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Large deviations of the current in stochastic systems

Lorenzo Bertini

(joint work with A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim)

The basic microscopic model is given by a stochastic lattice gas with a weak
external field and particle reservoirs at the boundary. More precisely, let Λ ⊂ R

d

be a smooth domain and set ΛN = NΛ ∩ Z
d; we consider a Markov process on

the state space XΛN , where X is a subset of N. The number of particles at the
site x ∈ ΛN is denoted by ηx ∈ X and the whole configuration by η ∈ XΛN .
The dynamics of the particles is described by a continuous time Markov process
on the state space XΛN with transition rates cx,y(η) from a configuration η to
the configuration obtained from η by moving a particle from x to a neighbor site
y. Similar rates c±x describe the appearance or loss of a particle at the boundary
site x. We assume the rates satisfy the local detailed balance, see [4, II.2.6]. The
reservoirs are characterized by a chemical potential γ.

We introduce the empirical measure πN corresponding to the density as follows.
For each microscopic configuration η ∈ XΛN and each smooth function G : Λ → R,
we set πN (G) = N−d

∑

x∈ΛN
G(x/N)ηx Consider a sequence of initial configura-

tions ηN such that πN (ηN ) converges weakly to some density profile ρ0. Under
diffusive scaling, the empirical density at time t converges weakly, as N → ∞, to
ρ = ρ(t, u) which is the solution of the hydrodynamic equation [3, 4]

∂tρ = ∇ ·
[1

2
D(ρ)∇ρ − χ(ρ)∇V

]

with initial condition ρ0 and boundary condition fixed by the reservoirs. Here
D is the diffusion matrix, given by the Green–Kubo formula, see [4, II.2.2], χ is
the conductivity, obtained by linear response theory, see [4, II.2.5], and ∇V the
external field.

We now introduce the empirical current as follows. Denote by N x,y
t the number

of particles that jumped from x to y in the macroscopic time interval [0, t]. Here
we adopt the convention that N x,y

t represents the number of particles created
at y due to the reservoir at x if x 6∈ ΛN , y ∈ ΛN and that N x,y

t represents
the number of particles that left the system at x by jumping to y if x ∈ ΛN ,
y 6∈ ΛN . The difference Jx,y

t = N x,y
t − N y,x

t represents the total current across
the bond {x, y} in the time interval [0, t]. Fix a macroscopic time T and denote
by J N the empirical measure on [0, T ]× Λ associated to the current. For smooth
vector fields G = (G1, . . . , Gd), the integral of G with respect to JN is given
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by J N (G) = N−(d+1)
∑d

i=1

∑

x

∫ T

0 Gi(t, x/N) dJx,x+ei

t , where ei is the canonical
basis and we sum over all x such that either x ∈ ΛN or x + ei ∈ ΛN . We
normalized J N so that it is finite as N → ∞. Given a density profile ρ let us
denote by J(ρ) = − 1

2D(ρ)∇ρ+χ(ρ)∇V the current associated to ρ. If we consider

an initial configuration ηN such that the empirical density πN (ηN ) converges to
some density profile ρ0, then the empirical current JN (t) converges, as N → ∞,
to J(ρ(t)), the current associated to the solution of the hydrodynamic equation.

We next discuss the large deviation properties of the empirical current. Fix a
smooth vector field j : [0, T ]×Λ → R

d and a sequence of configurations ηN whose
empirical density converges to some profile ρ0. Then, by the methods in [3, Ch.
10], it is possible to show that

P
N
ηN

(

JN (t, u) ≈ j(t, u)
)

∼ exp
{

− Nd I[0,T ](j)
}

where the rate function is given by

I[0,T ](j) =
1

2

∫ T

0

dt
〈

[j − J(ρ)], χ(ρ)−1[j − J(ρ)]
〉

in which ρ = ρ(t, u) is obtained by solving the continuity equation ∂tρ +∇ · j = 0
with initial condition ρ(0) = ρ0 and 〈·, 〉 is the inner product in L2(Λ, du). Of
course there are compatibility conditions to be satisfied, for instance if we have
chosen a j such that ρ(t) becomes negative for some t ∈ [0, T ] then I[0,T ](j) = +∞.

We next discuss how, from the time dependent large deviation principle stated
above, we obtain an extension of the results of [2] for the time average of the
empirical current. Given time independent profiles ρ = ρ(u) and J = J(u), let us
introduce the functionals

U(ρ, J) =
1

2
〈J − J(ρ), χ(ρ)−1[J − J(ρ)]〉

U(J) = inf
ρ

U(ρ, J)

where the infimum is carried over all profiles ρ satisfying the boundary conditions
and J(ρ) has been defined above. When J is constant, the functional U is the one
introduced in [2].

Fix some divergence free vector field J = J(u) constant in time and denote by

AT,J the set of all currents j such that T−1
∫ T

0
dt j(t, u) = J(u). The condition of

vanishing divergence on J is required by the local conservation of the number of
particles. From the large deviations principle for the current we get

P
N
ηN

( 1

T

∫ T

0

dt J N (t, u) ≈ J(u)
)

∼ exp
{

− Nd inf
j∈AT,J

I[0,T ](j)
}

Let U∗∗ be the convex envelope of U , in [1] it is shown that

lim
T→∞

1

T
inf

j∈AT,J

I[0,T ](j) = U∗∗(J)
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we therefore have

P
N
ηN

( 1

T

∫ T

0

dt JN (t, u) ≈ J(u)
)

∼ exp
{

− Nd T U∗∗(J)
}

where the logarithmic equivalence is understood by sending first N → ∞ and then

T → ∞. This result extends [2] to d ≥ 1, allows divergence free J , and shows
that, in general, U has to replaced by its convex envelope U∗∗. An example where
U is not convex is discussed in [1].
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Simulations of Diffusion Induced Segregation

Thomas Blesgen

Diffusion Induced Segregation (DIS) processes represent a particular class of
segregation phenomena where the formation of (two) phases only starts after the
concentration of a particular diffusor exceeds a certain threshold. The objective of
the present work is to develop suitable models for the so-called chalcopyrite disease
within sphalerite which is one example of DIS, compute at least approximately the
actual physical free energies and make simulations closer to reality.

Model A: For t ≥ 0 find c = (c1, c2, c3, c4), χ such that in Ω ⊂ R
D for t > 0

0 = div
(

4
∑

j=1

L1j∇µj

)

+ k1/bχ(c2
2 − (κ)1/bχc1c3),(1)

∂tci = div
(

4
∑

j=1

Lij∇µj

)

+ ri(c, χ), i = 2, 3, 4,(2)

µi =
∂f

∂ci
(c, χ), 1 ≤ i ≤ 4,(3)

τ∂tχ = γ△χ− ω(c, χ)(4)

together with initial values for c and χ and Dirichlet boundary conditions for c, µ
and χ. Here, c is a concentration vector, χ measures the volume fraction of the
chalcopyrite phase, µ is the chemical potential. Reaction terms: r = (r1, . . . , r4)

with r1 = r3 = − 1
2r2 = k1/bχ

(

c2
2 − κ1/bχc1c3

)

, r4 = 0. Let ΩT := Ω × (0, T0).


