Calc. Var. 20, 343-366 (2004) Calculus of Variations
DOI: 10.1007/s00526-003-0193-1

Isabeau Birindelli - Francoise Demengel

Existence of solutions for semi-linear equations
involving the p-Laplacian: the non coercive case

Received: 23 March 2001 / Accepted: 7 January 2003 /
Published online: 2 April 2004 — (©) Springer-Verlag 2004

1. Introduction

In this paper we give necessary and sufficient conditions for the existence of solu-
tions of the following equation

—div(|Vu[P=2Vu) + (g — AuP~t = fu?= u > 0in 2 (1)
u=~0 on 942, ’

where (2 is a bounded smooth domain of RV, 1 < p < N,p < ¢ < % = p,
f and g belong to L°°, and A € R. By solution of (1.1), we mean a function
u € Wy (£2) satisfying (1.1) in the weak usual sense.

In particular we shall study (1.1) considering the position of \ with respect to the
principal eigenvalue. Precisely, itis well known that the concept of “eigenvalue” and
“eigenfunction” has been generalized by many authors to the quasi-linear setting
of the p-Laplacian A, := div(|V.|P~2V.), in particular let us recall the works of
Allegretto and Huang in [2], Anane in [3] and Lindqvist in [19]. We shall now state
their definitions and the principal properties obtained in the works cited above.

Definition 1.1 )\, the first “eigenvalue” of —div(|V.|P=2V.) + g in W, P(02) is
defined by

A\ = inf {/ |w|P+/gw}.
{pew, P (2),|vl,=1} L/ Q

It is by now a classical result that there exists ¢, positive in {2 for which this
infimum is achieved. ¢ is called the “eigenfunction” corresponding to A;.
In particular ¢ satisfies

{ —div(|Ve[P2Ve) + (g — A)¢P~ L =0 in Q2 (1.2)

=0 on 9.

Furthermore ¢ is simple, i.e. any solution of (1.2) satisfies v = k¢ for some k € R.
In the sequel we will normalize ¢ in the LP({2) norm.

L. Birindelli: Universita di Roma “La Sapienza”, Piazzale Aldo moro, 5, 00185 Roma, Italy
(e-mail: isabeau @mat.uniromal.it)

F. Demengel: Université de Cergy Pontoise, Site de Saint-Martin, 2 Avenue Adolphe
Chauvin, 95302 Cergy Pontoise, France (e-mail: Francoise.Demengel @ math.u-cergy.fr)



344 L. Birindelli, F. Demengel

Clearly for any A < A; the only nonnegative solution of

{ —div(|Vu[P=2Vu) + (g — A)uP~' =0 in 2

u=20 on 012 (1.3)

isu=0.
On the other hand )\ is isolated, i.e. there exists 4 > 0 such that for any A in
(A1, A1 + 0) the only solution of (1.3) is u = 0 as well.

Our first results concern some necessary conditions for the existence of solu-
tions.

Theorem 1.2 Suppose that there exists a nonnegative solution v % 0 of equation
(1.1). Then
1) For A\ < )y, the set 27 defined as

N ={x e f(r)>0}

is nonempty.

2)For x> M\, 27 :={x e, f(x) <0} #Dand [, fp? <O.

3)For X=X, 27 # 0,027 #0and [, fp? <O0.
Theorem 1.3 There exists \' > A1 such that there are no non trivial non negative
solutions of equation (1.1) for X > .

Theorem 1.4 Suppose that there exists \ > \1 forwhich (1.1) possesses a solution.

Then, (1.1) has a solution for A €)1, A].

Our next result concerns the existence of solutions of equation (1.1) in the sub-
critical case:

Theorem 1.5 Suppose that 27 and 2~ are nonempty, that p < q < p*, and
Jo f@? < 0. Then there exists 6 > 0 such that for X € (A1, A\ + ) equation (1.1)
has at least two non zero and nonnegative solutions of equation (1.1). For A = Ay
there exists at least one solution of (1.1) nonnegative and not identically zero.

Remark 1. The solutions are obtained as minima of the two variational problems:

Q) g = inf { [Vul? +/ (g — )\)|up}
{ueWs?(R2), [, flult=—1} Q ?

Hrg = inf {/ [Vul? +/ (g — )\)|u|p}.
{ue€Ws P (82), [, flula=1} ? ?

,and it is easy

and

Indeed, if u € W1P(£2) realizes oy 4 (respectively j 4), so does |u
to see that u satisfies:

—div(|VuP72Vu) + (g — NPt = —ay 4 fu?™!
(respectively
—div(| VP2 Vu) + (g = NuP ! = iy fut ).

By a standard scaling argument one obtains two nonnegative solutions of equation
(1.1), one being such that [, fu? > 0 and the other such that [, fu? < 0.
For simplicity of notation let ay := )« and iy 1= pix p+.
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Theorem 1.6 Suppose that ¢ = p* and that 2%, 2~ # 0, that X > A\ and that
Jo f@P" < 0. Then there exists § > 0 such that if X € (A1, \y + ) there exists at
least one solution of equation (1.1). If moreover,

- =
px < K(N,p) Psup[f|?",
then, there exist at least two non zero solutions of equation (1.1).

Remark 2. As in the subcritical case, the solutions are obtained as minima of o)
and ).

Remark 3. Accordin_g to Theorems 1.4 and 1.5 the solutions qf equation (1.1) exist
for an interval, (A1, A). On the other hand for some A €]A1, A, there may be only
one solution, because for A not close to A\; nothing can be said about the sign of

J ¢, ful when wy is a solution obtained by Theorem 1.4.

2
For p = 2 i.e. the classical Laplacian and 2 < ¢ < 7712 problem (1.1) has
n—

been extensively studied when f > 0. Since we are concerned with the case where
f changes sign, let us recall the main results in that case. Necessary and sufficient
conditions for the existence of solutions for (1.1) have been given by Alama and
Tarantello [1], Berestycki, Capuzzo Dolcetta and Nirenberg [5] and Ouyang [20]
in the non coercive case.

Alama and Tarantello in [1] and the authors of the present paper in [6] have
studied the critical case i.e. ¢ = % Let us also mention the very interesting work
of Chen and Li in [7].

Itis well known that the p-Laplacian appears in many contexts : Non-Newtonian
fluids, nonlinear elasticity and reaction diffusion problems just to name a few.
Indeed equation (1.1) has been extensively studied for general p and g; in particular
for g critical, existence of solutions of problem (1.1) was studied by Guedda and
Veronin[14] for f = 1, g(x) = A = 0. Demengel and Hebey in [10] gave existence
of variational solutions when f changes sign and the functional o |IVulP + /. olg—
A)|ulP is coercive i.e. A < Ap.

In [12], the authors study a similar problem with (g — A\)uP~! replaced by
cteu® 1 with k # p.

Always for general p but g subcritical the non coercive case was also studied by
Drabek and Pohozaev in [11]; they use the fibering method to obtain some existence
results for A close to \;. See also Pohozaev and Veron [21] for the Neumann
problem.

Finally for ¢ critical, Drabek and Huang studied the problem in RY [10], while
Arioli and Gazzola in [4] proved existence for solutions changing sign through a
linking method.

The above Theorems are the natural extension to the p-Laplacian of the results
obtained in [6]. Nonetheless the proofs differ from the case p = 2. In particular
the proofs of Theorems 1.5 and 1.6 follow the approach taken by Ouyang in [20].
Although we should mention that Ouyang treats the sub-critical case and he uses
bifurcation technic that don’t hold for p # 2.
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The outline of the paper is the following. In the next section we prove the
necessary conditions (i.e. Theorem 1.2 and 1.3) using among other things Picone’s
identity for the p-Laplacian (cf Allegretto and Huang [2]). In the third section we
prove the existence results first for the sub-critical case and then for the critical
case. Finally in the last section we construct some test functions to show that the
condition on p of Theorem 1.6 can be satisfied and easily verified.

2. Proofs of Theorem 1.2, 1.3, 1.4.

Let us recall Picone’s identity for the p-Laplacian as formulated by Allegretto and
Huang in [2]. Suppose that v and w belong to W1 (§2) with v > 0 and w > 0,
then

P v?
[V V(wp_1> ~o(w) >0
everywhere in §2, for o(w) := |[Vw[P~2Vw.

Moreover if equality holds then w = kv for some constant k € R.

Proof of Theorem 1.2. Since in the case A < ) the functional

i = [ [var+ [ g =Dl

is coercive the first assertion is obvious.

Let us prove 2. Suppose that A > A, and let u be a nonnegative solution of
(1.1) . Adapting the strict maximum principle of Vasquez, one has v > 0 inside {2
. In addition, from regularity results of [13], [23], [17], [9], u is Cl"‘(.@), for every
a € [0, 1]. Using once more the strict maximum principle inspired from Hopf’s
lemma, as given in [24], one has the existence of some real € > 0 such that ¢ > eu
on {2. As a consequence, one is allowed to multiply the equation (1.1) by (u)!~9¢1.
Integrating by parts on {2, one obtains

[ o= [ otva=rgn + [ (g— et

0
q q—1
=) v (£) 44 [ ot0vo) (£)
(e} U 0 U
+ / (g — NuP9¢1. 2.4)
0
Now we multiply equation (1.2) by ¢9~PT14P~9 and integrate over {2;

/ o(6). V(97 P ul ™) +/ (9= A)o™uP =0
2 12

and then

aven) [ () w00 [ oo (2)

+ / (g — A1)o%uP™1 = 0. (2.5)
2
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Subtracting (2.4) to (2.5) , one gets

el /Q M (i)qp + (-9 /Q o(¢).Vu (i)”ﬂ

—q/Q@)q1v¢.a(u)+(q—1)/n(i>q|w|ﬁ+

()\—)\1)/ PluP™1 = —/ fol. (2.6)
[0 Q
Now apply Picone’s identity as follows
uP
[VulP —V <¢p1> ~o(¢) > 0.

q
Multiplying it by (%) and integrating over {2 it becomes

q
Lwer (%) o v otonr et
2 U 7]
+(p- 1)/ [Vo|PuP~ 1?7 > 0. (2.7)
Q
Similarly, exchanging the role of v and ¢ i.e. considering

¢P

up~1

Vol = V(—=)-o(u) 20

s 4P
and multiplying by (E) one gets

o @) o) e
so-0 [ (2) w0 e

Multiply (2.8) by 1% and (2.7) by % — 1 their sum gives

e [ 1907 (2) v oo [vuo (2)

u

_q/Q (i)“ V- o) + (g — 1)/Q IVl (i)q >0. (29

Substracting (2.9) from (2.6) we obtain

/ for+ (A=) [ ¢%uP™9 <. (2.10)
2 2
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When A > Ay, this implies that |, o J¢? < 0and 2) is proved.
For the proof of 3), let A = \; and let u be a nonnegative solution of equation
(1.1). Multiplying it by u one obtains

/Q|Vu|p+/9(g—)\1)up:/nfuq.

Since the functional Iy, is non negative, one has || o Ju? > 0. Suppose that it is
zero. Then u would be an eigenfunction for the eigenvalue \;, which would imply
that fu? —1 = (. Then v must be zero on a set of positive measure, which contradicts
the fact that u is parallel to ¢ > 0 in 2. We have proved that [ o fu? > 0, this
implies that 2% # .

We shall now prove that | o fo? <0, this of course implies also that £2~ # ().

From the previous computations in the proof of 2), and precisely from (2.6)
with A\ = Ay and from (2.9), we obtain that

@=p+1) [ IvoF (f) =) [ Tu-oo) (i)ﬂ

o[ (2) oo @ [ (2)s
- —/qusq. @2.11)

As a consequence |, o J@? < 0. Suppose by contradiction that /. o fo? =0, then
the left hand side of the previous identity is zero. Recalling (2.8) and (2.9) the left
hand side is a sum of two nonnegative quantities, hence they must be both null.
Therefore we have obtained that

oo (2)" o[ (2) wostw

+(p—1)/9 <¢> [Vul? =0 (2.12)

u

+ (p— 1)/ |[Vo[PuP™ 997 P = 0. (2.13)
0

and

Clearly (2.12) and (2.13) imply that

|[VulP =V <

and

Vol - v (u¢’p1) () = 0.
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Each of these identities implies that ¢ is parallel to . Then v is an eigenfunction.
This implies that fu?~" is identically zero which is a contradiction. ad

Proof of Theorem 1.3. Let B be a ball on which f > 0, B CC §2%. Let then
(1, u*) be the non zero and non negative normalized solution, of

—App+ (—p* )P~ =0 in B
=0 on 0B.

Suppose that a solution of equation (1.1) exists for A such that |g|oo + p* < A,
u > 0 and non identically zero. On B, by the strict maximum principle of Vasquez,
u > 0. Using Picone’s identity, one has

vw—v( Ll ) o(u) > 0
wup—l )’ =

in B, hence, integrating over B
0< [+ [ g-xwr .14
B B

here, we have used the fact that 1) = 0 on B and the equation verified by u, since

~Apu+ (g —NuPt = fut™t >0

on B. (2.14) of course contradicts the choice of \. a

Proof of Theorem 1.4. Let A be such that A\; < X and take A €]\;, A[. Let @ be a
solution of (1.1) for . Then u is a supersolution of (1.1) for A. Indeed

—Ayi+ (g —NaPt = fatTt + (A= NaPt > far!

and & = 0 on the boundary. On another hand, taking ¢ small enough, €¢ is a
subsolution, since

~Ap(ed) + (9 = N(€d)P ! = (A = NPT 1oP T < fel g,

(using p < ¢q and (A1 — A\)eP~ L¢P~ < (). Moreover, using strong maximum
principle of Vasquez and regularity results, one can choose € small enough in order
tohave u > e¢. Finally we use the following Proposition, whose proof can be found
in the appendix and is a mere adaptation of the classical sub and super solution for
p = 2. (see e.g. [15], see also [22]):

Proposition 2.1 Suppose that f(x,t) = a(z)[t|9=2t+b(z)[t|P 2t with1 < p < q
with a and b two continuous and bounded functions on §2 Suppose that u is a weak
supersolution for —Apu+ f(x,u), & = 0 on 892, and that v is a weak subsolution
with u = 0 on 0f2. Suppose that there exists some constant ¢ and C such that

—w<c<u<u<C<+x
Then, there exists a solution u between u and u

Using this Proposition with f(z,u) = (g — \)uP~! — fu?!, and u = €@, one
obtains that there exists a solution which is such that

€ <u <.
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3. Existence of solutions

Proof of Theorem 1.5. This proof is inspired by the arguments used in [20]. We
begin with the subcritical case. Suppose that ¢ < p*. Let us recall the following
notations:

Ay = ) inf {/ |Vu|P+/ (g — Al)u|p}
{ueWy?(2), lulb=1,[,, fui=0} L/ 0

« inf / VulP + / A up} (3.15)
M, f Slule= —1}{ v 9=l

and
Hrg = inf {/ |Vu|p+/ (g)\)|u”}. (3.16)
! {uv fQ f‘ulqzl} 2 (%}
Let Iy (u) := [, |Vul? + [,(g — A)|ul?.
We w111 prove the following facts
L. A7 > 0.

2. For A €]A1, A1 + Ag[, @ ¢ < 0 and it is achieved; avy, 4 = 0.
3. For A €]A1, A1 + AJ[, pa,q > 0 and it is achieved. Moreover y, 4 > 0.

Proof of 1. By the definition of A1, A7 > 0. Suppose by contradiction that A7 = 0.
Let (u,,) be a minimizing sequence. Since |V|uy,|| = |Vu,,|, one can assume that
Uy > 0. Since |ug|, = 1and [, [Vu, [P + [, (g — A1)ub, — 0, then [, [Vuy,|?
is bounded; hence (u,,) is bounded in WO1 P Extracting from it a subsequence and

passing to the limit, one gets that there exists some u > 0, weak limit of (u,,) in
WP (£2), such that

/ |Vul? +/ (g — A\)uP <0. 3.17)
17 2

Clearly (3.17) implies that

/|Vu|p /g A)uf = 0.

and then u is an eigenfunction for \; and then itis parallel to ¢p. Moreover u € VVO1 P,
JolulP = 1 and [, fu? = 0, which contradicts the assumption [, f¢? < 0.
Finally A\; > 0.

Proof of 2. In order to prove that ar) , < 0 for A > Ay, let us take, as an admissible

function, v = —— . We then have

—/, fo)u

ayg < Ih(v) = %I (¢) = !

. = (M- N<o.
(= [ fo9)s (— [ fo?)

Qs



Existence of solutions for semi-linear equations involving the p-Laplacian 351

Now we will check that

Qx,g > —O0.

If not, there would exist a subsequence (u;), u; > 0 for all i, such that f o f ug =-1
and I (u;) — —oo. Clearly |u;|, — +o00 since

M/ (g —Mul < axg.
e}

Let w; = % One has [, fw! — 0, and (w;) is bounded in WP (£2), since
Ujlp
Iy (u; -
lwilp, =1 and/ |Vw; [P +/ (g —Mw? = ,\(up) < 0 implies
2 2 |wilp

/ Vuil? < 19 — M-
0

Then, there exists a subsequence still denoted (w;), such that w; — w weakly in
WLP(2). Observe that

/ lolP = 1 and I (w) < 0.
(9]

This contradicts the definition of A, since [, fw? = 0.and A €A1, Ay + \j[. We
have proved that o 4 > —o0.

We shall now see that v 4 is achieved. Let (u,), u, > 0 be a minimizing
sequence for vy 4 i.€.

/ |Vun|p—|—/(g—/\)ufl—>oz,\7q,
0 0

/Q ful =—1.

Let us prove first that |u,|, is bounded. If not, one can argue as previously by

considering w,, = ——. It is easy to see that (w,, ) converges weakly in WP (£2),

|un‘p
up to a subsequence, towards some function w > 0 which satisfies f o fw? =0,

|w|p, = 1 and
/ |Vw|? +/ (g —Nw? =0.
7 2

This contradicts the definition of \. Hence [, |u,|? is bounded, and sois [, [Vuy?.

By extracting from (u,,) a subsequence, one obtains that there exists u € WO1 P,
u > 0, such that | o fu? = —1 and by lower semi-continuity of the semi-norm
|Vul, with respect to the weak topology,

/ |Vu|p+/ (g—MuP < axg.
2 fe)
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Finally using the definition of vy 4, u is a minimizer for vy 4, hence it is a nonzero
solution of

—div(|VulP72Vu) + (g — NuP ™t = —ay o fud™t.

Proof of 3. Acting as we did for a , one can prove that ;1) , > —oo. We are now
going to check that 1 4 is achieved.
Indeed, let u,, be a sequence such that u,, > 0,

[ v+ [ =20 =
/fuqzl

Suppose that |u,|, — oco. Then considering w, = ——— one gets, by passing to

‘un b
the limit that there exists w > 0, a weak limit of (w,,) in WP (£2), such that

/|Vw|" /g AwP <0

and |, o fw? = 0, which contradicts the assumption A €A1, A\ + )\;[ Then (uy,)
is bounded and we pass to the limit to obtain

/|Vu|P /g M = pirg

and [, fu? = 1. Hence 1 4 is achieved.
For A = Ay, iy, 4 > 0, but since it is achieved, if i1, 4 = 0, we would have an
eigenfunction u such that |, o fu? = 1, which contradicts the assumptions. Then

My ,q > 0.
For A > Ay let ug > 0 which realizes the minimum in y) 4. Then :

—Apug + (g = Nub ™t = g fud ™.
Using the procedure of the proof of Theorem 1.2 for u,, inequality (2.10) becomes
i [ 07+ 0= [ o <o
0 Q
Using [, f¢? < 0and A — A1 > 0, one gets f5 4 > 0. O

Let us now state and prove some results concerning oy 4 and fi 4.

Lemma 3.1 The following convergences hold:

1;1&11 Qxg =y ,q=0, (3.18)
lim pxg = ta g (3.19)

A=A
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Lemma3.2 1. X5 >Timg A} > lim, . A% := A% > 0.
2. For Ay S A< A+ A% then 0 < lim,_,opn g < mq_}p*u,\,q < ur(=

Fxp*)- L
3. For Aclose to A1, ax(= aypr) > —00 and limg_,pray ¢ < i

Proof of Lemma 3.1. Suppose by contradiction that (3.18) does not hold, then there
exist some number o < 0 and a sequence of A € R, A — Ay, and (uy) C W2P(£2)

such that
/|Vu)\|p+/(g—)\)|u,\|p§a.
Q 2

Moreover one can assume that uy > 0. If (u)) is bounded, we may extract from it
a subsequence weakly convergent to some u € WO1 P such that

/ [VulP + / (g—A)u? <a <0,
which is absurd.

On the other hand if (u)) diverges we can normalize it and then we obtain a
sequence (wy) such that [, [wy|? = 1. By extracting a subsequence, there exists
w > 0, such that [, [w|? =1, [, fw? = 0and

/|Vw|p /g A1) w? < 0.

This would imply that w is parallel to ¢ which is absurd since [ o f9? <.

Let us now prove (3.19). Let us define ji, := limy_,, /1) 4. One already has
ftg < pe,,q- Let uy which satisfies uy > 0 and

—Apux+ (9 — )\)uﬁ’fl = ,u,\,qfug\*l (3.20)

/qugzL

As we did above , one can prove that (uy) is bounded in the W' norm. By
extracting a subsequence, one gets by passing to the limit when A — )\

Lvar+ [ @=aw <

andu > 0, |, o Ju? = 1. This clearly implies that ji; > 1, 4 and gives the required
result. O

Proof of Lemma 3.2. Let us prove 1, and first that lim,_, . A7 > 0. Since A is
achieved, let u4 > 0 be a solution of

/Q Vg P + /Q (g M)ul = X,
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luglp = 1 and [, fu? = 0. Suppose by contradiction that lim, , . A% = 0. Then,
by extracting from (uq) a subsequence, one gets by passing to the limit when ¢

tends to p*:
/ [Vul|P +/ (g—A)uP <0
Q 0

and |ul, = 1. Since Iy, is coercive, [, [Vul? + [,(g — A1)u? = 0, and the
sequence [, [Vug|? tends to [, [Vu|P. Hence u, tends to u strongly in WP(£2),
and finally |, o fuP” = limg_sps |, o Jud = 0. This is a contradiction since ¢ is
simple and | o foP" < 0.As aconsequence A* > 0.

We now prove that A* < /\;‘,*. Indeed, let w > 0 be a C' function, such that

f_of“p* =0,

ulp =1, and
Iy, (u) < A5 e

If there exists an infinite sequence ¢ — p*, such that f o Ju? = 0, one has the
desired result. If not, there exists an infinite sequence ¢ — p* such that either
fQ fuf > 0 forall g, or fQ fu? < 0 for all q. Suppose that we are in the first case

_ Jo Fur
fgfuq_fgfd)q

q — p*. Let us define

and define a(q) . Then a(q) € [0,1], and a(q) — 0 when

Q=

vg = (a(q)9? + (1 — a(g))u?) 7.

By the regularity properties of ¢ and u, v, belongs to WO1 P(£2), vy > 0 and
J o fvd = 0by the choice of a(q). Moreover it is easy to check that v, tends to u
in WP (£2) strongly. As a consequence

(L4 o(1) < A (/9“5> < Q\Vva\p—l—/ﬂ(g—/\l)vg <Nt et o(l)

when ¢ — p*.This implies that \* < A7.. Suppose now that there exists a sequence
q — p* suchthat [, fu? < 0.Letug be nonnegative in C*({2), such that [, fuf >
0 and define )
va = (a(q)ug + (1 — alg))u’)*,
Jo fu?

where a(q) = ———*————;. One concludes as in the case [, fu? > 0.

a fouq—foug
To prove 2., let € > 0 be given and let v be such that © > 0, fQ fup* =1 and
In(u) < px +e.

Then for ¢ close to p*, fQ fu? > % and taking v, = , one gets, for ¢

(f, fu9)a

sufficiently close to p*,

Pag < In(vg) < pix + 2¢.
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We will prove 3. by contradiction. Hence suppose that there exists a sequence
An — A1 and a sequence (uy,), un, > 0 such that [, fub’ = —1and I, (u,) <

u .

—" and extracting a subse-
) ) |Unp

quence from it, one gets that there exists w > 0 such that

—n. Clearly |uy|, — 400. Then defining w,, =

I, (’LU) <0.

This in fact implies that strong convergence holds and then |, ol wP” = 0, which
contradicts |w|, = 1 and ¢ is simple. O

Before giving the proof of Theorem 1.6 let us recall one of the key ingredients
employed herein i.e. the famous concentration compactness principle of P. L. Lions
[18]:

Lemma 3.3 Let {2 be some bounded open set in R", and (uy,) be some sequence
in WP (£2), which is bounded in WY (§2). Then there exist a subsequence of
(uy), still denoted (uy,) for simplicity, two nonnegative measures ji and v on §2, a
sequence of points x; in {2, two sequences of nonnegative real numbers 1i; and v;
and a function w in WP (2), such that

Vugl? = p > [Vl +> " pids,

(the convergence being tight on 2 i.e. [, |Vup|P — [5 ),

|uk|p* -y = |u|p* + Zuidm
i

(the convergence being tight on (2 i.e. fQ |uk\p* — fﬁl/ ), with the inequality

vi < K(n,p) 7 ps. (321)

Proof of Theorem 1.6.
First part. We prove the existence of solutions for o) and for A sufficiently close to

A1. According to Lemma 3.1 above, )\lirr){ ax = 0. One takes A sufficiently close
—A1

to Ay in order to have —ay < K(N,p) P (sup \f|)%, and A < A + A*. Let (ug),
ug > 0 be a solution for the problem defining avy 4.

Claim. (uq)q is bounded in LP.

Suppose that it is not true. Then, proceeding as in the proof of Theorem 1.5,
there would exist a sequence (w,) such that w, > 0, |w,|, = 1, and

/ |Vwg|P +/ (g —Mwh <0. (3.22)
17 2
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Extracting from (w,) a subsequence one obtains that there exists w, weak limit of
wWgq in WP such that w > 0, |lw|, =1, and

/\Vw\p /g AwP < 0.

If f o pr* = 0, this contradicts the assumption A < A; + A* < A\; + )‘;*' If
Jo fwP” >0, Ix(w) > pa(f,, fwP ) > 0, and since 1z, > 0 one would obtain
that ) = 0 = I\(w), and using lower semi-continuity for the weak topology

Iy(w) <lim, _, . Ix(w,) <O0.

q—p*

Finally Iy (w) = limg_,+Ix(wy) and then [, [Vwg[? — [, |[Vw[?, strong con-
vergence holds in fact, hence f o pr* = limg_,p~ f P fwg = 0, which is a contra-
diction of the assumption |, o fw?” > 0.

Finally suppose that | o fwP” < 0. Then, applying P.L. Lions’ concentration
compactness lemma recalled above, one gets that there exists two bounded and
nonnegative measures g and v on {2, some countable set of points (z;) in £2,
and some sequence of non-negative numbers (1;) and (v;), which satisfy, up to a
subsequence

[Vwglh = p > |[Vwlb + > wids, (3.23)
wgl? = v = [wP" + ) vids,. (3.24)

Passing to the limit in (3.22), in the equality [ o fwi = ﬁ, and using (3.23) and
(3.24), one obtains
- Z His

[ 107 + X wifw) =0
2 i
On the other hand, using f o pr* < 0, one has
“ (‘/pr*}ﬂ < D) = p
o}

Hence,

%

Z,Ui < —ap (Z Vz'f(%‘)) :

Finally

Zui < —ay Z(vif(mi))pi* < —axsuplfIPL*K(N,p)pZm < 521%
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for some § < 1. One obtains that p; = 0 and then v; = 0, as well as fQ pr* =0,
which contradicts the assumption.
As a consequence the claim is proved i.e. (uq) is bounded in LP.

Furthermore, since
ez (=N [ ful?
o

the sequence oy 4 is bounded too. Let us denote by & the limit of a subsequence.
Clearly @ < a. Since (uq), (uq > 0) is bounded, one may extract a subsequence
such that u, — win WP, Let us recall that u,, satisfies:

—Apug+ (g = Nub™! = —ay o fud™t,
{ plq + ( Juy q Uq (3.25)

Jo ful=-1

Let us denote by o the weak limit of a subsequence in LD (2) of oy :=
|Vug [P~ Vu,. Then, passing to the limit in equation (3.25) one gets u > 0 and

—div(o) + (g — NP~ = —afu? L. (3.26)

Using again PL. Lions’ concentration lemma, there exist two bounded and
nonnegative measures 4 and v on {2, some countable sets of points (x;) in £2,
and some sequence of nonnegative numbers (;) and (v;), which satisfy, up to a
subsequence

[Vug|p — p > [Vaulp + Z pide, tightly on 2,

7

ugl? = v = |U|p* + ZVZ-(SI“ tightly on £2.

3

Let us multiply equation (3.25) (resp. equation (3.26)) by uqp (resp. ugp), for a
function ¢ in D({2). One obtains

/ [Vug|Pe —I—/ o4 - Vou, +/ (g —Nubp = —a,\,q/ fulo  (3.27)
Q Q [0 [0
and
/ (0-Vu)p +/ (0-Vo)u +/ (g —NuPp = —d/ fuP o, (3.28)
Q Q 2 0
By passing to the limit in (3.27), one gets

/Qu<p+/Q(U-V<P)U+/Q(9—/\)ups0 (3.29)
——a([ fure+ IR
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Subtracting (3.28) from (3.29) one obtains
/Q(M —o0-Vu)p =—a (Z sz(xz)go(xz)> . (3.30)

Using Lebesgue decomposition of p := ¢ 4 u®, where p®° is the absolutely
continuous part of u, one derives

[VulP < p* =0 Vu, (3.31)

Z/’Lzéml < ,U/ —O[VZf( 7,)65177, (332)

Suppose first that x; is such that f(x;) < 0, then u; = v; = 0.

On the other hand, passing to the limit in equation (3.27) and using lower
semi-continuity one has
I (u) <a<0.

If [, fuP” = 0 this contradicts the assumption A\ €]\, \; + A IE S, fuP” >0
one also gets a contradiction, since

0 < py </Q fup*)p* < In(u).

Suppose that fQ fup* < 0, then using (3.31) and (3.28) one has

) (—/qup*):* i <-a [ fw <o [

From this, one obtains that — [, fuP” <1.
On the other hand the identity

/qup* + Zl/,;f(xi) =_

yieldsto >, v; f(x;) < 0, and since we are in the case f(x;) > 0 we getv; f(z;) =
0 for all 7. Using (3.32) one obtains that fQ fu?” = —1and p; = 0. We have then

a,\</ |Vul? + / g— )\)up</o.Vu+/(g—)\)up:d§a
o 7

which implies that @ = ay, 0.Vu = |Vu|P, the convergence of Vu, is strong in
WLP(£2) and avy, is achieved.

Second part. Since limy_, x, oy = avy, = 0, one can choose A sufficiently close to
A1 in order to have

ay > — (Sup|f|PL*K(N,p)p) .
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Now let u, be a function for which 1 4 is achieved, ug > 0.
Claim. (uq) is bounded in LP when ¢ goes to p*.

Suppose on the contrary that |u,], tends to infinity. Then, defining w, = —+

]
alp
one obtains that w, tends, up to a subsequence, to a function w & VVO1 P2),w>0

which satisfies |w|, = 1, and

/|Vw|P+Zm /g NuP <0,

fwP” + Z vif(z;) =0
0 -

where (u;) and (v;) are as in the first part.
Suppose first that f ol w?” = 0. Then one gets a contradiction with the condi-

tions on A since
/ |Vw? + / g—Mw? <O0.

Suppose that | ol wP” > 0. Then by the definition of 1, one would obtain that

([ 'y < wup s [ g-aer <0

9 0

Since p) > 0, this may happen only if uy = 0, and in the same time I (w) = 0.
Then, coming back to the previous inequalities, one has

Iv(w) =0 <lim, . Ix(wg) <0

p*

hence I (wq) — I\(w), and strong convergence holds. This implies that [, fuwP”
=limgp+ [, fwd = 0, which contradicts the assumption [, fwP” > 0.
Suppose finally that | Q fwP” < 0, then one can write

a (—/ pr*)p S/ |Vw|§+/(g—/\)w”§—2ui
o Q o -

and then

3w < (o) (Z ui|f<xi>|> p

i

) (Zuﬁf(z,;nzf’*)
< (o) sup 1% 3 ok
§5ZM
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for some § < 1.Finally one has u; = 0 forall ¢ and then v; = 0. Then fQ fw? =0
which is absurd, as we remarked before. We have obtained that (u,) is bounded.
This proves the claim.

Let 8 = 3 (K(N7 p)~Psup |f\% - /,L)q) and suppose that A is sufficiently
close to Ay in order to ensure that

‘Oé,\| < B.
Let (uq) be a sequence of nonnegative minimizers for y5 4, ug > 0. Then

—Apug + (9 — )\)ufl’_l = u,\,qfug_l (3.33)

[ nig=1

By the previous computations, the sequence (ug) is bounded in L?, and since (£ 4)
is bounded too, (u,) is in fact bounded in W?. Let us extract from it a subsequence
such that

Ug — U

in WP weakly. Let us denote by v the limit of some subsequence of 1 4. One

has v < py < py, -
Acting as we did in the first part, one gets

—div(o) 4 (g — MuP~! =y fuP L, (3.34)

denoting by o a weak limit of |V, [P~ Vu, in L7 (£2).
Multiplying equation (3.33) (respectively (3.34)) by ug¢ (respectively by uy)

with ¢ € D({2) and integrating over {2, introducing measures 4 and v as in the
concentration compactness lemma one gets

p*—oVu=0

D pibi < pt =Y vif(i)d;. (3.35)

This last identity yields that -y cannot be zero: if it was, one would have p; = 0,
hence v; = 0, and in the same time,

/Q\Vu|p+/9(g—)\)up20
/qup* =1.

This is impossible, since for example, one has supposed that A is not an eigenvalue.
Then v > 0. Moreover, if ; is such that f(z;) < 0, then p; = 0, and so is v;.
Since one has

and

|[VulP < p =0.Vu,
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coming back to (3.34), one gets

/Q\Vu|p+/9(gf/\)up§/00~Vu+/9(gf)\)up:7/gfup*,

On another hand the identity
/fu”*+§ vif(z;) =1
2 i

implies that >, v; f(2;) < Lif [, fuP” > 0. Suppose now that [, fu?" < 0.
Then vy = . v; f(x;) > 1. In the same time one has

o <—/qu'“):* < [1vur+ [a=vuw<q [ o’

and then )
_ 1- 2
vy <1+ (Oé) P
Y

As seen before if f(z;) < 0, u; = 0, hence v; = 0. If f ( i) > 0, the previous

I,L
p*

calculations imply that for all 4, v; f(z;) < 1+ (ﬂ) . Finally
Y

N <1+(_>>
Oé 1- 5 ¥
1+( ;

-5 o
P 1
< sz xz sz(:EZ) S TA 2 VB (1 + (—Ot) 1p*>
1+ = )”PL* 7

e 1%) pamit?

<4 ( N, p)? sup | F|%

< < Suplfl iy - a)

<5 (3.36)

for some 6 < 1. As a consequence p; = 0 and then v; = 0. Finally

/fup*zl,

(94

mé/ |Vu|p+/<g—x>|u\ps/ a.vw/(g—mwm
0 (9] (9] 0
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hence ) = 7, |VulP = 0.Vu = p, the convergence is strong, and u is a minimizer
for puy. ad

Remark 3.4 We have also obtained that py > 0.

Corollary 3.5 Suppose that |, P foP" < 0 and that there exists a minimizer for
A = Ay, then there exist at least two minimizers for X\ > A1, and X sufficiently close
to M.

Proof. Suppose that there exists a minimizer u; for the problem with A = A;. Then

inf { [Vulb +/ (9 — /\)up} < In(ur) < Iy, (u1)
{ueWy P(£2), [, flulp*=1} n n

= inf I/\1 (u)
1
K(N,p)Psup f(z)7™

<

As a consequence, using Theorem 1.6 one obtains that I, has a minimizer. a

4. Estimates and test functions

Letzg € RY and r = |z — x| the euclidean distance from xq to z. For p > 1
given, p real such that p < N, we define the function u. by

ue(x) = (e + rp/pfl)lfN/p

and the function v, by

1-N/p

vela) = (e + 77771 V()

where ¢ : R — R, nonnegative and smooth, is such that ¢(r) = 1 for r < §/4
and ¢(r) = 0 for r > ¢, 6 > 0 small. Recall here that

ui(z) = (1+ rp/pfl)l_N/p

realizes the best constant for the embedding of W'?(RN) in L?" (R"N). Letalso a
and f be smooth functions defined in a neighborhood (2 of 2. We assume in what
follows that f > 0 in B,, (), and that B, (§) C £2. For u € Wy (£2), we set

_ Jo IVulPdz + [,(g(x) — >\1)\u|pd;1:'

I(u B
(Jo f@)|ulP*dz)?”

‘We also introduce
kg =0if g(l'o) <A\

ky =inf{j € N,/ j > 1and A7g(zo) < 0} if not
Ky = inf{j € N*, /A7 f(zo) < 0}
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with the convention that k, = 400 (resp. ks = +o00) if the corresponding set above
is empty. Here Al = A7l o A j > 1, where A is the usual Laplacian. When
N > p?, we define as in [10], [6]

k =sup{m € N/N > p* +2m(p — 1)}
and for j integer, we set

_ TG+ )TN 25+ N)
rG+4%+1

and

by _ 0N /oo FN+2-1 g
. N—
/ (2-7)' (1 + rﬁ) P

Gy an,; (N —p)P /°° pN+2i-1qy
? ) -1t g (1+r<ﬁ>)N

Note that 07‘;7 N exists as soon as N > p? +2j(p — 1), that B;’ NV exists as soon as
N > 2j(p — 1). One can find the explicit values of d?’N, Bf’N in [10], Lemma 7.

Proposition 4.1 Suppose that 1 < p*> < Nand that f and g are C*°({2). Fore > 0

sufficiently small,
1
I(ve) < —
K(Na p)pf(Io) v

in each of the following cases

1. k> kg ky>ky+ 2 and A*s(g(xo) — A1) <0

k> kg kp < kg + B, and A*1 f(z0) > 0. i

k> kg, kf=ky+5, and di’g”(Akg (g(z0) — A1) f(xo) —ﬁg’f"Akff(azo) <0
k<kgy ky<k+2%, and AFs f(xg) > 0.

KN Wb

For example, the following corollary presents particular situations which en-
close the results in the case where p = 2 obtained in [6], see also [1] in the case
p=2andg=0:

Corollary 4.2 Suppose that 1 < p* < n. For € > 0 small, one has that

1
K(Nv p)pf(IO)li%

I(ve) <

in each of the following situations

1. 1 <p<2andg(z) < A1.

2. p = 2and (g5 (9(w0) = M) f (o) — Af (o) < 0.
3. p>2and g(xo) = A1, Ag(xo) = Af(z0) = 0 and A? f(zg) > 0.
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As a consequence of Proposition 4.1 One obtains that if f achieves its supremum
on an interior point xy such that one of the situations described in 1. 2. 3. 4. occurs,
then, there exists a solution to equation 1.1 for A = A; and for A close to ;.

We do not give the proofs of Proposition 4.1 and Corollary 4.2 , because they
are very technical and are already written in [10], in the coercive case. One must
just replace in [10] the function a by the function g — A;.

5. Appendix

As mentioned in the introduction, in this appendix we want to prove the following

Proposition 2.1 Suppose that f(x,t) = a(z)[t|9=2t +b(x)|t|P~ 2t with1 < p < q,
and a and b two continuous and bounded functions on §2. Suppose that U is a weak
supersolution for —Ayu+ f(z,u) 4 = 0 on 012, and that w is a weak subsolution
with w = 0 on 012. Suppose that there exists some constant ¢ and C' such that

—w<c<u<u<C<+x

Then, there exists a solution u between u and 4

Proof. We follow the method of E. Hebey in [15].
Let k be choosen in order that the function

H(z,t) = f(z,t) + k[t|P~2t

be increasing on [inf, 5 u,sup, . u]. Let u; be the solution of the variational

problem
1

K
mf L \Vu|p+f/ |u|p—/ H ().
weWyP(2) P Jo P Ja 2

The solution u; is unique and satisfies the following partial differential equation
—Apuy + klug [P~ 2uy = H(z,7)
and in particular
—Apuy + klup [P%uy < — AT+ klwP%u

and by the comparison principle one gets that u; < w. On the other hand by the
monotonicity properties of H

—Apuq + Eluy|P~%uy = H(z, 1) > H(z,u > —Apu+ ElulP~%u

and then
Uy > Uu.

Finally u; is a supersolution since

—Ayuy + klua |PPuy = H(xz,w) > H(z,uy),
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hence

u<u; <.
Iterating this process, one obtains the existence of a decreasing sequence u,, of
supersolutions and

u<u, <,
with

—Apup, + k|un\p_2un = H(z,up-1).

The sequence is, then, simply convergent and furthermore u,, is bounded in W1?
since it is bounded in L*° and

/|Vun|p—|—k/ |un|p—/ H(z,up—1)un
Q Q I?)
g/ |Vﬁ|p+k/ |ﬂ|1’—/ H(z, @),

Q I?) Q

Extracting from it a subsequence one gets that there exists u such that u,, — u
in WP weakly. Let o be a weak limit of |Vu,,|P~2Vu,, in LP . It satisfies

—dive + klulP~?u = H(z,u).
Multiplying this by u and integrating by parts one gets

/Vu.a—l—k:/ \u|p:/ H(z,u)u.
7 7 2

and on another hand passing to the limit in the equation satisfied by wu,,, multiplied

by u.,,, one has
lim/ |Vun\p+k/ |u|p:/ H(z,u)u.
2 2 2

We have obtained that
/ o.Vu = lim/ |Vun|P.
2 2

By using lower semicontinuity for the weak topology,

|/ .V < lim (/ |vunp) a (/wup)p

(9] (9]

lim/ |Vug,|P < lim </ Vun|p> B </|Vu|p>p
(9] (9]

i ([ o) = ([ )’

Since the other inequality is always true, one obtains that the convergence is strong,
o = |Vul[P~2Vu, and u is a solution.

and then

hence
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