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1 Introduction
Let us consider the semilinear partial differential equation
Agnu+|uP'u=0 in R (1.1)

where Agn is the second order degenerate elliptic operator often called the
Kohn Laplacian on the Heisenberg group H™ and the exponent p satisfies
l<p<1+ % We restrict our attention in this paper to bounded classical
solutions of equation (1.1) having finite Morse index. Let us recall that the
Morse index i (u) of a solution u of

Agnu+ f(z,u)=0 in A (1.2)

u=0 on 0A (1.3)

in a general open set A is the number of negative eigenvalues of the linear
operator
of
L, :=—-Agn — E(m,u(m)) (1.4)
on a suitable energy space incorporating the homogeneous Dirichlet boundary
condition. In Section 3 we prove a few results , which extend to the present
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setting similar ones known in the uniformly elliptic case (see [1], [17], [7], [19]),
concerning bounded classical solutions of (1.1) having finite Morse index. The
main result in that section is Theorem 3.1 stating that bounded classical
solutions of (1.1) have in fact finite energy and belong to LPT1(IR*"*1).

As a consequence of this result we obtain in Section 4 more precise
estimates on the decay at infinity of such solutions as well as some Liouville
type non existence results for equation (1.1) . We prove the following result
(see Section 2 for the notations) which synthetizes Propositions 4.2 | 4.3 |
4.4:

Theorem 1.1 Let u be a bounded classical solution of (1.1) with 1 < p <
1-1—% having finite Morse index . Then u = 0 provided that one of the following
conditions hold :

(i) u(€) =0(|¢|g") as |lmn — o0

. X -Vu
@ el

(iii) u € LP~VYR>™Y) - for someqg<n+1.

c L2 (]R2n+1) ,

The above can be seen as an analogue of the Liouville theorem proved
by Bahri-Lions [1] (see also [17]) for equation (1.1) in the euclidean case ,
that is when Ap» is replaced by the standard laplacian A.

It is important to point out the role played by the Liouville theorems
in some compactness issues arising in connection with the application of
the classical Leray-Schauder degree method to the existence of solutions of
semilinear boundary value problems such as

Agnu+ f(z,u) =0 ,z2€Q (1.5)

u=20 on 0N (1.6)

in an open bounded subset Q of IR*"** (see [3]) . Indeed, Liouville theorems
for equation (1.1) in the whole space or in a cone (this is typical of the degen-
erate elliptic case since the limit blow up point may well be a characteristic
point of the boundary) allow, in combination with blow-up techniques, to
deduce an L a priori bound for the set of all classical solutions of (1.5) ,
(1.6) having finite Morse index .



In order to illustrate this, suppose that u; is a sequence of bounded solutions
of (1.5) , (1.6) with i(ux) < K , for some integer K , and assume that the
nonlinearity f satisfies

of . —
f)EEC(QXIR‘) ’

f(z,t) f(z,1)

=+00 , limisr—75 =0,

]
uniformly for € Q. It can be proved (see [3] where the argument below
is performed also in the more general case where f may vanish and change

sign) that if

limt—):l:oo

|uglloo = +00 as k — 400,

then for suitable rescalings uy of functions uy , two cases can occur in the
limit : either u; converge to some function u satisfying

Agru+|uPlu=0 in R*™' u0)=lule=1 , i) <K (1.7)
or Uy converge to a solution u of
Agru+|uPlu=0 in ¥ ,u0)=|ule=1 , i(u) <K (1.8)

in a cone ¥ with the boundary condition © =0 on 0% .

If it is known by a Liouville type result that the only function satisfying
(1.7) or (1.8) is u = 0, then a contradiction arises with the fact that u(0) =1
and therefore ||ug||oo is uniformly bounded.

Our results in Section 4 depend heavily on the papers [10], [15] , [18] . In
particular , [15] and [16] also deal with equation (1.1) in the ”critical” case
p=1+ % , arising in connection with the Yamabe problem for CR manifolds
(see [14]), as well in the ”supercritical” case p > 1+ 2 .

Let us conclude by pointing out that the results of the present paper
could be extended to the more general framework of sublaplacians on strat-
ified Lie groups (see [6]).

2 Some known facts about Agn

For the sake of completeness, we collect in this section a few basic properties
of the Heisenberg group H™ and the operator Ag». For proofs and more
information we refer for example to [5, 6, 8, 9, 10, 13].
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The Heisenberg group H" is the space IR?*"*! endowed with the group
action

n
Eon= (& +m,....5n+ Mn,Eont1 + Nonp1 + 2 Z(fzurn??i — &Mitn)) -

=1

The Kohn Laplacian Ag« is the second order degenerate elliptic operator

A 2n 82 4 ) 32 4 n 82 82
n = + 4¢; + itn — & 2.9
i =2 Ga T4 Ga )+ AL Gngege— ~ S5e o) (29

acting on functions u = u(§) , where & = (&1, -+, &, Eony1) € RTL. We
shall also use the notation x = (&1, ++, &) , ¥ = (&nx1r -+, &m) , t = Eonat -
Let us consider the anistropic dilation §y

W) = (A&, ..., Ao, )\2§2n+1) (A>0)

and the homogeneous norm

2n
[€lmn = (XU &) + &nrn)? - (2.10)
i=1

Since £ — [£|y» is homogeneous of degree one with respect to the dilation
5y and the Jacobian of §, equals A9 with Q = 2n + 2 then the Lebesgue
measure | - | scales as

|Byn (0, R)| = R®|Byn(0,1)] (2.11)
where By (0, R) is the open ball of radius R centered at 0 , that is

For simplicity in the rest of the article we will use By to indicate the ball
By (0, R).

It is sometimes convenient to look at the expression of Ag» as an Hor-
mander square operator , that is

2n
Agn =) X7 (2.12)

=1



with

0 0 0 0
T (2.13)

fort=1,...,n . It is easy to check that the vectorfields X; satisfy

[Xi, Xitn] = —4Xont1, [Xi, X5]=0

for any 4,7 € {1,...,n}. This implies that Ay~ , although degenerate elliptic,
satisfies the Hormander rank condition (see [13]) so that, in particular, Agn
is hypoelliptic and it satisfies the Bony’s maximum principle (see [5]).

A further useful representation of the Kohn Laplacian is in divergence form
as

Agn = div(c™(£)o(€)V) = div(c™ (&) Vun)
where ¢(&) is the (2n) x (2n + 1) matrix

(L, 0 2y
o(&) = ( 0 I, —2x )
I, is the identity n X n matrix and * denotes transposition. The notation V
is for the standard gradient while the Heisenberg gradient V g» of a function

@ is defined as
VH'"'(P = (Xl(pa LECIR 7X27L§0) = J(g)v'

We will consider the following functional spaces:

F(A) = {p € L2(A4) 1 Co(A) - sup (2108 + @00 &7) = 2p(n)|

< oo}
&n |§|H" ’

I?(A)={peTHA): X;p eTHA) fori=1,...,2n}.
The Sobolev - Stein space S:(A) is the completion of C°(A) in the norm

lellsy :={ [, [Vanel?}3.

Finally , the space S?(A) consists of all functions ¢ € L?(A) such that
X Xjp e L*(A)foralli,j=1---,2n .



3 Some properties of solutions with finite Morse
index

Consider the equation
Agru+|uPlu=0 in H" (3.14)

A classical solution of (3.14) is a function u € T'?(A)NC°(H™) satisfying (3.14)
pointwise; on the other hand , u is a weak solution of (3.14) if u € S!}(H™)
and

/ Vinu-Vinp = /Hn lulP ugp (3.15)

for any ¢ € C°(H™).
By definition, the Morse index i(u) of a bounded classical solution u of
(3.14) is the number of negative eigenvalues of the operator

Ly(v) := —Apnv — plulP v

in S;(H™) N L?(H™) counted with their multiplicity.
In particular, there exist i(u) negative eigenvalues A; and i(u) indipen-
dent functions ®; € S;(H™) N L?*(H™) such that

| Vit Vo —p [ o= [ @0 (316)

for any ¢ € SL(H™) N L?(H™). Clearly the quadratic form

Quie,9) 1= [ [IVanel? = plul ) (3.17)

restricted to the subspace generated by @y,..., ®;q) is negative definite.

In the next two simple propositions we will characterized some subspace
of S}(H™) N L?*(H™) where @Q, is positive definite and we will connect the
Morse index with the number of regions where u has a constant sign.

Proposition 3.1 Let u be a classical solution of (3.14) with i(u) < 4o0.
Then there exists R, >> 1 such that

Qulp, ) 20
for all p € SL(H™\ Bg,) N L>(H™\ Bg,) .
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Proof: Let K = i(u) and A, Ao, ..., Ak, ®1,...,Pg be as in the definition
of Morse index. By a standard spectral argument for any ¢ in the orthogonal
of span{®y, ..., Pk}, the following properties hold

Moreover any ¢ € S}(H™)NL?(H™) can be decomposed as ¢ = >X | ¢;®; +v
with 1) as above.
The density of C°(H™) in S;(H") implies that for any ¢ > 0 one can find

linearly independent functions @, ..., ®x in C°(H™) with compact support
such that

15 — Djllss + 105 — 5l <&, Qu(®y, ;) <.
Choose now R, > 0 such that
Ufilsupp <i>z~ C Bp,.

Since any ¢ € S}(H™ \ Bg,) is indipendent of the ®; then a simple compu-
tation shows that

lci| < \/Hn Vun®; - Vinp| < Ce,

for some constant C' indipendent of . Hence

K K
Qulp, ©) =3 Nic + Qu(¥, 1) > Ce DN + Qu(¥, ¥)
1=1 =1

for any € > 0. This completes the proof.

Proposition 3.2 Let u be a classical solution of equation (3.14) with p > 1
and let n(u) be the number of the bounded connected components of the set

{€€ H" :u(§) #0} . Then

Proof: Let us denote by A; (j = 1---n(u)) a bounded connected component
of {£ € H™ : u(§) # 0} and observe that A; is open and that u € Sp(4;) C



SI(H™). Then we can choose u as a test function in the definition of weak
solution of (3.14) to obtain

[ V= [ et <p [t
Aj Aj Aj

J J

since p > 1 . Hence we have constructed n(u) linearly independent functions
¢; = uy,, such that ¢; € SH(H™) and Qu (¢4, ¢;) < 0. The conclusion follows
by the argument in Proposition 3.1 .

Remark. The same result is true assuming that v € C°(H™) N SL(H™) as it
follows from the next Theorem.

The main result of this section is the following :
Theorem 3.1 Letl <p<1 +% and let v be a bounded classical solution of
Agnu+|u P lu=0 in H" (3.18)
with finite Morse index. Then u € LPT'(H™) N Sy(H™).

Proof: Let R, be as in Proposition 3.1 and let ¢ € C°(H™ \ Bg,) be a non-
negative function . Then , for @ > 1, up® € S;(H™ \ Bg,) and consequently
by Proposition 3.1

Qulugp® ug®) = [ [[Vin (up®)* = plul %] 2 0
or , which is the same ,
/ 2|V gn 0% 24+ |V a2+ 200V g 0* -V g Zp/ lulPtp? (3.19)
H"» Hn

On the other hand , multiplying equation (3.14) by up?® and integrating by
parts we obtain

/Hn [ul" ™ = /H Vi Vin (ug™) = /H ¢* |V gnu*+2upV oV g p®
(3.20)
From (3.19) and (3.20) it follows that

(p— 1)/ Ju[PFp S/ u?|V gnp®[? (3.21)
H™ Hn
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At this point we take any R > 2R, and we choose ¢ such that 0 < ¢ <1

and
0 for |€|g» <R,

e(€) =4 1 for 2R, < |€|gn <R
0 for |£|yn > 2R.

Observe that V g« is supported in (Bsr\ Br)U(Bag, \Br,) and, furthermore,
that we can choose ¢ satisfying

c . c .
|VHnS0| S E 1n BQR \ BR |VH”S0| S E mn BZRO \ BRO

for some constant C' . From now on we shall denote different constants inde-
pendent of R by the same letter C .
With this choice of ¢ inequality (3.21) becomes

C C
_1/ p+12a<_/ 22a1)+_/ 2, 2(a—1)
(p—1) - [u[T ™ < R Vi \in, |ul 7 i |ul

(3.22)
Since p > 1 then by the properties of ¢
/ Pt < Cp + E/ w22 (3.23)
BR\B2R0 R2 BZR\BR
where o
Ch= = / 2 2a-1)
° R% B2R0\BR0 B (‘0
We claim now that (3.23) implies
lim lulPtp** < 400 (3.24)

R—+o00 JByp

Indeed , were this false we would have
1 2c +1
5 / ™ |ulP" = Co
2 JBsr

for R large enough and consequently ,

C
2a p—|—1 2 2(&—1) . 325
3 Pl < [t (3.25)



Set now I := [ [u["t!1p?* | choose a = 5%} and majorize the right hand

side of (3.25) by use of the Holder inequality to obtain , recalling (2.11) , the

estimate
Qp-1) )

2
Ix < CIF" R o1t

(3.26)

Since 1 < p <1+ % = 9*2 by assumption, the exponent of R is negative

Q-2
and hence
2 Qp-1) )

I, " <CR%T 2 (3.27)

implies that Ir tends to zero as R — +oo. This contradiction proves the
validity of (3.23) . From (3.23) it follows easily , taking the boundedness of
u into account , that [g. [u[P™ < +oo.

It remains to be proved that u € S}(H™) . We choose at this purpose a

cut-off function "
_J 1 for [{|pr <R
wl8) = { 0 for [£|g» > 2R

and such that |Vynp| < £ .
After multiplication of equation (3.14) by ue? and integration by parts we
obtain

/ |V inul?9? = / lu[Ptp? — 2/ wpVignt - Vinp
Bog Bagr Bar

By Young and Holder inequalities we deduce

(p—1) )
/ |Vinu? < C {/ ufPto? + RET 2 {/ |u|p+1(p2}”“} (3.28)
B2R B2R B2R

Since we know from the first part of the proof that [, |u/P™ < +oo, letting
R — 400 in the above concludes the proof of Theorem 3.1.

4 Decay at infinity and Liouville type results

In this section we shall always assume

2
I<p<l4-— (4.29)
n
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and that
u is bounded classical solution of (1.1) with i(u) < 400 (4.30)

and draw some relevant consequences of Theorem 3.1. The first one comprises
a summability and a decay result (see [10] for a related result):

Proposition 4.1 Assume (4.29) and (4.30). Then u € Li(H™) for every
g€ [p+1,+) and u — 0 as |£|gn — +00.

Proof. Let us recall (see [9]) that the solution of
AHnU = f

is given by
v=Txfi= [ TEnfndn
where the function
L(&,n) = Coln™" o &
is the fundamental solution for Agn. Moreover if f € L7(H") then

1

2
v=TxfeL'(H") for - =
.

1
¢ Q
Let u satisfy (4.29), (4.30), by Theorem 3.1, u € LP*'(H™) hence f :=
1
lu Pl € L* ;. Therefore

1 p 2
u=Tx(lulP"'u) € L"(H") with - =% — =, 4.31
([u P~ u) € L7(H") T4 0 (4.31)
since 7 > % Moreover, by the immersion S}(H™) C LQ2_92(H”), using

again Theorem 3.1 we conclude that

2
u € LI(H") for any g € [p+ 1, Q—?Q] (4.32)
)

It is easy to see that (VTIQ <p+1< ’@. Now two cases are possible:

pQ 2Q pQ> 2Q

either — <
2

0—2 " 2702
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. PQ 2Q
Case 1: 5 <03

In this case we apply (4.31) to ¢ € [p+1,22) to obtain that u € L"(H™)
for any r such that € (0, ’%1] ie. u € LY(H") for any q € [p+ 1, +00].

. 2Q -~ pQ
Case 2: 03 <5

In this case, by (4.31), u € L"(H™) for any r such that % € [p—(gém —

2 p _ 2] G 2Q pQ i i
o il Q]. Since 20 21> o Weare back in Case 1. This completes the

proof of the first part of the Proposition.

For the second statement we use the following weak-Harnack type in-
equality
sup  u < CR™ ¥ ul| La(pyn e,2m))
BH"(&R)

for any ball By« (&, 2R), ¢ > 1 and some C > 0. This holds for if u € S}(£2)
satisfies

with V bounded (see [15]). By choosing V = |[u[P~! and ¢ = p + 1 we obtain

sup u < CR P |u| posi (B (e2m)
BH"(§7R)

Since u € LPT(H™) the right hand side converges to zero as |£|g» goes to
infinity and this completes the proof of the Proposition 4.1.

The next two propositions state some non - existence Liouville type
results for equation (1.1) under different energy or decay conditions. Observe
preliminarly that Theorem 3.1 implies that under the assumptions (4.29) and
(4.30) any solution u of (1.1) satisfies the identity

/ IV mu]? = / P+ (4.33)
H'I‘L Hn
Proposition 4.2 Assume (4.29) and (4.30) . Then u = 0 , provided that

(z,y,2t) - Vu

L*(H"
En © (H")
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Proof. Let us observe first that u satisfies for each R > 0 the following
Rellich-Pohozaev type identity due to Garofalo - Lanconelli [10] :

o[ (A "N)X - Vudo — 22X - Ndo = 4.34
[ (A©Vu- N)X - Vudo /BBR\VHU\ o (4.34)

2- Q) / IV mu]? + 2/ X - Vul g,
Br Br
Here , A = 0*0 (see Section 2) , X = (z,y,2t) and N is the outer unit normal

to 0Bg . Equation (1.1) yields immediately

p+1

The above equality, the divergence theorem, and the fact that divX = @
yield

2Q
2 _ / Vgnul? + —2 Pl 4.35
2-Q) [, [Vuuf+ 2L [ (43)
2
2 (AVu-N)X-Vuda—/ Vinul?X -Ndo— —— [ |[uP*'X-Ndo
dBg dBg p+1 JoBg

Since by Theorem 3.1 v € LPT'(H™) N SL(H™) , the second and third term
on the right hand side of (4.35) tend to zero as R — +oc.

The assumption
(z,y,2t) - Vu

€] mn

implies (see Theorem 2.3 in [10]) that the first term tends to zero as well.
Hence , letting R — +o0 in (4.35) we obtain

2Q
p+1Jmn

€ L*(H™)

|u|P+1 =0

2-Q) [ IVuul+

Comparing this with (4.33) we conclude , since p < % , that [g. [uP* =0,
that is u = 0.

Proposition 4.3 Assume (4.29) and (4.30) . Then u = 0 , provided that
[u(©)] = Ol (4.36)
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Proof: From (4.36) it follows that for any s < Q — 2, |u(&)| = O(|¢|5%)
for €] gn large. Hence EX4El — O(|¢|;57Y); . On the other hand, |£|5 ! €

|| zrn
L*(H™\ Bg) for (s +1)2 > Q. Since this holds true for some s < @ — 2, the
result follows from Proposition 4.2.
Our last result is:

Proposition 4.4 Assume (4.29) and (4.30) . Then u = 0 , provided that

u € LY(H") for some q <

=T (4.37)
Proof. By Theorem 3.1 we know that u € S!(H™). Proposition 4.1 implies
on one hand that u(£) tends to 0 as |£|y» tends to infinity and on the other,
using (4.37), we deduce that |u[P~* € L%(H")N L%(H") N L%2(H™) for some
@ <2 <g.

By Theorem 1.3 in [18], u(§) = O(|¢|4%) for any s <  —2. At this point
the conclusion follows from Proposition 4.2.
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