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Large deviations of the current in stochastic systems
LORENZO BERTINI
(joint work with A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim)

The basic microscopic model is given by a stochastic lattice gas with a weak
external field and particle reservoirs at the boundary. More precisely, let A C R?
be a smooth domain and set Ay = NA N Z% we consider a Markov process on
the state space X, where X is a subset of N. The number of particles at the
site x € Ay is denoted by 7, € X and the whole configuration by n € XA~
The dynamics of the particles is described by a continuous time Markov process
on the state space XAV with transition rates ¢, ,(n) from a configuration 7 to
the configuration obtained from 1 by moving a particle from x to a neighbor site
y. Similar rates ¢ describe the appearance or loss of a particle at the boundary
site . We assume the rates satisfy the local detailed balance, see [4, I1.2.6]. The
reservoirs are characterized by a chemical potential ~.

We introduce the empirical measure 7V corresponding to the density as follows.
For each microscopic configuration € XA~ and each smooth function G : A — R,
we set 7V (G) = N=4Y .\ G(z/N)n, Consider a sequence of initial configura-
tions ™V such that 7V (n") converges weakly to some density profile py. Under
diffusive scaling, the empirical density at time ¢ converges weakly, as N — oo, to
p = p(t,u) which is the solution of the hydrodynamic equation [3, 4]

0= - [3 D)o~ x(p)VV

with initial condition pg and boundary condition fixed by the reservoirs. Here
D is the diffusion matrix, given by the Green—Kubo formula, see [4, 11.2.2], x is
the conductivity, obtained by linear response theory, see [4, I1.2.5], and VV the
external field.

We now introduce the empirical current as follows. Denote by N;”*Y the number
of particles that jumped from x to y in the macroscopic time interval [0,¢]. Here
we adopt the convention that N;Y represents the number of particles created
at y due to the reservoir at = if * € Ay, y € Ay and that N;"Y represents
the number of particles that left the system at x by jumping to y if z € Ay,
y € An. The difference J;"Y = NY — MY represents the total current across
the bond {x,y} in the time interval [0,¢]. Fix a macroscopic time T and denote
by J¥ the empirical measure on [0,7] x A associated to the current. For smooth
vector fields G = (G1,...,Gq), the integral of G with respect to JV is given



Phaseniibergange 1593

by JN(G) = N=@+D T S fOTGi(t,x/N) dJP "¢ where e; is the canonical
basis and we sum over all x such that either x+ € Ay or x +¢; € Ay. We
normalized J% so that it is finite as N — oo. Given a density profile p let us
denote by J(p) = =2 D(p)Vp+x(p)VV the current associated to p. If we consider
an initial configuration 1’V such that the empirical density 7 (nV) converges to
some density profile po, then the empirical current 7 (¢) converges, as N — oo,
to J(p(t)), the current associated to the solution of the hydrodynamic equation.

We next discuss the large deviation properties of the empirical current. Fix a
smooth vector field j : [0, 7] x A — R? and a sequence of configurations "V whose
empirical density converges to some profile pg. Then, by the methods in [3, Ch.
10], it is possible to show that

Byl (TN (8 u) = (8, w)) ~ exp { = N Zjo.z1(4)}

where the rate function is given by

1 T
Torli) = 5 [ dt{li = S x(e) "l = T

in which p = p(t,u) is obtained by solving the continuity equation d;p+V -5 =0
with initial condition p(0) = po and (-,) is the inner product in Lo(A,du). Of
course there are compatibility conditions to be satisfied, for instance if we have
chosen a j such that p(t) becomes negative for some ¢ € [0, T'| then Zjg 71(j) = +oo0.

We next discuss how, from the time dependent large deviation principle stated
above, we obtain an extension of the results of [2] for the time average of the
empirical current. Given time independent profiles p = p(u) and J = J(u), let us
introduce the functionals

UpT) = 50— T(0)x(p) 1T~ T(o))
U(J) inf U(p, J)

where the infimum is carried over all profiles p satisfying the boundary conditions
and J(p) has been defined above. When J is constant, the functional U is the one
introduced in [2].

Fix some divergence free vector field J = J(u) constant in time and denote by
Ar,; the set of all currents j such that 7-! fOTdtj(t, u) = J(u). The condition of
vanishing divergence on J is required by the local conservation of the number of
particles. From the large deviations principle for the current we get

1 T
N N ~ d - .
Pyl (T/o dt TN (t,u) ~ T(w)) ~exp { ~ N _inf Tio (i)}

Let U** be the convex envelope of U, in [1] it is shown that

1
lim — inf 7 i) =U""(J
im = inf T () = U7 ()

T—o0
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we therefore have

1 /T

PNy (T / dt TN (t,u) ~ J(u)) ~exp{—NITU*(J)}
0

where the logarithmic equivalence is understood by sending first N — oo and then

T — oo. This result extends [2] to d > 1, allows divergence free J, and shows

that, in general, U has to replaced by its convex envelope U**. An example where

U is not convex is discussed in [1].
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Simulations of Diffusion Induced Segregation
THoMAS BLESGEN

Diffusion Induced Segregation (DIS) processes represent a particular class of
segregation phenomena where the formation of (two) phases only starts after the
concentration of a particular diffusor exceeds a certain threshold. The objective of
the present work is to develop suitable models for the so-called chalcopyrite disease
within sphalerite which is one example of DIS, compute at least approximately the
actual physical free energies and make simulations closer to reality.

Model A: For t > 0 find ¢ = (c1, ¢2, ¢3,¢4), x such that in Q@ ¢ RP for ¢t >0

4
div(ZLleuj) + kl/bx(cg — (H)l/bxclcg),

(1) 0 =

j=1

4

(2) oie; = div(ZLijV,uJ) +ri(e,x), 1 =2,3,4,

j=1

of .
;= = < <

(3) i 9e. (e,x), 1 <i <4,
(4) TOx = yAXx—w(cx)

together with initial values for ¢ and x and Dirichlet boundary conditions for ¢, p
and x. Here, ¢ is a concentration vector, y measures the volume fraction of the
chalcopyrite phase, p is the chemical potential. Reaction terms: r = (r1,...,74)

with ri =r3 = —%7‘2 = k1/bx (c% — /il/chlcg), ry = 0. Let Qp := Q x (0,7p).



