The Annals of Probability

2023, Vol. 51, No. 4, 1298-1341
https://doi.org/10.1214/22-AOP1619

© Institute of Mathematical Statistics, 2023

CONCURRENT DONSKER-VARADHAN AND HYDRODYNAMICAL LARGE
DEVIATIONS

BY LORENZO BERTINI}*?, DAVIDE GABRIELLI*? AND CLAUDIO LANDIM?:¢

1Dipartiment() di Matematica, Universita di Roma ‘La Sapienza’, ®bertini@mat.uniromal..it
2DISIM, Universita dell "Aquila, bdvd.gabrielli@gmail.com
3IRL 2924, IMPA, Clandim@impa.br

We consider the weakly asymmetric exclusion process on the d-
dimensional torus. We prove a large deviations principle for the time av-
eraged empirical density and current in the joint limit in which both the time
interval and the number of particles diverge. This result is obtained both by
analyzing the variational convergence, as the number of particles diverges, of
the Donsker—Varadhan functional for the empirical process and by consider-
ing the large time behavior of the hydrodynamical rate function. The large
deviations asymptotic of the time averaged current is then deduced by con-
traction principle. The structure of the minimizers of this variational problem
corresponds to the possible occurrence of dynamical phase transitions.

1. Introduction. Stochastic lattice gases that describe the evolution of interacting ran-
dom particles on a lattice of mesh 1/N have been an instrumental tool in the development of
nonequilibrium statistical mechanics [4, 15, 21]. Their macroscopic behavior, usually referred
to as hydrodynamic scaling limit, is described as follows. Given a microscopic realization of
the process, the empirical density it 5 is defined by counting locally the average number of
particles while the empirical current J y is defined by counting the net flow of particles. By
the local conservation of the number of particles, & ; and J y satisfy the continuity equation.
The content of the hydrodynamical limit is the law of large numbers for the pair (&, Jn)
in the limit N — oo. For driven-diffusive systems the limiting evolution is given by

dp+V-j=0,
J=—-D()Vp+o(p)E,

where E = E(x) is the applied external field, D is the diffusion matrix, and o is the mobility.
In particular, the density profile p = p(#, x) solves the nonlinear driven diffusive equation

(12) 0p+V - (0(p)E)=V - (D(p)Vp).

We refer to [15] for the details on the derivation of (1.2), while the scaling limit of the em-
pirical current leading to (1.1) is discussed in [3] in the case of the symmetric exclusion
process.

The large deviations with respect to the hydrodynamic limit in the time window [0, T'] are
characterized by the rate function

T i + D(p)Vp — o (p)E|?
(1.3) Aro = [ ar [ artlt (pil-ofp) o (p)E|

that is at the base of the Macroscopic Fluctuations Theory and is widely used in nonequi-
librium statistical mechanics [4]. We refer to [15, 17] for the derivation of this rate function
when the empirical current is disregarded.

(1.1)
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A significant problem is the behavior of the average of empirical current over the time
interval [0, T] in the limit when N — oo and then T — oo. By the hydrodynamical large
deviations principle and contraction principle, this amounts to analyze the behavior as T —
oo of the minimizers to (1.3) with the constraint % fOT dtj = J. This problem has been
initially raised in [7] while in [1] it has been pointed out that the minimizers can exhibit a
nontrivial time dependent behavior. In [2, 8] it has been then shown that this is actually the
case for the weakly asymmetric exclusion process and the Kipnis—Marchioro—Presutti model
(KMP) [16] where, for suitable value of the parameters, traveling waves are more convenient
than constant profiles.

By [3], Proposition 4.1, the limiting value as 7 — oo of the minimum to 7' A7 with the
constraint % fOT dtj = J exists. Denote it by 1® (J). Varadhan [23] proposed the following
representation for /:

. _ 2
(1.4) 1(2)(J)=inf{/ dP/dle(l)JrD(p(li()z;((tt))) o(p(1))E| ;/de(t):J},

where the infimum is carried out over the probabilities P invariant by time translations on
the set of paths (p, j) satisfying the continuity equation & + V - j = 0. Note that /® is
convex and that, by the stationarity of P, the actual value of ¢ on the right-hand side of (1.4)
is irrelevant.

The purpose of the present analysis is to prove the validity of the representation (1.4) in the
context of the weakly asymmetric exclusion process for which D =1 and o (p) = p(1 — p).
This will be achieved both when the limit 7 — oo is carried out after the hydrodynamic limit
N — oo and when the limits are carried out in the opposite order. In fact, the representation
(1.4) will be deduced by the contraction principle from a large deviation result at the level of
the empirical processes that we next introduce.

Consider first the case in which the limit N — oo is taken after 7 — oo. By the Donsker—
Varadhan result, see, for example, [13, 22], as T — oo the empirical process associated to the
weakly asymmetric exclusion process satisfies a large deviation principle in which the affine
rate function is the relative entropy per unit of time with respect to the stationary process. By
projecting this functional to the stationary probabilities on the empirical density and current
and analyzing its variational convergence as N — oo, we deduce the desired large deviation
principle with affine rate function given by

J@O+Dp)Vp(t) —o(pt)EI*
40 (p(1))

The main ingredient in this derivation is, as for hydrodynamical large deviations, the validity
of local equilibrium with probability super-exponentially close to one as N — oo. Observe
that the rate function in (1.4) is obtained from (1.5) by contraction. The proof for the case in
which the limit 7 — oo is taken after N — oo is achieved by lifting the hydrodynamical rate
function (1.3) to the set of stationary probabilities on density and current and analyzing its
variational convergence as T — 00.

As a corollary of the analysis here presented, we also deduce the “level two” large devi-
ations relative to the family of random probability measures % fOT dtdyx (1) in the joint limit
N, T — oo. Letting 1;(p, j) = p(t), the corresponding rate function is

(1.6) I(p) =inf{I(P); P o1, ' = p}.

Since J(gp) = 0 if and only if g is a stationary measure for the flow associated to the hy-
drodynamic equation (1.2), this large deviations statement implies the hydrostatic limit for
the weakly asymmetric exclusion process: in the limit N — oo, the empirical density con-
structed by sampling the particles according to the stationary measure converges to the unique
stationary solution to (1.2).

(1.5) I(P):fP(dp,dj)/ dx!
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We expect the large deviations principle stated in Theorem 2.1 and Corollaries 2.3 and 2.4
to hold in great generality since the proof does not rely on particular features of the WASEP
with periodic boundary conditions. In particular, an analogous result should be in force for
zero-range processes (under suitable conditions on the rates), the KMP model (where sub-
stantial technical difficulties are expected), and dynamics in contact with boundary reservoirs.

The existence or not of a nontrivial time-dependent behavior is a difficult task to be de-
tected. For example, in the zero-range dynamics on a torus it is not simple to establish if and
when this is the case. In the case of boundary driven zero-range dynamics, we can instead
rule out a time dependent behavior and the commutation of the limits can be verified by direct
microscopic computations.

The main results of the article assert that we can exchange the order of the limit 7 — oo
and N — oo in the large deviations principle for the current time average. This result does
not imply that one obtains the same limit by taking N and 7 — 400 simultaneously. This is
an open and interesting question.

2. Notation and results.

Microscopic dynamics. Denote by T = [0, 1) the d-dimensional torus of length 1 and
let dx be the corresponding Haar measure. Fix N > 1, and let ’]I‘ the discretization of T¢:
']T?\, =T N (N-1Z)4. The elements of T¢ and Tﬁiv are represented by x and y. Let By be the

. . . d
set of ordered, nearest-neighbor pairs (x, y) in T,.

Denote by Xy := {0, 1}T7v the space of configurations. Elements of Xy are represented
by n so that n, =1, respectively, 0, if site x is occupied, respectively, vacant, for the con-
figuration 7. Fix E in C'(T?; R¢), the space of continuously differentiable vector fields de-
fined on T. In some statements we assume that E is orthogonally decomposable: there are
U eC*T% and E € C'(T9; Rd) with vanishing divergence, V - E=0, satisfying the point-
wise orthogonality VU (x) - E (x) =0, x € T¢ such that E = —VU + E. We scrutinise this
condition in Remark 2.2 below.

The weakly asymmetric exclusion process (WASEP) with external field E is the Markov
process on X whose generator Ly acts on functions f: Xy — R as

(2.1) Ly =N Y 0l —nyleVDENEIf(0%In) — fp)].
(x,y)eBy

In this formula the configuration 6*¥7 is obtained from 1 by exchanging the occupation
variables 1y, 1y,

ny ifz=x,
(c™¥n), :=1nx ifz=y,
n, ifz#x,y,

and En(x, y) represents the line integral of E along the oriented segment from x to y,

y 1
(2.2) EN(x,y)zf E-dﬁ:/o E(x +rly —x])-[y — xldr,

where a - b is the inner product in R?. Note that Ex : By — R is antisymmetric and that Ey
is of order 1/N. It depends on N only because it is defined on By .

Denote by Xy x ={ne€ Zy: erTc]{] ne =K}, K=0,...,N%, the set of configurations
with K particles. The Markov process with generator Ly is irreducible in the finite state
space Xy k. It has, therefore, a unique stationary probability measure, denoted by un k.
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If the external field is orthogonally decomposable, the measure pt g is the canonical mea-
sure of a nonhomogeneous product measure provided the external field is suitably discretised.
Apart from this special case, the stationary state py, g is not explicitly known. This is not
an obstruction, however, as we consider large deviations of time-averages in which the initial
condition is not relevant.

Hereafter, R represents either Ry or R. Denote by D(R, X), the set of right-continuous
functions with left-limits from R to X, endowed with the Skorohod topology and the cor-
responding Borel o -algebra. Elements of D(R, X ) are represented by 7.

For a probability measure v on Xy, denote by PV the probability measure on D(R, =)
induced by the Markovian dynamics associated to the generator Ly starting from v. When
the measure v is concentrated on a configuration n € Xy, v = §,, we write ]P’f;’ , instead of
IP’Q:] .For K =0,..., N, the stationary processes associated to the WASEP dynamics with
K particles is denoted by PN . that we regard as a probability measure on D(R, Xy k)
invariant with respect to time- translatlons Expectation with respect to IPM MK is represented
by EV

UNK "

Empirical density. Let M, (T%) be the set of positive measures on T¢ with total mass
bounded by 1, endowed with the weak topology and the corresponding Borel o -algebra. Let
also /\/lm(']I‘d), m € [0, 1], be the closed subset of M+(’]I'd), given by the measures whose
total mass is equal to m.

The empirical density is the map wy : Ly — M, (T?), defined by

(2.3) N () =17 Z NxSy.

xe'IFd

where 8., x € T9, is the point mass at x. For a continuous function f': T4 — R and a measure
v in M4 (T%), we represent by (v, f) the integral of f with respect to v so that

(2.4) (Tn, f) = Z e f(x).

xe’]l‘d

We also call empirical density the map 7wy : D(R, Xn) = D(R, M+(Td )), defined by

(2.5) EMOIGEEMUIGE Z (D)8, teR.

xe’JI‘d

Empirical current. For an oriented bond (x, y) € By and s <1, let N)(C )t](n) be the num-
ber of jumps from x to y in the time interval (s, ¢] of the path € D(R, Xy),

(2.6) Nonm= Y 0.1 =n,)]1{n¢) =0 n(r-)}.

s<r=t

Fix a trajectory § € D(R, ), and denote by C (T9; RY) the space of continuous vector
fields on T¢. If  is a trajectory compatible with the WASEP dynamics, that is, such that for
each jump time ¢ we have 5(t) = o*Y9(t—) for some (x, y) € By, we define the integrated
empirical current J () as follows. Let [J 5 ()](0) =0, and for ¢ > 0, let [J 5 (n)](¢) be the
linear functional on C (T¢; R¢ ), defined by

y
2.7 (In()(t), F): > Nfoyf](ﬂ)/x F.dt, FeC(T%R).

N (x.y)eBy
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For t < 0, we replace in the previous formula Nfd:vt](n) by th yo](n). If F=(F,..., Fp),
then forr >0

d

1
+ +
V0 Fl= 35 33 5 NG 0 =X [ repan
where, ¢; =e;/N and {ey, ..., e} represents the canonical basis of R.

Discrete vector fields. For technical issues, we need to define the empirical current also for
paths 5 not coming from the WASEP dynamics. Consider an arbitrary path n € D(R; Xn k).
If for some ¢ € R it happens 5(t) # n(¢—), some of the particles in the configuration 5(z—)
have rearranged themselves to construct the configuration (¢). The definition of the empiri-
cal current requires to decide the actual path taken by those particles.

A discrete vector field W is an antisymmetric function W: By — R. The discrete diver-
gence of the discrete vector field W is the function Vi - W: ’]I“f\, — R, defined by

(Vv -W)x) = Y W,y

y:i(x,y)eBy

Fix 0 < K < N, and consider two configurations 7, § € Xy k. Let W, ¢ be a discrete
vector field which solves

(2.8) (VN - Wpe)(x) =nmy — &, xeT%.

Such a discrete vector field W, ¢ always exists. The configuration { = n — & belongs to
{—1,0, I}T‘I{/ and ). eT¢, ¢y = 0. To define W, ¢, one just needs to create nearest-neighbor

flows from each x € ']I‘j{, such that ¢, =1 to each x’ € Tﬁ, such that ¢,» = —1, and add all
these flows.

Regarding 1 and £ as positive measures on T¢,, both of mass K, there exists a constant Cg
such that, forall N > 1,0 < K < N4, n, & € Xy i, there exists a discrete vector field W), ¢
such that

(2.9) Yo Wyelr, )] < CoNIT
(x,y)eBN

Indeed, in the construction of W, ¢ we displace at most, N 4 particles along at most N sites.
Actually, this bound is a particular case of the discrete Beckmann’s problem; see, for example,
[20].

Of course, equation (2.8) admits more than one solution, and we do not claim that there
is only one satisfying the previous bound. It turns out, however, that the scaling limit of
the empirical current does not depend on the specific selection among those fulfilling (2.9).
Hence, in the sequel and without further mention, we assume that, for each pair (n,&) €
212\, x» a discrete vector field W), ¢, which matches (2.9), has been chosen.
Wheng‘ =o"'n for some (x, y) € By and n, =1, n, =0, we define W), ¢ as

1 if (X y) =(x,y),
(2.10) Wye(x',y)=1-1 if (x",)) =, x),
0 otherwise.

This discrete vector field clearly satisfies (2.8) and (2.9).
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Integrated currents for generic paths. Fix a generic path n € D(R; £y k), and denote by
7; its jump times. Let W; be the discrete vector field given by

(2.11) Wi =Wy —m@)-
For t > 0, the integrated empirical current of the path 7 is then defined by

(2.12) (Jnm)@), F)= YooY Wik, ) Fn(x.y),

d
2N i:1€(0,¢] (x,y)eBy

where Fy: By — R is the discrete vector field constructed from F € C(T¢; R%) by (2.2).
The factor 1/2 has been introduced to avoid computing twice each jump. In view of (2.10), for
trajectories # coming from the WASEP dynamics, this definition corresponds to the original
one, given in (2.7).

As before, Jn()(0) =0, and forr <0

1
(In®), F)= =57 YooY Wilx, ) Fn(x.y).

i: 7;€[1,0) (x,y)€By

Sobolev spaces. Let h, € L>(T%), n = (n1,...,n4) € Z¢%, be the orthonormal basis of
L3(T9), given by h, (x) = exp{2mi(n - x)}.

Denote by (-, -) the inner product in L>(T¢) and by §: Z¢ — C the Fourier coefficients of
the function f in L2(T9),

) i=(foha) = [ FORS G, e,
where 7 represents the complex conjugate of z € C. Hence,
f=2 fmhy.
nezd

Denote by H,, p € R, the Hilbert space obtained by completing the space of smooth
complex-valued functions on T¢ endowed with the scalar product (-, -) p defined by

(2.13) (f.8)p=(0—=21)"fzg)
where A represents the Laplacian. An elementary computation yields that
(2.14) (f.8)p = (1+4x* ") §mg(n),
nezd
where [n|* = |(n1,...,n4)]* = ¥ i< j<qn;. Denote by || - ||, the norm of H,: || f]} =

(f, ) p- Itis well known that H_, is the dual of H, relatively to the pairing (-, -), defined
by

(2.15) (j.8):=Y_ imamn), jeH_p geH,.

neZd

Moreover, it follows from the definition that #, C H, for p > p’. Let Hg =Hpx---xH,
that we consider endowed with the strong topology. We represent below by (J, H) the value
at H € 7-[‘;, of a bounded linear functional J, defined on Hf,.

Fix p > d/2. By the Sobolev embedding, ’Hf, C C(T?; R?). In particular, by the defini-
tion of the empirical current, for each ¢t € R, the functional [J 5 (5)](¢) is bounded on Hi.
Therefore, for each n € D(R; £y k) and t € R, it belongs to dual of ”HZ, that is, to H4 b
Furthermore, it is easy to check that J is right-continuous and has left-limits. Hence, the
empirical current J y is a map from D(R, Xy k) to D(R, H‘fp).
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Fix p > 0, and let J be a bounded linear functional on ”HZ, that is, J € H? »- BY
Riesz representation theorem, there exists G = G(J) in 7—[;1, such that J(F) = (F, G),
for all F in 7—[;17, and ||J||%p = (G, G)p. Letting G = (Gy, ..., G4) and defining Ji(n) as
{1 +4712|n|2}1’€5k(n), where & (n), n € 74, are the Fourier coefficients of G, k=1,...,d,
by (2.14) we deduce that

d
J(F)=3" Y ), F=(Fi.....Fy).
k=1nezd
For n € 74, J=1...,d, let H/": T4 — C¢ be the vector fields given by H/" =
(H{",...,H]"), where H]"" = §; 1hy. Taking F = H/" in the previous displayed iden-
tity, one concludes that Jy(n) = J(H k.ny 5o that

d

d
(2.16) JF)=3" 3" JmJ(H"), ITI12,=3"

k=1pezd k=1nezd

|J (H%m)|?
(1 +472|n|?)P

Continuity equation. It follows from the conservation of mass, that for each x € T‘I(,,
t > 0, and each path 5 compatible with the WASEP dynamics,

d
M (1) =1, 0) = S {Nor ™ ) = Nog ' () + Nig 7 ) = Niglyy ()

Jj=1

Let f be a function in C*°(T?), and recall the notation introduced in (2.4). Multiply the
previous equation by f (x), sum over x € T¢,, and divide by N¢ to get, after a summation by
parts, that

([nm]@®), f) =[x N @](0), f)
1 d XT¢e; ej, X
=qa 2 2 Fa e = FOHNG Y o =Ny " ).
j=1xe’IF‘1{]
Since f(x +ej) — f(x) = f;+ej (Vf)- de, in view of the definition of the map J y,

(2.17) ([en]@), f) = ([xn]O), f)={In @), V).

This is the microscopic version of the continuity equation. Observe that, for paths # not
coming from the WASEP dynamics, the definition of the integrated empirical current J y has
been engineered so that (2.17) always holds.

Hydrodynamical limit. Let (nN ‘N >1), nN € Xy, be a sequence of configurations as-
sociated to a density profile p: T4 — [0, 1] in the sense that, for each continuous function
f: T4 >R,

1
Jim (oY), f)= Jim ZT st = [ rpds.

It is proven in [3] that, as N — oo, ( y, J §) converges in ]P;VN -probability to

t
<p<r,->dx, /0 dsj(s,-)> .
>
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where (p, j) is the unique weak solution to the Cauchy problem

dp+V-j=0,
(2.18) j=-Vp+0o(p)E,
p(0,)=p(),

in which o : [0, 1] - R, given by o (p) = p(1 — p), is the mobility of the exclusion process.

If one considers only the empirical density and disregards the empirical current, the above
result has been proven in [10, 17]; see also [15], Chapter 10. The case in which one considers
also the empirical current is discussed in [3] for the SEP. The topology on the set of currents
used in [3] is different from the one employed in the present paper. Actually, the proof of the
tightness of the empirical current in [3] is incomplete but the arguments presented below in
Section 4 fix this issue (in the topology here introduced). In view of the super-exponential es-
timates in [17] or [15], Chapter 10, the hydrodynamical limit extends directly to the WASEP
dynamics.

Empirical process. Given K = 0,....,N% T >0, and ne DR, XN k), let nT €
DR, Xy k) be the T-periodization of the trajectory 5, defined by

=l

where |a] represents the largest integer less than or equal to a € R. A probability measure
on D(R, ¥y k) is stationary if it is invariant with respect to the group of time-translations
(U : t € R), defined by

@) (s) :=n(s —1), seR.

Denote by fPé\tQ;tK the set of stationary probability measures on D(R, Xy k) that we consider
endowed with the topology induced by the weak convergence and the corresponding Borel
o -algebra. For a trajectory n € D(R4, Xy k) and T > 0, the empirical process Rr () is the
element in ?Qfé{( , given by

1 T
(2.19) Rr(y) := ?/O 89,7 d1.

Observe that the path 57 is not necessarily compatible with the WASEP dynamics; indeed,
at the times that are integral multiples of 7' there is a jump that is not, in general, coming
from the WASEP dynamics. This is the reason for which we needed to define the empirical
current for generic paths. However, in view of the bound (2.9) there exists a finite constant
Cy, depending only on the space dimension d, such that

(2.20) sup [(Jv(n")(@) — Inm)(@), F)| < CollFlloo
t€l0,T]

for all vector field F in C(T¢, R¢). Indeed, by the definition of 77 and by (2.12) the left-hand
side is equal to
1

N 2 W IENGL ),

Iy (")) = Ina)(T), F) = ‘
(x,y)eBy

where W = Wy () 50). Hence, by (2.9) the right-hand side of the previous identity is
bounded by Co|| F|| 0, as claimed in (2.20).
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Fix p > (d + 2)/2, and let M = M (T%) x ’H‘ip. Denote by § the closed subset of
DR, M) =D(R; M+(’]1‘d)) x D(R; H‘ip), given by the pairs (;r, J) which satisfy the con-
tinuity equation in the sense that, for each s < r and f in C*°(T¢9),

t t
ean [ dsi [ dsallrG. f)= w6, )= (T 62~ T, £} =0.

s S1
We consider § endowed with the relative topology and the associated Borel o -algebra. Denote
by 9;: 8 — 8, t € R, the time-translation defined by
(2.22) U@, J) = (O, 01 J),

where (9;m)(s) =n(s —t), and (3, J)(s) = J(s —t) — J(—1), s € R. Note that the time
translations, defined on D(R; Xy k) and 8, are compatible in the sense that ¥; o (my, Jy) =
(N, JN) o V.

Given a path (r, J) in § and T > 0, denote by T, J7) its T -periodization,

ml (1) =n(t - L%J)
o afe-[3)) | Jrn

where A is an element of H< » satisfying V- A 4+ (T) — m (0) = 0. A straightforward com-

(2.23)

putation shows that (=7, JT) satisfies the continuity equation (2.21). Hereafter, we assume
that the choice of A in the previous definition and of the discrete vector field W in (2.8) are
compatible in the sense that whenever m (0) = N ¢ > €T, x and 7 (T) = N4 >y €T, &

for some 1, £ € X, then
1 d
_d Z Z ng (X, x + ek)ekﬁL[x x+ex]’
’]I'

where Sﬁll_[x o] is the restriction of the one-dimensional Hausdorff measure to the interval

[x,x + ex]. This compatibility implies that @nm"), IN@T) = @y’ InmT), for
eachne DR4; Xy k).

Given n € D(R4; ¥n k), let finally 237 v () be the stationary probability (with respect
to the map ¥; defined above) on 8, given by

e e
224 Rry@m) 1=7/0 5<nN(ﬂ,nT),1N(0,nT))d’=7/0 RN MOBLE

Large deviations asymptotic. Our main result establishes the large deviations principle
for R7 n(n) in the joint limit 7 — oo and N — oo when 75 is sampled according to the
WASEP dynamics. We prove this result both when 7" — oo before N — oo and when N —
oo before T — oo. The corresponding rate function is independent of the limiting procedure.

The statement of this result requires further notation. Denote by 8,,, m € (0, 1), the closed
set of trajectories (x, J) in 8 such that 5 (z, T9) = m for all ¢ € R. Recalling that o (p) =
p(1 — p) is the mobility of the exclusion process, let finally S, 4. be the subset of elements
(r, J) in §,, such that:

(a) w e C(R, M, (T?)), m (¢, dx) = p(t, x) dx for some p such that 0 < p(¢, x) < 1, and
forany T > 0,

2
f ar [ ax VP!
T4 0(/))
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(b) J belongs to C(R, H ) and J(r) = fOJ(s) ds, t € R, for some j in L?
T, a(,o(t,x))_1 dtdx;RY). Thus, forany T > 0,

/ dt/Tdd alj(—}'j)<

Let the action Ay 7: 8 — [0, +00], m € (0, 1), T > 0 be defined by

(R x

loc

j+Ve—o(@EP® .

dt d f , ec8 ,

(2.25) Amr(m, J)= /(; Td * 40 (p) if (z, J) m,ac
+00 otherwise.

By the arguments presented in [6], Section 4, the functional A,, r is lower semicontinuous.
Note that if J has a density j as in item (b) above, then the density of ¥;J is given by
(B J)(s) == j(s —1).

For m € (0, 1), let Pgtar, Pstar.m» be the set of translation invariant probability measures on
8, 8, respectively. We consider Py and Pgiar,n endowed with the topology induced by the
weak convergence and the corresponding Borel o -algebra. Let I,,: Pgqa — [0, +00] be the
functional defined by

1
(2.26) 1,(P):= ?EP[Am,T]y

observing that the right-hand side does not depend on 7 > O by stationarity. Moreover,
by using the continuity equation (2.21), the identity Vp/o (p) = Vh'(p), where h(p) :=
plogp+ (1 —p)log(l — p) is the Bernoulli entropy, and the stationarity of P, integrating by
parts we deduce that if 1,,(P) < 400, then, for any 7 > 0 (equivalently, for some T > 0),

IV pl|? |jI?
(2.27) _EP [/ di /Td (4a(p) 40(/0))} =t

In the next statements and hereafter, by limsup; y, we mean either limsupy limsup;
or limsupz limsup, . Analogously, liminf7 y stands for either liminfy liminf7 or liminfr
liminfy.

THEOREM 2.1. Fixm € (0, 1), p > (d +2)/2, and a sequence K such that Ky /N¢ —
m. For each closed subset F of Pgat,

11
limsup sup —dflogIP’nN[i)‘iT,Neffr]5—})r€1g1m(P).

N, T—>o0 WGEN,KN

Moreover, if E is orthogonally decomposable, then, for each open subset G of Pgat,

.. . 1 N .
liminf  inf Wfk)gpn [Rrve§]l> —}{réfg I,(P).

N, T—o0 UEEN,KN

Finally, the functional 1, : Py — [0, +00] is good and affine.

REMARK 2.2. Recall that “quasi-potential” is the name given to the rate functional of
the large deviations principle for the empirical measure under the stationary state. In the
lower bound, the technical condition that the external field E is orthogonally decomposable
is only used to guarantee that the quasi-potential of the WASEP is bounded, an ingredient that
enters in the proof of Lemma 4.12. Actually, under this assumption the quasi-potential can be
computed explicitly [4, 5]. We do believe that the quasi-potential of the WASEP is bounded,
even if the external field E is not orthogonally decomposable, but a proof is missing.
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In the common terminology of large deviations, Theorem 2.1 corresponds to a level-three
large deviation principle for which the rate function has an explicit expression. The con-
traction principle permits to derive from this result large deviations principles for relevant
observables.

Level two large deviations. Let P(M_(T%)) be the space of probability measures on
M (T?) endowed with the weak topology. Recalling (2.5), define g7 y as the map from
D(Ry; Zy,k) to P(M4(T?)) by

1 T
or.N @) = T /0 dtdzy )

that is, o7 y is the time empirical measure associated to the path wy(n). Letting ¢,: & —
M _(T?) be the map (i, J) — 7 (1), then Rr. N oz,_1 = gr,n. Finally, for m € (0, 1), denote
by Iy, : ?(M+(Td)) — [0, +o0] the functional given by

(2.28) I (9) =inf{I,(P): P € Pgar, P o1, = ).

Given m € (0, 1), let (®}" : t > 0) be the flow induced by the hydrodynamic equation
(2.18) on the set of densities with total mass equal to m. Namely, when [ p dx = m, we set
®7"(p) = p(t) where (p, j) is the unique weak solution to (2.18). By identifying measures
absolutely continuous with respect to dx with their densities, we regard (P : ¢ > 0) as a flow
on M, (T%). The following result is obtained from Theorem 2.1 by the contraction principle
and implies the hydrostatic limit. in the limit N — oo, the empirical density constructed by
sampling the particles according to the stationary measure ppy g converges to the unique
stationary solution to the hydrodynamic equation.

COROLLARY 2.3. Fixm € (0, 1) and a sequence Ky such that K /N — m. For each
closed subset F of P(M(T?)),

11
limsup sup ——log]P’N[pT,N € F] < — inf Iy ().
N.T—coneEy ky N T " peg

If E is orthogonally decomposable, then, for each open subset G of P(M_(T%)),

11
liminf inf —; — logPY € 51> — inf T (p).
Aminf 0 W NIT oglP) [pr,n €51 = Inf m ()
Finally, the functional J,,: P(M_(T4)) — [0, +00] is good, convex, and vanishes only on
the invariant probabilities for the flow ®™. In particular, if E is orthogonally decomposable,
then J,,(9) = 0 if and only if © = §54x where p is the unique stationary solution to the
hydrodynamic equation with mass m.

Level one large deviations. For T > 0, the time-averaged empirical density is the map
nr.n: DRy, Ey) — M (T?) defined by

1 T
(2.29) v = [ ramlod.

Likewise, for p > d/2, the time-averaged empirical current is the map Jr y from the set

D(Ry, y,k) to H? ,, defined by

1
(2.30) Jr.n(n) = ?[JN(U)](T),
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which can also be written as

11 y
Vr.n (). F) = T N4 > N)(Cd,yT](ﬂ)/x F.dt, FeC®(T%RY).
(x,y)eBy
Note that
1 1
(2.31) (r,N, JrN) = /me,N<n(t), ;J(t)) +70.E7.3).

where the first term on right-hand side does not depend on ¢ # 0 by the stationarity of Rr y
and

Ernm = Inm" (T)) — Jn(n(T)).

By (2.20) and the Sobolev embedding, for p > d /2 we deduce that |7 n(9)]| -, is bounded
uniformly in 5, T, and N. Hence, the second term on the right-hand side of (2.31) is irrelevant
for large deviations in the asymptotics T — 0.

Let I,,,: M — [0, +00], m € (0, 1), be the functional defined by

Ln(, J) :=inf{1,,(P): P € Py, Ep[n ()| =7, Ep[J(1)] =1J}

which does not depend on ¢ # 0. If the vector field J is not divergence free, the set on the
right-hand side is empty. Indeed, by stationarity and the continuity equation (2.21), if the
above constraints are satisfied, we deduce that, for each smooth function f on T4 and ¢ > 0,

2

0= Ep[/ot(n:(s) — 7 (0), f)ds} = EPU(:(J(S), Vf>ds] = %(J, V).

By the contraction principle, Theorem 2.1 implies the following statement.

COROLLARY 2.4. Fixm € (0,1), p > (d+2)/2,and a sequence Ky so that KN/Nd —
m. For each closed subset F of M,

1 1
limsup  sup NIT longf[(nr,N, Jry)€F|<— inf L,(m, J).
T,N—>ooneXy ky (m,))eF

Moreover, if E is orthogonally decomposable, then for each open subset G of M,

11
liminf inf — —IlogPV J > —
Hind el e B [ormr Jr.m €51 =

inf 1, (w, J).
(,J)€S

Finally, the functional I,,,: M — [0, 400] is good and convex.

The projections of I,,, on the two components can be further analyzed and computed ex-
plicitly under additional conditions which are satisfied, for instance, in the SEP case. Denote

by I,E,l) : M4 (T%) — [0, +00] the projection of the functional I,, on the density, that is,
(2.32) 1V (r) = inf{1,,(P) : P € Pgtarm, Ep[x(t)] =7}.

It turns out that when the external field E is a gradient, so that the WASEP dynamics is

reversible, then I,ff) can be computed explicitly. Assume E = —VU for some U € C*(T%),
and let V,, : Mm(’]I‘d ) — [0, +0o0] be the functional defined by

/ xIVp+0(p)VU|2
Vi () := | Jd 4o (p)
+00 otherwise.

ifn(Td) =m and 7 (dx) = pdx,
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Let also co(V,,) be the convex hull of V,,, and observe that, in view of the concavity of
o, if VU =0, then co(V,;,) = V,,. The functional V,, can be seen as a nonlinear version
of the level two Donsker—Varadhan functional for reversible diffusions (sometimes called
Fisher information). Indeed, in the case of independent particles o (p) = p and the functional
V,, reduces to the Dirichlet form of the square root for the diffusion on T¢ with generator
A—-VU-V.

THEOREM 2.5. IfE =—VU, then I’ = co(V,,).

As discussed in the Introduction, the projection of I, on the second component is related to
the possible occurrence of dynamical phase transitions for the current. For p > (d+2)/2,m €
(0, 1), denote by 1,1(12) s He » > [0, +o0] the projection of the functional I,, on the current,
that is.

(2.33) 2 () =inf{I,(P): P € Psarm, Ep[J ()] =1}

corresponds to the Varadhan’s proposal informally presented in (1.4). By the contraction
principle, Corollary 2.4 implies that the time-averaged empirical current Jr_y satisfies a large
deviation principle with rate function 1,1(12).

It has been pointed out in [2, 3, 8] that the variational problem (2.33) has a nontrivial
solution when E is constant and large enough. Such behavior is interpreted as a dynamical
phase transition. Strictly speaking, the problem (2.33) is not really considered in [2, 3, 8],
but the analysis performed there implies the results summarized in the next statement. We

restrict to the one-dimensional case with constant external field. Since 1, ,5,2) (J) < 400 implies
V-J =0, in the one-dimensional case, 1,512) is finite, only if J (x) = j for some constant j € R.

THEOREM 2.6. Letd=1,m € (0, 1), and E > 0 be constant:
(1) There exists Eg > 0 such that if E < Ey, then, for J = j, j € R,

(j —o(mE)*

== (m)

The optimal P for the variational problem (2.33) is 8, j).
(i) There exists E1 > Eq such that if E > Ey, then, for J = j, j € R, with j large enough

(j —o(mE)*

(2)
1,7 (J) < do ()

Furthermore, taking the time average of a probability concentrated on a traveling wave pro-
vides a measure P in P such that Ep[J () =tJ, 1,,(P) < 1,8, j))-

Regarding the higher dimensional case, we mention that the argument in [3], Proposi-
tion 5.1, implies that, in the SEP case (E = 0) for J with vanishing divergence, we have

J+Vp|?
1Oy =int [ TEYPE
pJrd 4o (p)
where the infimum is carried out over the density profiles p of mass m. In other words, the
infimum in (2.33) is achieved for a probability measure of the form P = §,4x, ), and no
dynamical phase transition occurs.
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3. Donsker—Varadhan large deviations principle. In this section we recall the Don-
sker—Varadhan large deviations principle in the context of the WASEP dynamics with fixed
number of particles.

Recall from (2.19) the definition of the empirical process R7(n). Referring to [22] for
equivalent characterizations, we introduce the rate functional for the family (R7 : 7 > 0) by a
variational representation that will be most useful for our purposes. For ¢ > 0, let Hy g (¢, -) :

ﬂ’é\t’atK — [0, +00] be the functional given by

Hy 5 (1, Q) = sup / dQ([® () — log BN (¢®)],

where the supremum is carried over the bounded and continuous functions ® on D(R, Xy )

that are measurable with respect to o {5(s), s € [0, ¢]}. Let Hy g : iPQ{f — [0, +00] be the
functional defined by

1 1
3.1 Hy g (Q): —SuptHN k@, Q) = lim HN k(@ Q),
t>0
where the second identity follows from the inequality before [22], Theorem 10.9. By [22],
Theorems 10.6 and 10.8, the functional Hy g is good and affine.
The classical Donsker—Varadhan theorem (see [13] or Theorems 11.6 and 12.5 in [22])
states that, uniformly on the initial configuration n € Xy g, the family of probability mea-

sures (IP),]N oR; U T > 0) satisfies a large deviations principle with rate function Hy k.

THEOREM 3.1. Fix N and K. For each closed set I and each open set G in fPstat ,

1
limsup sup ?logIP),,N[RT eFl< _éngN’K(Q)’

T— o0 I}EEN K

liminf inf — log]P’N[RT egl>— 1nf Hy .k (Q).

T—o00 n€EXN K

The rate function Hy x (Q) can also be understood as the relative entropy per unit of
time of the stationary probability Q with respect to the stationary process IP’N . Given Ty <
T, denote by iz 1y : D(R Yn.x) — D([Ty, T1], N k) the canonical pI‘O]eCtIOIl Given two
probability measures Q!, Q? on D(R, Xy k), let Hj7, 7,] be the relative entropy between
the marginal of Ql relative to the time interval [7p, 77] and the marginal of Q2 on the same
interval.

1 2 1 T Ti1
(3.2) Hizy,71(Q'1Q%) = Ent(Qyg, 7,)Qf7, 7,7) /1 — I 4Ql 1.
To T1]

where Q{To = Qo i;lTl j =1, 2. We also shorthand Ho 7) by H™). By [12], Theo-
rem 5.4.27, for each Q in ‘.Pgtat

(33) Hy k(@ = lim ZHD QP sup TH(T)(@IIP’

MNK) MNK)

where the second identity follows by a super-additivity argument which stems from [22],
Lemma 10.3. Actually, Theorem 5.4.27 in [12] states that the empirical process (Rr : T >
0) satisfies a large deviations principle with good rate function, given by Hy (Q) :=

limyroo T 1}HI(T)(((;DHP”V ) Since by Theorem 3.1 (Rr : T > 0) also satisfies a large de-

viations principle with good rate function given by Hy x (Q), a simple argument using the

lower semicontinuity of the functionals yields that Hy x(Q) = H;,’ ¢ (Q) forallQ e ?é\t{atK.
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Recall that we denote by S the set of trajectories (s, J) which satisfy the continuity equa-
tion (2.21). By (2.17) the map (wy, Jn): D(R, Xy k) — DR, M) takes values in S. As
already observed, (my, Jn)(O:n) = [V+(mn, Jn)](n) so that (i, J ) induces a map from
the stationary probabilities on D(R, £y g) to the stationary probabilities on §. More pre-
cisely, if P € ??{étK, then Po (my, Jn)~! belongs to Pguar. Let Iy x @ Psar — [0, 00] be
defined by

(3.4) Ink(P)=inf{Hy x(P): PePLK Po(my, Jn)~' = P).

Note that the set on the right-hand side is either empty (e.g., if the P-measure of the
set of piecewise constant paths is not equal to 1) or it is a singleton because the map
(my,JN): DR, £y k) — DR, M) is injective.

COROLLARY 3.2. Fix Nand K =0, ..., N9, The functional Iy g : Pstar — [0, +00] is
affine and good. Moreover, for each closed F and each open G in Py,

1
limsup sup ?logIP’N[ERTNefﬂ<— inf Iy g (P),

T—0o0 )7621\/ K

liminf inf —logIP)N[SRT NESG]>— 1nf Iy k(P).

T—o00 neXy g

PROOF. It is enough to show that the map Té\é;tl( 5Q+ Qo (Ty, Jn)! € Py is con-
tinuous. The statement then follows from Theorem 3.1 by the contraction principle.

Sincethemapwy: D(R; Ly g) = D(R; M+(Td)) introduced in (2.5) is continuous, we
directly deduce the continuity of the map fPé\t’étK 5P Po n;,l € Psat(D(R; M (T%))). In
contrast, the map n — J y () is not continuous. Indeed, consider the sequence 7® in which
7® has a unique jump at time 1/k from 7(0) to Y5 (0) for some (x, y) € By. Then p®
converges to the path 5 with a single jump at time 7 = 0, but J y(y®)) does not converge
to J n(1). In contrast, the map 5 — J () is continuous if  does not have a jump at time
t = 0. Moreover, if Q is a stationary probability on D(R; £x k), then the Q-probability of
the paths » which have a jump at time r = 0 is necessarily zero. This implies that the map
iPéYatK 50~ Qo J;,l € Pyat (D(R; H‘ip)) is continuous. []

4. Variational convergence of the Donsker—Varadhan functional. Referring to [9] for
an overview, we recall the definition of I'-convergence. Fix a Polish space X" and a sequence
(Uy, : n € N) of functionals on X, U,,: X — [0, +o0]. The sequence U, is equicoercive if for
each £ > 0 there exists a compact subset Ky of X such that {x € X': U, (x) <€} C IC; for any

n € N. The sequence U,, I"-converges to the functional U : X — [0, +o0], that is, U, i> U,
if and only if the two following conditions are met:

(1) T'-liminf. The functional U is a I'-liminf for the sequence U,: For each x € X and
each sequence x, — x, we have that liminf, U, (x,) > U (x).

(i1) I'-limsup. The functional U is a I'-limsup for the sequence U,,: For each x € X, there
exists a sequence x, — x such that limsup,, U, (x,) < U (x).

Recall the definition of the functionals I,,, I y k introduced in (2.26) and (3.4), respec-
tively. The main result of this section reads as follows.

THEOREM 4.1. FixO<m <1, p> (d +2)/2, and a sequence Ky so that Ky/N¢ —
m. The sequence (N_dIN,KN : N > 1) is equicoercive. The functional I, is a I"-liminf for
NI N.ky- If E is orthogonally decomposable, then the functional I, is also a I"-limsup

for N_dINvKN. Therefore, under this hypothesis on E, N_dIN,KN LN I,.
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The proof of this theorem is divided into three parts. In Section 4.1 we prove that the
sequence N —dy N.Ky 1s equicoercive. In Section 4.2 I,, is a I'-liminf, and in Section 4.3,
I,, is a I'-limsup, provided E is decomposable. For the rest of this section, fix m € (0, 1),
p > (d +2)/2, and a sequence Ky such that Ky/N?¢ — m.

4.1 Equicoercivity. Set Py := ]P)ﬁ'N’KN oy, Jn)"' € Pyar. We first establish the expo-

nential tightness of the sequence (Py : N > 1) C Pyar.

PROPOSITION 4.2. There exists a sequence (K¢ : € > 1) of compact subsets of 8 such
that

. . 1 C
lim limsup ~Na log Py (X}) = —o0.

£=>+00 N too

PROOF. In view of the Ascoli-Arzela theorem, the compactness of M (T%) and the
compact embedding H_ , < H_,, for p’ > p, the assertion of this proposition follows from
the next three lemmata. [J

Let Drs:={(s,1) eR?:0<s <t <T,|t —s| <8).

LEMMA 4.3. Foreach T > 0, € > 0, and smooth g: T - R,

L 1 N
(Slgl})lgn_fgop ~a logIPMN,KN [(s;lelgT’(S](nN(t) — N (s), g)| > e] = —o00.

LEMMA 4.4. Foreach T > 0,

. . 1 N 2 _
Alimoo lgn_)sélop ~Na log ]P’MN’KN [O;E)T I JN(t)H_p > A] = —o00.

LEMMA 4.5. Foreache >0, T > 0, and smooth H: T? — R4,

lim lim sup ﬁlogPN [ sup [(Jn@) — In(s), H)| > e] = —00.

UN,
=0 N oo N-Kn (s,t)eDrs

Lemma 4.3 is a standard result in the large deviations theory of hydrodynamical limits;
see, for example, [15], Section 10.4. Note that this result can be deduced from Lemma 4.5 by
taking H = Vg and using the continuity equation (2.17). On the other hand, the exponential
tightness of the empirical current is stated in [3], but the proof presented there is incomplete.
For this reason we present below a detailed proof of Lemmata 4.4 and 4.5.

PROOF OF LEMMA 4.4, We use the notation and statements introduced in (2.13)—(2.16),
and denote J n (t)(H’/") by (Jn (1), H’"). By (2.16)

d
1 .
IIVOR, =3 3 Sl

j=lnezd ¥n

Let 8, = ynp/[cp(l + |n|)2(1’_1)]. Here ¢, is a constant such that d ), (ﬁn/ynp) =1, that is,
cp=d).,(1+ In|)~2(P=D_ Note that this sum is finite because we assumed p > 1 + (d/2).
Introducing the supremum inside the sum yields that

d 1 )
PZN,KN[ sup Y > — [(In @), HIMP > A}

0=<t=T ;—y,czd V1

2, V=1 +4n2|n|2.

d 1 4
SPI{\L/NKN|:U U [_ sup |(JN(I)’H]’nH2>A]:|.

j=1nezd IBn 0<t<T
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Fixl<j<d,ne 74, and denote by Hlj’", Hiln the real and the imaginary part of H/n,
respectively. The previous expression is then bounded by

d .
L % Ely Lo @ B> 48 /2)

b==%1 j=1pnezd

We may remove the absolute value from the previous expression at the cost of an extra factor
2 in front of the sum and an estimation of H, lf " and —H, l{ . We next bound the probability of
the event {supy, 7 (J n (1), Hg’n) > /AB,/2}, the other one being similar.

Recall the notation introduced in (2.2), and let By x ¢, (1) = By x+4¢, (1, HZ’"), 1 <k<d,
X € ']I‘?V be given by

j.n
R N N e

+ N277x+ek[1 — nx]e(l/Z)EN(x—i—ek,x) [eHz'j,’;\lJ(x'f‘ek,x) . 1].

By [15], Proposition A1.2.6, for each n € X, the process

. t d
My (1) :=exp{Nd<JN<r),Hg*”>— /0 >y Bx,x+ek(n(s>)ds}

= d
k lxeTN

is a mean-one P/’ -martingale.

Since N |Hg”]'\l, (x,x + ¢r)| is bounded uniformly in b, j, k, x, n, N, a Taylor expansion
yields

d

d .
YD Braae ) —N?Y" > HY (x4 ) (0 — Nty

k=1 xeT?, k=1 xeT?,

<C|N¢

for some constant C; independent of b, j, n, N. Summing by parts and using the inequality
[0x; Hbl " (x)| < Ca|n| for some constant C, independent of b, j, k, x, n, we conclude that

d .
Z Z Bx,x+ek(77’Hbj’n)

= d
k 1x€TN

< CoN(1 4 |n))

for some constant Cq independent of b, j, n, N.
In view of the previous estimate, adding and subtracting the sum of the time-integrals of
By x+¢, and taking exponentials, we get that

ey [, 308, (00 ") A/ 2]

<pV [ sup My (1) > eJWN”—COTNd(1+|n|)]

— " UN.Ky 0<t<T

< o~ VAB 2N+ CoT N (1+n])

where we used Doob’s inequality in the last step and the fact that My (¢) is a mean-one
martingale.
We have thus shown that
PN [ sup ”JN(t)”ild >A] <4d Y o~ NIVABL2—CoT (1+In)]
0<t<T -

M’N,KN
neZd
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By definition of B, there exists a positive constant co such that 8, > co(1 + |n])?. The state-
ment follows. O

PROOF OF LEMMA 4.5. By astandard inclusion of events and the stationarity of P M N Ky

it is enough to prove that, for each € > 0 and smooth H : T¢ — R¢,

4.1) lim hmsup logIP’MN Ky [ sup |[(Jn(r), H)| > e] = —00,
0<t<$

-0 N>oo

where we used that J 5 (0) = 0. As in the proof of the previous lemma, we can furthermore
remove the modulus in the above bound.
Given a smooth vector-valued function H: T¢ — RY and ¢ > 0, let Bf xte (M) =

By xte,(n, £H), x € T4, be given by

x x+ek(n) Nzﬂx(l _ nx+ek)e(l/2)EN(x,x+Bk) [eZHN(X,X+€k) _ 1]

+ N277x+ek[1 _ nx]e(l/Z)EN(x+ek,x)[eEHN(x+ek,x) _ 1]'

By [15], App. 1, Proposition 2.6, for each n € X, the process

MY, (1) _exp:NdﬁuN(t) H)— / Z 3 BL e (0(9))ds

k= lxe’]l'd

is a mean-one ]P’f,v -martingale.
The same computation of the previous lemma yields that there exists a constant C; =
C1(H) such that

S C]NdeCIZ/N(l + ZQ)

Z Z Bx x+ek(77)

k= 1x€']1'd

for all N, £ and 1. Therefore, by Doob’s inequality

PN [ sup (Jn (1), H) > e]

KUN.Ky
0<t<é§

—pV [sup NdE(JN(t),H)>Nd£e]

UN,Ky
0<t<$§

< PN e[ sup My (1) > exp{N9[ee — 5C1eCN (14 ¢2)]) ]

KN, Ky 0<t<s
< exp{—N9[te —8C1 YN (1 +£%)])

which yields (4.1) by taking the limit £ — oo after the limits in N and §. [J

PROOF OF THEOREM 4.1. EQUICOERCIVITY. For{ > 1, let

1
Ep = U {P € Pstar: _dIN,KN(P)SE}'
N>1 N

In view of Ascoli-Arzela theorem, the compactness of M. (T¢) and the compact embed-
ding H_, < H_, for p’ > p, to show that the set & is precompact, it is enough to prove
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that, for each p > (d +2)/2, € > 0, T > 0, and smooth functions g: T¢ - R, H: T¢ — R¢,

lim sup P[ sup  |(m () — m(s), g)| > 6] =0,
5_)0P€8[ (s,t)eDrs

4.2) lim sup P[ sup HJ(I)H ]—0,

A—)OO & 0<t<T

lim sup P[ sup [(J (1) = J(s), H)| > €] =0,
8—>0P€8@ (s,1)eD7 s
where D7 5 has been introduced before the statement of Lemma 4.3.

To prove the first assertion in (4.2), fix € > 0, T > 0 and a smooth function g: T - R.
For 6 > 0, let

B:Bg’fT = {(n,])eS: sup |<n(t)—n(s),g)|>e}.
(s,1)eDr s
Fix P € €. By definition of the set &, there exists N > 1 such that Iy g, (P) < N4,
Furthermore, by definition (3.4) of the rate function Iy g,, P =Po (my, J ~)~! for some
PePNK and Iy g, (P) = Hy g, (P).
Since the set B is measurable with respect to o {( (¢), J(¢)), t € [0, T]}, by the definition

(3.2) of the relative entropy H") and by the entropy inequality (see, e.g., [15], Proposition
Al1.8.2),

log2 + H(T)(IP’HPHN )

PIBI=Fliry. Jw) € Bl = o o Ln I €B) )

By (3.3) and since Hy gy (P) =In gy (P) < N4,

< log2 + T¢N? .
~ log(1+ (P, kLN IN) € B~

P[B

This bound is uniform over P € &, provided we take the supremum over N > 1 on the
right-hand side.

Fix a > 0, and let y = (log2 + T¥¢)/a. By Lemma 4.3 there exists 69 = 6o(7’, g, €, ) and
No = No(T, g, €, y) such that

N 80,€ _yNd
Py [N IN) €BlT] <e

for all N > Ny. By changing the value of o we may extend this inequality to all N > 1. In
particular, by definition of y,

log?2 + T¢N4
Sup P[‘B 0> 5] S Sup % E a
Peé, ’ N>1 yN

As Ba T C 360 % for 0 < 8 < 8, the previous inequality holds for all 0 < § < 8. Since a > 0
is arbltrary, thls proves the first assertion of (4.2).

The second and third assertions in (4.2) are proven similarly, based on Lemmata 4.4
and4.5. O

4.2 The I'-liminf. Let (Py: N > 1) be a sequence of probability measures in Py such
that liminfy N—41 N.ky (Pn) < oo. The following lemma lists properties of the cluster points
of these sequences.
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LEMMA 4.6. Let (Py: N > 1) be a sequence of probability measures in Py such that
lim infy N_dIN,KN(PN) < 400. Assume that Py — P for some P € Pgy. Then P-almost
surely (z, J) belongs to 8, ac, and there exists a constant Cq such that, for all T > 0,

r G Vo, x)
el ) ar [ e i +/ [ o]
< Co(l +T)+2T11rn1nf IN Ky (PNn),
where (t,dx) = p(t,x)dx and J(t) = fé Jj(s)ds.

PROOF. By passing to a subsequence, we may assume liminfy N 41 N.ky(Pn) =
limy N~4Iy g, (Py). By (3.4) and (3.3), for every T > 0,

Iy ky(Py)> —H(T)(@NWMN Ky ),

where Q is the unique stationary probability on D(R, Xy k) suchthat Qy o (my, J N =
Py . In particular, for every T > 0,

) 1 1
(4.3) limsup e B @I, ) < Tlim 2Ty ki (Py).

By this bound the marginal of Q in the time interval [0, T'] is absolutely continuous with re-
spect to the marginal of ]P’ﬁ] Ny in the same interval. Moreover, for each continuous function

g: R x T¢ — R with support on (0, T') x T¢, Py-almost surely,
1
dtf w(t,dx)g(t,x)| < — /dt t,x
[ [ r.avsen|= 55 ¥ [ arlsee. )
xeTy,

because there is at most one particle per site. Since the left-hand side is a continuous function
of & in the Skorohod topology, taking the limit N — oo, we deduce that P-almost surely

‘/R thdn(t,dx)g(t,x) S/Rdt/w|g(z,x)|dx_

This implies that P-almost surely, for Lebesgue almost all ¢, the measure (¢, dx) is ab-
solutely continuous with respect to the Lebesgue measure: x (¢, dx) = p(¢, x) dx for some
density p satisfying 0 < p < 1.

On the other hand, as Qy is absolutely continuous with respect to PY

My PN T =

Ky/N4 =1 for all t € R. As Ky/N? - m and Py — P, P[n(t, Td) =m] =1 for
Lebesgue almost all ¢ € R.

For a vector field F in C'(R x T4: Rd) with compact support in (0, T) x T4, ¢ > 0, and
a >0, let

= . — € 2
" ga,e(F,n)_A;dt(n(t),v F() a/Rdt /w dxo (€| FI2,
Vae(F,m, J) = J(F) —afRdz/Td dxo ()| F P2,

where (7€) (t, x) = 2€) ™ m(t,[x — €, x +€]?) and J(F) = — [ dt{J (¢), 8 F).
Let (F; : j > 1) be a family of vector fields in C L0, T) x T?; R?) with compact support
and dense in L2([0, T] x T¢; R?). Assume that F; = 0. In view of Lemma A.5, the entropy
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bound (4.3), and a classical argument, which allows to bound a maximum over a finite set in
exponential estimates, there exist finite constants a and Cy such that, for all k > 1,

limsuplimsup E p,, [lmax Eae(Fj, n)] <A,
<js

e—>0 N—o0
hmsuphmsupEpN[ max Va,e(Fj, 7, J)] <A,
e—>0 N—o0 I<j=

where
o1
A=Co(1+T)+ ThAr,n WIN,KN(PN)'

Since Py converges to P that is concentrated on measures which are absolutely continuous
with respect to the Lebesgue measure, x (¢, dx) = p(¢, x) dx, and whose density p is bounded
below by 0 and above by 1, taking the limit in N and € yields

Ep[max {J(F)—a/ dtf dxo(p)|Fjl ”<A

1<j<k

Ep[lréljagk{/Rdt/Td dx[p v.Fj—ao(p)|F,~|2]H5A

Each maximum is positive because F; = 0. By monotone convergence, taking the limit
in k, we obtain a similar bound, where the maximum over 1 < j < k is replaced by the
maximum over j > 1. Since the sequence F; is dense in L2([0,T] x T?; RY), by Riesz
representation theorem, P-almost surely, J(t) = fot j(s)ds for some j in L%([0, T] x
T, o (,o)_1 dt dx; R?). These arguments also yield the bounds stated in the lemma.

We turn to the proof that P-almost surely & € C(R; M,, (T%)). By the continuity equation,
P-almost surely for all functions g in C 1 (Td) andO0<s<t<T,

t
/Td w(t,dx)g(x) — Adn(s,dx)g(x) =/s dr /;Td dxj(r,x)-(Vg)(x).

Since j belongs to L%([0,T] x ']I‘d,a(p)*ldt dx;R?), P-almost surely m belongs to
C([0, T], My, (T%)), as claimed. O

Fix T > 0 and a continuous vector field w: [0, T] x T¢ x M, (T%) x D(R; H‘ip) — R4
that is continuously differentiable in x and such that, for each (x, ) € T¢ x M, (T¢) and
t €10, T], the map [0, ] x D(R; ’H”lp) > (s, J) > w(s, x, m, J) is measurable with respect
to the Borel o-algebra on [0, t] x D([O, t]; ’H”fp). Let Gy R x TY x Sm.ac —> R4 be the
progressively measurable map defined by

4.5) Gu(t,x,m, J)=w(t,x, @), J).
Finally, for (xr, J) € 8, ac, let
46  Vrum D)= f dt [, dx(Gu-[j+Vp —a(@E] o (IG.P).
where  (t,dx) = p(t,x)dx, J(t) = fo jGs)ds,t eR.
LEMMA 4.7. Let (Py: N > 1) be a sequence of probability measures in Py such that
liminfy N_dIN,KN(PN) < +00. Assume that Py — P for some P € Pgy. Then, for each

T > 0 and each function w as above,

1
4.7) l}lvmlnf—IN ky(PN) = Ep[Vr yl.
—00
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By Lemma 4.6, P—almost surely (i, J) belong to §,, ac so that the right-hand side of (4.7)
is well defined.

PROOF OF LEMMA 4.7. By passing to a subsequence, if needed, we may assume that
liminfy N=1y g, (Py) = limy N~¢Iy g, (Py). By definition of Hy (¢, Q), (3.4) and
(3.1), for each T > 0 and each bounded, continuous functions ® on D(R, Xy g, ), measur-
able with respect to o {(¢),t € [0, T']},

1
I iy (Pa) = / dQn () {® () — log EN [¢®]),

where Qu is the unique stationary probability measure on D(R, Xy k,) such that Qy o
(mn. Jn)~' = Py.
Recalling (2.6), let ® be given by

T X,y
() = { / ¢ (ONG 4 gn (1) — N? /0 N (O[1 =1, (D)][e? O - 1]dt}»

(x,y)eBy

where
y
q)x’y(t):/ w(t, -, wn@), Jy)- de.

By Lemma A.1, Eflv[ed)] =1, for each n € ¥ g and by Lemma A.6,

1
= dim 5 Eo, [®]= Ep[Vrul

which completes the proof. [J

PROOF OF THEOREM 4.1. I'-LIMINF. Fix P in Py, and a sequence (Py : N > 1), Py €
Pstat, such that Py — P, liminfy N_dIN’KN(PN) < +00. By Lemma 4.6 we may assume
that P-almost surely (x, J) belongs to 8,, oc and that there exists a constant C such that, for
allT > 0,

T 1ja, 0 Vo, x)?
w0 e[ f o CE e [ [ e | < e

where 7 (t,dx) = p(t,x)dx, J(t) = fo Jj(s)ds.
By Lemma 4.7 it is enough to show that, for some 7" > 0,

(4.9) I, (P) <supEp[Vr,ul,

where the supremum is carried over all continuous vector fields w: [0, T] x T x M_(T¢) x
D(R; HE ») R, satisfying the assumption enunciated above (4.5).

Fix T > 0 and a bounded and continuous function f : T x H; x L2(T¢; RY) — R that is
continuously differentiable in x. For § > 0, let f5: (0, T) x T4 x M+(’H‘d) x D(R; H? p) —
R? be given by

fo(t,x, 7w, J) = xs@) f(x, 75, j5(2)).

Here x5, 0 < § < 1, stands for a sequence of continuous functions, bounded below by 0 and
above by 1, whose support is contained in [8, 7] and which converges in L' to the indicator
functions of the set [0, T']. Moreover, s (x) = (r, ks(x —-)), where x5 : T¢ — R is a smooth
approximation of the identity, and

t
(4.10) Jst,x)= /_OO dsag(t — s)(J (s),15(x —-)),
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where as: R — Ry is a smooth approximation of identity with compact support in (0, 8), aj
the derivative of as, and 15: T¢ — R? another smooth approximation of the identity. Observe
that js(¢) depends on J(s), only for s € (t — 4, ¢). Hence, since xs(t) =0 for r <§, the
function fs(¢, x, w, -) depends on J(s), only for s € [0, ¢]. This is a requirement of the test
functions w introduced above (4.5). Since fs satisfies the conditions presented above (4.5)
for each § > 0, we deduce

sup Ep[Vr,»] > limsup Ep[Vr, ]
w §—0

Let Hy: [0, T]1x T¢ x L2([0, T1; H1) x L*([0, T] x T?; R?) — R be defined by
Hy(t,x, p.J) = f(x.p(0), j(0)).
By (4.8) P—almost surely, ms(t) — p(¢) and js5(t) — j(¢) for Lebesgue almostall ¢ € (0, T').

Since f is bounded, by dominated convergence

T
. 2]
@.11) Slg%Ep[/O dt/w dx{G 4 (t,x, 7, J) — Hs (1, x, p, )} }_o,

where G f; has been introduced in (4.5).
Denote by Wr s the right-hand side of (4.6) when G, is replaced by Hy. By (4.8), (4.11)
and the dominated convergence theorem,

lim Ep[Vr g]1= Ep[Wr £].
5—0
In view of the previous estimates, it remains to show that

(4.12) sup Ep[Wr ¢1 > I,,(P).
f

Let f: T x H; x L*>(T?; RY) — R4 be given by
Jx)+ (Vp)(x) —o(p(x))E(x)
20(p(x)) ’
and note that I,,(P) = Ep[W, f] which is finite in view of (4.8). Using this bound and

fe,p, )=

approximating the function f by a sequence of bounded and continuous functions that are
continuously differentiable in x, we obtain (4.12) by the dominated convergence theorem.
O

4.3 The I'-limsup. Given P € Py, we shall construct a sequence (Py : N > 1) such that
PN — P and

limsupIy ky (Pn) < I,(P).
N—o0
We carry this out first for P, satisfying certain regularity assumptions, and then use density
arguments to extend the result to any P with finite rate function, I,,(P) < +o0.
Fix T > 0. Recalling (2.22), a path (x, J) in 8, is T-periodic if 97 (x, J) = (x, J). An
element P in Py, is said to be T -holonomic if there exists a T -periodic path (s, J) such that

1 T
(4.13) P = ?/(; S9,(x,J) ds.

An element of Py is holonomic if it is T -holonomic for some T > 0.
Fix T > 0 and a T-periodic path (&, J) in §,, 4c. Denote by (p, j) the densities so that
w(t,dx)=p(t,x)dx, J() = fé ds j(s). Assume that p, j are smooth and that there exists
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6 > 0 such that § < p(¢,x) <1 —§ for all (¢, x). Denote by F: R x T¢ — R? the smooth,
T -periodic vector field defined by
J+Vo—o(pE

a(p)
As the path (p, J) satisfies the continuity equation (2.21), d;p + V - j = 0, by definition of
F7
(4.14) dp=Ap—V-(c(p)|E+F@®)]).

Let finally P € Py be the T-holonomic probability corresponding, as in (4.13), to the T'-
periodic path (x, J).
Let LF be the time-dependent generator of a perturbed WASEP, defined by

@.15) (L) =N> 37 nell —nyleWDENCEITINCEDNf (g20) — £ ()],
(x,y)eBy

F =

where Fy(t, x, y) represents the line integral of F (¢, -) along the oriented segment from x to
y introduced in (2.2). Denote by (F () : t > 0) the continuous-time, time-inhomogeneous
Markov chain whose generator is L{,. By the hydrodynamic limit of the time dependent
WASEP dynamics (see, e.g. [15], Section 10.5), the empirical density & ~(nF) associated to
the process nf evolves, in the limit N — oo, according to the solution of the PDE (4.14).
This explains the Introduction of the process .

Let (& : k > 0) be the discrete-time, Xy-valued Markov chain given by & = nF (kT).
Since F is T-periodic, & is time-homogeneous. As it is irreducible on each set Xy g,
&, has a unique stationary state, denoted by le, k- Finally, let IP’K,’ x be the law of nt
when the initial condition is sampled according to M{/, k- Note that IP’K,? x 1s invariant by

T -translations: }P’f, x oUr - IP{, x - Since this measure, defined on D(R4, X ), is invariant
by T-translations, we may extend it to D(R, X ).
Let Py be the measure on 8, given by

(4.16) Py = ( / PN ky © 19,‘1dt) o(my, N7

that by construction belongs to Pgat.

PROPOSITION 4.8. For each T-periodic path (w, J) in 8, ac with smooth densities
(p, j) with p bounded away from zero and one, the sequence (Py : N > 1), introduced in
(4.16), converges to the T -holonomic probability P, given by (4.13) and

. 1
lim sup WIN,KN(PN) <I,(P).

N—o00

The proof of this proposition relies on the following lemma.

LEMMA 4.9. In the setting of Proposition 4.8, the sequence of probability measures on
D(R; M (T%)), given by PfijN o zr;,l, converges to 8.

PROOF. By the smoothness of the external field F', Lemma 4.3 holds also when IP’M N.Ky

is replaced by IP’N, ky- BY the compactness of M (T9), this implies the precompactness
of the family (IP’]f,’ Ky © nx,l : N > 1). Let PF be a cluster point of this sequence. By the
T -periodicity of ]P’ﬁ’ k, and the hydrodynamic limit for the time dependent WASEP with
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generator (4.15), PFisT periodic and PF almost surely m (¢,dx) = oF(t, x)dx for some
density pf" of mass m that solves (4.14). By the uniqueness of T-periodic solutions to (4.14)
and the L' (T?) convergence to this unique solution, as stated in Theorem 7.1, o = p. Hence,
PF =68,, as claimed. [

PROOF OF PROPOSITION 4.8. By the smoothness of the external field F, Lemmata 4.3,
4.4, and 4.5 hold also when }P’ﬁ’ v k. 18 replaced by Plf, k.- This implies the precompactness
KN sAN

of the sequence of probabilities on 8, given by {IP’K,’ ky (N, J ~)"1). Let now P be a
cluster point of this sequence. By the hydrodynamic limit for the perturbed WASEP, Py-
almost surely, (x, J) belongs to 8, ac, and the corresponding densities (o, j) is a T-periodic
weak solution to the hydrodynamic equation

{atP‘FV‘j:O,
J==-Vp+o(p)lE+F].

By Lemma 4.9 Py = §(x, j). Taking time-averages, we deduce Py — P.
We turn to the second claim of the proposition. By (3.4)

17 _
(4.17) In.ky(PN)=Hy.ky (?/0 PR ky o 1d;).

Fix £ € N. By (3.3) and the convexity of the relative entropy, the right-hand side of the previ-
ous equation is equal to

ell)rgoETH(ZT)< / IPN Ky ©°U d[|PMNK )

1 T
< Jim H (P g, 0 07 PN ) dt.

KN, Ky

Since IP’N oKy is translation invariant, for fixed £ and 0 <t < T, by definition of the trans-
lations (15‘v s € R), introduced in (2.22), recalling (3.2),

H(PE &, 007 IPY Hio.er1(Phy k0 0 PN, . 0971

MN.K ) HUN,Ky
_H[ 16T — t](PN KN|]P);LNKN)

As P is T-translation invariant and PV is translation invariant, the dynamical con-
N.Kn UN Ky

tribution to the relative entropy of the time interval [—¢, 0] corresponds to the one of the time
interval [—¢ 4+ €T, £T]. Hence, the previous expression is equal to

H(ET)(PZ KN”P)/LNK ) Ent(M/FV,KN“’LNvKN) +Ent(]P)II\T/,KN © l:tl |/"LN,KN)’

where Py, ou;! is the marginal at time s of Py .

Using again that Pﬁ K 18 T-translation invariant and IP’ﬁ’N Ky is translation invariant,

H(ZT)(]P)Z KN“P)/LNK ) Ent(“li\?/,KNlluN?KN)
= (HT (P}, & |IP>MNK ) — €Ent(uly x, 4N, Ky )-

Putting together the previous estimates and letting £ — oo yields that

Iy ky(Py) < _{H(T)(PN KBy k) — Ent(uy gl xy) -
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By Lemma 4.9 and the large deviations lower bound in hydrodynamical limits (see, e.g.,
[15], Lemma 10.5.4),

) 1
lim sup W{H(T)(PII;},KN Py o) —Ent (U gy lnky)} < Az (e, J).

KN, K
N—o00 N

Therefore,

1 1
li —1 Py)<—=A .
i SUp 7 N Ky (PN) = T 7m(, J)
The right-hand side is equal to I,,(P) in view of the equations (2.26), (4.13), and the T -
periodicity of the path (&, J). U

To complete the proof of the I"-limsup, we show that any P in Py, can be approximated by
convex combinations of holonomic probability measures supported by smooth paths bounded
away from zero and one and that the corresponding rate function converges to I, (P). Denote
by Tgtat’m, € > 0, the subset of Py, formed by the stationary measures P such that P-
almost surely (&, J) belongs to 8,, ,c wWith smooth densities (p, j) such that € < p(t,x) <

1 — € forall (¢, x).

THEOREM 4.10. Assume that E is orthogonally decomposable, and fix P € Py such
that I,,(P) < +o00. There exist a sequence (€, : n > 1), a triangular array (o, ;,1 <i <
n,n>1)witha,; >0, ;a,; =1, and a triangular array (P, ;,1 <i <n,n > 1) of holo-
nomic measures belonging to Tg{’at’m such that, by setting P, := ) _; oy i P, i, we have P, — P
and I1,,(P,) — I,,(P).

Postponing the proof of this statement, we first conclude the I'-convergence of the
Donsker—Varadhan functional.

PROOF OF THEOREM 4.1. I'-LIMSUP. The statement follows, by a diagonal argument,
from Proposition 4.8 and Theorem 4.10. [

We turn to the proof of Theorem 4.10. It relies on two lemmata.

LEMMA 4.11. Fix P, satisfying (2.27). There exists a sequence (P, : n > 1), converging

to P and such that P, belongs to fPE{’at’ m Jor some €, > 0, and

limsupI,,(P,) =1,,(P).

n—oo

PROOF.  Fix a smooth probability density ¢ : R x R¢ — R, whose support is contained
in[—1, 1] x [—1, 119, so that

/ ¢, x)dtdx = 1.
RxRd

Let ¢ (2, x) = e_(d+1)¢(t/e, x/€), € > 0. For a trajectory (r, J) in §,, 4c, whose density is
represented by (p, j), let

o= —=e)(p*pe) +em, Je: = —€)(J %),

where * denotes space-time convolution and 0 < € < 1. Observe that (p., j.) satisfy the
continuity equation.
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Denote by W, the map (p, j) — (p., j.) =: Ye(p, j), and set P =P o 1116_1. Then, for
each € > 0, the probability P€ belongs to P’ for some § = §(¢) > 0 and P — P as
€ — 0.

It remains to show that lim¢ I,,(P€) = I,,(P). As

1 (7 i +Vp, — E|?
Im(P6)=EP|:?/O dt N dx|J€+ pe—0(p)E] i|’

4o (p.)
and since the sequence

stat,m

|je + vpe B J(pe)E|2
4o (pe)

converges (d P dt dx)-almost surely to the same expression without the subscript e, it is
enough to prove that the sequence (4.18) is uniformly integrable.

Since P satisfies (2.27), by [6], Lemma 5.3, there exist increasing convex functions Y,
Y5 : Ry — Ry such that limy . o Y, (r)/r =00,a=1,2 and

(+19) E”U a [, dx{ (ol—J(;)”Z(':(Z')z)”““

Moreover, the uniform integrability of the sequence (4.18) follows from the bound

v mapor[[o el (40) ()]

Note that

(4.18)

1 * e ? }

o (p * de) ‘

By the concavity of o, the first term on the right-hand side is bounded by o (p.). In conclu-
sion,

o= 11— €llj % be® < [(1 — ) (p # be) + eo(m)]{[l el

Jel® _ g lix el _ lixoel
o(pe) o(px¢e) ~ o(p*pe)
On the other hand, by concavity of o and the Cauchy—Schwarz inequality,
1 * e ?
o (p * de)

1 ) 2
< a0 e fo 0t =50 2o o)

< (¢>e "('2))@ x).

Whence, as Y is increasing,

el [ [ o (G5 <ol [ wem(o 255

Since Y is convex, integrating the convolution, we deduce that the previous expression is
bounded by

e[ f o) - e ()]

Since the previous argument for j applies to V p, the bound (4.20) follows from (4.19).
O

(,x)




DONSKER-VARADHAN AND HYDRODYNAMICAL LARGE DEVIATIONS 1325

LEMMA 4.12. Assume that E is orthogonally decomposable. There exists Ty > 0 and
Co > 0 such that the following holds. For any mg, m1 € M, (Td), there exists T < Ty and a
path (x(t), J (1)), t € [0, T1, with ©(0) = ng, #(T) = 71, satisfying the continuity equation
(2.21) for each0<s <t <T and

(4.21) A, 7@, J) < Co.

PROOF. In the case of the symmetric exclusion process, this statement is proven in [3],
Lemma 4.7, with the following strategy. Start from g, and follow the hydrodynamic equa-
tion for a long but fixed time interval [0, T1] so that & (77) lies in small neighborhood of
the stationary solution with mass m. Then interpolate in the time interval [T, T1 + 1] from
7 (T) to a suitable 7 that is still close to the stationary solution. Finally, from 7, use the op-
timal path for the escape problem to reach 1. Provided that the quasi-potential is bounded,
this argument applies also to the WASEP case. As discussed in [4] and [5], Section V.C, if
the external field is orthogonally decomposable, then the quasi-potential can be computed
explicitly, and it is indeed bounded. [

PROOF OF THEOREM 4.10. Fix P € Pgqrn. By Lemma 4.11 we can assume that
P € Py, for some € > 0. Since P can be written as a convex combination of ergodic
probabilities and I,, is affine, it suffices to show that, for each ergodic P € Pg, ,, with
I,,(P) < +00, there exists a sequence of holonomic measures Pr in Pg, ., converging to
P and such that limy I,,,(Py) =1,,(P).

Recalling that the T -periodization of paths in 8, as has been defined in (2.23), set
1 (T
-AP3={(7taJ)€Sm3?/(‘) Sﬂ,(nT,JT)dt%P

and lim lArm(n.', J)— Epl[A m]}.
T—+oo T 77 ’

Since P is ergodic, by the Birkhoff ergodic theorem P(Ap) = 1. Pick an element
(z*, J*) € Ap. By definition the T -holonomic probability, associated to the T -periodization
of (x*, J*), converges to P, but in general, its rate function does not since, when T'-
periodizing paths, we may insert jumps. By using Lemma 4.12, we now show how the path
(zc*, J*) can be modified to accomplish our needs.

Given T* > 0, let o = n*(T*) and 71 = 7*(0). Let also (7 (), J(u)), u € [0, T], the
path provided by Lemma 4.12, satisfying 7 (0) = g, 7 (T) = 1.

Set T :=T*+ T, and let (x (u), J(u)), u € [0, T] be the path defined by

(7" (u), J*(w)) if u [0, T*],
(@ —T%, J(T*)+ J(u—T%)) ifue(T* Tl

Observe that = (0) = m(T), and extend (x, J) to the path (T, JT) defined on R by
periodicity. By construction ¢ — m’ (¢) is continuous, and denote by Pr the T-holonomic

measure associated to (z”, JT), as in (4.13). Since T < T, for some fixed Ty, Pr — P as
T — oo. Moreover, by construction and by Lemma 4.12,

(m(u), J(u)) = {

1 1 1 _ =
In(Pr) = Amr(m. J) = ?Am,T*(”*a J*) + 7Am 7@ J)

1 1
=< TAm,T*(ﬂ'*, J*) + ?CO

so that, since (z*, J*) belongs to Ap, limsupy_, o In(Pr) < I,,(P). As I, is lower semi-
continuous, actually, limr_, o0 I, (P7) = I,,(P), as claimed. [J
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5. Long time behavior of the hydrodynamical rate function. In this section we con-
sider the asymptotic in which we take first the limit as N — oo and then 7 — o0. The former
limit is essentially the content of the large deviations from the hydrodynamical scaling limit
in which we emphasize that the corresponding 7 -dependent rate function still depends on the
initial condition. To analyze the limit as 7 — oo, we first lift this rate function to the set of
translation invariant probabilities on 8§ and then analyze its variational convergence, showing,
in particular, that the limit is independent of the initial condition.

Hereafter, fix m € (0, 1) and a sequence K such that N —dKn — m.

5.1. Hydrodynamical large deviations. Recall that the sequence {n™, N > 1}, n¥ €
YN.ky 1S associated to a measurable density p: T — [0, 1], satisfying [ pdx = m (here-
after, of total mass m), if and only if 7y (7)) — p(x) dx in the topology of M (T%).

Recalling that M = M, (T%) x H< o let 8T, T > 0, be the subset of the paths in
D([0, T]; M) which satisfy the continuity equation (2.21) for any 0 < s <t < T. Let also
831 be the subset of 87, given by the elements (x, J), which satisfy = (¢, T¢) = m for all
0<tr<T.

Finally, given a measurable function p: T4 — [0, 1] of total mass m that plays the role of

the initial datum, let Sm ac,p De the subset of elements (r, J) in 8I' such that:

@) w € C([0, T], M, (T?%)), and = (t,dx) = p(t,x)dx for some p such that 0 <
p(t, x) < 1. Moreover,

2
/ dr [ axP o
T a(p)
b)) J e (][0, T],H‘ip), and J(t) = fo Jj(s)ds, t € [0, T], for some j in L2([O, T] x
T4, o (p(t, x)) "' dt dx; R?). Thus,

T Vs ,
dt dx < 00;
0 T  o(p)

(c) m(0,dx)=p(x)dx.

Note that conditions (a’) and (b’) are the same of conditions (a) and (b) below equation (2.21),
apart from the fact that the here the path (p(¢), j(¢)) is defined only for ¢ € [0, T'].
Let the action Ap.1p: 8T — [0, +00] be defined by

j+Vep—o(PEP
dt dx if 7T, J) e S ,
(51) Am,T,p(n, J) = A Td 40('0) ( ) T,m,ac,p
+ o0 otherwise.

The large deviation principle with respect to the hydrodynamical limit for the WASEP
dynamics can be stated as follows. Here we understand that the empirical density and current
(mn, Jn) is defined as a map from D([0, T']; Zn k) to ST,

THEOREM 5.1. Fix T > 0, m > 0 and a density profile p : T — [0, 1] of total mass m.
For each sequence (nN : N > 1) associated to p, each closed set F C ST and each open set

Gc 8T,

1 .
limsup — N logIP’ [N, IN) ETF] <— 151)fegAm,T,,o(Jt, J).

N—oc0 (7,
o] N .
liminf 7 logPyy [Gey. Jn) € 5] = — inf Awrp(. J).

Moreover, Ay, T,p 8T — [0, +00] is a good rate function.
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If one considers only the empirical density and disregards the empirical current, the above
result has been proven in [17] in case of SEP; see also [15], Chapter 10. This result has been
extended to WASEP in [6]. Relying on the super-exponential estimates proven in [17], the
case in which one considers the empirical current is discussed in [3] for the SEP. However, the
topology on the set of currents there introduced is different from the one used in the present
paper, and the proof of the exponential tightness is incomplete. The issue of the exponential
tightness of the empirical current is fixed in the present paper (in the topology here intro-
duced). Indeed, Lemmata 4.3, 4.4, and 4.5, which hold also in the present setting, yield the
exponential tightness of the sequence (]P’;VN o(my, Jn)~': N > 1), thus completing, together
with [3], the proof of the above result for the SEP. The extension to WASEP requires, for the
lower bound, a density argument that has been carried out in detail in [6], Theorem. 5.1, and
can be adapted to include the current.

Recall, from (2.23), the definition of the T -periodization of a path (&, J) € §,, which
depends only on the restriction of the path (i, J) to the time interval [0, T']. Let x7: ST
Pstat be the continuous map, defined by

1 T
XT(”? J) = ?A Bﬂs(nT’JT) dS7

where the translation ¥ acting on & has been introduced above (2.26). Namely, xr(x, J)
is the T-holonomic measure, associated to the T -periodic path (xT, J7), obtained by T-
periodizing the path (, J) € 8T.

Recall the definition of the empirical process Rr () introduced in (2.19). Since (& "),
I =@y, InmT), for each g € D([0, T]; y, k),

1 T
Ren ) =R oGy, I~ = [ 8y4r0 e T ds
(5.2) 0

1 T
- ?/0 8oy Iy ds = xr (@n (), I N ().

Observe that the image of 87 by y7 corresponds to the set of T-holonomic measures. For p
of total mass m, let I,, 7, ,: Psar — [0, +00] be the functional, defined by

(5.3) Lnz.p(P):=inf{Ap1,(t, J), (x, J) € x7 ' (P)},

where we adopted the convention that inf & = +oo. In particular, 1,, 7 ,(P) < +00, only
for T-holonomic measures P. Moreover, I, 1 ,(P) < +00, only if the T-periodic path
(r, J) € & associated to P satisfies the following condition. There exists s € [0, T] such
that the restriction of ¥ (x, J) to [0, T'] belongs to S,Zl’ac’ e In particular, x (1) = p for some
teR.

In view of the identity (5.2), Theorem 5.1 by the contraction principle, yields the following
statement.

COROLLARY 5.2. Fix T >0, m > 0 and a density profile p : T¢ — [0, 1] of total mass
m. For each sequence (nN : N > 1) associated to p, each closed set F C P, and each open
set G C Pgar,

) 1 N )
lgn_fllop Na logP v [Rr v € F] = — Igrglglm,T,p(P),

.. 1 .
liminf Na logIP’f;’N [Rr.ne§]l>— ;)réfg I,7,(P).

N—+o0

Moreover, I, 7. p: Psta — [0, +00] is a good rate function.
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5.2. Variational convergence of the hydrodynamical rate function. The main result of
this section reads as follows.

THEOREM 5.3. Fix m € (0, 1) and a density profile p : T — [0, 1] of total mass m.
As T — +o00, the sequence T™'I m.,T,p IS equicoercive uniformly in p, and I'-converges
uniformly in p to the functional I,, introduced in (2.26). That is:

(1) For each £ > 0 there exists a compact Ky C Pgar such that, for any T > 1 and any p,
{(P:T ', 71,(P)<t}CKs.

(ii) For any P € Py, any sequence of density profiles pr : T¢ — [0, 1] of total mass m
and any sequence Pr — P,

1
liminf =1, 7 pT(PT) >1,,(P).
T—oo T 7

(iii) If the external field E is orthogonally decomposable, then for any P € Py and any
sequence of density profiles pr : T¢ — [0, 1] of total mass m, there exists a sequence Pr — P
such that

1
lim sup — Im T.or (Pr) < Iy (P).

T— 00

PROOF. The proof is divided into three parts.

Equicoercivity. In view of the compactness of M,,(T¢), the compact embedding of
L>(T?; R?) into HL p for p >0, Ascoli-Arzela theorem and Chebyshev inequality, it is
enough to prove the following bounds. For each 7p > 0 and each smooth vector field
H: T¢ — R4, there exists constants Co = Co(Tp) and C; = C(Tp, H) such that, for any
T>1landée(0,1),

1

(5.4) EP[ sup ||J(t)||iz(Td.Rd)]5Co[—lm,r,p(P)+1},
te[—To.Tol ’ T
5 1

(5.5) Ep[ sup \(J(t),H)—(J(s),H)!]fclé[—lm,r,p(P)Jrl]
el !

As already remarked right after the statement of Lemma 4.5, by choosing H = V g the bound
(5.5) indeed also provides a control on the continuity modulus of the map # — 7 (¢).

By the stationarity of P and the argument below (2.26), if I,, 1 ,(P) < 400, then there
exists a constant C depending only on E such that

il 1
_EPU ., 4a(p)]§c[?1m,T,p<P)+1],

where J(t) = fé Jj(s)ds. By the Cauchy—Schwarz inequality and condition (b’) on the cur-
rent J stated at the beginning of this section,

RPGEOlS
a0 (p(t, 1)

Since I, 7,,(P) < +oc implies that P is a T-holonomic probability measure,

E%[ arf 45&?&} _E%/ arf zgggﬁﬂ

which completes the proof of (5.4).

sup ||J(t)HL2(']1‘d Rd) _To/ dt/dx/;(t X[ <T0/ dt/

te[—To,To]
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For s < ¢, the Cauchy—Schwarz inequality and condition (b’) yield

t
(). H)—(J(s). H)]” < (r—s>||H||iz(Td;Rd)/ du/ dx|ju, x|

so that (5.5) is obtained by the same argument as before.
I"-liminf. Denote by Sm . the subset of the paths (1, J) € 8T satisfying only conditions

(a’), (b’), and let A,, 7 be the action, defined in (5.1), with the constraint (r, J) € 8T re-

m,ac,p

placed by (x, J) € Sm ac- Accordingly, let I, 7: Pgar — [0, +00] be the functional defined
by

1,7 (P):=inf{A, r(x, J), (, J) € x7 (P)}.

By the translation invariance of A, 7, if x; 1(P) is not empty (i.e., if P is T-holonomic),
then

Im,T(P) = EP[Am,T]-
Hence, in view of the translation invariance of P,
Im,T,,o(P) > Im,T(P) = EP[Am,T] = TEP[Am,l]-

Let (or: T > 0) be an arbitrary sequence and (Pr: T > 0) C Py, be a sequence converg-
ing to P. By (2.26), the previous displayed bound, and the lower semicontinuity of A,, 1,

1
liminf — ImTpT(PT)>hm1nfEPT[ m,11 > Ep[Am1]=1,(P).

T—o0

I'-limsup. By Theorem 4.10 it suffices to consider the case in which P is an S-holonomic
measure with smooth density. More precisely, we may assume that

1 N
(5.6) P = —/ 89y (*,g*) ds

for some S > 0, where the S-periodic path (z*, J*) has smooth densities (p*, j*) with p*

bounded away from 0 and 1. Given the sequence (o7, 7T > 0) C Mm(T ), let (1), J (1)),
t € [0, T] be the path provided by Lemma 4.12 with 79 = pr dx and 71 = £*(0). Let also
(m(t), J (1)), t €0, +00) be the path defined by

(@), JD) ifr €[0, 71,

(m*(—T), J(T)+ J*(t = T)) ifr>T.

Note that, although not explicit in the notation, the path (&, J) depends on T via the sequence

or. Denote finally by (T, J7) the T -periodization, as defined in (2.23), of (x, J) and by
Pr the associated T-holonomic probability, that is,

1 T
= T/(; 8195(JIT,JT) ds.

Since T/T — 0, as T — oo, the sequence Py converges to P given by (5.6). Moreover,
in view of (5.3) and (4.21),

Lty (PrY= Ay 7y G D)+ Az (2% ) < Cob Ay r_p (™, 7).
Hence, by the S-periodicity of (x*, J*),

(m(t), J(1)):= :

1 1 Lo
limsup — ImTpT(PT)—gAm,S(n J )=§EP[Am,S]=Im(P)

T— 00

which concludes the proof of Theorem 5.3. [
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6. Large deviations and projections. In this section, relying on the variational conver-
gence proven before, we discuss the large deviations asymptotics in the joint limit N — oo,
T — oo. In particular, we conclude the proof of Theorem 2.1 and discuss the corresponding
projections.

PROOF OF THEOREM 2.1. We start by considering the case in which we first perform the
limit as T — oo and then take limit as N — oo. The asymptotic as T — oo follows directly
from the Donsker—Varadhan large deviation principle for the empirical process; see Corol-
lary 3.2. By [3], Lemma 4.1, or [19], Corollary 4.3, the limit as N — oo is accomplished by
the I'-convergence of the family (N —dy N.Ky, N > 1) that has been proven in Theorem 4.1.
Actually, the statements in [3, 19] give the upper bound only for compact sets. However, the
goodness of the functional Iy g together with the equicoercivity in Theorem 4.1 allow to
deduce the upper bound for closed sets.

The proof of the statement when the limit as 7 — oo is carried out after the limit as
N — oo is accomplished by the similar argument. Indeed, the asymptotic as N — oo fol-
lows directly from the hydrodynamical large deviations; see Corollary 5.2, while the I'-
convergence of the family (7 ~'1 m.,T,p» I > 1) has been proven, uniformly with respect to p,
in Theorem 5.3. [

We now discuss the level two projection and the hydrostatic limit.

PROOF OF COROLLARY 2.3. Recall (2.28) and that o7 vy =R y © zt_l, where 1;: 8§ —
M+(Td) is the map (&, J) — m(¢). Note that i; is not continuous since we are using the
Skorohod topology. However, the map Py > P+~ P o1, I e iP(M+(’]I‘d)) is continuous
since, by stationary, the P-probability of a jump at a time ¢ is zero. The large deviations
asymptotic thus follows from Theorem 2.1 by the contraction principle.

We now show that the zero level set of J,, is equal to the set of invariant probability
measures for the flow ®™ associated to the hydrodynamic evolution (2.18). By the goodness
of I, if g lies in the zero level set of J,,, then the infimum in (2.28) is achieved; that is,
there exists P € Py satisfying I,,(P) =0and o = P o1, I As follows from (2.26) and
(2.25), I,,(P) = 0 implies that P almost surely (&, J) have densities (p, j) that satisfy
J =—Vp-+o(p)E. Hence, the marginal of P on the first variable is concentrated on the set
of m whose density p solves (1.2) with D = 1. By stationarity of P, this implies that P o1, !
is an invariant probability of ®™, as claimed.

It remains to show that if E is orthogonally decomposable, then J,, () = 0 implies p =
85dx, where p is the unique stationary solution to (1.2) with D = 1. As already remarked,
if E is orthogonally decomposable, then the quasi-potential of the WASEP dynamics can be
explicitly computed, and it is a Lypuanov functional for the hydrodynamic evolution. The
argument in [5], Theorem 7.7, then implies that there exists a unique stationary solution of
mass m to the hydrodynamic equation that is globally attractive, hence a unique stationary
probability for the flow ®" that is concentrated on the stationary solution. [

We now consider the level one projection.
PROOF OF COROLLARY 2.4.  Let ¥ : Pyt = M (T9) x H  be the map defined by

1
W (P) = (Ep [ ()], ;Ep[.m)]),

where we understand that v is defined only for the probabilities P such that, for any ¢ € R,
we have Ep[||J(#)]l,« ] < +o00. Note that ¥/ does not depend on 7 # 0 by the stationarity
P

of P.
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Recall the definitions of w7 n, J7 v, and R7 y, in (2.29), (2.30), and (2.24). Recall also
the relation (2.31), according to which for each n € D(Ry, Xn) and ¢t € R, ¢ # 0, we have

1
6 YO = R, dJ)(n(r), @) = Gorv 1) = 0. Er )

Since by (2.20) the error term &7 y is uniformly bounded in N and 7, it is irrelevant in the
large deviations asymptotics for 7' — +o00. We can, therefore, deduce the large deviations
for the pair (wr,n, J7,n) from the large deviations for ¥ (R7 ).

Since ¥ is not continuous, the result does not follow directly from Theorem 2.1 and the
contraction principle. However, in the terminology of [11], Section 4.2.2, it possible to ap-
proximate i by a sequence of continuous functions and construct exponentially good approx-
imations of the family (}P’f]\’ o(mr.n, JT, N)_1 : T >0, N > 1). We obtain in this way the result
and observe that the rate functional is given by I, (7, J) = inf{L,,,(P) : P € Pgpar, Y (P) =
(m, N} O

The next result concerns the projection on the density for the level one large deviations
functional.

PROOF OF THEOREM 2.5. In the case E = —VU, developing the square in formula
(2.25), we have that the cross term

T .
/ ar [ ax? (Vp+0(p)VU)’
0 Td 20 (p)

after an integration by parts and using the continuity equation, coincides with

1
©2) 3 L, dxTh(e() = h(p(©) = (p(T) = pO)U]

where h(p) = plogp + (1 — p)log(1 — p). By stationarity the expected value of (6.2) with
respect to any P € Py is zero. We have, therefore, that when £ = -V U,

1 T Vo +o(@VUP 1l
(6.3) Im(P)—?EP[/O d’ﬁ[d dx( 40 (p) +46(p))]

Consider a P € Py, and call p € P(M,, (TY)) its 1-marginal o = P o1, ! (see notation
above formula (2.28)). Let A: M+(Td) — 8 be the map that associates to 7 € M+(’]I"1)
the element (r, J) € 8, defined by w (r) = 7w and J(t) =0 for any ¢ € [0, T]. Finally, let us
define P € Py as oo AL

Since the second term in the right-hand side of (6.3) is nonnegative and since P o1, =
Po z,_1 = g, we deduce

|Vp+0(p)VU|?
4o (p)

Im(P)zIm(ﬁ)zE@[/Td dx< )]:E@[Vm].

‘We have, therefore, that
IV () =inf{Ep (Vi) 0 € P(Mu(T)) Ep (') =7} = co(V) (),

the last equality follows since in the middle we have one of the possible definitions of convex
hull. Since o is concave, in the case VU = 0 we have that V,, is convex and, therefore,
co(V,,)=V,,. O

Finally, we give a sketch of the proof of Theorem 2.6. This is based on analysis in [2, 3,
8], and we just show how to deduce the result based on the arguments there.
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PROOF OF THEOREM 2.6. Letus call (x*, J*) the element of S, defined by £*(t) = m
and J*(r) = jt. The result is obtained by the analysis of the action functional A,, 7 (2.25). In
the case (i) for E < Eq by [2, 3, 8], we have that, for any (x, J) € 8, such that J(T)=jT,
itholds Ay, 7 (n*, J*) < Ay, 7(, J), and this allows to deduce that §,« y+) is the minimizer
in (2.33).

In the case (ii) for E > Ei, it is possible to construct [2, 3, 8], a time dependent
(r, J) € 8, that has indeed the structure of a traveling wave such that J(T) = jT and
Ap.r(@*, J*) > Ay 7(r, J). Considering P € Py, defined by P = %fOT dtdp,(x,J), We
have, therefore, that I,,(P) < I,;,(§(z*, j*)). U

7. Uniqueness of periodic solutions. Fix 7 > 0. Throughout this section F : R x T¢ —
R? is a smooth, T -periodic vector field. We investigate in this section the asymptotic behavior
of solutions to the Cauchy problem

du=Au+V-[o)F],
u(, ) =uo(-),

where the initial condition uq : T¢ — [0, 1] is such that 0 < uo(x) < 1 for all x € T¢.

Existence of weak solutions is provided by the hydrodynamic limit of WASEP. This argu-
ment shows that the solution takes value in the interval [0, 1]. These bounds can be derived
also from the maximum principle and the observation that ¢ (1) = o(0) = 0. By parabolic
regularity a weak solution is smooth in (0, 00) x T¢. Uniqueness is derived as in [14],
Lemma 7.2. The proof of this lemma yields that the L'(T¢) norm of the difference of two
weak solutions does not increase in time. The main result of this section strengthen this
lemma and asserts that the L'(T¢) distance of two different weak solutions decreases in
time. It reads as follows.

(7.1)

THEOREM 7.1. Let F:R x T¢ — R? be a smooth, T-periodic vector field. For each
m € [0, 1], the equation

du=Au+V-[o)F]

admits a unique T -periodic solution u : R x T¢ — [0, 1] such that Jpau(t, x)dx =m and
0 <u(t,x) <1 forallt. This solution is represented by u™  Moreover, for each uy : T —
[0, 1] such that [pauo(x)dx =m, 0 <ug(x) <1 forall x € T9, the unique weak solution of
(7.1) converges to u™ in L'(T?) as t — oo.

The proof of this result relies on a method of coupling of two diffusions due to Lindvall
and Rogers [18].

7.1. Coupling diffusions. Let G : R, x T¢ — R be a smooth vector field uniformly
bounded: there exists Co < 0o such that sup; )er, x1¢ |G (7, X) || < Co.
Denote by £, the time-dependent generator

(7.2) L f=Af+Vf-G, feCHTY).

Let (Z} :t>0),x € T4 be the T¢-valued, continuous-time Markov process whose generator
is £, and which starts from x. o
Recall that a coupling between Z7 and Z; is a process (Z, Z; ) whose first (resp., second)
coordinate evolves as Z; (resp., 7). The coupling time, denoted by rxz, y» 1s the first time at
which the processes meet,
7, =inf{r > 0: Zr =7\
The next result relies on the Lindvall-Rogers coupling [18].



DONSKER-VARADHAN AND HYDRODYNAMICAL LARGE DEVIATIONS 1333

PROPOSITION 7.2. There exist constants A < oo and A > 0, which depends only on
SUP(; v)er, x1¢ |G (2, X) ||, and, for each x, y € T¢, a coupling between z7r, Z} such that

sup P[rx y> 1] < Ae™ M
x,yeTd ’

forallt > 0.

Let P, be the probability measure on C (R, T¢) induced by the diffusion associated to
the generator £;, starting from x € T¢. Expectation with respect to P, is represented by E,.

COROLLARY 7.3. There exist constants A < oo and ) > 0, which depends only on
SUP( yer, x1d |G (¢, X) ||, such that

sup [Ex[f(Z0]—Ey[f(Z0]| < Ae ™| flloo

x,yeTd

for every f € C(T9).

PROOF. Since the difference may be written as

(7.3) E[£(Z) = F(Z)] <201 flloo P[zf, = 1],

the assertion is an elementary consequence of Proposition 7.2. [J

PROOF OF PROPOSITION 7.2. Denote by (W; : ¢t > 0), the standard Brownian motion on
RY. Let b: Ry x R? — R? be the T?-periodic vector field whose restriction to T¢ coincides
with G. Denote by X} the solutions of the SDE,

dXF =c(t, X¥)dt +dW,,
Xy =x,

where ¢(t, x) = (1/2)b(t, x). Foreachx e R?, X 7 is a diffusion on R? whose time-dependent
generator, denoted by A;, is given by

Af =(/2DAf +Vf-c,, feC3RY),

where C%(Rd ) stands for the twice continuously differentiable functions with compact sup-
port. We replaced b(¢, x) by c(¢, x) in order to have a simple relation between the generators
‘At and Ll‘
Fix x, y € T¢. Lindvall and Rogers [18] provide a coupling between X7 and X, repre-
sented by (X X; X, such that, before hitting the origin, D; := ||X = X; X I evolves as
Xr—X; < <
(7.4) dD, =2dB,+<’—’,c(z,X;f) —c(t,Xty)>dt,
t
where (-, -) stands for the scalar product in R4 and B; is a one-dimensional Brownian motion.
Note that the drift term is bounded.

Denote by (Zx Z; 77 the projection of the process (X X; X?) on T4 x T¢. Each coordinate of
the pair (Z%, Zy ) is a Markov process whose generator is equal to (1/2)£;. Hence, (Z2t, Z;t)
is a coupling to Z}, Z;, and to prove the proposition, it is enough to show that there exist
constants A < oo and A > 0, which depends only on SUP(r, x)eR,, xT¢ |G (¢, x)||, such that

(7.5) sup P[rf, >1]<(1/2)Ae”™
x,yeTd

for all r > 0, where ‘L' oy is the first time the processes (Zx Z; 24 ) meet.
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By construction and before hitting 0, D, := IIZf — Z,y || evolves as Dy, except when D;
attains the maximal distance between two points in T¢, that is, when D, hits L := +/d/2 in
which case 5; is reflected, while D; evolves according to (7.4).

Let M :=2sup;; yyer, xrd lc(t, X)|| =8up(; yyer, xre 10(2, x)||. By definition of b, M =
SUP(; ek, ¢ |G (t, X)||. Moreover, for all z such that ||z]| = 1, [{z, c(t, X7) — c(t, X}))| <
M

Let 5, the diffusion on [0, L + 1] which is absorbed at the origin, reflected at L + 1, and
which evolves according to the SDE

dD, =2dB, + M dt.

By the prev10us bound on the drift term of Dy, we may couple D, and D, in such a way
that D, < D, for all t > 0, almost surely, provided Do < Do In particular, Dy hits the origin
before Dy. Therefore, the coupling time of (Z Z; 77 is bounded above by the absorption time
of Dy, represented by Hj, where r stands for the initial state. An elementary computation
yields that there exists a finite constant 7y, depending only on M and L, such that

sup E[HJ]<Ty so that sup P[H) >2Tp] < =
rel0,L+1] ref0,L+1]

In consequence,

sup P[‘EZ >2Tp] < =

| =

To complete the proof of (7.5) [and the one of the proposition], it remains to apply the Markov
property. [l

7.2. Asymptotic behavior of linear parabolic equations. Let G : Ry x T? — R? be a
smooth vector field satisfying the hypotheses stated in the previous subsection.

PROPOSITION 7.4. Fix two probability densities wi, wy on T4, w;: T — R4,
Jrawj(x)dx =1, j =1, 2. Denote by w;: Ry x T¢ — R, the unique weak solution of
the linear parabolic equation

(7.6) {3tw‘,‘ =Aw; —V-[w,G],

w;(0,)=w,;().
Then there are A < 00 and ). > 0, which depends only on SUP( vyeRr, xTd |G (&, X) |, such that
/\wz(r,x) —w(t, x)|dx < Ae™
forallt > 0.

PROOF. Recall the definition of the diffusions (Z; : ¢t > 0), x € T9, introduced in the
previous subsection. Denote its transition probability by p;(x, dy) = p;(x, y) dy so that

E.[f(Z)] = / peGeay) f3) dy

for all functions f € C (T9).
Since L, is the generator of the diffusion Z,, for every function f in C*(T¢) and ¢ > 0,

t
E.[f(Z)] = f(0) + /0 E.[(£s f)(Zs)]ds
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Integrating both sides of this identity with respect to w; (x) dx and integrating by parts yields

that v (t, x) := [qa w;j(y) p; (y, x) dy solves (7.6) with initial condition v; (0, x) = w; (x). By
the uniqueness of weak solutions,

w;(t,x) = /Td wi(Y)pi(y, x)dy.

Since fwj (t,x)f(x)dx=/[ w; (x)Ex[ f(Z;)]dx for every continuous function f : T —
R, as w;(x) is a probability density,

/Td wo(t,x) f(x)dx — /11“1 wi(t,x) f(x)dx

= [, dxwi [ dvuaE[f 0] - B, L1 @)}

Therefore, by (7.3) and for every ¢ > 0,

<2 sup P[tf
x,yeTd

/wg(t,x)f(x)dx—/wl(t,x)f(x)dx

> t],

s1;p y

where the supremum is carried over all continuous function f such that || f|l- < 1. Hence,

f\wz(t,x)—wl(t,x)\dx§2 sup P[rfyzt],
x,ye’]I‘d

and the assertion of the proposition follows from Proposition 7.2. [
We turn to Theorem 7.1 whose proof relies on the following estimate.

PROPOSITION 7.5. There exist constants A < oo and A > 0, which depend only on
Sup(; xyeo0.71x1d | F (¢, ) ||, with the following property. Fix O <m < 1 and uj: T — [0, 1],
Jj=1,2 such that [1auj(x)dx =m. Denote by u;: Ry x T¢ — R the unique weak solu-
tion of (7.1) with initial condition u j. Then

/|u2(t,x) —uy(t,x)|dx < Ae™
forallt > 0.

PROOF. Let v(t,x) = ua(t,x) — u;(t, x) so that fps v(¢,x)dx =0 for all r > 0. Since
o(b)—o(a)=b—a)(l —a—b), v(t, x) solves the linear equation

(7.7) dyw=Aw+ V- [wG],

where G is the vector field G = (1 —u; —uy) F.

Let vo: T — R be given by vo(x) = u2(x) — u1(x). Denote by vt, v™, the positive,
negative part of v, respectively. Note that [rs vt (x)dx = [ra v (x)dx =:m’ € [0, m]. If
m' =0,0=uvy(x) =uz(x) — uj(x), and there is nothing to prove. Assume that m’ > 0, and
let wa(x) = v (x)/m’, wi(x) =v~(x)/m’ so that w; is the density of a probability measure
on T¢.

Denote by w;(z,x) the solution of (7.7) with initial condition w;(x). By linearity
m'[wy(f, x) — w1 (¢, x)] solves (7.7) with initial condition m'[w;(x) — w1 (x)] = vo(x). Since
v(t, x) solves the same Cauchy problem, v(z, x) = m'[w,(¢, x) — w(, x)]. Thus, as m’ <1,

/|u2(t,x) — ul(t,x)|dx =/|v(t,x)|dx < /|w2(t,x) — wl(t,x)|dx.
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To complete the proof, it remains to recall the statement of Proposition 7.4 and to observe
that sup;, vyer, x4 IG(#, X)||| < || Flloo because u(t,x) takes value in the interval [0, 1].
O

From this result we can deduce the first assertion of Theorem 7.1.

COROLLARY 7.6. For each m € (0, 1), the equation (7.1) admits a unique T -periodic
solutionu : R x T4 — [0, 1].

PrROOF. Fix m € (0, 1), and denote by L,]n (T%) the closed subspace of LY(T?), defined
by L) (T%) = {u e LY(TY) : [rau(x)dx =m,0 <u(x) < 1}.

Define the operator ‘J3 : L,ln (T9) — L,ln (T9), given by P(u) =u(T, -), where u(¢, x) is the
weak solution of (7.1) with initial condition u(-). Let ug : T¢ — [0, 1] be given by ug(x) =m
for all x, and set uj 1 =*Pu;, j > 0. We claim that the sequence (u; : j > 1) is Cauchy in
LY (T?). Fix n, j > 1. Since Pt ju ="P,*B ju, by Proposition 7.5

1Bt ju — Pauelly = [BalPju — ullls < Ae™""

Denote by w the limit in L! of the sequence u j» and observe that ‘Bw = w. This proves
that the solution of equation (7.1) with initial condition w is T -periodic. By Proposition 7.5
such T -periodic solution is unique. [J

PROOF OF THEOREM 7.1. Fix m € [0, 1]. As the result is trivial for m = 0 or 1, we may
assume that 0 < m < 1. In this range the assertions of the theorem corresponds to the ones of
Proposition 7.5 and Corollary 7.6. [

APPENDIX: DYNAMICAL BOUNDS

We present in this section some estimates used in the article. Let

A/DEN(x.y)

Cx,y(m) =nx[l —nyle (x,y) € By,

and recall the notation introduced in (2.18).

LEMMA A.1. Given a set of bounded functions ¢5” : D([0, 00), Ty) — R, (x, y) € By,
progressively measurable, the process

& ! X 2 ! 5
AD M =exp > {/O &N sas) D — N focx,y(n(S)){e¢“ —l}dS}

(x,y)eByN

is a mean one, positive martingale with respect to IP’f,V for any configuration n € Xy.

The proof of this lemma is similar to the one of Proposition A.2.6 in [15] and left to
the reader. This martingale corresponds to the Radon—Nikodym derivative (restricted to the
interval [0, ¢]) of the law of a jump process with rates ¢y y(n)e‘z’x'y with respect IPnN .

Recall that the symmetric simple exclusion process is the Markov chain on ¥y whose
generator is Ly, introduced in (2.1), with £ = 0. Denote by vy, 0 < « < 1, the Bernoulli
product measure on Xy with density «, and by Pga the probability measure on D(R, )
induced by the symmetric simple exclusion process starting from v,. Expectation with respect
to Pga is represented by Ega.
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LEMMA A.2. Foralll < p<ooand E € Cl(Td; Rd), there exists a constant C, such
that

dIP’N P J
logEv1/2[< dPO |[0,T]> i| < Cp(l +T)N

V12

forallT>0,N>1,0<K <N¢.

PROOF. The proof reduces to a standard computation of exponential martingales. To
emphasize the dependence of the measure PV on the external field E, in this proof, we

KN K
represent the measure IP’M vk DY IP’M v i - Clearly,
E _ E
o [(dP#N K o T])p] RO [(dMN,K>p l<dP N.K o T])p :|
e d]P)gl/Z ’ FvK d‘)l/z dP?LN K 7
Asvip(n) = (1/2)N , this expression is bounded by
dPE P
2V, (G en) |
0 s
MN,K dPMN B
On the other hand,
E E 0
ngx [(Zﬁglv . |[0,T]>p} = EﬁgK [(Z%N - |[0,T])pdp 0,71 ]
' HUN.K KUN,K dP/LN K

Note that in the last expectation the external field is pE. A direct computation, based on the
explicit formula for the Radon—Nikodym derivatives provided by Lemma A.1, yields that

dPt pdP), P
H (dIP’O lio, T]) o1 =<e”
HN.K d]P)MN K o0

for some finite constant C),; see [5], Lemma 4.5. [

Until the end of the Appendix, fix T > 0, m € (0, 1) and a sequence (Ky : N > 1) such
that Ky /N¢ — m. Consider a progressively measurable, continuous function w: R x T? x
M4(T9) x D(R; Hip) — R? with support on [0, 7] x T¢ x M (T?) x D(R; H‘fp). Recall
from (4.5) the definition of the progressively measurable function G, : R x T4 x Sm.ac — R,
For ¢ > 0 and a cylinder function W, let

Py m =55 LS Guttox iy TG0 (0) — ()t 0)].

xe’]I‘d

where (mq)(t, x) = Qe) A n(t,[x —e, x +€]?), and U [0, 1] — R is the function given
by

U(a) = E, [V].
LEMMA A.3. Forall § >0,

lim li —1 P t dt k) .
timtimsp 2 10g P [ [ P = 5] = —oc
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PRrOOF. First, we claim that, for all § > 0,

/ Y, n)dt‘ . 5]
0

We refer to [15], Theorem 10.3.1, for the proof in the case in which w does not depend on
7 and J. The arguments to include this dependence are tedious, but straightforward, and left
to the reader. The extension to the measure PV follows from the Schwarz inequality and

MN, Ky
Lemma A.2. 0O

lim lim sup log IP’UI/2|:

=0 N—oo

The next result is a consequence of the entropy inequality, [15], Proposition A1.8.2, and
the previous lemma.

COROLLARY A.4. Let (Qn : N > 1) be a sequence of probability measures in 9’?{5{( N
Assume that there exists a finite constant Co such that, for all S > 0,

1
limsup —; Na H® (QNIIP’MN Ky ) < CoS.

N—o00

Then for all § > 0,

T
lim limsupQNH/ F¥ @, ) dt’ > 5] =0.
, N

=0 Noo

Fix a vector field F in C! (R x Td: ]Rd) with compact support in (0, ') x T4, a > 0, and
recall the definition of &, (F, ), Vy.c(F,®, J), € > 0in (4.4).

LEMMA A.5. There exist finite, positive constants a and Cy such that, for all vector
fields F in C LR x T9; R?) with compact support in (0, T) x T,

1
lim sup lim sup ~a logEN  [exp{NEy.c(F,mn)}] < Co(l +T),

KN, Ky
e—>0 N-—>o0o

[exp{N Ve (F,mn, JN)}] < Co(1 +T).

1
lim sup lim sup N_ log ]EH N.Ky

e—>0 N-—>oo

PROOF. We claim that there exists a finite constant a such that, for any 7 > 0 and any F
in C1(R x T9; R?) with compact support in (0, T') x T,

lim sup lim sup 1 logIEv1 [exp N, (F,mn)}] <0
e>0 N—>oo N4 /2
This statement is proven in [6], Section 3.2, (see the proof of the bound presented in the last
displayed equation at p. 2367). To deduce the first assertion of the lemma from this result, it
suffices to apply the Schwarz inequality, to recall the statement of Lemma A.2, and to observe
that 28, ¢ (F,mN) = &40, QF, ).
We turn to the second assertion of the lemma. By Lemma A.1

EN  [exp[2NYIn(F) = Wx(T)}] =1

N, Ky

provided

Wn(T)=N> > /ﬂx(s) —n,(){ N — 1} ds.

(x.y)eBy
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Recalling (4.4), by adding and subtracting (1/2N¢)W x(T) and applying the Schwarz in-
equality, we get

L [exde{JN(F) —a/Rds /Td dxa(niv)|F|2”

12
<o eofmacn-awi f o [ asoteine?])

Expanding the exponential exp{2Fx (s, x, ¥)}, which appears in the definition of W (T),
summing by parts, using Lemma A.3, and the first part of the proof yields the desired bound.
O

Consider a continuous function w: [0, T] x T¢ x M4 (T?) x D(R; H% ») = R4 that is
continuously differentiable in x and such that, for each (x, ) € T¢ x M, (T¢) and r € [0, T,
the map [0, 1] x D(R; H‘ip) > (s, J) > w(s, x, m, J) is measurable with respect to the Borel
o-algebra on [0, t] x D([0, t]; ’H‘ip). Let p*Y: [0, T] x D([0,t], ¥y) —> R, (x,y) €e By be
given by

y
#(0) =/ wit, - wn(@), Ty) - de.

and let M‘; be the martingale introduced in (A.1),

LEMMA A.6. Let (Qn : N = 1) be a sequence of probability measures in ?ﬁﬁ;f N such
that Qn o (my, JN) ™' — P for some P € Py satisfying (2.27). Assume that there exists a
finite constant Cq such that, for all S > 0,

1
lim sup — H®) PN < (CopS.
imsup g (Qn 1P,y 4, ) = Co
Then, for each w as above,

1 . 1 &

T ngnoo WEQN [logM7 ] = Ep[Vr ],

where Vr ., has been introduced in (4.6)

PROOF. On the one hand, by definition of ¢*-> and of the current Jy and since Qu o
(ty, Jn)~! — P for some measure P € Pgar satisfying (2.27),

. 1 r X,y r .
aim WE@N[ > /0 ¢§’yN(s,s+ds]i| =Ep UO ds /w dxGy, - 1]
(x,y)eBy
On the other hand, a straightforward computation yields that
N2 Z cx’y(n){e"sx’y -1}
(Xs)’)dBN
= Nmy, V- Gu)

1 d
+32 2 Mere, = malPwj@)[w) () + E; (0] +o(N).

= d
J 1x€TN
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Therefore, by Corollary A.4 and since Qy o (y, J N)_1 — P for some measure P € Py
satisfying (2.27),

The

A
C
Fran

(1]

(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

> /OT dscyy(n(s)){e?” — 1}]

o )
lim WEQN N
(x,y)eBN

N—o00

T
- Ep[/o dt fT dx{Gy - [-Vp+a(p)E]+ a<p>|Gw|2}]-

assertion of the lemma follows from the two previous estimates. [J
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