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1. INTRODUCTION AND RESULTS

Let © be a bounded smooth domain in R", n > 2. We assume that ¢ and
f are some continuous functions on 2 which change sign in 2.
We are interested in the following partial differential equation

—Au+(g—Nu=f(z)u!, u>0inQ, 1)
u =0 on 012,

where A is a real parameter and 2* = % is the critical exponent for the

Sobolev embedding.
Let A1 be the principal eigenvalue of —A + ¢ in Q, or equivalently

AL = inf /Vv2+/q1)2. 2
A UYL AL, @

It is well known that there exists ¢ > 0 which realizes the infimum in (2);
it satisfies the Euler-Lagrange equation

—Adp+(g—A)p=0, ¢>0inQ 3)
¢ =0 on 0SL.

The strict maximum principle implies that ¢ > 0 in . In the sequel we

shall choose ¢ normalized in L2(£2).
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In this paper, we will study the existence of classical solutions of (1) when
A > AL

In the sub-critical case (i.e., the exponent of u on the right hand side
of (1) is less than 2* — 1) , the problem has been studied by Berestycki,
Capuzzo-Dolcetta, and Nirenberg ,[4], [5] and Alama and Tarantello[1] . The
same problem (with sub-critical exponent) and the Heisenberg Laplacian has
been studied in [6]. On another hand the case where A < A; and the right
hand side is critical has been studied by Hebey and Vaugon in [12], see also
Demengel and Hebey [11] for the p-Laplacian case.

In [1], [5], [6], the authors establish the following necessary condition

Theorem 1. Assume that (1) has a solution. Then the following conditions
are satisfied:

(i) [of¢¥ <0 if XA> N

(1) Qt:={ze€Q, f(z) >0} #£Dif A< X

(133) QT £0, Q :={z € Q, f(z) <0} #0 if A= )\.

The main result of the present article is the following:

Theorem 2. Let K(n,2) be the best constant for the Sobolev embedding of
H'(R") into L* (R"). We assume that [, f¢*" < 0 and that

My = sup ([ 1P} > K2 sups @)
{Ja Vo2 + [ola—21)v[2=1} JQ

then there exists a real \* > A1, such that for every X € [A1, X*[, (1) possesses

a solution, and there is no solution for A > \*.

Remark 1. 1) The same problem with ¢ = 0 was considered in [14] and
[1]. In particular in [14] Ouyang, through a bifurcation method, proved the
existence of a branch of solutions of
{—Au—)\u:fup, u > 0in Q2 5)
u=0 on 0f)
bifurcating on the right from A; under conditions similar to i), ii), iii) in
Theorem 1, A # A1, and for p large (i.e. p < :__160 if n > 10 and for any p
if n < 10). These solutions u(\) don’t coincide with those considered here,
since they are “small” and fn fu(A)PT1 < 0. On the other hand, for p + 1
sub-critical, through variational methods, he proved the existence of another
solution, with A\ sufficiently close to A;.
In [1], Alama and Tarantello completed these results by perturbing the
bifurcation solution and applying the mountain pass lemma, obtaining in
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that fashion the second solution, even in the critical case. This requires a
condition similar to our condition (4), adapted to the case ¢ = 0.

Our proof is direct. It uses the geometry of the functionals involved and
the concentration compactness Lemma, which permits to overcome the lack
of compactness.

2) The value K (n,2) has been computed independently by Aubin in [2, 3]
and Talenti [15]. It is achieved on functions of the form

ue(z) = (¢ +|af?)' 2

and then

4
K(n,2)* =

2
n(n —2)wy_y
The condition (4) is comparable with the conditions in [12], [2],[11].
Furthermore it is not very restrictive since, in Section 3, we prove that
one always has
M; > K(n,2)* sup f.

3) Let us remark that Iy defined as I (u) := [, [Vul? + [,(9 — A)u? is not
coercive on the space H}. But it is coercive on the hyperplan ¢ as soon as
A is close to A1. Indeed, let v = u — (fn ud)) ¢, where ¢ is supposed to be
normalized. Let us consider the set of eigenfunctions, {¢y }ker ($1 = ¢) for
—A + ¢, which is complete in L2. Using the fact that ¢ is simple, one can
write v = )~ tk ¢ where ¢ = (v, ¢), hence

L(v) = Y% = Mt > (2 = Vol (6)
k
taking X less than A9, one gets the result.
4) It would be interesting to have a better estimate for A\*.

While working on this case, we also considered similar equations for the
p-Laplacian. The results we obtained will be published in a forthcoming

paper [7].

2. PROOF OF THEOREM 2

The proof of Theorem 2 is based on some variational methods similar to
those used in [5].

One of the key ingredient in the proof of Theorem 2 will be the famous
concentration compactness principle of P.L. Lions [13], that we enounce here:
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Lemma 1. Let Q2 be some bounded open set in R™, and (ug) be some sequence
in H}(Q), which is bounded in H*(Q). Then there exists a subsequence of
(ug), still denoted (ug) for simplicity, two nonnegative measures p and v on
Q, a sequence of points z; in Q, two sequences of nonnegative reals (u;) and
(vi) and a function u in H{, such that

Vg = p > |[Val* + ) iy,
7

the convergence being tight i.e., Vug|? towards [~ p),
Q ok

url® = v =[ul” + ) vids,

2

(the convergence being tight on Q, i.e., [, |ug|* towards [5v), with the
inequality

2
Vi < K(n,2 . ()

Remark 2. In the sequel we shall denote the space of bounded measures on
Q by M'(Q). This space will be endowed with the weak topology or the tight
one. Recall that the tight convergence is equivalent to weak convergence and
convergence of the total variations.

The proof of Theorem 2 is divided in several steps.

Step 1. For large A > A; (1) has no solution.

Step 2. If there exists a solution for a certain A\’ > A1, then (1) has a
solution for any A\; < A < \.

Step 3. For A = A\; and for A > \; sufficiently close to \; there exists a
solution to (1) .

In the first two steps, we follow the proofs given in [5, 6].

Step 1. Let zo € Q7 and R > 0 such that B(zo,R) C Q7. Let py* and
1 be respectively the principal eigenvalue and eigenfunction for —A with
Dirichlet conditions.

—Ay —p*p =0 in B(wzo, R)
Pp=0 on 0B(zg, R).

Suppose that there exists a solution of (1) for A > ||g||ec + p#*. Then since
f > 0in B(zg, R), one has

—Au+(g—ANu >0 in B(zg, R)
u>0 on 0B(xzg, R).
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On the other hand, % < 0 on 0B(xg, R) implies

0< / —ua—¢ = (—ulAyp+ypAu) < / (W +q—Nup <0
8B(zo,R) 97 JB(ao,R) B(zo,R)

from which one derives a contradiction.
Step 2. One uses a sub and super solution argument. Namely, let A’ > \q,
and denote by w a solution for A = \'. For A €]A1, N[, w satisfies
—Aw+(g—Nw> -Aw+ (¢— N)w = fw’ ' inQ
w=20 on 0f)

and w is a super solution of (1) for A. On the other hand, if ¢ is defined by
(3), €s is a sub solution of (1) as soon as e is sufficiently small. Indeed

—A(ed) + (4 — N)(ed) = (A1 — Neg < f(z)e” ¢

since f is bounded from below. Since by Hopff’s maximum principle, e¢p < w
for € small enough one obtains that there exists a solution for .
Step 3. One defines as in [5, 6] the following

Sy ={u e H(Q), I)(u) =1}

and for € small and positive,
Moy = sup{ [ fuP'}, My = sup{ [ fluf).
ueS, JQ ueS, JQ

Let us observe that according to [5, 6], Sy # 0, M,y > 0 and M, is
achieved by some maximizer u. . u. can be chosen positive since |u(| is a
maximizer as well. The proof that M, > 0 is identical to the sub-critical
case. Furthermore, it is not difficult to see that for A > A\;, My > My, = M;.

Claim 1: The sequences (M, x), (M) and |[ue||g1(q) are bounded uniformly
with respect to € and X for € small enough and A close to \.

Let u be such that Iy(u) = 1. Remarking that I)(Ju|) = Ix(u) and that
||uel|g1 is bounded if and only if ||(|ue|)||gz1 is, one can assume in what
follows that uw > 0. Let then v € H!(Q), v € ¢, and t € R such that
u=v+tg, and [, fu? >0, one gets

L) =1+ (\=X)t?
and noticing that ¢ = [, u¢ > 0,

/ flo+1)2 ¢ < (8)
Q
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2% —¢ 2% —¢ *02* —e—1 2* —¢ 2% —e—1
<1 Af¢ 1 flw2'2 g@w| +1}mw> )

using the mean-value Theorem. Let a = — [, f |#|%", and €y be such that
Ja fo? € < —%" for € < €. By Young’s inequality, there exists some
constant C7 such that

* * *_ A ok _
P22 [ oftg e < ot + G
Q

hence for some C5 positive
* —Q 9% *
[ fos gy < Tk Gl )

Using remark 1 on the coerciveness of I on ¢+, and choosing A € [y, %],
one has

(10)

oo+ |A
Vol} < 1) + g = Moolol} < I (v) (1 + 2M) |

A1 — Ao

Using Poincaré’s inequality and (10), there exists some constant C3 which
does not depend on A, such that

|’U|g* S 03(1,\(1})) = 03(1 + ()\ — A1)t2). (11)

Finally, through the convexity inequality:

2% —¢ 2% —¢

A+A=2)t?) = g2¥—1(1+(>\—/\1) 2 1277

2% ¢ *
3 t2 —€

2* 2*
<27 427 (A= A1)
Then, we choose A sufficiently close to A1 in order to have

2% 1

.
27 CHOZ A — M| 2 <

?

1R

and (9) becomes

P e | 2= 2 e _ O or_¢ 2
fum T T TS < Colufo g < 17 T+ CoCy? 277
Q 2 4
Finally there exists C5 independent of ¢ and A such that

/ fu¥ =+ t2*—6% < Cs. (12)
Q



ON SOME PARTIAL DIFFERENTIAL EQUATION FOR NON COERCIVE FUNCTIONAL 829

We may choose in (12) u = u., with uc = v + tc¢, v. € ¢, one obtains
that both [, fu2"~¢ and t, are bounded for A\ — \; sufficiently small. More
precisely, we have proved that for A\ sufficiently close to A1, one has

My + <5 < Gs. (13)

This implies that (M) and (t.) are bounded. Using I)(v¢) = 1+ (A —
A1)t one obtains that (v.) is bounded as well. Finally (u.) is bounded
1ndependently of €. This ends the proof of claim 1. O

Our purpose now is to let € go to zero. Since the sequences (uc), (),
(M) are bounded, one can extract from them some subsequences, denoted
in the same manner, such that

ue — wuin H'(Q) weakly (14)
te — t (15)
Me,)\ — HA. (16)

Let us note that lim, (M, \ = M) > M,. Indeed, let § > 0 be given and
u € Sy, such that fQ fu* > My —6 . Then fQ fu? =€ > My — 26 for e small
enough. We then deduce that

M, =1limM, > M.

Since u, satisfies the following partial differential equation

—Aue+ (g —Nue = (Me’)\)_lfug*_g_1 in Q (17)
ue = 0 on 99
by passing to the limit when ¢ — 0, one has
—Au+(g—Nu =My fu¥"1inQ (18)
u = 0 on 0f).

The point here is to prove that

i) u is not identically zero.

ii) My = M and u is a maximizer for M.
In order to prove i) let us multiply (17) by uc¢, where ¢ € D(£2) and integrate
by parts. One obtains

/|Vu€|2<,0—l-/u€Vu6 V<p+/(q Nup = /fu2 . (19)

Similarly, multiplying (18) by uy one gets

/|Vu\2<p+/uVu.V(p—I—/(q—)\)u%:H;l/ fu¥p.  (20)
Q Q Q Q



830 ISABEAU BIRINDELLI AND FRANGOISE DEMENGEL

Using the concentration compactness principle as given in Lemma 1 we get
that there exist two nonnegative measures, y and v, compactly supported in
Q, a numerable set of points z; in £, some sequences of nonnegative numbers
v; and u;, such that

[Vuel” = i > [Vul® + ) pids, in M'(Q) tightly

2

*

lue|¥ — v =|u* + Z vibz, in M*(Q) tightly

7

2
with v2° < K(n,2)?u;.

Let us observe that [, u?" ¢ is bounded and hence, u2 ~¢

2 €
some measure  in M'(Q) tightly, up to a subsequence. By Holder’s in-

equality, one has 7 < v. Since one can extract once more a subsequence
from wue, one can also assume that ue converges almost everywhere towards
u. By Fatou’s lemma, for all ¢ € D(Q), ¢ > 0, one has [, [ul? o < (D, 9),

converges to

and then o > |u|2*. Finally there exists some 0 < ; < v; such that
v=[u® + ) 56,
i
One then obtains, by passing to the limit in (19)

G+ [ w9uTo+ [ (a=NiuPe = ([ o+ nis@hpta).

M
(21)
Subtracting (20) from (21) one gets
———1 -
(= [Vul,0) = My > 0if (wi)p(x:) (22)
i
which implies that, if g = u® 4 p° is the Lebesgue decomposition of x in
its absolutely continuous part and a singular one, u* = |Vu|? and p° =
. 1l ~
> fibz, = My 32, Ui f (i) s, hence
S e
pi < fii = My f (@) (23)

Clearly if f(z;) <0 then y; = 0 and therefore 7; = 0. Observe that

1 2* _ _ 2 . 2
E/qu = L) = L) + (= N2 > (A = N
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Let us define B = M1+K("’22)2 sup f(®) By assumption one has M; > B >
K(n,2)% sup f(z). From claim 1, we know that |t| < K a constant inde-
pendent of A. Suppose that |A — A;| is sufficiently small in order to have

2
MZ(1+ (A - /\1)K2)2l’*71 > B, Passing to the limit in the definition of

M, ), one has
/qu* + ) vif(w) = M,
Q2 i

and then
Z V,f(]),) < M)\(l + ()\ — Al)tQ) (24)
then, using (4), Lemm; 1, (7) and the definition of B,
. vif(z:) Lo vif (z:) 7 2
Bt oom®) | i powe) 000

2 o
K(n,2) ;upfz i < B
B2
for some B < 1. This implies that fi; = 0 and then v; = 0. Finally, My =
fn fu?", u is a minimizer and My = M,. This ends the proof of Theorem 2.
O
Corollary. Under the assumptions [, f¢*" <0 and My, > K(n,2)? sup f,
then for A > A, A = Aq,

<

My — M)q = M.

Moreover, from any sequence (uy)y of mazimizers, one can extract a se-
quence which converges strongly towards a mazimizer for Ai.

Proof. Clearly, M), < M, for every A\ > A;. Let (u)) be a sequence
of maximizers obtained by Theorem 2, for A > )\; sufficiently close to A;.
By the inequality (12) one gets that (uy) is uniformly bounded in H' with
respect to A. Extracting a subsequence from (M)) and (uy), one obtains
that uy — w which satisfies
1 x
—Aw -Mw = —fw? 7L
+ (g — A1) Yy f

where M| = lim M) > M,,. Arguing as in the previous proof, one gets that
w cannot be zero, and by the positiveness of I, , one has fQ fw?" > 0. Since

/qu?\*ZMA%M{:/QJ”WZ*‘F;VJ(%),
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then for every i, v; f(z;) < M{. Proceeding as we already did in the proof of
Theorem 2

vif(zi) _ (vif (@) \' o (vif (i) \ o

= 1) (ulle)y il ek g,
M M M ’

where f < 1. Finally one gets that y; = v; = 0, fQ fw?” =1, wis a

maximizer for M, and M,, = M. Moreover, there is strong convergence

of uy towards w.

3. ABOUT THE CONDITION (4). TEST FUNCTIONS.

In this section, we follow the ideas developed in [11]. However, we give
some details of the proof for completeness sake.
We assume from now on that n > 4. We first prove that

M)\l > K(na 2)2* sup f

Let § > 0 be given, § < sup f, suppose that f achieves its supremum on
a point zj, € Q. Let 9 €  be such that f(zo) > sup f — & and let u, be
defined as

ue(z) = (€ + |z — zo|?) 2.
Suppose that R is small enough to have f > sup f — § on B(zg,2R) and
choose ¢ € D(B(zo,2R)), ¢ = 1 on B(zg,R), 0 < ¢ < 1. Finally define
ve = uep. Then

) = [ V)P + [ (a= ey

[ ovups [ (u2|VoP +2/Vul V)
Rn B(z0,2R)\B(zo,R)

+.L@—AQW&V

(n—2)2%w,_1 [® r*tldr
- 2 0 (62 + 712)% + B
(z0,2R)\B(o,R)

+2/ WMWﬂ+/W@+MMdM%
B(zo,?R)\B(wo,R) Q

IA

uZ|Vol? +

< CLeE 4 o(27M) (25)
where
_22 +o00o n—l—ld —22Pn—HPu
olzwnlu/ tdr (= 2PN
2 0 (14 r2)n 2 nl
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On the other hand
/ flod? > (f (o) — 0) / uepl? > (f(z0) — 8)Cae™ + O(e™) (26)
Q B(.’L‘o,R)

where

Cy = Wn—1 /oo r"Lldr _ Wnp—1 F(%)F(% + 1)
2 Jo (14r?2)n 2 n!
Since —Czi*— = K(n,2) 2 one gets that
C2
Iy, (ve) < K(n,2) 2

(o floe?)7 ~ (sup f —8)

which implies the desired result, since J is arbitrary.
Let us introduce, for n > 4 + 27,

/+°° rtr e o DG +)T(G - 1)
[0 s = Wy =
A A (n—2)!

and for n > 2k
oot ldr  wya Db+ 5T 41— 3)
s =onas || = T
We have the following result:

Theorem 3. Suppose that n > 4, that q and f are smooth functions, and
suppose that f achieves its mazimum on an interior point xo. Let also kj
and kg be the integers defined by

kg =inf{j >0, A(q— i) (zo) #0}, kyp=inf{k > 1, A*(f)(xo) # 0}.

Then one has My, > K(n,2)?" sup f in each one of the following situations
(1) If n > 2kq+4, kf =kq+ 1 and

Qnky Ak n—2 Brk
AFa(g — \ —
@k @ 2060 = (57) Fiom
(2) If kp > kg + 1 and Aka(q — A1)(z0) < 0.
(3) If n > 2ks and kg > kf, and A¥s f(zp) > 0.
Remark 3. When ¢ = 0 the condition in (1) becomes: if A\; > 0, and if
k=1

AFs f(zo) <0

<0

o (n - 2) B, Af (o)
o 2n (o)
and no condition when ky > 2, which is exactly the condition given in [1].
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Proof of Theorem 3. Suppose that § > 0 is such that B(zo,2) CC Q
and let ¢ be some smooth function, compactly supported in B(zg, 26) whose

value is 1 on a neighborhood of zg. Let uc(r) = (2 +r2)'"2 and let v, be
defined as

Ve = Uelp.

Suppose that J is the biggest integer such that n > 2J+4 and let n = 2J 42,
one can write

o] n+1d?"
v 2 Vo 2| < —n+2/ r
S = [ v < [C e
< Cent2tn / +oo pmtntl gy
6 —
- 0 (]. + 7"2)n

this last integral being convergent. Using the definition of 7, one gets that

| ww&W—/'WWM=O@WH”ﬁ
R” R”
Let us now treat the term

[ =302 = [ (=M.
We remark that for all 7 such that j < J one has
[ it = [ il = o)

Indeed, this difference can be majorized (up to a constant) by

o) 2j+n—1
2j—4+n u” d
€ 5 du.
s (1+u?)n

Let n be such that n — 4 — 25 > n > 2(J — j), then one may write

) oo u2j—|—n71 ) 00 u2j—|—n—|—n71 .
62]—4—1—71 _ 62;—4—1—71 du < 62]—4+n+n5—770
2\n—2 2\n—2 =
i (14u?) s u(1+ u?)

where the constant C is given by the rest of some convergent integral.
Then, using a Taylor expansion around zy, one gets that

[ a2 = e an [ e ¥ A 2y oo

1<< 254 )=
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and then
Al g(zo)om i o n
J R R S ]
" R 1<5<["5 4= J):
where
[’ u2j+n—1du
Oén,j—wn—l/o A+ e

Here we have used the technical Lemma 6 in [11], which basically says that
the integrals over odd order terms in the Taylor expansion are zero.

Let us now treat the denominator. Let K be the greatest integer such
that n > 2K, let us see that for all £k < K

[ = [ M) = ofe™126),
n n

Indeed the difference above can be majorized by

CE—TH-Z/C /oo u2k+n—1du < CE—TH-?]C /-oo u2k+n+n—1du
5 (14+w?)n — s (14 wu2)run’

hence by choosing 7 such that n — 2k > n > 2(K — k), one gets

2k+n+n—1
Ce_n+2k u TN du < Ce_"+2k+n5_" — O(GZK—n)
s ul(l+u?)r — '

Using a Taylor expansion around z( for f and Lemma 6 in [11], one gets

flucp)?

Rn

= f(=o) / (ue)” + Y BrnAf (o) / P2 (4 0)2" 4 O +213)

k<[ﬂ] n
= f(z0)Cae ™ + Z A f(zg )Brn€ ™" + O(e —n+2z]

2
2%

(L, fweo)”)” = (Glao)ae™ %(HZ@M” 7o) 2k g o3,

Suppose that ky < [3], then the sum above may be reduced, say

Ab1f(@o) o 2%
Fzo)ea T+ o(e™))

*“"

([ o) = Gleoese™y¥ (14 By
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0 u2k—|—n—1
Ben = wn—l/o mdu-

Suppose that n > 2k, + 4, and 2k; > 2k, + 2, then one may write

where

I, (v c
) O (1 ay,  Abvg(ag) tolerH) (Lo(ethr ).
(J foZ)2 (f(zo)e2)?
As a consequence, the first nonzero term which appears in this development

is the term with AFeg(zg). Since in this calculation —— is nothing
(f(zo)c2) 2%

else that K (n,?2)~2(sup f)zl*, the result follows as soon as A¥ag(zg) < 0.
Suppose that n > 2k, and 2k, + 4 > 2k; then

I, (ve) _ c1 1+ o(e2kr)(1 — zﬂk,nAkff(wo)GQkf o
T 1 0E ~ Glagey® L Hel 052500, ()
K(n,2)~2
f(iﬂo)?l*

as soon as AFf f(zg) > 0.

Finally, suppose that n > 2k, +4 = 2k; + 2, then the first nonzero term
in the expansion above are of the same order at the numerator and the
denominator. Then the result follows as soon as

2 A f(20) By
Aka(g — )\ 2 JVTRRAR
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