

1
r

(4.118)

We remark that there is at most one couple ({,7) such that z €]z!,z!_ [, and the
corresponding integral term is estimated by Ld,s. For the h-waves, summing over
all (I,7) and using the estimate of Lemma 4.16, we obtain

(4.119)

x €T
[ welas Y - [ el Y el <Cs
- a€f, Ja<az > A€l ya<z

Using again Lemma 4.16, we can treat the first term of (3.46) for the other family
of waves, obtaining

(4.120) ‘R}“’“(x) - Rj-(e’“)(x)‘ < (85 + 04 + 20).

We now work toward an estimate on ). We use again the notations of Lemma 4.3.

Let us consider two intervals [zl,z!, ], [z™, 2™ ] satisfying z!,; < 2™. Let

B = B(l,r) be such that jz = z', ;. Let us define

(4.121) E= / |ul(y |dy/ |u (y |dy+|06|/ |u}, ()] dy,

and let E be the corresponding quantity for @. By Lemma 4.16, and the above

arguments, we have the estimates
T . »
[l - ail) v
Ty

. zlr-¢-1 A
n [ k) dy

e
o= |7 ] = b as |t »dy+|oﬁ|/ 1) dy

Ig |05|/ |u3 |'U,J |’dy<050(50+54)|05\

We thus obtain
(4122) |E—E| <L+ I+ I3 < Cleo+ 64)T.V.{u, [zl 2L 1] U 27, 2™ ]}

We then sum over all pairs of intervals.

The case of approaching j-waves and k-waves, with j, k # h is easily treated using
Lemma 4.16. Summing over all the intervals we can estimate the first two terms in
the expression (3.34) for Q.

1i+1
<Cleotdn [ )] d

1:ﬂ+1
< Cleg + 04) /

m
ajs

|u ()| dy,
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If a,8 € §UE by (4.38) of Lemma 4.13, one obtains

(4.123) 17255] — |o805]| < 00 (155-)08] + 155 — o51) < 2600.

Again the other terms are estimated using Lemma 4.16 and (4.115). We thus obtain
(4.124) Q(9) = RGE®)| < Cleo +81).

Recalling (3.46), from the estimates on R} and @ the conclusion follows.

Proof Lemma 4.18. Fix k ¢ K, consider the set A, = ([—MO7 M) % [0k, 9k+1]) N
(A\ Ji) (see (iv) of Lemma 4.13 for the definition of Ji) and let ¥ be the tangent
vector associated to 4 on Aj. We have

(4.125)

7’ = Dot ()CZ‘I’H(W(@/@)))+(1—CZ)‘I’()1T(7(91€+1))))' <<I>(

Opt1— O

91 (61))) - @()ﬂmwm))))

on the set Aj. For every i, we have to estimate the quantity

[ty = s Glen. 9wy @ asdo] | [ [0 < W) deas
Ay A

+

/A (148550, = 10;63(0)), o) )W da‘

+

/A (48500} — 106340, 8 )W da‘

=L+ I+ Is.
Let us first prove that

(4.126) / V(0xs1)z) — ¥(6k)x)
Ay

Or41 — Ok
From (4.110), we have

— ’170(.%') dx df < C(Eo + 54)9k+1 — Gk).

Y(Ory1)r) —7(0k)2) . "
/Ak Or1 — Ok (@) dedd
:/ 7(9k+01)$) :g(9k)$) — DO (y(0, 2)) - <®(ﬂ(7(9k))(xg) — (I)(;T(V(ekﬂ))(m))) dx db
A k+1 k k+1 k
< [ 109~ G000 + 0)) AN
Ag |9k+1 - 9k|
+ Ol [ [P 4(0.2) ~ DI @ (W2 (00)(e) | vt
+ 0l o [ [P 4(0.2) ~ DI (@ (12 (01s0))w) | dr o+ Ceo o

The first integral is estimated by Ceg(0+1 — 0k), using (4.41). The integrands of
the last two integrals are estimated, using (4.41) and (4.32) of Lemma 4.13, by
(4.127)

C|16:00) @)~ 1(6:Ok) )] < Oz + C[(0)2) ~1(Ok)2)]| < Cleo + ).
Hence the last two integrals are estimated by C My (g9 + 04)0k+1 — Ok).
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From Lemma 4.17 the following inequality holds:
(4.128) ’ / WW) - Wz )} dx d@‘ < C(g0 + 63 + 64) 041 — Or).

Now, from Lemma 4.12 and (4.128) one has
(4.129)

Il S C||U0||Loo

/,4 WO (z) — W)@ (2) do d9’ < O)0? || (20 + 03 +84) 011 — ).
k

From Lemma 4.15

B <C [ (1060).0) = (1,G©).0)]) dzds

<Cle’ [ o)) - 3(60)0)] dds <
Ak
<C||v0 || (€0 + 04)0rs1 — O).

Finally, from (4.35) of Lemma 4.13 and (4.126) we get

I3 <C/ 0))| [v? — 3°| dx db <
<C v (z) — V(Or+1)2) — ¥(Ort1) drdf + C V(Ok+1)7) — y(Ort1) — %(2)| dzdf <
Ay, Okt1 — Ok A Opr1— O

<C(€0 + 64)9k+1 — Qk)

Now, since meas(Jx) < €9d3(0x+1 — 0k ), summing over k we obtain the conclusion.

Proof of Lemma 4.19. From the proofs of Lemma 4.3 and Lemma 4.14 we obtain,
for every i = 1,...,n and every k,

(4.130) ‘(?("k))i — (+(60))” ] < Cleo + 61), ‘W;wk) — W] < Ceo + b)),

These estimates imply

|( (ek) |e,8W“/( k)(ZL’ |( (Qk) |eﬂW;r(9k)(x)
F(01) ~y(0)
<C| (B (@) — (O ()| + oW @ @
<C(gg + d4).

From (4.45), on the set A, (7(0)).(x) is expressed as in Lemma 4.16. We can
estimate (5(0)). as in (4.111) obtaining
G0 (@)] <[l 11O, (@) + <1 - cz> [/ Or)], (@)]
+C DS (y(6,2)) — DOTH(@((v(6r))(2)))]
+C D27 (y(0,2)) — DO~ 1‘?(11( (0k+1))( )|
< |(v(Ok))a ()] + (1 — D (V(Ok+1))z ()| + Cleo + 84).

(4.131) 0
0
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Let us now first consider the points z for which it holds the conclusion of Lemma 4.17.
Then, by Lemma 4.17, Lemma 4.13(v) and (4.130) we have

(4.132)
W;/(G) (z) — W;Y(Gk+1)(x)’ < ’W;Y(m(z) _ WJ?(Q)(I)’
+ ‘W]7(6)(x) - W]“’k)(x)‘ + ’W;’(G"‘)(x) - W;Y(e’““)(x)‘
SC(&‘O + 54)
Hence by Lemma 4.13, (4.131) and (4.132) we obtain

~ ; ¥(O) (4 5(6k) = 7(6)‘; 1) =
|(3(0))2(2)[e”™7 @ — | (7(0) )i () [®V5 @ — (1= )| (7(Bhs1)) () [W5 @)

, 70 () _ppr T O8) (o
gc{czwwek));(x)!ef’(wj - o)

FO) gy Or+1)
+ (1= )| (FOr1))i () e (W] @-w, ())}+C(€0+54)

<C(gp + 64).

Therefore we obtain the conclusion.

Consider now a point « for which the conclusion of Lemma 4.17 does not holds.
From the proof of Lemma 4.17, these are precisely the points x that lie inside a
shock layer of a big shock for v(f) but not for (0). We can assume, for example,
that y¢ — 62 < o < §¢ — &9 for some i € § (here )3?, i € §, denote the positions of
big socks of 4(0)). In this case

(4.133) WO (x) > W) D (2) + e — Cleo + a),

and the conclusion may fail. However, it is sufficient to modify the values of 4(6y)
in such a way that near the points y? 4 s, i € §, the quantities |(y(z))%| are smaller
then L/exp[Be]. This can be done shifting some waves as in Lemma 4.3 or as
in Lemma 4.4. Since, by Lemma 4.13 (ii), the waves that should be shifted are
estimated by Legds, all the conclusions of the previous Lemma s still hold.

Proof Lemma 4.20. Fix k such |0, 0i11[C K. We assume that there exists
a unique ¢’ € B(t') such that ¢’ €]0,0r+1[. We distinguish two cases: a) 0’ €

© b) ¢ € B(t')\ ©. First consider the case a). We possibly have some small

shocks y? whose strengths go to zero as @ tends to 6. These come precisely from
the interpolation (4.45) implemented at some restarting before #'. Indeed, it may
happen that v(6y) presents a shock at a point where v(6x1) has no shock, so that
the strength of this shock tends to zero as 6 tends to 0j41. Let § C § be the set
of such shocks. If we neglect these small shocks, the estimates of Lemma 4.13 are
still valid separately on the two intervals |0, 0, ]¢’,0;+1[. On these two intervals,
we can perform the same construction used on the intervals contained in [0,1] \ K,
neglecting the shocks y?, o € §. Possibly shrinking eo, we can let 02, o € §, be
arbitrarily small obtaining the conclusion.

Now consider the case b). The case of interaction of a small shock with a shock
layer or with the set (4.6), can be easily treated following the construction of 4 on
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[0,1] \ K. Without loss of generality we can assume that there is a simple shock
bifurcation at ¢’. There exist a, 3 € §' such that % < ﬂg’“, okt = ggk“. We first
modify 7(6}), interpolating linearly the values 5(0x; 9% +), 7(0x; gjg"‘f) on the set
(39, 55¢]. Let us define the curve 7y as follows. Let d = §g* — §%. For 6 € [0,1]
we set

(4.134)

’}/1(9.%) = ’?(ek’x) ifze ] - oo,ﬂgj“[ U ]ggk + 0d, +OO[,
’ (1= )3(01)T5) + 55 (exp(6%7,) (F(0r; §oF + 6d)) if & =% + ¢, c € [0,6d],

while for 6 = 1 we set

(4.135)

(1= §)7(O)72:) + § exp((G5 )5 )ra) (F(Oh: G +))  if x = G2 + ¢, ¢ € [0,d].

Since we shift a shock of strength 6% for a length d, and the waves in [j%, gjg’“] are
estimated by (L 4+ Ceg)d, we obtain

(4.136) Il < Cd(E% + L + &)

Now we have that d = O(gg), hence |71l = O(ep). Moreover, reasoning as in
Lemma 4.3, it follows that v1(0) € D}, |, ¢, . and it is easy to check that v is a
regular path.

Since v1(1) and 4(0x+1) have the same number of distinct shocks, then they can be
joined, using the construction implemented on ([0, 1]\ K) x [-My, My], by a regular
path whose weighted length is still O(gp). The other conclusions are easily verified.

Proof of Claim 1. Notice that the set
(4.137) Z = ( UJ 165, 011] [fMO,MO]) \A
ke K

can be chosen of arbitrarily small measure, and the curves 75 of Lemma 4.20 of
arbitrarily small length, letting d3 and €y small. Moreover, for the set 4 we have
the estimate given in Lemma 4.18. Now, from Lemma 4.13(vii), for every a € §

Okt1 0 Ok+1 _ ~ (0
AP AR ATT
Ok ek

<

Or41

< eo(Ok+1 — Ok) + C'/ W;:Y(ek)(ygk) - WZ(Q)@Z) do.

O

Reasoning as in the proof of Lemma 4.17 and using Lemma 4.13(v), we obtain

4 Y(0) / ~
(4.138) Wl = w0t

< C(egg + 04).

The argument can be repeated for every i € §. Notice that the new small shocks of
7 are not shifted, hence they give no contribution to the norm of the tangent vector
to 4. Thus, from (3.44) we obtain (4.21). The estimate (4.22) is easily verified
using Lemma s 4.13 and 4.20.

The curve 7 is piecewise regular. Indeed, on the sets [0, 0x+1], k ¢ K, it is defined
via suitable interpolations. Hence, 7 is regular on |0, 0x+1[, & ¢ K. It may happen
that (7,€) is not defined at some 6y, because the strengths of some small shocks
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(generated by ) may tend to zero letting the set § be discontinuous at 0. Since
there is a finite number of 6;’s, the conclusion follows from Lemma 4.20.

Proof of Claim 2. From Lemma 4.19 the estimate (4.46) holds on the set A.
Consider now the sets [y,;l, y,jl] and recall the definition of y; , (in the same way

we can )treat the sets near the small shocks). From (4.30) and (4.32) of Lemma 4.13,

we have that:

(4.139)

|’~}/(9,y1;2)7’7(9, y;,ii)| < L(53+6063)+C€053, |’y(0,yz7l+)f’y(y;l)| < L(53+€053)+C€0(53.

Moreover, 7 is defined by linear interpolations on the intervals [y, ;, ¢ and ]3¢, ;" ],
whose length are greater than d3. We thus obtain the estimate

(4.140) |(37(0))z] < L%+ Eogz) Ol
Choosing ¢ sufficiently small the estimate (4.46) is achieved. Finally, on the set
K x [—My, My], the estimate is guaranteed by Lemma 4.20.

Let us now consider the estimate (4.56). For g sufficiently small, the estimate (4.43)
ensures the conclusion for every . Consider first 0 € [0y, 0y1] for some k ¢ K.
From the proof of Lemma 4.19, it follows that V(5(6)) < V(v(0))+C(g0+94). The
estimate for ) has been computed in Lemma 4.17. Finally, the conclusion follows
by Lemma 4.20 for 6 € K.

From the proof of Lemma 4.3, we have that

— L+ (L+0C)e.

(4.141) (F(00)" explBW ] > ~C6,

outside the set (4.6). Following the proof of Lemma s 4.16 and 4.19, we obtain
(4.142) (3(0))2 exp[8W, ] > —C (04 + 0).

Hence, using (4.56), (4.57), we conclude that, for §4 and &( sufficiently small, 7(6) €
D

h,L+1/N*






CHAPTER 5

Proof of Proposition 5

Let us briefly summarize what has been accomplished in the two previous sec-
tions. Given two states u™,u™, our aim is to construct a Lipschitz continuous semi-
group of e-solutions of (1.1) whose domain contains all suitably small BV pertur-
bations of the Riemann data (u~,u™"). Toward this goal, for any given 81, 82,5 > 0
we proved that:

(i) There exists a domain D% consisting of piecewise Lipschitz continuous
functions u with u(—00) = u™, u(+00) = ut, Q(u) < 2. As §; — 0, the
domains D% become dense on the set D in (2.8).

(ii) For every initial data @ € D% there exists a d-accurate approximate
e-solution u of (1.1), taking values inside D%,

(iii) Let u,u’ be any two d-accurate approximations and let 7o : [0,1] ~— D2
be a Piecewise Regular Path joining «(0) with «'(0). Then for every t > 0
there exists a path 7 : [0, 1] — D2 joining u(t) with «/(t). The weighted
length of this new path, in the metric determined by (1.39), (3.44), satisfies

(5.1) el < ol + Csté

for some constant Cs.
We can now complete the proof of Proposition 5. Choose a countable dense
subset

(5.2) D* = {tip; m>1} CD
of piecewise Lipschitz initial data. For every m,v > 1, set 61 = o = § = 1/v, and
let (tm,)>1 be a corresponding sequence of approximate e-solutions such that

(5.3) U, @ [0, 00[— Dl/”, lm w,,,(0) = Uy,

V— 00
Relying on a compactness argument, by possibly taking a subsequence we can
assume

(5.4) Hm (1) = w (t) vVt >0, m>1,

for some functions u,, : [0, 0o+ D.

We claim that the flow Sit,, = u,,(t) can be extended by continuity to a
uniformly Lipschitz semigroup defined on the whole set D. As in (1.40), consider
the distance d% on DY* defined by
(5.5)

dy = inf {HVH* ;4 :[0,1] — D" is a Piecewise Regular Path connecting u with u’}.

75
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Because of the particular choice of the metric (3.44), it is clear that all these dis-
tances are uniformly equivalent to the L' distance:

1
(5.6) YoR u=ll,, <dj(u,u) < Collu—u||, Yu,u' € DV, v > 1,
6

for some constant Cy independent of v. Observe that (5.1) implies
(5.7) 4% (1t (8), () < 5 (1 (0), 10 (0)) + Cistr ™.

By the previous construction, for any m,n > 1 and ¢y > 0, we can now choose
v > 1/gg so large that

([t () = un (@) 1) < [t () = wnw (@) 1, + €0
< Codyy (tmw (1), (1)) + 0
(5.8) < Co{ 5 (tm(0), un(0)) + Cstv™ } + o
< 06{06()||am — ||, +e0) + C5t50} + €0
< L\t — |, + C'(t+ 1)z,

with L = C2 and a suitable constant C’. Since gy was arbitrary, (5.8) implies

(5.9) ||Stﬂm - StﬂnHLl < L[t — L

The uniform Lipschitz continuity w.r.t. time is clear. By (5.9) the flow can thus be
extended by continuity to a globally Lipschitz semigroup S : D X [0, co[— D.

It remains to prove that S behaves correctly on the set of piecewise constant
initial data. Let @ € D be piecewise constant, say with jumps at the points y; <
... < yn, and fix any positive time

Yat+1 — Ya
72 .

For t € [0, 7], call u(t) the e-solution of (1.1) with initial data «(0) = 4, obtained by
piecing together the e-solutions of the Riemann problems generated by the jumps
of 4. We need to show that

(5.11) S = u(t) vt € [0, 7].

(5.10) 7 < min
«

Recalling that D* in (5.2) is a countable dense subset of D, one can extract a
sequence of functions uy € D* such that uy — 4. We now have

£—00

Because of (5.9), the limit in (5.12) is well defined and does not depend on the
particular choice of the sequence .

Let €9 > 0 be given. By the previous construction, there exists a sequence
of integers v(¢) — oo and a sequence of approximations %, with the following
properties. For each £ > 1, the function 4y is a d-accurate approximate e-solution
of (1.1), constructed as in the previous sections, with d; = 62 = § = v({)~L
Moreover

(5.13) [@e(t) = Sete| ., < eo teo,7].
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We claim that there exists a second sequence of approximations, say g, with the
following properties. For each ¢ > 1, the function 1, is a d-accurate approximate e-
solution of (1.1), constructed as in the previous section, with §; = do = 6§ = v(¢)~ 1.

Moreover,

(5.14) Jim ([ie(t) = u(@®)]| ., =0 vt € [0, 7].

The identity (5.11) is now an immediate consequence of (5.13), (5.14) and the fact
that €9 was arbitrary. Indeed,

180 w0, < s { e — e, + 1) = 0, -+ ) — )],
<eg+ liinsup ||t (t) — ﬁg(t)HL1

S g0 + C6 - lim sup d;(Z) (fl,g(t), ﬁ/(t))
{—o00

< eo+ Cg - limsup {d’;(@ (@e(0), a,(0)) + 0515:/(()—1}
{— 00
< go.

We are thus left with the task of constructing the approximations u, satisfying
(5.14). By an approximation argument, we can restrict the analysis to the case
where each jump in @ determines a single wave. More precisely, for each a =
1,..., N there exists a family k, € {1,...,n} such that the states u= = u(y,—),
ut = u(y,+) are connected by a single k,-wave. Recalling the notation (2.2), this
means

(5.15) ut =5 (o)u”)

for some wave size . We now consider various cases.

CASE 1: The jump at z, is a large shock. This is the easiest case. Indeed, in a
neighborhood of y,, we can then construct approximate solutions %, which coincide
with u.

CASE 2: The jump at z, is a small shock, of size 0 € [—3¢,0]. In this case, for
each ¢, an approximate solution i, is defined on a neighborhood of y, as follows.
Let the time intervals I,,, 5, be as in (3.2), with §; = v(¢)~1. Recalling (3.4), define
the speed of a small shock joining v~ with u™ as

n [0
(5.16) g (u™, ut) = (1— )AL, + m/ Ak, (Rka (s)u_)) ds.

For each ¢, let y, be the polygonal function such that

. X (w™,u™) ift € I, for some m,
6GAT wO=ye  wlt) = { k. ()

AL otherwise.
«@

Choosing a sequence €4 — 0 sufficiently fast, we can now define the approximate
e-solutions 4, by setting

(5.18)
u” if & < y(t),
delt,z) = + if z > y(t) + e,
- ut if z € [y(t)

(t), y(t)+ 64, t € I, 1, for some m,
Ry, ((x—y(t)/ee)(u™) ifx e [y(t), y(t) + e, t € Upso Imaka-
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We now observe that, in a neighborhood of y,,, the e-solution u satisfies

T oifa <y, +EAL (u,ut),
(5.19) alt,z) = 4@ T <y H N (wTuh)
ut if x>y AL (u,uh).
As ¢ — oo and 8 = v(f)~! — 0, the sequence y,(t) converges uniformly to

tA;, (u™,u"). Comparing (5.18) with (5.19), the convergence @iy — u is thus clear.

CASE 3: The jump at y, is a rarefaction wave, so that (5.15) holds for some o > 0.
In this case, we choose a sequence gy — 0 sufficiently fast and define the functions
Uy in a neighborhood of ¥, as follows. Each wy is the Lipschitz continuous solution
of the quasilinear hyperbolic system

(5.20) up + A(t, u)uy, =0,

with initial condition

u lf x < yOé7
(5.21) Ug(0,2) = Cu' if x > yo + €0,
Rka (((E - yoz)/gf) (Ui) ifxe [yom Yo + 5Z]~

Here A(t,u) is the matrix having the same eigenvectors r1(u), ..., (u) as A(u) =
DF(u), but whose eigenvalues are

(5.22) o Nl A A (w) = AR, LA if t € I

The time intervals I, ;, are as in (3.2), with d; = v(¢)~!. It is now clear that all

functions 4y remain Lipschitz continuous in a neighborhood of y,, because they
only contain rarefaction waves. Moreover, the convergence i, — wu holds. This
completes the proof of Proposition 5.
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Proof of Proposition 6

In this section we construct the semigroup S¢ generated by the e-approximate
Riemann Solver, and prove Proposition 6. This will accomplish Step 2 toward the
proof of Theorem 3.

Let @ be an initial data with compact support and suitably small total variation.
Using the wave-front tracking algorithm described in Section 2, we construct a
sequence of piecewise constant approximate solutions w,, with u,(0) — @, such
that

(i) The total variation of w,(¢t,-) remains uniformly small,
(ii) The maximum size of the rarefaction fronts in u, approaches zero,

(iii) The total strength of all non-physical waves in u, approaches zero.

By possibly taking a subsequence, we can assume that u, — u in Llloc. We

claim that the limit function u is unique, and provides a viscosity e-solution to the
corresponding Cauchy problem (1.1)-(1.2).

To prove uniqueness, let u,,w,, v > 1, be sequences of approximate solutions
constructed by wave-front tracking, and assume that

(6.1) lim u,(0,) = lim w,(0,) = @,

V—00

while u, — u, w, — w in Llloc. Since both u and w are continuous as maps from

[0, 00[ into L', if u # w there exists a largest time 7 such that u(t) = w(t) for all
t € [0,7]. Fix any Z € IR. We will prove that u(¢,z) = w(t,z) a.e. in a region of
the form

(6.2) r= {(t,az); telr r+4), |z — 7| Sp—(t—T)}

for some p,6 > 0. By possibly choosing subsequences, we can assume the weak
convergence

(6.3) Tot.Var.u, (7,-) — u1, Tot.Var.w, (1,-) — pe,

for some positive measures p1, p2. Choose p > 0 small enough so that
(6.4) pi(lz = p, 3+ o]\ Da}) <0’ i=1.2.
Here n << 1 is the constant in (2.8). For ¢t > 7, consider the interval
(6.5) Jt)y=[z—p+(t—7), 2+p—(t—1)].

By [B5], for each ¢ > 7 the restriction of the interaction potential of u,,w, to J(t)
satisfies

(6.6) Q(ul’|.](t)) <2, Q(w”‘](t)) <2,

for all v suitably large (depending on t). Therefore, calling v~ = u(r,7—), ut =
u(T, T+) we can find a sequence of times t,, decreasing to 7 and integers v(m) such
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that all functions i, (ty,, ), Wy (tm, ) with v > v(m) lie in the domain D, ,+) of
the semigroup S constructed in Proposition 5. Here we define

Uy (b, ) i 2 € J(tm),
(6.7) Uy (b, ) = Cu™ ife<z—p+ (tm—1),
ut ife>z+p—(tm—1),
and similarly for @, (¢,,, ). For t > 7 we also define
u(t,z) if x € J(t),
(6.8) a(t,x) = u~ fe<z—p+({t—r1),
ut ife>z+p—(t—7),
and similarly for w. We now observe that, on any region of the form

(6.9) Ty = {(t,x); tE€ [tm, TH0], z € J(t)},

the functions u,w are limits of wave-front tracking approximations taking values
within the domain of the Lipschitz semigroup S. The same arguments used in
Theorem 1 of [B5] thus imply
(6.10)

u(t, ) = (Sp—t,, @(tm)) (), w(t,z) = (Si—t,, W(tm)) (x) for (t,x) € I'y,.

Calling L the Lipschitz constant of the semigroup S, for ¢ > t,, we now have the
estimate

(6.11)

/( Jutt @) =t 2] e < [S1ma 80 = Sty < D) )],
J(t

< L([[atm) = D), + ar) = D), + @) = dltm)] . )-

As m — oo, for each fixed t > 7 the right hand side of (6.11) approaches zero.
Hence u =w on T'.

By the boundedness of the supports of u,w we can now choose a constant R
large enough so that w(t,z) = w(t,z) = 0 for t € [r, 7 + 1], || > R. Moreover,
for every point (7,Z) with |z| < R there exists a set I" of the form (6.2) on which
u = w. By a compactness argument it follows that u = w on a strip of the form
[7, 7+ o] X IR. This contradicts the maximality of 7, proving that the limit
solution u obtained by wave-front tracking is unique. From now on, this limit will
be indicated by the semigroup notation

(6.12) u(t,-) = S;a.
The continuity of the map S; w.r.t. @ is an immediate consequence of uniqueness.
Indeed, consider a sequence of initial conditions with sufficiently small total varia-

tion @, — @. Given T > 0, for each v > 1 there exists an approximate solution u,
obtained by wave-front tracking such that

_ 1 i 1
(6.13)  [Ju(0,) —w |, < - (| (t, ) = S|, < ~  te [0, 7).
By uniqueness it now follows
(6.14) Siu = lim u,(t,-) = lim S;a, t €10,T].
V—00 V—00

proving the continuity of the map S§.
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To show that w is a viscosity e-solution, we observe that, for any point (7, ), for
p > 0 small enough, the truncated function @ defined at (6.8) lies within the domain
Dy~ ,u+) of one of the local semigroups S constructed in Step 1. By uniqueness
and finite propagation speed, it follows that

(6.15) u(t, ) = (Sp—-a(7)) ()
for all (¢t,z) with ¢t > 7, | — Z| < p — (t — 7). Since the right hand side of (6.15)

is a viscosity e-solution of (1.1), the function u satisfies the estimates (1.13), (1.14)
at the point (7,Z). This completes the proof of Proposition 6.






CHAPTER 7

Proof of Proposition 7

Aim of this section is to show that, if @ is a structurally stable e-solution, then
all suitably accurate approximations constructed by our algorithm will have the
same wave-front structure as 4. The first step in the proof is to establish a decay
estimate similar to (1.21), valid for the piecewise Lipschitz approximate solutions
constructed in Sections 3-4. We start with a simple estimate for an impulsive
0O.D.E., based on a comparison argument.

Lemma 7.1 Let b, g be non-negative integrable functions on the interval [r,t] and
let w: [1,t] — [0, 00 satisfy the impulsive differential inequality

(7.1)

w(s) < b(s)w(s)—g(s), w(T) = wp, w(ri+) < biw(Ti—) (i=1,...,N),

with jumps at times 7; € [7,t]. Assume that wg > 0 and b; > 1 for all i. Then

(7.2) w(t) < exp {/t b(s) ds} : (f_v[lb)wo - [rtg(s) ds.

Indeed, calling z the solution to the impulsive differential equation
(7.3)
2(s) = b(s)z(s) — g(s), 2(T) = w, 2(1i+) = b; - 2(1—) (i=1,...,N),

a comparison argument yields

(7.4)
t N t t
w(t) < z(t) = exp {/ b(s) ds}-(Hbi)wo—/ ( H bi) exp {/ b(r) dr}g(s) ds.
T i=1 T TiE[s,] s
Since b; > 1 for all ¢, this implies (7.2).
Now consider a piecewise Lipschitz approximate solution u = w(t,z) con-

structed as in Sections 3-4. More precisely, given a time step §; and a shock layer
width &2, we consider an approximate solution u = u(t, z) satisfying the following,.
- Each u(t,-) is piecewise Lipschitz, with large shocks (of strength |o,| > &) at
points Yo, @ € §, plus other small shocks (of strength )|og| < 3e) at points yg,
peg.

-Fort € Ip,pn m>0,he{l,...,n}asin (3.2), u provides a solution to a quasi-
linear system of the form (3.8), where A" is a matrix with the same eigenvectors

as A(u). Concerning the eigenvalues )\Eh) of A the following holds. All char-
(h)

acteristic speeds A;"’, ¢ # h are locally constant, with jumps only along the big

)

shocks. The h-characteristic speed Aflh is constant inside the shock layers [y%, o[,
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[Ya, y2¥] around each big shock, and is genuinely nonlinear outside, so that
(75) VA >k >0 ¢ [as Y51 = (Yo — 02, Yo + 0.

- If w has a shock in the k,-th family at y,, the wave speed )\g:) across the shock
layer satisfies the estimates

(7.6) min { | AL (o) = o [N (Ga=) = tia| } > #”J0
for some constant " > 0. Moreover, if k, = h one has
h * h * h koK h koK
(77 max { M wa) = AP ) N ) = A )| < Clol

- Restartings are performed at due times, according to the procedures described in
Section 4, with a suitable degree of accuracy which will be made precise at a later
stage of the analysis.

Let there be given a time interval [7, ], an index h € {1,...,n} and n > 0. Our
aim is to estimate, at time ¢ = ¢, the amount of positive h-waves in « with density
> 7, i.e. the quantity

(7.8) Vit = Z ol +/ ul (£, ) dx.
ah>0 {ul>n}
We here assume that u(Z,-) has jumps at points y, and call o}, ... 07 the waves

in the Riemann problem determined by the jump at yq.

The only contributions to the first summation in (7.8) are due to h-rarefaction
fronts produced by the interaction of two large shocks at some time ¢ € [t — 01, ).
This summation can thus be estimated in terms of the local amount of interaction,
namely

(7.9) Y on < ClRE-6) - Q)]

ah>0

for some constant C. To estimate the integral term in (7.8), we study the evolution
of the gradient component u” along h-characteristics, for ¢ € [r,#]. For any fixed =,
call ¢ — y®(t) the h-characteristic line through the point (¢, z). Recalling (3.2) and
(3.4)—(3.7), y” is thus defined as the solution to the backward Cauchy problem

(7.10)  y*(¥) = =, 7o (t) = /\Ef)(t, y* (1), u) ift tel,; forsome m,j.
We distinguish two cases:
(a) The characteristic y* is defined for all ¢ € [r,7] and u" remains positive
and uniformly bounded along y*.
(b) Either u”(to,y"(to)) < 0 at some time to € [7, ], or else the characteristic

y* originates from a centered rarefaction fan, generated by the interaction
of two shocks.

We shall consider separately the sets J,, J, of points x for which the alternative (a)
or (b) holds. Assume first « € J,. Consider the scalar functions
y"(t)

(7.11) v(t) = =5 =,

(7.12) 2(t) = ul(t,y" () - ().



7. PROOF OF PROPOSITION 7 85

Observe that, for Az small, the quantity z(¢) - Az roughly determines the amount
of h-waves contained in the infinitesimal segment [y*(¢), y**4%(¢)]. The scalar
quantities z, u” and v evolve continuously along the characteristic y*, except for
a finite number of times 7; at which they experience a discontinuity. These dis-
continuities occur when the characteristic y* crosses a shock or a shock layer, and
when a restarting procedure is applied. Let us first describe the smooth evolution
equations and then treat the impulses due to discontinuities. On time intervals
where it is continuous, the function v satisfies the equation

(7.13) o(t) = (A (8,57 (1), w) - o(t) t el

Similarly, on time intervals where it is continuous, the gradient component u”
satisfies an equation of the form (1.18). Hence, for ¢t € I,,, ; we have

. dul dv
2(t) = o .U—HLZ.E

= [ + (W) A\ (@)] v+l (AP0 =
(7.14) = )\(j) ) Uiy —|—ZGhlk Lk ~v—|—u’;-()\glj))xu:
i#k

= Zéhlk(u) uluk| v

| ik

for some functions Gp;x whose expression is easily derived from (1.18).
When t € I, ;, from (7.13) it follows

n

(7.15) o(t) = Y (VAL - r)ud - u(t) > alt)=(t) — q(t)o(t),

i=1

where

(7.16) a(t) = (VA ) (8, 4", u),

)
i£h

Notice that a(t) = 0 whenever ¢ ¢ | J,,, Im ». Recalling (7.5) we obtain

i
(7.17) / alt) dt > K/ (F = 1)~ O(5) +6) > "~ 7),
provided that 1,2 > 0 are chosen so that
K (t—T)
1 < ——"
(7 8) 0+ 0 < 50

Indeed, the characteristic y®(-) will spend a time O(d2) inside the shock layers.
Moreover,

t—r 251
1 _ t I, < —.
(7.19) - meas | [, ] N < U h) <

n
m>0

Concerning the impulses, observe that the function v is continuous at restarting
times and has jumps at times where the characteristic y” crosses either a large shock
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or a shock layer. In all such cases, denoting by ¥, the location of the large shock,
one has

1 (t+) — Yot
(7.20) ot) = LD Z%alD)

g (t=) = ga(t)

Therefore, at a crossing time 7; we have the estimate

yr(mit) — 9 (ri—)

Y*(1i=) = YalTi)

We now observe that the integral of ¢ in (7.16) is controlled by the amount of waves
that cross the line y*. Moreover, y* can cross at most one shock layer of a shock
Yo With k, = h, because afterwards this h-characteristic will impinge on the shock.
For all other shocks, by strict hyperbolicity we have

(7.22) |97 (=) = a(Ti)| = AN > 0.

Recalling (7.6)-(7.7) we thus have
(7.23) > b — 1] = O(1).

(7.21) (=) < biv(rit), by =

The previous arguments yield an estimate of the form

(7.24) /:q(t)dt<C’, Hb <exp{Z|bi—1|} <C,

(7.25) exp {/:q(t) dt} : (Hb> < Oy

for some constant C.

We now apply Lemma 7.1 to the function w(t) = v(—t) on the time interval
[—t, —7]. By (7.5) it follows

(7.26) w(—7) < exp {/th(t) dt} <Hbi>w(i) - /Tta(t)z(t) dt

Since w(—t) = v(t) = 1, by (7.25) this yields
(7.27) 0<w(r)<Cy— /ta(t)z(t) dt.

T

Next, consider the evolution equation for z, along the h-characteristic y*. De-
fine the rate of interaction along y*, i.e.

(7.28) FO =30 N ATkl € T
i<k
where the right hand side of (7.28) is computed at the point (t,y"”(t)). By strict

hyperbolicity, the differences Ay — A; are uniformly positive. Recalling (7.14), on
time intervals where z is continuous there holds

(7.29) 12(t)] < Cf(t) - o(t).
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Concerning the jumps in z, at a time 7; where y” crosses a big shock, say at y,, we
have the estimate

(7.30) |2(ri4) = 2(1—)| < CAa(7) - v(Ti—),

where A, is the instantaneous rate of interaction along y,, defined as in (3.37).
From (7.27) and (7.29) we deduce

(7.31)

0<Cy 7/ a(t) <z(f> - C’/ f(s)v(s)ds — Z |2(i+) — Z(Ti)|> dt

<0y -2 E)/ £ dt + Co(F— 7) (/ OO dt+ 3 |2(ri+) - z(n—)]>

for some constant Cy. Dividing by [ a(t) and recalling (7.17) one obtains
t

1
(7.32) 2(1) < m‘f’cs (/T (t)v(t) dt‘i‘;‘Z(Trf’) —Z(Ti_)o

for some constants Cs, k > 0. We now let = vary inside the set J,, calling v”, 2%, f*
the corresponding functions along the characteristic y®. Since z*(f) > n on J,,
from (7.32) it follows

(7.33)

e f, #was [ (1~ i) 7O

</ e ( / )f””(t)v””(t)dtJrzi:\zm(Ter)—2'7”(75”—)0 da.

Since v(t) is the Jacobian of the transformation z +— y*(¢), by (7.28) the double
integral of f - v is controlled in terms of the total amount of interaction, i.e.

(7.34) / / 2 (s)0" (s) dsde < CQ(r) — QD).

Moreover, recalling (7.30) and estimating separately the sum of jumps in z occurring
at crossings of shocks and at restarting times, for any given ¢y > 0 we have the
estimates

@) [R[ X e -] | < clam - o).

7:€Cross.

(7.36) /R (P +) = 2°(r7=)| | da < e,
r,eRest

provided that the restarting procedures are suitably accurate. Since 2% (f) = u”(Z, x),
the estimates (7.33)—(7.36) imply

(7.37) /J ul(t,z) dz < C4[Q(1) — Q(F) + &0 (1 - 1_7)> o

ne(t

for some constant Cj.
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Finally, we consider the integral of u” over J,. Observe that, if € J,, there
exists a time 7y € [7, 1] such that v*(79) = 0 or 2%(79) < 0. Therefore,

(7.38) 2% (F) < Cs (/ )£ (1) dt+2|z it )]).

Integrating over J, and using (7.34)—(7.36) we obtain

ey J, B [ (/ OO+ 3| k) - 2 )!) da

< Cy[Q(1) — Q(F) + o)

where €9 > 0 can be taken arbitrarily small by increasing the accuracy of the
restarting procedures. The bounds (7.9), (7.37) and (7.39) together yield

(7.40) Vi < ClQ(r) = Q(F) + o] (1 - m(tlT)) N

Toward the proof of Proposition 7, we establish another lemma. Roughly speak-
ing it shows that, if the L! distance between u, @ is small and if the amount of
steep positive waves in u can be estimated, then the total amount of waves in u
can be bounded in terms of the total amount of waves in .

In the following we consider two intervals J = [a,b], J' = [a — do, b+ Jp]. B
V(u; J) we denote the amount of waves in u inside the interval J. The total amount
of positive waves of density > 7 is written V77 (u; J).

Lemma 7.2. Consider two functions u,@ : J' — . For some constant C, the
following holds. Assume that

(7.41) |u(z) — @(z)| do < 61, V(u;J') < 0, Vit(u,J") < 83.
J/
Then the total amount of waves of v on J is bounded by
1)
(7.42) Vi(u; J) < C |6g+n(b—a+ &) + 03 + 51
0

Proof. We can assume that there exists ¢y > 0 and a unit vector e such that

(7.43) co < (e, ri(u)) <1 i=1,...,n, ue.

(7.44) o< <e, Si(a)u)—u> < c¢yo t1=1,....,n, 0 <0, ue€

Here S;(o)u) is the state connected to u by an i-shock of size o < 0. The total
amount of positive waves of u on [a, b] is

(7.45) VE(u; J) < 83+ nn(b — a).
Call V'~ (u; J) the amount of negative waves of u on [a, b]. Then

(7.46) (e, u(b) —u(a)) < V*F(u;J) — oV~ (u; J).
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On the other hand,

(7.47) (e, u(b) — ula)) = =V (a;J).
Define
(7.48) o = (e, u(a) — i(a)), as = (e, u(b) —u(b)).

Observe that
o1 +az = (e, u(a) —u(b)) + (e, u(b) — a(a))
> oV (u; J) = VH(u; J) — V(a;J).

(7.49)

If a1 + ag <0, from (7.6) it follows
1 1

(7.50) V() < — (v+(u; J) — V(& J)) < =[5 + (b —a) +&2].
0 0

If a3 + as > 0, to fix the ideas assume as > a1, the other case being entirely
similar. For = € [b, b+ dg] we have

(e, u(z) —u(z)) > as — V(a;)[b,x]) — V*(u; [b,2])

> %(cOV‘(u; J) =Vt (u,J) - V(i J>) — V(@b al) =V (u b))
> W)y o, ) -V ()i f 0]
> W — {85 +nn(b—a+8)} — V(@ J').

Therefore,

b+do b+do
o > /b |u(z) — (z)| do > /b (e, u(z) —u(z)) dx

> 8o {COVQ(U’J) —V(a;J'") — 63 nn(ba+50)} .
This yields the bound
2 [6
(7.51) Vo(ud) < = L; + 6, +53+m](b—a+5o)].
o Lo

The bounds (7.50) and (7.51) clearly imply (7.42) for some constant C'.

Proof of Proposition 7. For simplicity, we shall assume that our approximate solu-
tion satisfies the decay estimate (1.21). The same arguments can be easily adapted
to the case where (7.40) holds, provided that €9 > 0 is sufficiently small.

Consider CASE 1 first. Define the intervals

(7.52) J'(t) = [2—9(T —t), T+ 9(T —1)], J(t) = [z—8(r—1t), 24+8(1 —t)].
By assumption (see [B-LF2]), there exists rg > 0 such that
(7.53) Va(t); J'(t) <2e*  Vte [r—ro, 7.

By (1.8), Q(u) < Cp for all all functions u under consideration. Let N be an integer
such that Ne2 > Cj. Define

(7.54) T = (£2K) ™1 tn =T — T, m=1,...,N,
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where & is the constant in (1.21). We can assume that e2x < 1/2, so that ry,_; —
T > Tm—1/2. Consider any solution u € D suitably close to @, so that

(7.55) / |[u(tm, ) — Wtm, )| do < e*rp, m=1,...,N.
I (tm)

Since the function ¢ — Q(t) = Q(u(t)) is non-negative and Q(u(to)) < Co, there
exists some integer m < N such that

(7.56) Q(tm—1) — Q(tm) < &%
Choosing n = 4/kry,—1, the decay estimate (1.21) yields

(7.57) V" (u(tm)) < C3[Q(tm—1) — Q(tm)] (1 - W) : < 2C3¢°.

Indeed, tm, — tim—1 = Tm—1 — Tm > Tm—1/2. Applying Lemma 7.2 to the intervals
J(tm), J'(tm), again with n = 4/kr,,—1, and using (7.53)—(7.55) and (7.57), we find

V(u(tm); J(tm)) < C[V(ﬂ(tm); J/(tm)) + pr— 171y, + 2036 + Ei;m}

< 0[252 + 682 4 20562 + 52]
< (O'e2.

(7.58)

For t € [T — ru,, 7], define the interval
(7.59) () = [T = 8rp 4 (t — t), T+ 8rpy — (t — b))

Recalling that all wave propagation speeds are < 1, the standard interaction esti-
mate (1.9) now yields

V(u(t); Jm(t)) <V (u(t tm)) + CLV? (u(tm); J(tm))
0162 + Cl [Cl 2]2
This establishes (2.25) with 7* = ry. Indeed, this choice of r* implies

(7.60)
[Z—Tr"—r, T4+ 7" +7] C Iny(r—7) C Jp(r—7) m=1,...,N, re€]o,r].

Now consider CASE 2. Let the intervals J,J’ be as in (7.52). From the as-
sumptions it now follows that, for some ro > 0, the function %(¢) has a shock of
size 5(t) < —e3/2 at some point §(t) € J(t) for all t € [T — rg, 7]. Moreover,

(7.61) V(a(t); J' @)\ {yt)}) < e8/2 telr—ro, T

Choose an integer N so large that Ne'6 > Cy and define

(7.62) T = (%K) ™7 bty =T — T, m=0,...,N
Now consider a solution u suitably close to @. For some m we must have
(7.63) Q(u(tm—1)) = Q(u(tm)) <&

Observe that, if the distance

(7.64) sup ||u(t) — ﬂ(t)HLl

te[r—rg, 7|
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is sufficiently small, then wu(t,,) will also have a shock of size o(t,,) at some point
Y(tm) € J(ty), with

(7.65)  |o(tm) — & (tm)| <€, y(tm) — G(tm)| <€ t € [tm_1,tm]-

Indeed, call &=, 4T respectively the left and right limits of @(t,,_1) around the
shock. For every e > 0, if the quantity (7.64) is suitably small, there exists points
21 < Y(tm—1) < x2 such that

(7.66) 9 —x1 < eg, |u(tm,1,m1) — 71_‘ < g, ‘u(tm,l,xg) — ﬁ+| <e.

Hence, on the small interval [z1, 23], the function wu(t,,—1) contains waves which
connect a state very close to %~ with a state very close to @+. Since all these waves
are located within an interval of length < &¢, if the interaction potential of these
waves did not satisfy

(7.67) Q(ultm—1); [z1,2]) < eld,

by choosing €9 > 0 suitably small a substantial amount of interaction would take
place within the time interval [¢,,_1, t,»], in contradiction with (7.63). Hence (7.67)
holds, and on the interval [x7, 23] the function w(t,,,—1) contains a shock satisfying
(7.65), plus possibly other waves of small total strength. The remainder of the
proof is similar to CASE 1.

In CASE 3, for some 19 > 0 and all ¢t € [T — 1o, 7[, on the interval J(¢) the
function @(¢) will contain two shocks, say of sizes 71 (t), o2(t). In this case, we first
show that for any g9 > 0, every solution u(t) suitably close to @ also contains two
shocks of sizes o1, 09, with
(7.68) |loi(t) — 64(t)] < eo i=12te[r—r" 7]

Then we proceed as in CASE 1.






CHAPTER 8

Proof of Proposition 8

Proposition 8 is a consequence of the Lemma s 1, 2, 3 stated in Section 2. This
entire section is thus devoted to proving these lemmas.

Proof of Lemma 1. By assumption, every point (¢, z) is contained in the interior
of a stabilizing block. The conclusion will thus follow from the compactness of the
set [-M, M] x [t*,T]. Indeed, let @ be a structurally stable e-solution. Fix any

€ [t*,T]. For each z € [—-M, M] the conclusions of Proposition 7 hold at the

point (7,x), for some r* = r*(x) > 0. Choose finitely many points z1,...,2, so
that
(8.1) —M,M] C U z;), z; +r(z;)].

Jj=1
Define
(8.2) p(r) = min_r*(z;).

J=1,v

Repeat the same construction for each 7, then choose times 7 < --- < 75 such
that

N
(8.3) [t 1] C U] i —p(7), i+ p(7)] -

i=1
By inserting points 0 < tg <7 <t <--- <7y <ty =T with
(8.4) [tic1, t:] C [7i = p(73), i 4 p(73)],

all conclusions of Lemma 1 are satisfied.

Proof of Lemma 3. It suffices to consider a regular path v : [a,b] — BV, with
each u’ = () having the same number of jumps, say at 2§ < --- < x(l’v, with
2 € [~M,M] for all 6,a. Moreover, let all functions u’ coincide outside the
interval [—M, M]. For a given v > 1, define

(8.5) 9,,L£a+%(b—a) m=0,...,v.
If v is sufficiently large, for each m there exist points po (= Pm,«) such that
(86) —M <py<al <py<---<py_1<aly<py<M VO € (01, 0m].

We now replace the restriction of the original path ~y to [0,,-1, 0] with a new path
~" defined as follows. If ¥ € [-M, po] U [pn, M| we set

(87) ’)//I(ﬁ) = uem % + uem—l . X]

]—o0, 9] 9, ool
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The same definition (8.7) is valid if ¢ € |ps—1, pa] and ahnt < 2%, On the other
hand, if ¥ €]pa—1,pa) but it > 20m | we set
(8.8)

,y// (,19) - uern + ueanl

X]—oo, Pa—1] U Ipa—1+pa—1, pal X]pa—lv Pa-1+Pa—9] U ]pa, oo

Clearly, v" is a piecewise regular path, with 7"/ (=M) = v(0,n—1), ¥ (M) = v(0,n).
We now perform a suitable parameter rescaling: 6 +— 9(6), mapping [0,,—1, 0]
onto [—M, M], and define the path

(8.9) ¥ () = 2" (9(0)) 0 (B 1, O
Applying the same procedure to each subinterval [0,,_1, 6,,] we thus obtain a path
v : la,b] — BV which has localized variation and coincides with 7 at each point
Om, m=0,...,v.

We can now consider a sequence of paths (v,,),>1, constructed as above. Letting
v — 00, from the regularity of the original path = it follows
(8.10) lim  sup ||7,(0) = v(0)|, =0, Hm 1y, [l = 17l -

v c a,b] V—00

—>oog[

Hence, choosing v suitably large, all conclusions of Lemma 3 are satisfied.

Proof of Lemma 2. As a preliminary, we give a formula for the weighted length
of a tangent vector, providing the appropriate extension of (2.32)—(2.35) to the case
of a function u with arbitrary jumps, not necessarily consisting of a single shock.
Let u be a piecewise Lipschitz function having jumps at the points 1 < ... < zx.
Assume that the e-solution of the Riemann problem determined by the jump at z,,
consists of waves of sizes ol,...,0". Let the components of v,u, be as in (2.31).
The weighted norm of a generalized tangent vector (v,¢) € T, = L! x IRY is then
defined as

n ) N n
E1) @Ol =X [ @ Wids 303 [€lloh W )

a=11i=1
The weight W (x) assigned to an i-wave located at x has the form
(8.12) Wit(z) = 1+ m B (z) + r1r2Q(u),

where

oo T
R =S [ +X [ el | X+ 3 (el
(5.19 i
_’_{fo if 2 =2, and o, > 0,

otherwise.

0
Q=Y [[ @i deay + Y Jalod] + 3 (0h?

1<j i<j i
- za<zg al,>0

Y Z|az;|/ |u;<x>1dx+z|ag|[|uz:<m>\dx ,

a,j | <] 2]

(8.14)
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and k1, ko are suitably large constants. In terms of the measures p; introduced in
Section 1, the quantities (8.13), (8.14) can be written as

(815)  R@) =Y m(Je ool) + 30 (1 - o0 ) + [mi({x})] .

i<i iz *
(816) Q) =Y (gl x ) (Dl 2 <v})+ Y wl{e})”
i=J i ({ah)>0

The weighted length |||/« of a piecewise regular path and the weighted distance
d*(u, u") between two functions are then defined by (1.47), (1.48), respectively.

To simplify the notations, we assume that
(8.17) = {(t,z); t€[0,T], x| <4p—t}

with p > T. Moreover, we assume that all functions @’ = u%(0,-) coincide out-
side the interval [—p, p] and satisfy one of the conclusions (i) or (ii) or (iii) in
Proposition 7 on the interval [—4p, 4p]. In particular, the values

(8.18) u” = (—4p) ut = a(4p)
are independent of 6. For each 6 € ©, define the truncated functions

w’(x) if x € [~4p, 4p],
(8.19) W(z) = u if & < —4p,
u™ if x > 4p.

By the assumptions in Lemma 2, all functions 4? lie within a domain D consisting
of:

CASE 1. Functions having no large shocks, and total variation < Ce?2.

CASE 2. Functions having exactly one large shock, say in the k-th family, and total
variation (outside this shock) < Ce®.

CASE 3. (a) Functions having exactly two large shocks, and total variation < Cg?°
outside these two shocks, together with (b) functions generated by the
interaction of the two shocks in a solution of type (a).

Observe that, in Cases 1 and 2, our present domain D is a special case of
the domains D, - ,+) considered in Proposition 5. The constructive procedures
developed in Sections 3, 4 can thus be used. Case 3 is somewhat different, and the
construction of piecewise Lipschitz approximations therefore needs to be suitably
modified, taking into account the possible interaction of the two large shocks. In
the following, we will work out a detailed proof of Lemma 2 in Case 2. The same
arguments can be easily adapted to Case 1, which is much easier. The modifications
needed to cover Case 3 will be discussed at the end of the section.

In the main part of the proof, we show that the weighted length of the path
v 1 0 +— Ssu® does not increase in time, under the additional assumption that
@’ = 49 for all . Afterwards, we show that the result remains true in the general
case, relying on the fact that all functions u’ coincide outside the region T'.

The basic idea is to construct a path 4 :  — w? of approximate e-solutions such
that:
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- The weighted length of the path 7 : 6 — w?(0,-) is arbitrarily close to
the weighted length of the path ~q : 6 — u’.

- For all t € [0,7] and 6 € ©, the distance ||w?(t,-) — u’(t, -)HL1 remains
arbitrarily small.

- The increase in the weighted length of the path 7; : @ — w?(t,-) is arbi-

trarily small, as ¢t varies from 0 to T

We remark that, for a path 4 of piecewise Lipschitz approximate solutions
constructed as in Sections 3-4, the increase in the weighted length ||3¢||, defined by
(3.44)—(3.47) can be kept arbitrarily small. Our present goal is to show that the
same result holds if (3.34) and (3.46) are replaced respectively by (8.14) and (8.13),
provided that the width do of the shock layers in (3.5) is sufficiently small. The
proof will be accomplished by first reducing the problem to a few special cases.

1. Observe that a family of approximate e-solutions of (1.1) can be obtained by
choosing a time step At = §; > 0 and performing a cyclical concatenation of n
distinct flows:

(8.20) w’(t) = --- SR, 0 Shy 0 SR, 00 SR, 0 Sp@’,

where each S” is a semigroup related to the hyperbolic system (1.44), with n —
1 linearly degenerate fields. For h = 1,...,n, a convenient way to define the
semigroup S" : D x [0, co[+— D is to specify how it acts on piecewise Lipschitz data.
This is done as follows.
Let D be as in (2.8), with n = O(e®). Observe that every u € D has a single
large k-shock, say located at the point yi. Introduce the speeds
X=hw) itk

(8.21 . _ r
) Ak :)\k(u ), )\k :Ak(u-‘r).

We are of course in a special case of (3.1), with § = {k}. Consider the hyperbolic
system

(8.22) us + Ap(x,u)uy =0

where A, is the matrix with the same eigenvectors as A(u), and whose eigenvalues
/\Y‘), ceey )\%h) are as follows:

Ap o ifdi#k,
(8.23) AW N =k, @ < g,
A ife =k, x> yg.
in the case i # h, while

(8:24) A = x4+ n(n(u) =A%)

if h # k, and

(8.25) NOID R n(An(u) = A;) iz <y,
h A (M) = A) iz >y

if h = k.
Concerning the shocks, we require that the single large jump at y, satisfies the
e-Rankine Hugoniot equations (2.3)—(2.5) with ¢ = k. Every small shock, say of the
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j-th family, located at y,, satisfies the relations

(826) u(ya+) = Rj (Uoc)(u(ya_))a

for some wave size o,. If j # h, the speed of a small j-shock is
/\;*- if j # k,

(8.27) o= AN i 5=k, ya <y,

At =k Ya > Yk
Finally, the speed of a small h-shock is

n 0
(8.28) o = (=N + 7 /U An (Rh(s) (u(ya*)))d&
if h# korif h =Fk, yo < yi, while
0
(8.29) Jo = (1 —n)A + # /Un An (Rh(s) (U(ya—)))ds,

if h =k, yo > yx. We now define S" as the unique Lipschitz semigroup with
domain D as in (2.8) with the following property. If 4 € D is piecewise constant,
then for ¢ > 0 small S'@ is the unique piecewise Lipschitz function which satisfies
the quasilinear hyperbolic system (8.22) a.e., together with the relations (8.26)—
(8.29) along the shock lines.

Observe that, if in the approximations constructed in Sections 3-4 we vary the
width of the shock layer §; > 0 and keep the time step d; > 0 fixed, then on
each subinterval I, (m > 0) at (3.2) in the limit do — 0 we obtain precisely
the flow of S". The existence and uniqueness of the semigroup S” thus follows
from the analysis in Sections 3-5 as a special case. If we can show that each S"
is contractive for the weighted distance determined by (8.11)—(8.14), the same will
of course hold for every concatenation of the form (8.20). Letting At — 0, by
possibly taking a convergent subsequence, we thus obtain a Lipschitz semigroup S.
The same arguments used in the proof of Proposition 5 now show that Sy = Sia for
every piecewise constant @ and every ¢t > 0 small enough. By uniqueness, S = e,
In particular, by taking A¢ > 0 small enough, we can assume that the distance
between the flow of S¢ and the corresponding concatenation of flows in (8.20) is as
small as we like.

The proof is thus reduced to showing that the flow of each semigroup S*,
h=1,...,n, is contractive w.r.t. the metric (8.11)—(8.14). More precisely, given a
regular path of initial data o : 6 +— @’ € D, for each ¢’ > 0 it suffices to exhibit a
path 37 : 0 — w?(T,)-) such that

(8.30) 13zl < [olls + €,

(8.31) |32(0) — S3a’ ||, <& 0co.

2. As a second reduction, we observe that any path v can be approximated by a
path 7/ having localized variation. More precisely, 7' can be chosen to be a finite
concatenation of paths of the form (8.7) or (8.8). Furthermore, any path of the
form (8.7) or (8.8) can be approximated by another path where u=, un-1 are
piecewise constant.
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Now consider a path of the form

(8.32) v(0) =u- X T u - Xjg.oof 0 €0 =la,bl],

assuming that u,u’ are piecewise constant and u(z) = u’, v'(z) = u? for all = €
[a,b]. Let wy = u’, wi, -+, wy = u! be the states determined by the e-solution of
the Riemann problem with data u”, uf. Then the concatenation 7, o - -- 051, with

. — . . . P ’.
(8.33) 7i(0) =u X oo TWim1 X g T Xpp T 0 X,

has the same weighted length as the original path ~.

3. Thanks to the above remarks, it suffices to construct a path of approximate
solutions 7 : § +— w?, satisfying (8.30)-(8.31), under the following additional as-
sumptions:
(A) The path 7 : @ — @’ has the form (8.32), with u,u’ piecewise constant,
u(z) = v, u/'(x) = u® for z € [a,b], and each Riemann problem determined
by a jump in @’ is solved by a single wave. Moreover, [a,b] C [~p, p].

We shall distinguish four cases, assuming that the jump (u”,uf) is

(i) the large k-shock,

(ii) a small h-shock,
(iii) a small j-rarefaction, for some j € {1,...,n},
(iv) a small j-shock, for some j # h.

In all cases, we insert a thin shock layer of width 3 > 0 around the large
k-shock, say

(8.34) Wi k'] = [ye — 62, Yk + 02l

and construct piecewise Lipschitz approximate solutions following the same pro-
cedure used in Sections 3-4. Observe that we are here in the special case where
§ = {k} and all the small shocks belong to the h-th family. A straightforward ap-
plication of the estimates (3.52)—(3.75) on tangent vectors, however, is not possible.
Indeed, the weighted norm introduced at (8.11)—(8.14) is different from the norm
(3.44)—(3.47) because:

- waves of the same family are now always regarded as approaching,
- in (8.13) there is no term related to the shock layer around the big shock.

To keep track of how the weighted length of a path 7; : 6 — u®(t,-) changes in time,
we consider an auxiliary weighted norm, defined as follows. Let u be piecewise
Lipschitz with jumps at points y,, @ € §U§ = {k}U§’. To fix the ideas, let h > k,
the other cases being similar. Let u have a small h-shock of strength |o,| at each
point y,, o € §', together with a large k-shock at yi. Let yj,y;* be as in (8.34).
We then define

(8.35)

lw.o)¢ = > / Z W@ o@lde + S W joalléa] - & / " (@) de,

aE§US’ k

(8.36) WH(x) =1+ k1 R*(x) + r1r2Q(u).
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Here Q(u) is the interaction potential (8.14), while for x # y;, we set

oo xT
R@= Y [+2 [ fmolar| ¥ o+ ¥ |l
j<i VT j>i Y T ac§ug’ acgug’
ka<i, ya>z ka>i, ya<z
0 ifxé¢y, vl
+< =3 if welyl, ukl,i >k, orifx €y, yi*], i <k,

e ifx ey, ukl, i <k, orif x €y, yi*], i > k.

(8.37)

For the large k-shock located at y, we define

(8.38)
~ oo Yk )
CIOSEL SN D oY BN IV L RS BED SRR DI I
sk " jzk - kaS:‘,Ey§;>yk ka2£i€5;<yk
Yk . ) v . .
Yk i<k >k Yk >k i<k
+ > el D) |‘76|}~
Besg’ Besg’
g€k v ™l ygElyg vkl

The weighted length of a path + corresponding to the metric (8.35)—(8.38) will
be denoted by |||, while ||v||s always refers to the metric (8.11)—(8.14). The
definitions (8.35)—(8.38) are chosen so that, for a fixed u and a tangent vector
(v,8), letting do — 0 we have y;, y;* — yr and hence

(8.39) Jim | @.9)[)7 = | @9},

4. Let the assumptions (A) hold. We then construct approximate solutions w? as
in Sections 3-4. During a time interval between two consecutive restarting times,
a minor modification of the estimates (3.52)—(3.75) shows that the weighted length
|17¢|lo of the path 4; : 6 +— wP(t,-) is a non-increasing function of time. Let us
examine in more detail what happens at a time ¢ where a restarting algorithm is
used.

- When a steep compressive h-wave is replaced by several small h-shocks, the
weighted norm of tangent vectors decreases. Indeed, when a family of negative
h-waves are collapsed into a single point, they are no longer regarded as approach-
ing each other.

- When a small h-shock penetrates inside the shock layer around the big shock at
Yk, it is replaced by a steep compression wave. In this case, the weighted norm of
tangent vectors still decreases, because of the last term in (8.35).

- At the initial time ¢ = 0, we need to replace each piecewise constant function
u%(0,-) = @’ by some other function w?(0,-) having one large k-shock, possibly
several small h-shocks, and no other jumps. More precisely, let u? have a j,-jump
of size o, at each point y, (independent of ), a large k-shock at the point yi, and
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a j-shock of strength |g| at £ = 6. The restarting procedure will replace each jump
with j, # h with a continuous wave. In a neighborhood of each point y,, if j, # h,
the new function 5y(#) = w?(0, -) will have the form

@ (yo—) if £ < ya,
(8.40) w?(0,2) =S R;. ((x — ya)oa/6*) (@ (ya—)) if & € [Ya, Ya + 6%,
UW(Yat) if x> yq+0".

Here R; denotes a j-rarefaction curve and 6* > 0 is a suitably small constant.
Similarly, in a neighborhood of the point 2 = 6, in cases (iii) and (iv) the function
w?(0,-) is given by

u’ if x <0,
(8.41) w? (0, ) = Ri((z —0)5/6")(v’) ifz€f, 6+ 0%,
uf if x> 604 6*.

Here & is the size of the jump (u’,u?), at = 6. If j, = h, then on a neighborhood
of Yo we simply have w?(0,z) = @?(z). The same holds on a neighborhood of the
big k-shock at y;. Since u? does not change with 6 outside [a, b], by (8.41), in cases
(iii)-(iv) the generalized tangent vector (v,&) to the path 4¢ is computed by

6- N N r—
(8.42) Ui = 50 X, pyse)’ v; =0 for i £ j, £=0.
In cases (i), (ii) and (iii), choosing ds sufficiently small, the weighted length of the
new path 7o : 6 — w?(0,-) is

(8.43) Bollo = 15oll« = 70ll« + K1m2(b—a)lal - >~ loal?,

Ja#F#h,
o <0

where |7| is the strength of the jump at = 6. The increase is due to the change
in @ at (8.14). In case (iv) we have

(8:44) Follo = Follx = [olls+r1(b—a)la*+rir2(b=a)la| | 6] + Y |oal

Ja#h,
)oa <0

For any given &’ > 0, if d2,6* in (8.34) and (8.40)-(8.41) are small enough and if all
restarting procedures are suitably accurate, we then have

(8.45) [3:(0) — Spa°||, <&’ for all 6 € [a,b], |t —T| <,

for some § > 0. Our main concern is thus to control the weighted length of the
paths 7; : 6 — w/(t,-).

5. Before proceeding with the proof, let us point out the two main difficulties that
we are facing.

(a) By (8.43) or (8.44), in general one has ||9o[l¢ = [|%0ll« > ||70l/+. This is because
the restarting performed at the initial time t = 0 “spreads out” all small j-shocks
(j # h), thus increasing the length of the path.

To compensate for this, at the terminal time t = T we shall replace the steep
compressive j-waves (j # h) with j-shocks. This will shorten the weighted length
of the path 47 by the appropriate amount.
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(b) The norms ||(v, 5)”2 and || (v, 5)”; are constructed assigning different weights
to waves inside the shock layer [yf,y:*] in (8.34). Hence, the weighted lengths
I37ll¢ and ||37||« may be substantially different.

Roughly speaking, this difficulty is overcome by choosing a time 7 € [T, T + &¢]
when “most part” of the tangent vector (v?,¢%) has already flowed out from the
shock layer [yz — o, yz + 5], for most values of . In this way, the weighted lengths
I3+l and ||3-]|« will be almost the same.

We first address (b). Observe that, for any given &’ > 0 and ¢ > 0 as in (8.45),
we can choose g¢ €]0, 4] with the following property. If

(8.46) Z/k wi@)|de+ Y Joul <o,
i=1" Y

Ya €[YS U5

(8.47)

n ok

Yk
[7 @l X el <o
Y

Ya €YY

K2

for all # ¢ ©, for some set © C © with

1

(8.48) meas(©') < g,
then
(8.49) Il < lvllo +¢"

In (8.46)-(8.47), it is understood that w = w’(t,-) = v,(6), while (v,&) = (v?,£9)
is the corresponding tangent vector. To establish (8.30), we thus need to prove the
following

CLAIM: For any given ¢ > 0, by choosing d; > 0 sufficiently small, there exists at
least one time 7 € [T, T + €] such that the corresponding estimates (8.46)-(8.47)
hold for all 8 in a set © C [a, b] satisfying (8.48).

Toward a proof of the above claim, the key observation is that all waves of all
characteristic families cross the boundary region

(8.50) B = [yk — 02, Y[ U lyk, yr + 62

transversally. Roughly speaking, if some function w? (T, ) contains a large amount
of waves inside the shock layer B, we can simply wait until a later time T + At,
with At = O(d2), when all these waves will have moved outside B. Since & is fixed
and d5 can be chosen arbitrarily small, our claim holds. We now turn this intuitive
argument into a rigorous proof.

Recalling (1.9), call

(8.51) To(t) =V (w’(t)) + C1 - Q(w’ (1)),

so that the quantity Ty (t1) — To(t2) provides an upper bound for the total amount
of interaction and cancellation in the solution w? during the time interval [t1,ts].
Moreover, define

852 0 = 00, em)

w (t)
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Observe that, for every fixed 6, the positive variation of both functions Yy, T}, can
be made arbitrarily small by increasing the accuracy of the restarting procedure.

In the following, we fix a lower bound AX > 0 for the absolute value of the
difference between the speed of the large shock at ¥y, and every other wave speed,
for every function w?. Given any solution w?, if

(8.53) z € [ye(t) — b2, yr(t) + 82,

then for every ¢ € {1,...,n} either the forward or the backward generalized i-
characteristic through (¢, z) crosses the big k-shock at some time

(8.54) t el =[t—da/AN t+62/AN.

In particular, if (8.46) does not hold for w’ at time ¢, then a uniformly positive
amount of interaction and cancellation must take place within the time interval I,
hence

(8.55) To(t — 6o/ AN) — To(t + do/AN) > ke,
for some constant £ > 0. Similarly, if (8.47) fails, then
(8.56) Yy(t — 62/AN) — Tp(t + d2/AN) > keo.
Let K be a constant such that

(8.57) V(u) +C1-Qu) < K

for all functions u in the domain of the semigroup, and such that

¢
<K V8 € [a,b].

8.58 1y(0) =
(359) ) o)

(v"(0),£°(0))|

Choose a large integer N and a value d3 > 0 so small that

2K (b — a) 25, N
keg AN

(8.59) N > < €.

By the second inequality in (8.59), the interval [T, T + eo] contains N disjoint
subintervals of the form

(8.60) [ti, t7] = [ti — 62/ AN, t; + 62/ AN].

Assume that, for every t;, (8.46) fails on a set ©; and (8.47) fails on a set O, with
(8.61) meas(0;) + meas(O)) > &.

In this case we would have

(8.62) Yo(t;) — Yo(t]) > keo O €0,

(8.63) Yyt ) — Yy(t) > keo O € o,
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Therefore,

b b
2K(b—a) Z/ Tg(T)—Te(T-FEo) d9+/ TIQ(T)—TIQ(T-‘FE()) do

N b N o b
>3 [ Toter) = Totet) do+ 3 [ o) X6 o
i=17a =179

N
> Z keo - (meas(©;) + meas(O}))
i=1

> ang,

in contradiction with the choice of N in (8.59). Hence, at some ¢ = ¢;, both (8.46)
and (8.47) hold for € in the set

(8.64) © = [a,] \ (6; U©;)

satisfying (8.48). This proves the claim.
By the previous analysis, for every ¢ > 0 we have shown the existence of a
path 7, : 0 — w?(7,-) such that

(8.65) 13 e < 5ol + €', 13-(8) — s7a°|| L, <'  feo.

6. If now |70/« = ||70llx, i.e. if the initial functions @’ do not contain any small
i-shock, for all ¢ # h, then the proof is completed. In the general case, we need to
show that, at some terminal time 7 € [T, T'+¢€g], one can collapse the i-compression
waves (i # h) back into a single shock and reduce the length of the path 4, by the
appropriate amount.

To fix the ideas, let case (iii) hold, so that the jump (u’, )ut) is solved by a single
j-rarefaction, say with j > k, and (8.43) holds. The other cases can be handled by
similar techniques. For i # h, consider the linear equation

(8.66) 2+ Mz =0

Recall that, as in (3.4),
A if i £k,

(8.67) MY =N it = h,o@ < (),
i = hy x> y(t).

We now introduce the auxiliary functions 9;,’, (also depending on 6), defined as

follows. For i # h, ¥; is the solution of (8.66) with initial data
0 if i # 7,
(3.65) w00 =1" L7
—(0/0%) - (0, 040+ (x) ifi =7,

while @’ is the solution of (8.66) with initial data

(8.69) W' (0, 2) = w’ (0, ).
Moreover, we set
(8.70) o, = 0, =0,

(8.71) b = vy — 0y, W= wl — i=1,...,n.
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Consider the auxiliary weighted norm H(v,ﬁ)HZ, defined as in (8.35)—(8.38) and
(8.14), replacing the quantity |v;| by |9;] + |9;| and |wi| by |@| + |@%| throughout.
In particular

Jwelf = Z/Z W) ([ou(@)] + fou(o)] ) da

—~ Yk
+ Y Weloallal =< [ un(o)] da.

acgus’ Yk

where the weights Wi’” are obtained from (8.37)-(8.38) and (8.14) with the due
replacements.

Call ||7||o the corresponding weighted length of the path 4. As in the previous
cases, the positive variation of the function ¢ — ||3:]jo can be made arbitrarily
small by increasing the accuracy of the restarting procedures. In particular, for
any given ¢ > 0 we can assume

(8.72) 1%l < [Follo +¢&’ t>0.

At the initial time we have

(8.73) o, =0, w'=0, 5 =0, W, =0 if i#h
Therefore,

(8.74) IFolle = ollo-

We now show that, at any time 7, from 7, one can construct a shorter path 7, by
collapsing each compressive i-wave in w? (7, -) into a single point. Let {y,; o € §"}
be the set of points (independent )of #) where the initial functions @’ have a small
shock, in some family j, # h. By construction, w?(0,-) will thus have a steep
compressive j,-wave on each interval [yo, Yo +09*]. At a given time 7 > 0, consider
the intervals
(8.75) Jo = [Ya + AT, Yo + AaT + 067,
where

X, e A,
(876) )‘Oé = )‘Z if ja = ka Ya < Yk,

)‘Z* ifja = ka Ya > Yk-
Moreover, call
(8.77) J= U Jo

a€§//

The new path 7, : 6 +— w?(7,-) is now obtained by collapsing each interval .J, into
a single point. More precisely, we define @w? implicitly by setting

(8.78) w? (T, o —meas(J \ (—oo,x])) = w?(r,2)

Observe that, for any given 9 > 0, by choosing §* sufficiently small there exists
some time 7 € [T, T + &o] where all intervals J,, are disjoint. Moreover, we can
assume that there exists a small set of parameters © C O satisfying (8.48), such
that the relations (8.46)-(8.47) hold together with

(8.79) yi(r) & J
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for all 6 ¢ ©’. We now estimate the weighted length of the new path 7,. For 6 ¢ ©',
define

(8.80) = {a €8 jo =k, Yo+ Aot =yl(t) for somet [O,T]}.

When a k-compression wave of strength |o,,| impinges on the big k-shock of strength
|ok|, an interaction of magnitude |oxo,| >> |04 |? takes place, and the functional
Q@ decreases accordingly. This yields an estimate of the form

(8.81) 1@,y < @005 0+ = rimalo] - > [oal®
aesy

Moreover, for § ¢ ©', when we replace w? by w’ the norm of the corresponding
tangent vector satisfies the estimate

_ < - @ _
882) @O < @O, <@, —rmalzl > loal®
a€§\§)
Together, (8.49), (8.81)-(8.82) and (8.43) yield
(8.83)
17l < 13- llo+e" < [Follo+2¢"—r1rz(b—a—e0)|5]- Y loal*+Ceo < |lyoll+2¢"+C"e0

acs”

for some constants C, C’. Since €',y > 0 can be taken arbitrarily small, the result
is proved.

7. The previous arguments yield a proof of Lemma 2 under the additional assump-
tion that, for all § € ©, in (8.19) we have 4/ = @, i.e. that all initial data are
constant outside the interval [—4p, 4p].
To cover the general case, we first construct a path of approximate solutions w? on
the trapezoid I', using the same procedures as before. Then we consider the path
410 — @Y, where

w? (0, ) if |z| > 4p,
(8.84) W’ (z) = { w? (T, z) if 2| < 4p — T,

w?(4p — |z|, =) if |z| € [4p — T, 4p).
We then extend each w? on the outer region
(8.85) I ={(t,x); t €[0,T), |z| >4p—t},

letting w? be an approximate e-solution constructed by wave-front tracking, with
initial data assigned on the space-like curve

0 if |z| > 4p,
(8.86) t=Ax)=<4p—|z| if|z|€[dp—T, 4p],
T if 2] < 4p —T.

Observe that these extensions on I' are independent of #. Indeed, all functions
w?(T,-) coincide for |z| > 2p. In particular, the tangent vectors (v?, &) for the
two paths 4 : 6 +— @’ and y7 : 6 — w?(T,-) are supported inside the interval
[-p—T, p+T] and coincide. Since the weights W in (8.12) can only decrease as
a result of wave interactions, we conclude

(8.87) Il < Al < flvolls-
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This completes the proof of Lemma 2 in Case 2, i.e. when all functions %’ contain
exactly one big shock inside the trapezoid I'.

Construction of approximate solutions, Case 3.

In the remainder of this section we describe the construction of piecewise Lip-
schitz approximate e-solutions in Case 3, on a domain of functions containing two
large approaching shocks. Since the flow of our semigroup S can be approximated
by a cyclical concatenation of n distinct flows as in (8.20), it suffices to describe
how to construct approximate trajectories for each semigroup S*, h =1,...,n. We
will also introduce a weighted norm H(v,é“)“f for tangent vectors, which is non-
increasing along piecewise Lipschitz approximate solutions. This weighted norm
incorporates some small terms due to the presence of shock layers with some width
d2 > 0 around the big shocks. As dy approaches zero, for all piecewise Lipschitz u
and (v,§) € T, we will have the convergence

. & *
8.88 1 =
(859 Jim w8 = [wol
where || - ||* is the norm at (8.11)—(8.14). The contractivity of the semigroup S”
w.r.t. the distance d, is proved by the same arguments as in Case 2.

The domain of S* has the form D = D' U D?. There exists some constant
states u~,uT such that
(8.89) lim wu(z)=u", lim u(z) = u™

r——00 r—00

for all w € D. Moreover, each function u € D! contains two large approaching
shocks, say of the ki1, ko-characteristic families (with )kq > ko), located at points
y1 < y2. These shocks have strength |o1|,|o2| > €, and the total strength of all
other waves in u is < €. On the other hand, D? = D(y~ u+y as in (2.8). If
u(0,-) € DL, the solution u will remain inside D! up to some time 7 when the two
large shocks interact, then it will evolve inside D2.
Let uf = @((y1 + y2)/2) be a middle state for some fixed function & € D'. By
possibly shrinking the domain, since the total amount of small waves in any v € D!
is < €29, we can assume

(8.90)
max { |u(yr—)—u~

) |U(y1+)—uT|7 |U(y2—)_UT|7 |U(y2+)—u+’} S 0520 u e Dl.

An approximate flow for the semigroup S” will be constructed separately on the
two domains D! and D?.

We begin with the flow on D!. Introduce the following constant speeds. If
k1 > ko, define

(891) )\; = )\j(uf) lf] 7é kl, kz,

(8.92) i, =N (uT), AR = Ak (uh), ke = Ak (u), AL = Ay (uh).
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In the case k1 = ko define

(8.93)
Ne= AN =N ) Ak, N, = A W), N = N (u), AL = A ().
For a fixed h € {1,...,n} and a given d; > 0, we now introduce a system of

equations which define our approximate solutions on the domain D'. In this system,
all characteristic fields j # h are linearly degenerate. On the other hand, the h-th
eigenvalues are constant inside the two shock layers

(8.94) (1,911 = [y1 — 02, y1 + b2, [Y2,y2"] = [y2 — 02, ya + b2,

and genuinely nonlinear outside. More precisely, we consider the quasilinear hyper-
bolic system

(8.95) up + Ap(z, u)u, =0,

where A(z,u) is the matrix with the same eigenvectors as A(u) = DF(u), but
whose eigenvalues )\gh) are defined as follows. If j # h, then

A; o iE g F# ke ke,
)‘Zl lf]:kh T <y,
() - N it j =k # ke, x>y,
(8.96) A= )\fl o
o G =ko# ki, T <y,

)\Z;: lf.]:kQa T > Y2,

)\Ll if j=ki =ka, 11 < <uyo.
If h ¢ {k1,ko}, then
(8.97) AP = n(An(u) = A%).
If h = k1 # ko, then
A (e (w) = Xy)  ifz <yl

(8.98) A = LA () =) i >
)\21 ifze [yfayl[a
Abr if €y, y7*].

The definition of )\Elh) in the case h = ko # ki is analogous. Finally, if h = k1 = ko
we set

A+ nAn(uw) =) ifx <y,

A4+ n(Ap(w) =A%) if x> yo,

)\L +n(Ap(u) — )\L) if yo —y1 > 202 and z €]y}*, y3],

h) . % . *
(8.99) A = \x if z € [y}, ],
AL if x €]y, y3*,
)\L if yo —y1 > 202 and x €]y1, y1*[Ulys, y2],

or if yo —y1 < 202 and x €ly1, y2l.
Within the domain D!, an approximate e-solution u = wu(t,z) is defined by the
following requirements:

- At each time ¢, the function w(t,-) is piecewise Lipschitz, with two large
shocks at points y; < y2, and possibly other small h-shocks at points yg,

pesg.
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- The quasilinear equations (8.95) hold a.e. outside the shocks.

- The two large shocks satisfy the e-Rankine Hugoniot equations (2.3)-(2.4).

- At each small h-shock yg, the left and right state are related by (3.3).
The speed ys of the shock is determined by (3.9).

This determines the evolution up to the time 7 where the two large shocks
interact. To preserve the piecewise Lipschitz continuity of approximate solutions,
restarting procedures are performed exactly as in Section 4. Notice that the defi-
nition of the characteristic speeds is given in such a way that when the two shock
layers merge together we can replace them with a single shock layer [y7, y5*].

After the interaction time, since D? = Dy~ u+) is a special case of the domains
considered at (2.8), the construction of approximate solutions is much the same as
in Sections 3-4. The only difference is that now, immediately after the interaction
time, the various shock layers around the big shocks emerging from the interaction
are not well separated. Therefore, some care must be taken in defining the charac-
teristic speeds and the weighted norm of tangent vectors in a neighborhood of the
interaction point (7, Z).

Call wg = u™,ws1,...,w, = u™ the constant states in the e-solution of the
Riemann problem with data (u™,u™). Let {yr; k € §} be the new set of large
shocks. Define

(8.100) yt)y=z—6+t—m, yrt) =T+ —t+T

The characteristic speeds A}, A\I* are now defined as in (3.1), while the /\Z(-h) are

defined as in (3.4) for ¢ # h. Concerning the genuinely nonlinear eigenvalues )\glh),
on the time interval [r, 7+ /3] immediately after the interaction, we set

AL it he§, xey (t), yn(t)[,
AL if he§ ze Jynt),y™ ()],
(8.101) AP = 8 if h ¢ § xe [y (1), y= ()],

Ap+n(An(u) —Ay) if e <y*(t),
A4 n(Ap(uw) = A5F)  if x> y**(t).

Due to the strict hyperbolicity, there exists a width 65 €]0,d2[ such that the inter-
vals

(8.102) Wiy = i — 0, yi + &3], i€§
are pairwise disjoint at time ¢t = 7 + J2/3. We can thus replace the shock layer

[y*, y**] with |§] new shock layers of width &% around the big shocks, and define A%h)
as in (3.6) or (3.7). Since u(7+02/3) € D(,- u+), a piecewise Lipschitz approximate
solution can now be constructed for all ¢ € [ + d2/3, oo[, as in Sections 3-4.

In turn, letting the width of the shock layers 62,8, — 0+, in the limit we
obtain the flow of the semigroup S”. The proof of the contractivity of S* w.r.t. the
distance d, is obtained by first showing that a suitable weighted norm H(v,f)”f
for tangent vectors decreases along our piecewise Lipschitz approximate solutions,
and then arguing as in Case 2, exploiting the convergence (8.88) as d2 — 0.

In the present case, the analysis is somewhat longer, since we need to distinguish
four evolution phases (fig. 11):

(a) Before the interaction, when the two shock layers are still disjoint, with
u(t) € D! and yo — y1 > 205.



8. PROOF OF PROPOSITION 8 109

(b) Slightly before the interaction, when the two shock layers have already
merged together, with u(t) € D! and y, — y1 < 205.

(c) Immediately after the interaction, when all big shocks still remain inside
a unique shock layer, with u(t) € D2, t € [r, 7 + §2/3].

(d) After the interaction, when the shock layers around the large shocks are
mutually disjoint, with u(t) € D2, t > 7 + §2/3.

We now define a weighted norm ||-||¢ in each of these four phases. Let u € D' UD?
be piecewise Lipschitz, with big shocks at points y,, a € §, plus several small shocks
at points yg, 8 € §'. In analogy with (8.35), we set

(8.103)

||(v f) / Wu "Uz |dx+ Z Wk |aa|‘fa|—519/|vh | <,

acegus’

where W is defined as in (8.36). The terms RY are now defined by

K2

(8.104)

RS RS 3 MR ITIVES D SEEED SR I P}

j<i V¥ j>i ac§ug/ acgus/
ka<i, ya>= ka2i, ya<w

In the case u € D', the weights assigned to the big shocks at y;, [ = 1,2 are defined
by

(8.105)
oAU Dol D O B IEZOIES D DS D AT M)
7<k; J>k acg’ acg’
ka<kp, ya>y] ka>kp, ya<y

while, if u € D?, k € §,
(8.106)

/ "‘Z/ ’ujz(y)‘dy—f— Z + Z |Ja|+€]5k(yk).

i<k j>kY acg’ aeg’
ka <k, ya>yi ka>k, ya<yg
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7N

\

Fig.11

The terms P;, P; and the domain I C IR of the last integral in (8.103) are
defined in different ways, according to the four cases (a)—(d) considered above.

Case (a). I = [y1,y7]U [ys,y5], where

it h >k, ) , it h >k,
(8.107)  gyp= 0 VNS e QY TR e q1,2),
Yi, 1fh<kl7 y;k*7 lfhgkb
0, if x & [yi,y1*] U [y3,957],

-, ifx ey, ul, i >k, or

(8.108) Pi(z) = if x €]y, y/*], i < ki, for some [ € {1,2},

et?, 1face[yl,yl[,z<kl,or
*,

if x €y, y;*], i > ki, for some [ € {1,2},

and, for [ = 1,2,

*

Putn =[5 bl - 3 e+ [ (3 o] - 32 o)t

v g<ki J=ki J>ki J<ki
+ > logl = D> losl-
pey/ Beg’
vg€lyf v *N\lyjvy'] vg€ly]uy’]

Case (b). I =[y,y"], where

1, ifh>k “ifh<k
(8109) ylﬁ{yl’ ! = M y”i{yQ? 1 > h2,

y1, if h <k, Y2, ifh > ko,
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0, if x <yj or x> y5*,
—el9 if x €]yy, y2f, or
if ¥ di>k
(8.110) PZ(I') : 1 T e [y17y1[ a1 Z-f 1 or
if x €]y2,y3*], and i < ko,
el ifxeyf, v, and i < ky, or
if ¢ €]y, y3*], and @ > ko,
and if h # k1
R Y1 . .
A= [ S - 3 e ) a- [7 5
vi \j<ka >k Vi i<k

+sgn(h — ki) > losl= D> losl |,

Bes’ Besg’
v €ly1,y5*] yg€Elyy w1l

while if A = k; the last term is replaced by

(8.111) - > o,

Bes’
vyg€lvi,v3™]

and if h # ko
y* B B
Pra(y2) = / S i ( |dx+/ VS @) = 3 @) | dut
YT >k Y2 j>ko J<ko

+sgn(h — k2) > losl= > losl |,

Bes’ Beg’
yg€ly2,y3*] g€y val

while if A = ko the last term is replaced by

(8.112) - > logl.

Bes’
yg €yt ,u3™]

Case (c). I =10,

19 if * EES
(8.113) Pi(z) = € M it <y‘orx>y
261, ifw e [y",y™],

and, for k € §,

) o | o

suy R = [ Sd@ldes |3 i) do
Bl v

Case (d). I = Upe;l¥k- yi], where

(8 115) y/ - y27 if h >k, y”i Yk, if h >k, hes
. ¥ Yk, 1fh<k7 k y;:*’ lfh,gk’ )
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- ifx eyl yul, i >k, or
if © €]yx, yi*], « < k, for some k € §,

(8.116) Pi(z) =< ', if z € [y}, yel, ¢ < k, or
if © €lyk, yi*], i > k, for some k € §,

0, otherwise,

and, for k€ §,if h # k

Puly /y(z\ua IEITIE: )d“/ (Z\uf =3l @)]) drt

k i<k i>k >k i<k
+sgu(h—k) [ D0 losl— Do losl |,
Bes’ Bes’
g €lyg.vy*] yg €l vkl

while if A = k the last term is replaced by

(8.117) - Y logl:

Beg’
ST

Let us denote by I, I°, I¢ and I? the set I defined in the cases (a), (b), (c),
(d) respectively, and the same for the P;’s and the P;’s. By the same arguments

in Sections 3-4, one checks that the weighted norm || (v,8) Hj of any tangent vector
is non-increasing along our piecewise Lipschitz approximate solutions. Moreover,
at every restarting time, the increase in the weighted norm can be kept arbitrarily
small by increasing the accuracy of the restarting procedure. It remains to check
that, at each time of transition from one of the phases (a)—(d) to the next, these
weighted norms do not increase. Transition from phase (a) to phase (b).

Let t be the transition time from Case (a) to Case (b). It is easy to check that
I* C I, PP (x) — P{(z) < 0 and P (y;) — PZ (y1) < 0. Therefore,

(8.118) 1@, IS4y < 10, O,

Transition from phase (c) to phase (d).

Let  denote the transition time. Since I¢ = ), we clearly have I¢ C I¢. Due to
the splitting of the shock layers, we may have an increase in ||v||1. More precisely,
recalling that the strength of the waves outside the big shocks is bounded by £2°
we get

(8.119) [oEH) [l < 1+ C)Jo(E=) [

On the other hand, from the definition of P, and P, it easily follows that
(8.120) W) () = W) () < —gpe!?

so that

(8.121)

oo (it u(i-
S [ @@ - o @ @)] de < 3 oy (C0-m) <o,
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for & small enough. This again implies (8.118).

Transition from phase (b) to phase (c).

We recall that Z denotes the point of interaction of the two big shocks at time 7.
Define u* = u(r,z4). Let us denote by {£;};es the shifts of the shocks generated
by the interaction. We recall that, since no rarefaction waves are generated by the
interaction, we have

(8.122)
+oo i +o0o
tlim+ |ul,(t,2) — ul(T—,2)| dz =0, tlim+/ lvi(t,x) —vi(r—,2)| de =0, i=1,...

In order to compute the variation of the norm of a generalized tangent vector
at the interaction time ¢ = 7, we can assume that only one wave is shifted at time
t < 7. Let us denote by £ € IR the shift of this wave and by o its strength. We
shall distinguish the four cases (i)-(iv) as in CASE 2.

Due to the possible change in P;, the terms R} satisfy the estimate
(8.123) R (2) < R (a) + 3617,

On the other hand, the interaction potential decreases at time 7:

(8.124) Q(t+) < Q(1—) — |o102].
Since |o1], |o2] > €%, we get for every x £ Z,i=1,...,n,
(8.125) Wiu(ﬂ_)(:z:) — Wiu(T_)(z) < 3kq1e!? — K1kalo1oa| < —Cki|o109],

for € small. In a similar way, at the interaction point,

/V[v/y(ﬂr)(@kl) - Wz‘u(T—)(yﬁ < 3kie - €20 — Kykolog| < —Chylosl,

3

WD (1) = W) (g) < —Crialo .

?

(8.126)

Let us first consider the case k1 # ko. In the case (i), we can assume that the
shifted wave is the large ki-shock, the other case being entirely similar. By (5.11)
in [B4], the new shifts are given by

Ai(wim1,ws) — Yy .
(8.127) g=linw) Tl e
Yy — Yo

From well-known estimates (see [B4]) we get

(8.128) 1€k, — & < Clovaa| €], €k, | < Clowaal €], |6l < ClE], i €8.



114 8. PROOF OF PROPOSITION 8

From (8.103), (8.122), (8.125) and (8.126) we obtain

(8.129)
10 €M1 4 — 10 €N -y < S o7 Wi (i) — loa €I () +
€8
n +00
S / o ()] [Wit () — Wi (2)] de+
i=17 %

*x

y
+ 519/ |op(z)| do <
v

<nClE||or0a| My ™ + |o1] [k, — €Wt (yry)+
+ Jou] 1€ [Wi (yk,) — Wi, (1)) +

b cm\o—mn/ lon ()] dar <
.

<nC|¢| |oros| My ™) — Ckilor0] [€] <

<0

)

if k1 is large enough. The other cases (ii), (iii) and (iv) can be treated similarly.

Let us now consider what happens when k; = k;. We shall treat in detail the
case (i), since the other cases can be treated in the same way. Following [B4], the
estimate (8.128) is replaced by

01| + Cloi02] Cl¢| ,
8.130 < —7F ), i| < -, tES,
E ; |§k1‘ |0,1| I |O’2| |§‘ ‘5 | |0,1| I |0'2| §
8.131
oy, — 01— 02| < Clovoa|(lon| + |oa]), o] | < Clowoal(|ou] +|oa]), i€,

while the estimates (8.125) and (8.126) remain valid. Using (8.125), (8.126), (8.130)
and (8.131) we obtain

_ C “
S o7 e Wit () — ol 1€] Wi (32) <nCloros|(Jon] + loal) —C el g0y

w
i€§ lo1] + |02

+ o, Hews | = o HEH Wil (i) + loal €] W (ya) = W, (01)]

< = Ciloyoa|.
The same arguments used in (8.129) now yield

(8.132) 1 €8y — 1@,y 0.

<



CHAPTER 9

Proof of Proposition 9

As in Section 2, consider a regular path g : 6 — @ of initial data, defined
for 6 € © =]a,b[. Call ©* the set of all parameter values § € © for which the
corresponding solution u is structurally unstable. If @ is an isolated point of ©*,
the conclusion of Proposition 8 is clear. We thus study the case where 6 is a limit
point of ©*. Let us sketch the main ingredients of the proof.

1. By induction on the integer m, we can assume that the weighted length of a
path

(9.1) 01— v (0) =u’(t,) =55 _u(r,) t € [r,00[
is non-increasing provided that
(9.2) sup Q (u? (7)) < (m — 1)e*.

0

It then suffices to prove that the same conclusion holds when
(9.3) sup Q(UO(T)) < me?.
0

2. Let (9.3) hold, and assume that u? is structurally unstable. From the definitions,
it is clear that u? can have only finitely many points of instability. Let (t?,2%) be
the first such point (w.r.t. time). Arguing as in Section 7, we can choose r,p > 0
such that, setting

9.4) 7=t —r, J =2 — ar, 2%+ 4r), I,=10—p, 6+p)

all functions u?(7,-), @ € I,, have the same wave structure on the interval .J.

3. We then consider a modified path 7, : 8 — @(7), having the form
(95) ﬂe(Tv iE) = uH (7—7 T — (p((E)),

where ¢ is a smooth scalar map. For any given ¢ > 0, we will show that the map
¢ can be chosen with

(9.6) lelles <€,

and such that, for all but finitely many values of 6, the solution
(9.7) a(t,) = S5 (r)

91 x IR and satisfies

(9.8) Q(ﬁ‘g(Tg)) < Q(ue(r)) — 20,

Thanks to (9.8), the contractivity property can thus be extended to all times ¢ > 77
by the inductive assumption (9.2).

is structurally stable on some strip [r, T

115
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As in (2.24), define the rescaled functions

9.9) u'(t,z) = u’ (1 +t, 2 + ),
9.10 t = 1 (¢, x).
(9-10) wit,z) = lim u?(t,2)

To clarify the main ideas, we first give a proof in the typical case where, for ¢ < 0,
w contains exactly three incoming shocks, all of strength > &2, and no other waves
(fig. 12).

unstable stable
Fig.12

Under these assumptions, thanks to a structural stability argument (see [B-
LF2]), one can find 7, p > 0 such that the following holds. Defining 7, J, I, as in
(9.4), all functions u?(r,-), 6§ € I,, have three large shocks of strength > ce on J,
plus possibly other waves of total strength < Ce®, for some constants C, ¢ > 0.

Call xf, i = 1,2,3, the positions of the three large shocks in u’. By possibly
shrinking the size of p, we can find some 7* > 0 such that the intervals [z¢ —

— 1
3r*, xf + 3r*] are mutually disjoint and

(9.11) ¢ — 20| < r* 0ecl, i=1,23.
Let ¢ : IR — [0,1] be a smooth function such that
1 if |s] <1,
9.12 = =
(9.12) vis) {0 if |s| > 2.

For every ¢ = ((1, (2, (3) € IR3, define

3 x —xé
(9.13) pelO,m) = G ( ~ ) :
=1

Now fix any 0 € I, and call u?*¢ the e-solution of (1.1) with initial data
(9.14) u?C(r,2) = 0 (1,2 — ().
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Call xf’g the locations of the corresponding shocks. The next step of the proof will
establish that, roughly speaking,

0 0,¢ s 1 ifi=j,
(9.15) 8iji (t) = 06 = {0 i
for all times ¢ > 7 before the first interaction between two large shocks.

Observe that the two sides of (9.15) coincide at time 7. Moreover, if only a
minimal amount of interaction takes place during the interval [7,¢], then the shift
rates of the shocks x; (w.r.t. the parameter ¢) will remain almost unchanged. Based
on these ideas, we now work out a rigorous argument. For notational simplicity, the
dependence on # will henceforth be omitted. Since the map { — xf(t) is Lipschitz
continuous but possibly not differentiable, the estimate (9.15) must be reformulated
in terms of Clarke’s generalized gradient [Cl]. More precisely, for ¢ = 1,2,3 and all
(¢ sufficiently close to the origin, we claim that

(9.16) sup |¢; — 85| < CeP,

j=1,2,3
for every vector & = (£1,&2,&3) contained in the generalized gradient of the scalar
map ¢ — xf(t)

To establish (9.16), we show that the same estimate holds uniformly for the
generalized gradients of piecewise Lipschitz approximate solutions. Indeed, for
any fixed 6 € I, consider a piecewise Lipschitz approximation w(r,-) of u?(r,-),
containing three large shocks located at the same points xf as u’, plus other waves
of total strength < Ce%. Then the regular path

(9.17) 9=’ (z) = w(r, ©—dpc(x))
generates a generalized a tangent vector (v”,£7). Its continuous part is
(9.18) v (1,2) = —w, (7,  — Ypc(x)) pelT).

Moreover, denoting by &7, i € § = {1,2,3} the shifts of the big shocks at ¥ and

7

by €7, a € § the shifts of the small shocks at 27, from (9.11)—(9.14) it follows
(9-19) &) =G, [€ln)] < max|Gl.

As long as the large shocks remain separated, we can construct piecewise Lipschitz
approximations, as in Sections 3-4, with restartings that do not change the positions
of these three shocks. We claim that, as long as these shocks do not interact, for
any such path of approximate solutions w"(¢,-), the tangent vector (v?(t),£”(t))
satisfies

(9.20) |&(t) — &(r)] < Cetle(n)].

A proof of (9.20) will be obtained from (9.18)-(9.19), by showing that the tangent
vector remains almost unchanged during the time interval [r,¢], since the amount
of interaction is very small.

Call 0;, 0, the sizes of the shocks at x;, ¢ € § and at z,, o € §'. Let these shock
belong to the families k;, kq, respectively. Fix ¢ € §. By the same type of arguments
used in Section 3 for proving the decrease in the weighted norm of tangent vectors,
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as long as |&(t) — &(7)| < |&(7)]/2, we have
(9.21)

WO ) allan -a@l+ X W @ald) falb)leatt)
e Us\{i}

—I—;/_DO W;U(t)(x)’vj(t,xﬂdx

Let us estimate the increase of §; and £, at times when an interaction between a
big shock and a small shock takes place. In this case, denoting by fii and £F the
shifts before and after the interaction, one has

[ | [ |
o7 | o7 |

For interactions between two small shocks, the identities (3.76) hold.

Furthermore, as long as the three large shocks remain separated, one has

&b -3l <

(9.22) & —& 1<

3
023) 30 |[W O (@) am][&0)] - Wi () (o) |6 (]| < C°iel,

n

+o0
924) > / ()Wj‘“(t)(m)’vj(t,xﬂ —ij<7>($)|vj(7,x)|) dz| < Ce%(¢].
j=1 1o
The estimates (3.76) and (9.21)—(9.24) together imply
(9.25) 60— &) < oo [0l <

25
< &i(r
)] = Cel&i(m)]-

Since (9.25) is uniformly valid for all suitably accurate approximate solutions, com-
bining (9.25) with (9.19) and passing to the limit we obtain (9.16).

We now consider solutions
(9.26) u?C(t) = S5 u®(r)

obtained with the special choice ¢ = (0, {2,0). By genuine nonlinearity, the speeds
of the three large shocks are strictly separated, i.e.

(9.27) inf {&04(t) — 29° (1), @5 (t) — a5C(t)} > e
By (9.16) and (9.27), for each 6 € I, there exists a unique value (3 () such that,
taking ¢ = (0,(5,0), the three large shocks in the corresponding solution (9.26)

interact together at a single point. Moreover, the map 6 — (;(0) is Lipschitz
continuous. Applying the coarea formula (see [E-G]), we obtain

(9.28) /+OOH°{9 G(0) =t}df = /‘a@ ‘d9<+oo,

where H° is the zero dimensional Hausdorff measure, i.e. the counting measure. It
follows that H{6; (;(0) = £} < +oo for almost every §. Observing that ||p¢||es <
C|¢], for any &' > 0 we can now choose ¢ = (0,0,0) so small that (9.6) holds, and
such that the set {6; (5(0) = o} is finite.
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The previous analysis shows that the path # — u? can be uniformly approxi-
mated by a path 6 — u?< such that, for all but finitely many 6, the solution u?<¢
is structurally stable. The conclusion thus follows from Corollary 1 and the lower
semicontinuity of the weighted length.

The general case can be handled by similar techniques. By a structural stability
argument (see [B-LF2]) we can choose r, p > 0 such that, defining 7, J, I, as in (9.4),
the following holds. There exist disjoint closed intervals Ji, ..., J, C J such that
all functions u’(r,-), @ € I, contain a similar “wave packet” inside each .J,. More

precisely, one of the two cases occurs:

(a) Inside J,, each uf(7) contains a ke-shock of strength > ¢*

waves of total strength < €.
(b) Inside .J;, each u?(7) contains an amount Vi, of negative k,-waves, with

(9.29) Ve, (u(r); Jo) € [€3, 267,
e while the total strength of positive ky-waves and of all other j-waves,
j # kyis < 8.
We then construct smooth functions ¢, : IR — [0,1] with disjoint compact

supports, such that ¢ = 1 on a neighborhood of Jy. Given ¢ = ((1,...,(m), We
define the modified functions u?¢(7,z) as in (9.14), with

, plus other

(9.30) ec(x) = Cbe(a).
=1

Now fix 6 € I, and a unit vector ¢ € IR™, and consider the one-parameter family
of solutions

(9.31) a’(t,-) = S u®? (7).

At the initial time 7, by construction each wave packet shifts with ¢ at rate £,(7) =
Ce- As long as the interaction remains small, say

(9.32) Q(a" (1)) — Q(a’(t)) < &*,

in the solution @’ we can still identify m wave packets whose barycenters shift with

9 at rates &(t) = (;. By a genericity argument based on the coarea formula [E-G],
for any ¢’ > 0 we can thus choose ¢ € IR™ so small that (9.6) holds, and such
that, for all but finitely many 6 € I,, the corresponding function a%¢ in (9.26)
is structurally stable up to some time 79 where at least two wave-packets have
interacted so that (9.8) holds. The conclusion of Proposition 8 now follows from
the inductive assumption at (9.2).






CHAPTER 10

Completion of the proof

At this final stage, for every € > 0 our previous analysis has established the
existence of a semigroup S¢ : D¢ X [0, 00[+ D¢ of e-solutions of (1.1). All these
semigroups are continuous with a uniform Lipschitz constant L, and all domains
D* contain a set {u € L; Tot.Var.(u) < no}, with 79 > 0 independent of e. We
can now choose dy > 0 small enough so that every function u in the corresponding
set D in (1.3) has total variation < 79. In particular, this choice implies D C D¢
for every €. We claim that, as € — 0, the limit

L e
(10.1) Sy = 51~I>I(I)1+ Siu
exists for all ¢ > 0 and all initial data u € D, and that S is a Standard Riemann
Semigroup generated by the system of conservation laws (1.1).

To prove the claim, let w € D, § > 0 be given. Then there exists a piece-
wise constant approximate solution w = w(¢, z) of the Cauchy problem (1.1)-(1.2),
constructed by wave-front tracking, with w(t) € D for all ¢ > 0, such that

() [lw(0) —all,, <9,
(ii) all rarefaction fronts have size < d,
(iii) at every time t, the total strength of non-physical wave-fronts is < 4.
In the following, we indicate by S, R and NP respectively the set of shock,
rarefaction and non-physical wave-fronts of w(t). Using the Lipschitz continuity of
the semigroups S° and the definition of e-solutions, we obtain

(10.2)

|lw(t+ h) — S;w(t)HL1

J(r) - szal|, gL-||w(O)—ﬂHL1+L/O lm sup - dt

<Lé+Lt- C’.Z(min{)|oa|, 6})2-4-0-2\0&\24-0- Z loa]

a€§ aER aeNP
§L6+LCT{5~Z|UQI+5~ Z |06 +5}
o€l aER

< Lé+ LCT{(e + 6)C" - Tot.Var.(a) + 6}

for some constants C,C’. We use here the fact that the total strength of waves
in w(t) can be bounded in terms of the total variation of . Repeating the above
estimate with the same approximate solution w but with a different semigroup Sgl,
we obtain

(10.3) w(r) = $2'a|, < Lo+ LCT{(¢' + 6)C" - Tot.Var. (i) + 5}

121
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Since § > 0 can be chosen arbitrarily small, from (10.2)-(10.3) it follows
(10.4) |85 — S5 a|, < LC"7(e+¢)

valid for some constant C” and all u € D, ¢, > 0. This proves that the limit in
(10.1) is well defined. The uniform continuity of S and the semigroup property are
clear. To show that S acts correctly on piecewise constant initial data, let @ € D
be piecewise constant, say with jumps at the points 1 < ... < xy. Define

. . |$z - $i71|
(10.5) T= z‘:r2I}.l.I.1,N —
Since by assumption all wave speeds are < 1 in absolute value, for every ¢ € [0, 7]
and £ > 0, the function u®(¢,-) = Siu is obtained by piecing together the e-
solutions of the N Riemann problems corresponding to the jumps in u. As ¢ — 0,
by our definitions it is clear that each e-solution tends to the exact solution of the
corresponding Riemann problem. Hence, for ¢ € [0, 7], the function S;@ satisfies
the condition (iii) in the statement of Theorem 1. This completes the proof, in the
case where all characteristic fields are genuinely nonlinear.

The linearly degenerate case.

We conclude this section by describing the minor changes needed in the case
where one or more characteristic fields are linearly degenerate. In the proof of
Theorem 3, the assumption of genuine nonlinearity is used on three occasions.
Namely, it guarantees the following properties:

- The boundary layers around each big shock are crossed transversally by waves of
all characteristic families.

- For approximate solutions constructed by wave-front tracking, the local interaction
potential in a forward neighborhood of every point in the t-x plane is arbitrarily
small, as stated in (6.6).

- The decay estimates (1.21) for positive waves hold. These estimates are essential
for proving results on structural stability.

To fix the ideas, assume now that the k-th family in the system (1.1) is linearly
degenerate. To handle this case, we shall approximate (1.1) with another system
where all characteristic fields are genuinely nonlinear. More precisely, the definition
of e-solutions is modified as follows.

Choose a unit vector ey such that

(10.6) <e;€7 rk(u)> >0
for all u. Introduce the modified characteristic speed
(10.7) Ag(u) = M(u) + ey, ri(w)).

For each € > 0, we then define S¢ as the semigroup which acts on piecewise constant
initial data according to the following approximate Riemann solver.

Modified e-Riemann Solver: Given u~,u", determine intermediate states wg =

u”,...,w, =ut and wave sizes o1, ...,0, such that

(108) w; = \I/?(O'i)wifl) ) 7é k7
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(109) W — Rk(gk)wk—1)~

- If o; > 0 and ¢ # k, the states w;_1, w; are connected by a centered rarefaction
wave, as usual.

-If o; < 0 and i # k, the states w;_1, w; are connected by a single jump, travelling
with the speed § = AS(w;_1, )w;) defined at (2.4).

- If o > 0, then wi_1 and wj are connected by a centered rarefaction k-wave
travelling with characteristic speed S\i In the sector where tj\i(wk_l) <z <
tAZ (wy), the e-solution u thus satisfies

(10.10) (Li(u), ug) =0 ik, wy + A5 (u)ug = 0.

- If o, < 0, then wg_; and wy are connected by a k-jump satisfying (10.9) and
travelling with speed

= L ’ \E s)u~ s
(10.11) y = o] /gk A (Ri(s)u™)) ds.

The construction of piecewise Lipschitz approximate solutions is performed
as before, except that we no longer insert boundary layers around big k-shocks.
Indeed, such boundary layers are not needed in the present situation, because by
construction shock and rarefaction curves of the k-th family always coincide. The
rest of the analysis is entirely similar.






CHAPTER 11
Appendix

11.1. Estimates (3.17), (3.18), (3.22)

Let u,u™ € Q. We shall denote by E(u~,u") = (Ey,..., E,)u”,u") the wave
sizes corresponding to the solution of the Riemann problem (u~,u™), obtained
by the e-Riemann Solver described in Section 2. By definition, for a fixed k, €
{1,...,n} we have

Ey,(u™, ¥ (o)u™)) =0, Vo,
Eyp (v, (0)u")) =0, Vo, Vi# k.

Assume ut = U§ (0q)u”). Differentiating w.r.t. o the above relations one obtains

(11.1) DoEy, (u™,u™) - (rp, (u™) + O(04?)) =1,

(11.2) DaEyy (uw,u™) - ri(u”) =0, Vi# k.

From (11.2) we can deduce that

(11.3) |IDEk, (u™,u™) - (0,v)] < Cloa|, V| =1, (v, 7, (u™)) =0.

In the same way we can obtain the relation

(11.4) |DEy,, (u”,u™) - (v,0)| < Cloal|, Y| =1, (v, r, (u))=0.
Let us define 7 = r;(u(ya+)). From (11.1) we get

(11.5) |DEy, (u™,u?)0, 7 ) — 1| < Cloa|*.

Furthermore, by a similar argument one can deduce that

(11.6) |DEy, (u™,ub)r, ,0) + 1| < Cloa|*.

Since 0 = Ej, (u~,u"), differentiating w.r.t. w;’ one obtains

9o oW’ oW
© — DBy, (u”,ut ST _
8'1,[12_ ka( ) Z J 8'1,[12_ ko - J awz_
o j<ka o i>ka o
oW Wi
— - 1 + - 4+ _ n
= DEka (u , U )O,’I"ka) + DEka(U , U ) E T awi-i-’ | r] T
j<ka ko  j>kq ko

From (3.16) and (11.5) it easily follows that

0o,

+
8wka

(11.7) —1| < Cloa*
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In a similar way, using (11.6), one can prove that

(11.8) &ijq < Cloa|?.

wka

The simpler estimate (3.17) can be obtained from (11.3) and (11.4) observing
that

3(7@ -~ i _6W‘7 N N .
8w+ :DEka(u , U ) ZTJ au]ﬁ?)ri s 1 61'7 Z#ka,
’ J<ka g
0 OWI
20— DB (w ) (7)) Do ee= | €T i ka
8U}i fn a’LU,L

Concerning (3.22), the first relation is an easy consequence of the fact that, for
a small h-shock, the left and the right states lie on the same h-rarefaction curve.
The second relation in (3.22) follows from the identities

(11.9) DEy, (u™,u®)ry ,0) =1, DEy, (u”,u*)0,rf ) =1,
(11.10) DEy (u™,u™)r;,0) = DEy, (u",ut)0,7) =0, Vi# k.

11.2. Estimates (3.19), (3.20), (3.21), (3.23)

The estimate (3.19) is trivial. We now prove (3.21); (3.20) can be obtained by
a similar argument. Let us assume a € S. At the point y, the e-Rankine-Hugoniot
conditions (2.3)-(2.5) hold with o = o,. More precisely, we have that

(11.11) Yo :go(%‘) AL+ (1—@(%)))\2a,

where \j = A, (u™, Sk, (0a)u™)) and

1 0
(11.12) A = |0|/ Ao (R, (s)u™)) ds.

Observe now that
(11.13) An. = Ak | < Cloal.

Indeed the two functions o — |71| f: Ao, (R, (s)u™))ds and o — A (u™, Sk, (0)u™)),
defined for o < 0, have a tangency of the first order at o = 0.

By differentiating (11.11) w.r.t. w;_ , using (11.13) and by the fact that ¢'(00 /) =
0 if o, < —4e or o, > —3¢, we obtain the estimate

(11.14)
aya Oa 8)‘2: Oq aA?I; 1 1 [(Oa 6O'a

_ Za a _ T a | <« = Yo s\ | < )
3w2‘a </7( € ) aw,':a (1 4'0( € )) 6w,‘€: € v ( € )’ 6w7£a ‘)\ka /\ka| < Cloal
We remark that, by (3.16),

ou~ oW’

11.15 — | = ———| < Cloal?.
(1L.15) ot |~ | 2 T g | <1
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From (2.5), recalling o, < 0, we get

(11.16)
gjji _|0i|2 ;Zj: / Ao (Br(s)u™))ds — @%)\ka(u+)+
:Ioilaazjg; (Mho = Mo (u™)) + o] /GQ Dy~ Ak, (Rh(s)u))]% ds.

From (11.15), the last term in (11.16) can be estimated by C|o4|?, hence from
(3.18) we get

0N}, An = A, (uh)

11.17 s — —< = <C .
( ) 8wl-ci_a |oa | < Cloal
From (11.13) now it easily follows that

Yo Yo — Nk (’U,+)

11.18 - < < Cloal-

(1.15) D~ o | <l

In order to obtain (3.21), it suffices to observe that, since a € S,

Moo (1) = A (g )

In the case « € &, recalling (3.22), the estimates in (3.23) are obtained differ-
entiating (3.9) w.r.t. wlfa.

(11.19) < Ce? < Clog

11.3. Estimates (3.31), (3.32)
Recalling that o, = Ef_(u™,u"), the time derivative of o, is computed by
(11.20) 6o = DEy,, (u”,u" ( Zw T, Zw;rrj>7
i=1

r.h.s. of the above equation in the following way:
=[DEy, (u",ut) — DE}, (u+,u+)](w; (7“2; —74..),0) + DEj,_ (u +, +)w,:a (r,:'a —75.),0)+
+ [DEg, (u™,ut) — DEy,_ (u™,uh)](— wy, r,j ,wk rk )+ DE, (ut,ut) — w;arza,w,jor,ja)—i—

where w; = ()\Eh)(yaf) — YU, Wi = (Pa — /\E )(ya+))ui+. We now split the

+[DEg, (u™,u") = DEy, (uF,ut)] | = > wiry, > wirf | +
i#kq i#kq

+ DEy,, (ut,u™) Zwr Zw++ + DEy,, (ut,u™) Zw i —r7),0] =
i#kq i#ke, 1#kq
=L+ + 1
From the definition of w;t we have that

(11.21) lwE| < CluiE|, Vi, Wit | < Cloa| [uke®].
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Recalling that r, = r,':a —0o(Vry, i )ut) + 0(04?) and (ry,, Vri, -71.) =0,
we get

11| < Cloal? lwy,, | < Cloal [uf="],
13| < Cloa*(Jwyf | + lwi, ) < Cloal*(Jug>™| + [ug="]).
Moreover, by (11.3), it easily follows that
(11.22) 12| < Cloa|? lwy, | < Cloal® fuz=~|.
The term I, gives
(11.23)  Li=wp +wf =AY Ga—) = ga)ule™ + (o — AL (yat)ube .
Concerning I, we have that
(11.24) 15| < Cloal Y (fwf| + [w; ]).
i#ka

Let us compute >, |wi|. If i* € O, by the linearity of the maps W7 we have
that
+ owr
(11.25) wi =Y SLEW €O,
jter 7

so that, recalling (3.14)-(3.16) and (11.21),

oW
STlwF < i+ YD) ok lwi| | <
i#ko i<ka i>ko \jTeT Wy
< w4+ ) w1+ Cloal) + Cloa|(lwyl | + wy |) <
1<kq 1>ka
<C N |+ CloaP(jubet] + [ube ).
iter
itke

Since », ;. |w; | can be estimated in the same way, from (11.24) we obtain

(11.26) 15| < Cloal Y |ug| + Cloal®(Jufe ™| + fug~).

iter

i#ka
It is easily seen that I7 satisfies the same estimate, while (11.3) implies that Is = 0.
Now (3.31) follows easily.

In order to obtain the estimate (3.32), it is enough to remark that, if a € &,

then from (11.9)-(11.10) one has I) + I + I3 = 0, and from (3.22) the estimate
(11.26) is replaced by the sharper one

(11.27) |Is] < Cloa| > |ul].

iter
itk
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Formula (3.42) Let A = )\th)(y;;(T):I:). Fix Az > 0, and let At = Az/A}.

Let @ — u? be a curve which generates the tangent vector v, and assume u° = wu.

Assume that y} (7) = 0. We have that, for § > 0 small enough,

A=\
(11.28) uf(t + At,Az) = uf (7‘, )\% — yz £a9> ) up (7 + At, Ax) = up(7,0),
so that
6 A=Ay 9
W 5, Ax) (e 1 At Ax) " (7 AEEGO) U0 00 uyro)
0 B 0 0 -
A=Ay
~ul(r,0-) - %Ea + vp(1,0-).
)‘h — Ya

Passing to the limit for # — 0 and then for Az — 0 we thus obtain

h— . A: _)\;L

(11.29) vf = v, +&ul N i
Recalling (3.30), we have that
+ — — .
(1130)  whm 2m M e (1 - W) -l
Al = Ya An = Ya

+

i

hence the first relation in (3.42) follows. The simpler relation v
1 # h can be proved in the same way.

= v; for every

11.4. Estimate (3.61)

We recall that at a point of shock y,, @ € SUS’, the equations (3.13) are
satisfied with wijE defined as in (3.41). Now let i # k,. Assume, for example,
i > kq, so that it € O. From (3.13) we have that

(11.31)
; oW’ 4 ow' ; ;
Qulst + o = —(EqudT o) + ( - 1) oy v )+ Eaul +u; .
f 7 ].;I 8wji (6 7 ) aw; £ [ ) 5 7
i
From (3.14)-(3.16) we get
(11.32)
o —v;7 | < [&al [ —ulT[+Cloal D [€atdE 40T [+Coal? ([Caubst + o) [+)€aule™ +vp ) -

jtez

The same estimate holds if ¢ < k. Recalling the definition (3.37) and (3.56) of A,
and ¥, we get (3.61).

11.5. Estimate (3.62)

We have that
(11.33)

h . _ . h h _ _ _
O (Ya—) = Ga)n™ + Ga = AL Wat))0™ — |00 DAY (u™ ut )y~ e )| < Joal (07 [Li+n | 2),
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where
)‘(h) (yozf) Yo
I | S = DA @ ) 0)),
(h)
Yo Aka (y )
L= o — DA (™, u )0, 1)

Observe that, from

(11.34) Jo — A (u ,U+)‘ < Cloa|?,
one obtains
Yo (h), — ou~  Out
11.35 G px ) [ 2 ) < Olol.
( ) ‘811)2; ko (u”, ™) aw,‘; (‘)w,;Ir < Cloal
Now one has
(11.36)
- + J
D)\g;)(uf,u*) (é)u_7 3u_ ) = D/\g:)(uf,u Te, + Z ]_,_51/1/; ,
3wku 6wka j<ka k:(, ]>k awka
so that, from (3.16),
(11.37)
ou-  Out h)
D)\;(gh)(uf,uﬂ ( ' ) /\( D ut)rg 0) < C < Cloa|*.
| o 8wka 6w,‘€: ize:o o
From (11.35) and (11.37) one obtains
o
(11.38) aif — DA (w, ut)r,0)| < Cloal,
wy

so that, recalling (3.20), it follows that
)\(h)( 7 Ry, _ _
8w§a —D/\,(m)(u ,u+)rka70)

Yao=) = Vo OYa

11.39) I < —
( ) & |04l 8“}1;&

< Cloal,

_|_

and a similar estimate holds for I.
In the case a € &', from the definition (3.9) it easily follows that I; = I = 0.

11.6. Estimates (3.70), (3.71)
The first estimate in (3.70) is a consequence of the fact

(11.40) |)\§lh) (Yo" +) — Aglh) (Yo" —)| < C - [strength of external waves] < C7.

Concerning the second estimate, by (3.30) we have that either u"~ = u* =0 or
ul~ - ult £ 0. In the first case the estimate is trivial. Assume now 0 < [u~| <
|uh*|. Recalling (3.30), by strict hyperbolicity we get

(11.41)

(h) * (h)

AL e +) = AL (ya™ —
[0n (Yat) = 0n(Ya—)] = [€al [uf T - h‘|=|£a\|u2‘|| . (y(h) i ¢
N (Yo +) = ol

The estimates (3.71) follows from the strict hyperbolicity and |o,| > .

< Cléal luz™[n-
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11.7. Estimate (3.76)

The first relation is an easy consequence of the coincidence of shock and rar-
efaction curves.
Concerning the second relation, from (5.11) in [B4] we have that
(11.42)
ey = SO @norwn) = §/(r2) = € (N (wnn) = 3(72)
§—) ()
Since shock and rarefaction curves coincide, one has
o (r=)y (r—) + 0" (r—)y"(7—)
o' (=) +o"(1-) '
Substituting in (11.42) we now obtain the second relation in (3.76).

(11.43) A (w1, wp) =
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