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1 Introduction

The “moving plane” method, that goes back to Alexandrov and J. Serrin [21] ,

has known a great development since the symmetry results by B. Gidas, W.M.

Ni and L. Nirenberg [12] for positive solutions of elliptic semi-linear equations

in symmetric domains of Rn. The method relies in particular on two features

of the Laplacian viz., the maximum principle and the invariance by reflection

with respect to a hyperplane.



An important feature of this paper is that we develop the analogue of the

“moving plane” method for the Heisenberg group and this allows us to obtain

some new non existence results for a class of positive solutions of the following

semi-linear equation

∆Hu+ up = 0 in Hn, (1.1)

where ∆H is the Heisenberg laplacian, Hn = (R2n+1, ◦) is the Heisenberg group

and p is subcritical (see section 2).We would like to mention that although the

Heisenberg laplacian satisfies the Maximum principle (see Bony [5]) it is not

invariant by the usual reflection with respect to a hyperplane. This means

that a new notion of reflection needs to be introduced in order to apply the

moving plane method.

We will say that u is cylindrical in Hn if for any (x, y, t) ∈ Hn where

(x, y) ∈ IRn × IRn and t ∈ IR is the anisotropic direction, we have u(x, y, t) =

u(r, t) with r =
√
x2 + y2. Let Q = 2n+ 2 denote the homogenous dimension

of Hn.

Our main result is the following

Theorem 1.1 If p < Q+2
Q−2

the only non negative, C2, cylindrical solution of

(1.1) is u ≡ 0.

Let us recall that Q+2
Q−2

= 1 + 2
n

is the “critical exponent” for the Sobolev

type embedding in the Stein spaces S2
1 (see e.g. [15], [16]). Theorem 1.1 infact

allows us to prove non-existence results for larger class of functions viz;

Corollary 1.1 Let u be a non negative, C2 solution of (1.1) with the property



that u ◦ Φ is cylindrical, where Φ : Hn → Hn is a map which leaves ∆H

invariant. Then u ≡ 0.

Clearly the most natural action Φ is the Heisenberg group action but it

may also be any other map that leaves ∆H invariant; for example in H1 we

may consider Φ(x, y, t) = (2λ− x, y,−t− 4λy) for any λ ∈ R.

Theorem 1.1 extends the Liouville theorems of [2]. Indeed one of the

results of [2] was that for 1 < p ≤ Q
Q−2

, the only non negative solutions of

∆Hu+ up ≤ 0 in Hn

are the trivial ones. There, as well as here, no conditions at infinity for u are

required. Let us emphasize that although the exponent Q
Q−2

is optimal for

inequalities, as it was shown in [2], non existence results for the equation (1.1)

were stated as an open problem for Q
Q−2

< p < Q+2
Q−2

.

In the euclidean case, non existence results in R
n up to the critical case,

have first been proved by Gidas and Spruck in [13] with a very difficult proof

and then by Chen and Li in [8] using the method of moving plane. For other

Liouville type results for semilinear inequalities involving more general sub-

elliptic operators see the work of I. Capuzzo Dolcetta and A. Cutri [7] and the

works there mentioned.

N. Garofalo and E. Lanconelli, in [11], prove some non existence theorems

for S2
1 positive solutions of (1.1) when p is subcritical, but their results differ in

nature from ours (and those cited above) since they require that the solutions

decay at infinity. In a framework similar to [11], though with different tech-

niques, E. Lanconelli and F. Uguzzoni in [18] and F. Uguzzoni in [22] prove



non-existence results for S1
o solutions of (1.1) in a half-space with critical expo-

nent, see also ([1]). The results of L. Brandolini, Rigoli and Setti [6] and Wei

Zu [19], concern non existence results in the Heisenberg group with different

non-linear terms.

Let us go back to the “moving plane” technique which is at the base of

theorem 1.1. The reflection that we introduce to replace the reflection w.r.t.

a plane is the following “H-reflection”.

Definition 1.1 Let ξ = (x, y, t), let Tλ = {ξ ∈ H1; t = λ}. We define

ξλ = (y, x, 2λ− t)

to be the H-reflection of ξ with respect to the plane Tλ.

It is easy to see that ∆H is invariant with respect to this H-reflections i.e.

if v(ξ) = u(ξλ) and ∆Hu(ξ) = f(ξ) then ∆Hv(ξ) = f(ξλ).

Let us remark that the H-reflection with respect to the plane Tλ leaves

the plane Tλ invariant but not fixed (only the line {x = y, t = λ} is fixed);

this feature is the reason why we work with cylindrical functions. Symmetry

results, similar to [12], for positive solutions of semilinear equations in bounded

or unbounded symmetric domains of Hn is an open problem; in [4] a partial

result is obtained for a class of solutions in bounded domains.

The other ingredient we use is the map defined by D. Jerison and J.M.

Lee in [15], which we shall refer to as the CR inversion. It plays the role of the

“Kelvin transform”. For simplicity we will illustrate the case n = 1. Precisely,



let ρ = |(x, y, t)|H be the Folland norm in Hn (see section 2), then we define

the CR inversion of u to be the function v given by

v(x, y, t) =
1

ρQ−2
u(x̃, ỹ, t̃), (1.2)

where x̃ = xt+yr2

ρ4 , ỹ = yt−xr2

ρ4 and t̃ = −t
ρ4 . We will prove that if u is a solution

of (1.1), then v satisfies

∆Hv +
1

ρ(Q+2)−p(Q−2)
vp = 0 in Hn.

Clearly, here since n = 1 we have that Q = 4.

We should also add that the basic steps in the proof of Theorem 1.1 are

similar to the one developed by W. Chen and C. Li in [8]. They combine the

moving plane with the Kelvin transform to obtain in particular non existence

of positive solutions of

∆u+ up = 0 in RN

when p < N+2
N−2

i.e. p is subcritical, while for p critical they prove that any

solution is radial with respect to a point and therefore it is of the form u(x) =

[N(N − 2)λ2](N−2)/4(λ2 + |x− xo|2)−(N−2)/2.

Let us also recall that the moving plane method has already been adapted

to non-euclidean frame works, see [17] and [20].

It is quite natural to expect that the solutions of (1.1) will be cylindrical,

hence we expect the result of Theorem 1.1 to hold for any non negative solution

of (1.1). Similarly, we expect to be able to give a simpler proof of the result

due to Jerison and Lee [15] that the only solutions of (1.1) for p critical i.e.

p = 1 + 2
n

are functions of the following type u(r, t) = C(t2 + (r2 + µ)2)−
n
2 .



The paper is organized as follows. In section 2 we introduce some well

known facts about Hn and ∆H ; in section 3 we define the CR inversion and

its properties; finally in section 4 we prove theorem 1.1.

2 Preliminary facts

For the sake of completeness, in this section we collect a few basic properties

concerning the Heisenberg group and the operator ∆H . For proofs and more

information we refer for example to [9, 10, 11, 14].

To denote the elements of Hn we shall either use the notation (z, t) ∈ Cn×

R or (x, y, t) ∈ Rn×Rn×R where z = x+ iy, x = (x1, . . . , xn), y = (y1, . . . , yn).

The Heisenberg group Hn is the space R2n+1 (or Cn × R) endowed with the

group action ◦ defined by

ξ0 ◦ ξ = (x+ x0, y + y0, t+ t0 + 2
n∑
i=1

(xiy0i − yix0i)). (2.1)

Let us denote by δλ the parabolic dilation in R2n+1 i.e.

δλ(ξ) = (λx, λy, λ2t), (2.2)

which satisfies δλ(ξo ◦ ξ) = δλ(ξo) ◦ δλ(ξ). The following norm in Hn

|ξ|H :=

( n∑
i=1

(x2
i + y2

i )

)2

+ t2

 1
4

≡ |t+ i|z|2|
1
2 (2.3)

is homogeneous of degree one with respect to the dilation δλ (see [9], [10]).

The associated distance between two points ξ, η of Hn is defined accord-

ingly by

dH(ξ, η) = |η−1 ◦ ξ|H



where η−1 denotes the inverse of η with respect to ◦ that is η−1 = −η.

The open ball of radius R centered at ξo is the set:

BH(ξo, R) = {η ∈ Hn : dH(η, ξo) < R}.

It is important to note that

|BH(ξo, R)| = |BH(0, R)| = |BH(0, 1)|RQ

where Q = 2n+2 and |.| denotes the Lebesgue measure. The even integer Q is

called the homogeneous dimension of Hn. Observe that for R > 1, if B(0, R)

is the euclidean ball of radius R centered at the origin, then

B(0, R) ⊂ BH(0, R) ⊂ B(0, R2). (2.4)

The vector fields {X1, . . . , Xn, Y1, . . . , Yn, T} defined by

Xi = ∂
∂xi

+ 2yi
∂
∂t
, for i = 1, . . . , n,

Yi = ∂
∂yi
− 2xi

∂
∂t
, for i = 1, . . . , n,

T = ∂
∂t
,

form a base of the Lie Algebra of vector fields which are left invariant with re-

spect to the Heisenberg group action ◦. The Heisenberg gradient of a function

φ is defined as

∇Hφ = (X1φ, . . . , Xnφ, Y1φ, . . . , Ynφ).

We can now state a few properties concerning the Heisenberg Laplacian

∆H : The operator ∆H is defined by

∆H :=
n∑
i=1

X2
i + Y 2

i =



=
n∑
i=1

∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2

i + y2
i )
∂2

∂t2
.

∆H is a degenerate elliptic operator, but it is easy to check that Xi and Yi

satisfy

[Xi, Yj] = −4Tδi,j, [Xi, Xj] = [Yi, Yj] = 0

for any i, j ∈ {1, . . . , n}. Therefore, the vector fields Xi, Yi (i = 1, . . . , n) and

their first order commutators span the whole Lie Algebra. Hence, ∆H satisfies

the Hormander rank condition, see [14]. In particular, this implies that ∆H is

hypoelliptic (i.e. if ∆Hu ∈ C∞ then u ∈ C∞) and it satisfies Bony’s maximum

principle (see [5]).

Furthermore, since Xi and Yi are homogeneous of degree minus one with

respect to δλ i.e.

Xi(δλ) = λδλ(Xi), Yi(δλ) = λδλ(Yi)

then ∆H is homogeneous of degree minus two and of course it is left invariant

with respect to ◦.

Let us recall that it is easy to see that if u is cylindrical then

∆Hu(r, t) =
∂2u

∂r2
+

2n− 1

r

∂u

∂r
+ 4r2∂

2u

∂t2
(2.5)

3 CR inversion

As in [15], we define the CR inversion of a regular function u(z, t) in Hn as

v(z, t) =
1

ρ(Q−2)
u(
z

ω
,
−t
|ω|2

)



where ω = t+ i| z |2 or equivalently

v(x, y, t) =
1

ρ(Q−2)
u(x̃, ỹ, t̃)

with x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹn) where

x̃i =
xit+ yi|z|2

ρ4
, ỹi =

yit− xi|z|2

ρ4
and t̃ =

−t
ρ4
.

Observe that v is a regular function in Hn \ {0}.

Now we want to prove that

if ∆Hu(x, y, t) = f(x, y, t) then ∆Hv(x, y, t) =
1

ρ(Q+2)
f(x̃, ỹ, t̃). (3.1)

It is immediate to see that

r̃ :=
√
x̃2 + ỹ2 =

r

ρ2
and that ρ̃ = |(x̃, ỹ, t̃)|H =

1

ρ
.

Therefore if u is cylindrical then so is v. Since the proof of (3.1) is a very long

and tedious computation, we will sketch it only for cylindrical solutions. It is

easy to see that the following equalities hold

∂r̃

∂r
=
t2 − r4

ρ6

∂r̃

∂t
=
−rt
ρ6

∂t̃

∂r
=

4r3t

ρ8

∂r̃

∂t
=
t2 − r4

ρ8
.

Therefore v(r, t) = 1
ρQ−2u(r̃, t̃) satisfies

∂v

∂r
=

(2−Q)r3

ρQ+2
u+

1

ρQ−2

[
∂u

∂r̃

(
t2 − r4

ρ6

)
+
∂u

∂t̃

(
4r3t

ρ8

)]
,

and hence

∂2v

∂r2
=

∂

∂r

(
(2−Q)r3

ρQ+2

)
u+

2(2−Q)r3

ρQ+2

[
∂u

∂r̃

(
t2 − r4

ρ6

)
+
∂u

∂t̃

(
4r3t

ρ8

)]



+
1

ρQ−2

[
∂u

∂r̃

∂

∂r

(
t2 − r4

ρ6

)
+
∂u

∂t̃

∂

∂r

(
4r3t

ρ8

)]

+
t2 − r4

ρQ+4

[
∂2u

∂r̃2

(
t2 − r4

ρ6

)
+

∂2u

∂r̃∂t̃

(
4r3t

ρ8

)]
+

4r3t

ρQ+6

[
∂2u

∂t̃∂r̃

(
t2 − r4

ρ6

)
+
∂2u

∂t̃2

(
4r3t

ρ8

)]
.

While
∂v

∂t
=

(2−Q)t

ρQ+2
u+

1

ρQ−2

[
−∂u
∂r̃

(
rt

ρ6

)
+
∂u

∂t̃

(
t2 − r4

ρ8

)]
and then

∂2v

∂t2
=

∂

∂t

(
(2−Q)t

ρQ+2

)
u+

2(2−Q)t

ρQ+2

[
−∂u
∂r̃

(
rt

ρ6

)
+
∂u

∂t̃

(
t2 − r4

ρ8

)]

+
1

ρQ−2

[
−∂u
∂r̃

∂

∂t

(
rt

ρ6

)
+
∂u

∂t̃

∂

∂t

(
t2 − r4

ρ8

)]

+
−rt
ρQ+4

[
−∂

2u

∂r̃2

rt

ρ6
+

∂2u

∂r̃∂t̃

t2 − r4

ρ8

]
+
t2 − r4

ρQ+4

[
− ∂2u

∂r̃∂t̃

rt

ρ6
+
∂2u

∂t̃2
t2 − r4

ρ8

]
.

Now observe that ∆H(ρ2−Q) = 0 for ρ 6= 0, therefore

∆Hv(r, t) = a1
∂2u

∂r̃2
+ a2

∂2u

∂r̃∂t̃
+ a3

∂2u

∂t̃2
+ b1

∂u

∂r̃
+ b2

∂u

∂t̃
,

where a1, a2, a3 and b1, b2 are the coefficients to be determined.

We obtain using the previous computations and formula (2.5)

a1 =
1

ρQ+10
[(t2 − r4)2 + 4r2(r2t2)] =

1

ρQ+10
(t4 + r8 + 2r4t2) =

1

ρQ+2

a2 =
1

ρQ+12
[2(t2 − r4)(4r3t)− 8r2(rt)(t2 − r4)] = 0

a3 =
1

ρQ+12
[16(r6t2 + 4r2(t2 − r4)2] =

1

ρQ+2
· 4r2

ρ4

and

b1 =
1

ρQ+2

(Q− 3)ρ2

r
, b2 = 0.

Recalling that r̃ = r
ρ2 , we conclude ∆Hv(r, t) = 1

ρQ+2 ∆Hu(r̃, t̃).



4 Proof

Let u be a cylindrical function satisfying the equation

∆Hu+ up = 0 in Hn.

Then v, the CR inverse of u, is given by

v(r, t) =
1

ρQ−2
u(
r

ρ2
,
−t
ρ4

).

We have seen in the previous section that v satisfies the equation

∆Hv +
1

ρQ+2−p(Q−2)
vp = 0 in Hn \ {0}. (4.1)

Note that the function v might be singular at the origin and that

lim
ρ→∞

ρQ−2v(r, t) = u(0). (4.2)

We want to use the moving plane method adapted to this setting. We will

shift the hyperplane Tλ = {(x, y, t) ∈ Hn : t = λ}, which is orthogonal to the

t-direction and use the H-reflection given in definition 1.1. Let

Σλ := {(x, y, t) ∈ Hn : t ≤ λ}

and consider the function vλ defined on Σλ as follows

vλ(x, y, t) := vλ(r, t) = v(r, 2λ− t) := v(y, x, 2λ− t),

for any (x, y) such that (x2 + y2)1/2 = r. Since v may be singular at 0, vλ

might be singular at the point 0λ = (0, 2λ). From (4.1) and the invariance

with respect to the H-reflection, it follows that vλ satisfies

∆Hvλ +
1

ρλQ+2−p(Q−2)
vλ

p = 0 in Σ̃λ; (4.3)



here and in the following ρλ := |ξλ|H and Σ̃λ := Σλ \ {0λ}. Consider the

function wλ = vλ − v defined on Σ̃λ. Then wλ satisfies

∆Hwλ + c(ξ)wλ ≤ 0 in Σ̃λ (4.4)

where

c(ξ) =
p

ρQ+2−p(Q−2)
h(ξ)p−1 (4.5)

and h(ξ) is a real number between v(ξ) and vλ(ξ).

We claim that there exists R1 and C1 > 0, independent of λ, such that

|c(ξ)| ≤ C1

ρ4
, for ρ ≥ R1.

Indeed, observe that by (4.2), vλ and v are O
(
ρ−(Q−2)

)
; while clearly vp and

vpλ are O(ρ−p(Q−2)). Since ρλ ≤ ρ, from equation (4.5) there exists a constant

C > 0 such that for ρ large

| c(ξ) |≤ C

ρ(Q+2)−p(Q−2)(ρ+ 1)(Q−2)(p−1)
. (4.6)

The claim follows from (4.6).

Now let g(r, t) := (t2 + (r2 + µ)2)
−n
2 where µ =

√
C1

n
; C1 is the constant

above. It is easy to check that

∆Hg = −4n2µ2(t2 + (r2 + µ)2)
−n
2
−1.

Hence with this choice of µ we get

∆Hg

g
=

−4C1

(t2 + (r2 + µ)2)
. (4.7)

We define w̃λ = wλ
g

on Σ̃λ.

Before starting the proof let us give the following key



Lemma 4.1

(i) For λ < 0 and large enough in norm, if inf
Σ̃λ

w̃λ(ξ) < 0, then the infi-

mum is achieved.

(ii) There exists a R0 > 0 independent of λ such that if ξo is a minimum

point for w̃λ in Σ̃λ, satisfying w̃λ(ξo) < 0, then |ξo|H < R0.

Proof Observe that since v is cylindrical, w̃λ ≡ 0 in Tλ, hence the proof of (i)

is as in [8]. We shall give below proof of (ii).

Recall that wλ satisfies the equation

∆Hwλ + c(ξ)wλ ≤ 0 in Σ̃λ, (4.8)

where c(ξ) was given in (4.5). Hence w̃λ satisfies

∆Hw̃λ +

(
2

g

)
∇Hg · ∇Hw̃λ +

(
c(ξ) +

∆Hg

g

)
w̃λ(ξ) ≤ 0 (4.9)

Using equation (4.7) we see that there exists Ro > 0, independent of λ such

that for ξ ∈ Σλ ∩ {|ξ|H > Ro}

c(ξ)+
∆Hg

g
≤ C1

ρ4
− 4C1

(t2 + (r2 + µ)2)
≤ −3C1ρ

4 + 2ρ2µC1 + C1µ
2

ρ4(t2 + (r2 + µ)2)
≤ 0. (4.10)

Indeed, just choose R2
o = max{R2

1,
√
C1

n
}.

The inequality (4.10) implies that |ξo|H ≤ Ro. For, if |ξo|H > Ro then

∆Hw̃λ(ξo) = − (c(ξ) + ∆Hg/g) w̃λ(ξo) < 0

which is absurd since ξo is a minimum. �



Proof of Theorem 1.1 The proof consists of three steps. To start the moving

plane procedure we will prove

First step: For large negative λ, w̃λ ≥ 0 in Σ̃λ

This is clearly just a corollary of the lemma. Suppose by contradiction

that for large negative λ, inf
Σ̃λ

w̃λ(ξ) < 0. Then by (i) of the lemma the minimum

is achieved, say in ξo ∈ Σ̃λ. But then, by (ii), |ξo|H < R0 while |ξo|H ≥ |λ|.

We have reached a contradiction for |λ| sufficiently large.

Second step: There exists λ1 such that w̃λ1(ξ) ≡ 0

Define λ̃1 ≤ 0 to be the largest possible value of λ ≤ 0 with the property

that w̃µ(ξ) ≥ 0 for all µ < λ. We first prove that if λ̃1 < 0 then w̃λ̃1
(ξ) ≡ 0. By

continuity, clearly w̃λ̃1
(ξ) ≥ 0 and hence wλ1 ≥ 0. Further, by the maximum

principle, since c(ξ) is bounded, we can conclude that either wλ1 > 0 or wλ1 ≡

0. This is just an application of the Hopf lemma for ∆H , see [3] for details.

Hence we have that either w̃λ1 > 0 or w̃λ1 ≡ 0.

Suppose by contradiction that w̃λ1 is not identically zero. Hence w̃λ1 > 0.

By the definition of λ1, there is a sequence of λk converging from above to λ1

and a sequence of ξk ∈ Σ̃λk , such that w̃λk(ξk) ≤ 0.

We first check that the ξk stays away from the singular value 0λk . Since

in a neighborhood of 0λ1 we have c(ξ) > 0, wλ1 > 0 and hence ∆Hwλ1 < 0 it

is immediate that

there exist δ > 0, ε > 0 such that w̃λ1 ≥ ε in BH(0λ1 , 2δ). (4.11)

By continuity, (4.11) implies that the ξk are not in BH(0λk , δ).

The above argument also implies that the w̃λk reach a negative minimum

at ξok. We can apply lemma 4.1 to conclude that |ξok|H ≤ Ro. Hence we can



extract a subsequence still denoted ξok, that converges to ξo.

Continuity implies that w̃λ̃1
(ξo) ≤ 0. But since by hypothesis w̃λ1 > 0 in

Σλ1 , it follows that ξo ∈ Tλ1 and w̃λ1(ξo) = 0. The Hopf lemma would then

imply that X1w̃λ1 > 0. We have reached a contradiction since ∇w̃λk(ξk) = 0.

Hence we can conclude that wλ̃1
≡ 0.

Consider now the case when λ1 = 0. Then w̃0(ξ) ≥ 0. We repeat the

procedure starting with λ large positive. Hence, either one finds a positive

value λ2 > 0 such that w̃λ2(ξ) ≡ 0 or the procedure continues up to 0. But

then, together with the previous result, we get λ2 = 0 and w̃0(ξ) ≡ 0.

Third step. Conclusions

Since p < Q+2
Q−2

, equations (4.1), (4.3) and vλ1 = v imply that |ξλ1|H ≡ |ξ|H ,

but this holds true if and only if λ1 = 0. Hence we have proved that v is even

in t. Therefore u is even in t. But since we can chose the origin on the t-axis

arbitrarily, it follows that u is independent of t. However, this implies that u

satisfies the equation

∆u+ up = 0 in R
2n,

here ∆ indicates the Laplacian in the variables x and y. Now, by standard

non linear Liouville theorems for the Laplacian (see [8] and [13]) if p < 2n+2
2n−2

then u ≡ 0. This concludes the proof since Q+2
Q−2

= 2n+4
2n

< 2n+2
2n−2

.
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