- [4] E. De Giorgi, New problems on minimizing movements. In: Boundary Value Problems for Partial Differential Equations and Applications, C. Baiocchi and J.L. Lions eds., (RMA Res. Notes Appl. Math.) Masson Paris (1993), pp. 81-98.
- [5] E. De Giorgi, Congetture riguardanti alcuni problemi di evoluzione. Duke Math. J. 81 (1995), 255-268.
- [6] P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), pp. 629–639.

Large deviations of the current in stochastic systems LORENZO BERTINI

(joint work with A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim)

The basic microscopic model is given by a stochastic lattice gas with a weak external field and particle reservoirs at the boundary. More precisely, let $\Lambda \subset \mathbb{R}^d$ be a smooth domain and set $\Lambda_N = N\Lambda \cap \mathbb{Z}^d$; we consider a Markov process on the state space X^{Λ_N} , where X is a subset of N. The number of particles at the site $x \in \Lambda_N$ is denoted by $\eta_x \in X$ and the whole configuration by $\eta \in X^{\Lambda_N}$. The dynamics of the particles is described by a continuous time Markov process on the state space X^{Λ_N} with transition rates $c_{x,y}(\eta)$ from a configuration η to the configuration obtained from η by moving a particle from x to a neighbor site y. Similar rates c_x^{\pm} describe the appearance or loss of a particle at the boundary site x. We assume the rates satisfy the *local detailed balance*, see [4, II.2.6]. The reservoirs are characterized by a chemical potential γ .

We introduce the empirical measure π^N corresponding to the density as follows. For each microscopic configuration $\eta \in X^{\Lambda_N}$ and each smooth function $G : \Lambda \to \mathbb{R}$, we set $\pi^N(G) = N^{-d} \sum_{x \in \Lambda_N} G(x/N) \eta_x$ Consider a sequence of initial configurations η^N such that $\pi^N(\eta^N)$ converges weakly to some density profile ρ_0 . Under diffusive scaling, the empirical density at time t converges weakly, as $N \to \infty$, to $\rho = \rho(t, u)$ which is the solution of the hydrodynamic equation [3, 4]

$$\partial_t \rho = \nabla \cdot \left[\frac{1}{2}D(\rho)\nabla \rho - \chi(\rho)\nabla V\right]$$

with initial condition ρ_0 and boundary condition fixed by the reservoirs. Here D is the diffusion matrix, given by the Green–Kubo formula, see [4, II.2.2], χ is the conductivity, obtained by linear response theory, see [4, II.2.5], and ∇V the external field.

We now introduce the empirical current as follows. Denote by $\mathcal{N}_t^{x,y}$ the number of particles that jumped from x to y in the macroscopic time interval [0, t]. Here we adopt the convention that $\mathcal{N}_t^{x,y}$ represents the number of particles created at y due to the reservoir at x if $x \notin \Lambda_N$, $y \in \Lambda_N$ and that $\mathcal{N}_t^{x,y}$ represents the number of particles that left the system at x by jumping to y if $x \in \Lambda_N$, $y \notin \Lambda_N$. The difference $J_t^{x,y} = \mathcal{N}_t^{x,y} - \mathcal{N}_t^{y,x}$ represents the total current across the bond $\{x, y\}$ in the time interval [0, t]. Fix a macroscopic time T and denote by \mathcal{J}^N the empirical measure on $[0, T] \times \Lambda$ associated to the current. For smooth vector fields $G = (G_1, \ldots, G_d)$, the integral of G with respect to \mathcal{J}^N is given by $\mathcal{J}^N(G) = N^{-(d+1)} \sum_{i=1}^d \sum_x \int_0^T G_i(t, x/N) \, dJ_t^{x, x+e_i}$, where e_i is the canonical basis and we sum over all x such that either $x \in \Lambda_N$ or $x + e_i \in \Lambda_N$. We normalized \mathcal{J}^N so that it is finite as $N \to \infty$. Given a density profile ρ let us denote by $J(\rho) = -\frac{1}{2}D(\rho)\nabla\rho + \chi(\rho)\nabla V$ the current associated to ρ . If we consider an initial configuration η^N such that the empirical density $\pi^N(\eta^N)$ converges to some density profile ρ_0 , then the empirical current $\mathcal{J}^N(t)$ converges, as $N \to \infty$, to $J(\rho(t))$, the current associated to the solution of the hydrodynamic equation.

We next discuss the large deviation properties of the empirical current. Fix a smooth vector field $j : [0,T] \times \Lambda \to \mathbb{R}^d$ and a sequence of configurations η^N whose empirical density converges to some profile ρ_0 . Then, by the methods in [3, Ch. 10], it is possible to show that

$$\mathbb{P}_{\eta^N}^N\left(\mathcal{J}^N(t,u)\approx j(t,u)\right)\sim \exp\left\{-N^d\,\mathcal{I}_{[0,T]}(j)\right\}$$

where the rate function is given by

$$\mathcal{I}_{[0,T]}(j) = \frac{1}{2} \int_0^T dt \left\langle [j - J(\rho)], \chi(\rho)^{-1} [j - J(\rho)] \right\rangle$$

in which $\rho = \rho(t, u)$ is obtained by solving the continuity equation $\partial_t \rho + \nabla \cdot j = 0$ with initial condition $\rho(0) = \rho_0$ and $\langle \cdot, \rangle$ is the inner product in $L_2(\Lambda, du)$. Of course there are compatibility conditions to be satisfied, for instance if we have chosen a j such that $\rho(t)$ becomes negative for some $t \in [0, T]$ then $\mathcal{I}_{[0,T]}(j) = +\infty$.

We next discuss how, from the time dependent large deviation principle stated above, we obtain an extension of the results of [2] for the time average of the empirical current. Given time independent profiles $\rho = \rho(u)$ and J = J(u), let us introduce the functionals

$$\mathcal{U}(\rho, J) = \frac{1}{2} \langle J - J(\rho), \chi(\rho)^{-1} [J - J(\rho)] \rangle$$

$$U(J) = \inf_{\rho} \mathcal{U}(\rho, J)$$

where the infimum is carried over all profiles ρ satisfying the boundary conditions and $J(\rho)$ has been defined above. When J is constant, the functional U is the one introduced in [2].

Fix some divergence free vector field J = J(u) constant in time and denote by $\mathcal{A}_{T,J}$ the set of all currents j such that $T^{-1} \int_0^T dt \, j(t,u) = J(u)$. The condition of vanishing divergence on J is required by the local conservation of the number of particles. From the large deviations principle for the current we get

$$\mathbb{P}_{\eta^N}^N\left(\frac{1}{T}\int_0^T dt \ \mathcal{J}^N(t,u) \approx J(u)\right) \sim \exp\left\{-N^d \inf_{j \in \mathcal{A}_{T,J}} \mathcal{I}_{[0,T]}(j)\right\}$$

Let U^{**} be the convex envelope of U, in [1] it is shown that

$$\lim_{T \to \infty} \frac{1}{T} \inf_{j \in \mathcal{A}_{T,J}} \mathcal{I}_{[0,T]}(j) = U^{**}(J)$$

we therefore have

$$\mathbb{P}_{\eta^N}^N\left(\frac{1}{T}\int_0^T dt \ \mathcal{J}^N(t,u) \approx J(u)\right) \sim \exp\left\{-N^d T \ U^{**}(J)\right\}$$

where the logarithmic equivalence is understood by sending first $N \to \infty$ and then $T \to \infty$. This result extends [2] to $d \ge 1$, allows divergence free J, and shows that, in general, U has to replaced by its convex envelope U^{**} . An example where U is not convex is discussed in [1].

References

- L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Macroscopic current fluctuations in stochastic lattice gases. arXiv:cond-mat/0407161 (2004).
- [2] T. Bodineau, B. Derrida, Current fluctuations in non-equilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92, 180601 (2004).
- [3] C. Kipnis, C. Landim, Scaling limits of interacting particle systems. Berlin, Springer 1999.
- [4] H. Spohn, Large scale dynamics of interacting particles. Berlin, Springer 1991.

Simulations of Diffusion Induced Segregation THOMAS BLESGEN

Diffusion Induced Segregation (DIS) processes represent a particular class of segregation phenomena where the formation of (two) phases only starts after the concentration of a particular diffusor exceeds a certain threshold. The objective of the present work is to develop suitable models for the so-called chalcopyrite disease within sphalerite which is one example of DIS, compute at least approximately the actual physical free energies and make simulations closer to reality.

Model A: For $t \ge 0$ find $c = (c_1, c_2, c_3, c_4), \chi$ such that in $\Omega \subset \mathbb{R}^D$ for t > 0

(1)
$$0 = \operatorname{div}\left(\sum_{j=1}^{4} L_{1j} \nabla \mu_j\right) + k^{1/b_{\chi}} (c_2^2 - (\kappa)^{1/b_{\chi}} c_1 c_3),$$

(2)
$$\partial_t c_i = \operatorname{div}\left(\sum_{j=1}^{\tau} L_{ij} \nabla \mu_j\right) + r_i(c, \chi), \ i = 2, 3, 4,$$

(3)
$$\mu_i = \frac{\partial f}{\partial c_i}(c,\chi), \ 1 \le i \le 4$$

(4)
$$\tau \partial_t \chi = \gamma \Delta \chi - \omega(c, \chi)$$

together with initial values for c and χ and Dirichlet boundary conditions for c, μ and χ . Here, c is a concentration vector, χ measures the volume fraction of the chalcopyrite phase, μ is the chemical potential. Reaction terms: $r = (r_1, \ldots, r_4)$ with $r_1 = r_3 = -\frac{1}{2}r_2 = k^{1/b_{\chi}} \left(c_2^2 - \kappa^{1/b_{\chi}}c_1c_3\right), r_4 = 0$. Let $\Omega_T := \Omega \times (0, T_0)$.