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Abstract
We introduce a Kac’s type walk whose rate of binary collisions preserves the total momentum
but not the kinetic energy. In the limit of large number of particles we describe the dynamics
in terms of empirical measure and flow, proving the corresponding large deviation principle.
The associated rate function has an explicit expression. As a byproduct of this analysis, we
provide a gradient flow formulation of the Boltzmann-Kac equation.
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1 Introduction

The statistics of rarefied gas is described, at the kinetic level, by the Boltzmann equation.
It has become paradigmatic since it encodes most of the conceptual and technical issues in
the description of the statistical properties for out of equilibrium systems. In the spatially
homogeneous case the Boltzmann equation reads

∂t ft (v) dv =
∫∫

r(v′, v′∗; dv, dv∗) ft (v′) ft (v′∗) dv′ dv′∗

− ft (v) dv
∫∫

r(v, v∗; dv′, dv′∗) ft (v∗) dv∗,
(1.1)
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where f (v) dv is the one-particle velocity distribution, v, v∗ (resp. v′, v′∗) are the incom-
ing (resp. outgoing) velocities in the binary collision and r is the collision rate. In the
classical case the collision rate is concentrated on the set of velocities satisfying the con-
straints of momentum and energy conservation v + v∗ = v′ + v′∗ and |v|2 + |v∗|2 =
|v′|2+|v′∗|2, and it satisfied the detailed balance conditionM(dv)M(dv∗)r(v, v∗; dv′, dv′∗) =
M(dv′)M(dv′∗)r(v′, v′∗; dv, dv∗), where M(dv) is the Maxwellian.

In the pioneering work [13], Kac derived (1.1) from a stochastic model of N particles,
interacting via binary collisions satisfying the conservation of the energy. This result can
be seen as the law of large number for the empirical measure of the microscopic dynamics.
In particular, Kac’s result established the validity of the Stosszahlansatz. We refer to [19]
for further developments and references. The analysis of the corresponding fluctuations,
in the central limit regime, has been carried out in [20–22]. Regarding the large deviation
asymptotics, we point out that while the law of large numbers depends on the validity of the
Stosszahlansatz with probability converging to one as N → ∞, the large deviation principle
requires that it holds with probability super-exponentially close to one for N large. It is
therefore a non trivial improvement of the Kac’s result. The first statement in this direction
has been obtained in [15], where a large deviation upper bound is proven. In [18] a large
deviation result has been derived for a stochastic model in the setting of one dimensional
spatially dependent Boltzmann equation with discrete velocities. A main issue behind the
proof of large deviation lower bound is to establish a law of large number for a perturbed
dynamics, proving in particular the uniqueness of the perturbed Boltzmann equation, which
in general fails.

Regarding the Newtonian dynamics, in view of the previous discussion, the validity of a
large deviation principle is amost challenging issue. The general structure of the rate function
associated to the Boltzmann equation for hard sphere is discussed in [7]. A derivation from
Newtonian dynamics is presented in [6], see also [5] for a comparison of the rate function
derived in [6] with the one proposed in [7].

We focus on the large deviation principle for Kac-type spatially homogeneous models.
Beside the empirical density, it is convenient to introduce another observable, the empirical
flow, which records the incoming and outgoing velocities in the collisions, i.e., letting N
the number of particles, Nqt (dv, dv∗, dv′, dv′∗) dt is the number of collisions in the time
window [t, t + dt] with incoming velocities in dv dv∗ and outgoing velocities in dv′ dv′∗. In
particular, the mass of the empirical flow is the normalized total number of collisions. The
empirical measure and flow are linked by the balance equation

∂t ft (v) dv =
∫ [

qt (dv
′, dv′∗; dv, dv∗) + qt (dv

′, dv′∗; dv∗, dv)

−qt (dv, dv∗; dv′, dv′∗) − qt (dv∗, dv; dv′, dv′∗)
]
,

(1.2)

which expresses the conservation of the mass. The idea of considering the pair of observables
empirical measure and flow has been exploited in the context ofMarkov processes in [3,4,12].
In this setting the rate function relative to the pair empirical measure and flow has a closed
form, and it is equal to I ( f , q) = I0( f0) + J ( f , q), where I0( f0) takes into account the
fluctuations of the initial datum and the dynamical term J is given by

J ( f , q) =
∫ T

0
dt

∫ {
dqt log

dqt
dq ft

− dqt + dq ft
}
, (1.3)
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Large Deviations for Kac-Like Walks Page 3 of 27 10

where q f (dv, dv∗, dv′, dv′∗) = 1
2 f (v) f (v∗) dv dv∗r(v, v∗; dv′, dv′∗). By projecting J on

the empirical density f (v)dv one recovers the variational expression for the rate function
obtained for the empirical measure in [7,15,18].

The rate function (1.3) has a simple interpretation in terms of Poisson point processes. Let
{ZN } be a sequence of Poisson random variables with parameters Nλ. By Stirling’s formula,
for N large

P(ZN = Nq) ≈ exp{−N [q log(q/λ) − q + λ]}.
Therefore, for N large the statistics of the collisions in the Kac’s walk can be thought as
sampled from a Poisson point process with intensity Nq f , where now f and q are related
by the balance equation (1.2).

Here we implement this program for a model of N particles, interacting via stochastic
binary collisions satisfying the conservation of the momentum, but not of the kinetic energy.
Such a model is relevant, as example, in the case of a molecular gas when the internal
degrees of freedom are disregarded. We do not assume a detailed balance condition and the
corresponding Boltzmann-Kac equation is of the form (1.1). We prove the large deviation
upper bound with the rate function introduced above. The proof of the matching lower
bound is achieved when q has bounded second moment. From a technical viewpoint, the
advantage of momentum conservation with respect to energy conservation is the linearity of
the constraint, which allows to use convolution in the approximation argument for the lower
bound. We also derive the variational formula for the projection of the rate function on the
empirical measure.

In the context of i.i.d. Brownians, the connection between the large deviation rate function
and the gradient flow formulation of the heat equation is discussed in [1], see also [2,17] for
the case of i.i.d. reversible Markov chains. Here we derive a gradient flow formulation for the
Boltzmann-Kac equation from the large deviation rate function (1.3). On general grounds, a
gradient flow formulation of evolution equations is based on the choice of a pair of functions
in Legendre duality. In [10] it is shown how this pair can be chosen so that the Boltzmann-Kac
equation is the gradient flow of the entropy with respect to a suitable distance on the set of
probability measures. As we here show, the choice in [10] is not the one associated to the
large deviation rate function. Instead, analogously to [2], in the formulation here presented
the non-linear Dirichlet form associated to the Boltzmann-Kac equation plays the role of the
slope of the entropy.

2 Notation andMain Result

KacWalk

For a Polish space X we denote by M(X) the set of positive Radon measures on X with
finite mass; we consider M(X) endowed with the weak* topology and the associated Borel
σ -algebra.

Given N ≥ 2, a configuration is defined by N velocities in R
d . The configuration space

is therefore given by �N := (Rd)N . Elements of �N are denoted by v = (vk)k=1,...,N ,
with vk ∈ R

d . The Kac walk that we here consider is the Markov processes on �N whose
generator acts on continuous and bounded functions f : �N → R as

LN f = 1

N

∑
{i, j}

Li j f
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where the sum is carried over the unordered pairs {i, j} ⊂ {1, .., N }, i 
= j , and

Li j f (v) =
∫

r(vi , v j ; dv′, dv′∗)
[
f (T

v′,v′∗
i j v) − f (v)

]
.

Here

(
T

v′,v′∗
i j v

)
k :=

⎧⎪⎨
⎪⎩

v′ if k = i

v′∗ if k = j

vk otherwise.

and the collision rate r is a continuous function from R
d ×R

d toM(Rd ×R
d). Finally, the

scattering rate λ : Rd × R
d → R+ is

λ(v, v∗) =
∫

r(v, v∗; dv′, dv′∗). (2.1)

We assume that r satisfies the following conditions in which we set V := {v + v∗ =
v′ + v′∗} ⊂ (Rd)2 × (Rd)2.

Assumption 2.1 (i) Conservation of momentum. For each (v, v∗) ∈ R
d × R

d the measure
r(v, v∗; ·) is supported on the hyperplane {(v′, v′∗) ∈ R

d × R
d : v′ + v′∗ = v + v∗}.

(ii) Collisional symmetry. For each (v, v∗) ∈ R
d × R

d the scattering kernel satisfies
r(v, v∗; dv′, dv′∗) = r(v∗, v; dv′, dv′∗) = r(v, v∗; dv′∗, dv′).

(iii) Non degeneracy of the scattering kernel. There exists a density B : V → R+ such that
r(v, v∗, dv′, dv′∗) = B(v, v∗, w′) dw′, wherew′ = (v′ −v′∗)/

√
2. Moreover, there exists

c0 > 0 such that B(v, v∗, w′) ≥ c0 exp{−c0 |w′|2}.
(iv) Gaussian tails. There exists C < +∞, η > 0, γ ∈ [0, 2) such that for any v, v∗ ∈ R

d

∫
dw′ B(v, v∗, w′)eη|w′|2 ≤ C(1 + |v − v∗|γ ).

(v) Point-wise bound. There exists a constant C < +∞ such that B(v, v∗, w′) ≤
CeC(|v|2+|v∗|2+|w′|2).

We remark that we do not assume balance conditions. Observe that item (iv) implies

λ(v, v∗) ≤ C(1 + |v − v∗|γ ). (2.2)

An example of a scattering kernel meeting the above conditions is B(v, v∗, w′) = (1+ |v −
v∗|)e−|w′|2 .

We denote by (v(t))t≥0 the Markov process generated by LN . Let �N ,0 := {
v ∈

�N : N−1 ∑
k vk = 0

}
be the subset of configurations with zero average velocity, that it

is invariant by the dynamics in view of the conservation of the momentum. By the positivity
of the collision rate (see Assumption 2.1, item (iii)), the Kac walk is ergodic when restricted
to �N ,0. We shall consider the Kac’s walk restricted to �N ,0.

Fix hereafter T > 0. Given a probability ν on �N ,0 we denote by P
N
ν the law of the Kac

walk on the time interval [0, T ]. Observe that PN
ν is a probability on the Skorokhod space

D([0, T ];�N ,0). As usual if ν = δv for some v ∈ �N ,0, the corresponding law is simply
denoted by P

N
v .
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Empirical Measure and Flow

We denote by P0(R
d) the set of probability measures on R

d with zero mean. We consider
P0(R

d) as a closed subset of the space of probability measure with finite mean equipped
with the W1 Wasserstein distance. Then P0(R

d) endowed with the relative topology is a
Polish space. The empirical measure is the map πN : �N ,0 → P0(R

d) defined by

πN (v) := 1

N

N∑
i=1

δvi . (2.3)

Let D
([0, T ];P0(R

d)
)
the set of P0(R

d)-valued cádlág paths endowed with the Sko-
rokhod topology and the corresponding Borel σ -algebra. With a slight abuse of notation
we denote also by πN the map from D

([0, T ];�N ,0
)
to D

([0, T ];P0(R
d)

)
defined by

πN
t (v(·)) := πN (v(t)), t ∈ [0, T ].
We denote byM the (closed) subset ofM([0, T ]×(Rd)2×(Rd)2

)
given by the measures

Q that satisfy

Q(dt; dv, dv∗, dv′, dv′∗) = Q(dt; dv∗, dv, dv′, dv′∗) = Q(dt; dv, dv∗, dv′∗, dv′).

The empirical flow is the map QN : D([0, T ];�N ,0
) → M defined by

QN (v)(F) := 1

N

∑
{i, j}

∑
k≥1

F
(
τ
i, j
k ; vi (τ

i, j
k −), v j (τ

i, j
k −), vi (τ

i, j
k ), v j (τ

i, j
k )

)
(2.4)

where F : [0, T ] × (Rd)2 × (Rd)2 → R satisfies F(t; v, v∗, v′, v′∗) = F(t; v∗, v, v′, v′∗) =
F(t; v, v∗, v′∗, v′), and F is continuous and bounded, while (τ

i, j
k )k≥1 are the jump times of

the pair (vi , v j ). Finally, vi (t−) = lims↑t vi (s).
For each v ∈ �N ,0 with P

N
v probability one the pair (πN , QN ) satisfies the following

balance equation that express the conservation of probability. For each φ : [0, T ]×R
d → R

bounded, continuous, and continuously differentiable with respect to time

πN
T (φT ) − πN

0 (φ0) −
∫ T

0
dt πN

t (∂tφt )

+
∫

QN (dt; dv, dv∗, dv′, dv′∗)
[
φt (v) + φt (v∗) − φt (v

′) − φt (v
′∗)

] = 0.

(2.5)

In view of the conservation of the momentum, the measure QN (dt; ·) is supported on the
hyperplane V .

The Rate Function

Let S be the (closed) subset of D
([0, T ];P0(R

d)
) × M given by elements (π, Q) that

satisfies the balance equation

πT (φT ) − π0(φ0) −
∫ T

0
dt πt (∂tφt )

+
∫

Q(dt; dv, dv∗, dv′, dv′∗)
[
φt (v) + φt (v∗) − φt (v

′) − φt (v
′∗)

] = 0

(2.6)
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for each φ : [0, T ] × R
d → R continuous, bounded and continuously differentiable in

t , with bounded derivative. We consider S endowed with the relative topology and the
corresponding Borel σ -algebra.

For π ∈ D
([0, T ];P0(R

d)
)
let Qπ be the measure defined by

Qπ (dt; dv, dv∗, dv′, dv′∗) := 1

2
dt πt (dv)πt (dv∗) r(v, v∗; dv′, dv′∗) (2.7)

and observe that Qπ (dt, ·) is supported on V .

Definition 2.2 Let Sac be the subset of S given by the elements (π, Q) that satisfy the
following conditions:

(i) π ∈ C
([0, T ];P0(R

d)
)
;

(ii) supt∈[0,T ] πt (ζ ) < +∞, where ζ(v) = |v|2;
(iii) Q � Qπ .

Observe that by item (iv) of Assumption 2.1, condition (ii) implies that if (π, Q) ∈ Sac

then Qπ is a finite measure. Moreover, by choosing positive functions φ not depending on t
in the balance equation (2.6) and neglecting the loss term we obtain

πt (φ) ≤ π0(φ) + 2
∫ t

0

∫
Q(ds, dv, dv∗, dv′, dv′∗)φ(v′).

Since Q � Qπ and, by Assumption 2.1, item (iii), the marginal on v′ of Qπ is absolutely
continuous with respect to the Lebesgue measure, we deduce that π0 � dv implies πt � dv,
for any t ≥ 0. As a consequence, also Q is absolutely continuouswith respect to the Lebesgue
measure on [0, T ] × V .

The dynamical rate function J : S → [0,+∞] is defined by

J (π, Q) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
dQπ

[ dQ

dQπ
log

dQ

dQπ
−

( dQ

dQπ
− 1

)]
if (π, Q) ∈ Sac

+∞ otherwise.

(2.8)

In order to obtain a large deviation principle, chaotic initial conditions are not sufficient
but we need that the empirical measure at time zero satisfies a large deviation principle.
Referring to [8] for a discussion on entropically chaotic initial conditions, we next provide
an example of a class of allowed initial data.

Assumption 2.3 Given m ∈ P0(R
d) set μN = m⊗N and choose as initial distribution of

the Kac’s walk the probability on �N ,0 given by νN = μN ( · | ∑i vi = 0). We assume that
m is absolutely continuous with respect to the Lebesgue measure and still denote by m its
density. We furthermore assume that there exists γ > 0 such that

(i)
∫
dvm(v) exp{γ |v|2} < +∞;

(ii) the Fourier transform of m(v) exp{γ |v|2} is in L1(Rd);
(iii) m(v) ≥ γ exp{− 1

γ
|v|2}.

Given two probabilities μ1, μ2 ∈ P0(R
d), the relative entropy H(μ2|μ1) is defined as

H(μ2|μ1) = ∫
dμ1ρ log ρ, where dμ2 = ρ dμ1, understanding that H(μ2|μ1) = +∞ if

μ2 is not absolutely continuous with respect to μ1.
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Denoting by Ŝ the set of paths (π, Q) ∈ S such that
∫

Q(dt; dv, dv∗, dv′, dv′∗)|v + v∗|2 < +∞, (2.9)

and letting I : S → [0,+∞] be the functional defined by
I (π, Q) := H(π0|m) + J (π, Q), (2.10)

the large deviation principle for the Kac’s walk is stated as follows.

Theorem 2.4 Let νN as in Assumption 2.3. Then for each closed C ⊂ S , respectively each
open A ⊂ S ,

lim
N→∞

1

N
logPN

νN

(
(πN , QN ) ∈ C

) ≤ − inf
C

I ,

lim
N→∞

1

N
logPN

νN

(
(πN , QN ) ∈ A

) ≥ − inf
A∩ ˆS

I .

The proof of the upper bound does not rely on item (iii) of Assumption 2.1. In particular it
holds also when the collision rate conserves the energy. Likewise, item (iii) in Assumption
2.3 is used only in the proof of the lower bound. We also remark that, if we replace item (iii)
in Assumption 2.1 by the condition

∫
dw′B(v, v∗, w′)eη[|v′|2+|v′∗|2] ≤ C(1 + |v − v∗|2), or

the collision r has non degenerate density on (Rd)4, the lower bound holds in the whole S .
As we show in Proposition 5.1, the projection of I on the empirical measure coincides with
the variational expression in [15,18].

3 Upper Bound

The upper bound is achieved by an established pattern in large deviation theory. We first
prove the exponential tightness, which allows us to reduce to compacts. By an exponential
tilting of the measure, we prove an upper bounds for open balls and finally we use a mini-max
argument to conclude.

Proposition 3.1 (Exponential tightness) There exists a sequence of compacts K� ⊂ S such
that for any N

P
N
νN

(
(πN , QN ) /∈ K�

) ≤ e−N�.

By standard compactness criteria (Banach-Alaoglu, Prokhorov andAscoli-Arzelà theorems),
the proof follows from the bounds in the next three lemmata.

Lemma 3.2 Let ζ : Rd → [0, +∞) be the function ζ(v) = |v|2. Then

lim
�→+∞ lim

N→+∞
1

N
logPN

νN

(
sup

t∈[0,T ]
πN
t (ζ ) ≥ �

)
= −∞. (3.1)

Lemma 3.3

lim
�→+∞ lim

N→+∞
1

N
logPN

νN

(
QN (1) > �

)
= −∞. (3.2)
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Lemma 3.4 For each ε > 0 and φ : Rd → R continuous and bounded

lim
δ↓0 lim

N→+∞
1

N
logPN

νN

(
sup

t,s ∈[0,T ] :|t−s|<δ

|πN
t (φ) − πN

s (φ)| > ε
)

= −∞. (3.3)

Lemmata 3.2 and 3.4 imply that if the large deviation upper bound rate function is finite
then supt∈[0,T ] πt (ζ ) < +∞ and π ∈ C([0, T ],P0(R

d)), i.e. π meets the conditions in
items (i), (ii) in Definition 2.2.

To deal with the initial conditions, as detailed in Assumption 2.3, we need the following
elementary statement whose proof is omitted.

Lemma 3.5 Pick φ ∈ C(Rd) such that m(eφ) < +∞, and let mφ be the probability on R
d

defined by mφ(dv) = m(dv)eφ(v)/m(eφ). Then

νN
(
eNπN (φ)

)
= (

m(eφ)
)N f φ

N (0)

fN (0)
(3.4)

where f φ
N and fN are the densities of N−1/2 ∑

i vi with vi i.i.d. with law mφ and m respec-
tively.

Proof of Lemma 3.2 Given γ > 0 to be chosen later, let �(v) = γ
∑

k |vk |2 and set

M
�
t := exp

{
�(vt ) − �(v0) −

∫ t

0
ds e−�LNe

�(vs)
}
.

By e.g. [14, App. 1, Prop. 7.3], M� is a positive super martingale, in particular for any
bounded stopping time τ and any v0 ∈ �N ,0 E

N
v0

[
M

�
τ

] ≤ 1. By simple computations, in
view of Assumption 2.1, item (iv), we can choose γ > 0 such that there exists a constant c
such that for any N > 1

sup
v∈�N ,0

e−�LNe
�(v) ≤ cN .

Set τ� := inf{t > 0 : πN
t (ζ ) > �} ∧ T , then

P
N
νN

(
sup

t∈[0,T ]
πN
t (ζ ) ≥ �

)
= P

N
νN

(
τ� < T

) = E
N
νN

(
M

�
τ�

(
M

�
τ�

)−11Iτ�<T

)

≤ E
N
νN

(
M

�
τ�
exp

{ − γ N� + �(v0) + cNτ�

})

≤ exp{−N (γ � − cT )}
∫

dνN exp{γ
∑
k

|vk |2}.

To complete the proof we show that Assumption 2.3 implies that, possibly by redefining
γ > 0, there exists a constant c such that for any N∫

dνNeγ
∑

k |vk |2 ≤ ecN . (3.5)

In order to prove this bound, we apply Lemma 3.5 with φ(v) = γ |v|2 +α · v, where α ∈ R
d

is chosen so thatmφ is centered. Observing that with νN -probability one πN (γ |v|2+α ·v) =
γπN (|v|2), we get

∫
dνNeγ

∑
k |vk |2 = (

m(eφ)
)N f φ

N (0)

fN (0)

123
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By Assumption 2.3, the densities f φ
N and fN satisfy the local central limit theorem, see e.g.

[11, Ch. XV.5, Thm. 2]). In particular 1
N log f φ

N (0) and 1
N log fN (0) vanish as N → +∞.

The proof or (3.5) is thus achieved. ��

Proof of Lemma 3.3 Given �, h > 0, set B�,h := {(π, Q) : supt πt (ζ ) ≤ h, Q(1) > �}, with
ζ(v) = |v|2. In view of the previous lemma, it is enough to show that for each h > 0

lim
�→∞ lim

N→∞
1

N
logPN

νN

((
πN , QN ) ∈ B�,h

)
= −∞.

Recall that the scattering rate λ has been defined in (2.1). Given a bounded measurable
function F : [0, T ] × R

4d → R such that F(t; v, v∗, v′, v′∗) = F(t; v∗, v, v′, v′∗) =
F(t; v, v∗, v′∗, v′), let

λF (t; v, v∗) =
∫

r(v, v∗; dv′, dv′∗)eF(t;v,v∗;v′,v′∗). (3.6)

Denoting by QN[0,t] the restriction of the measure QN on [0, t], and setting �(v) = λ(v, v),

�F (t, v) = λF (t; v, v), v ∈ R
d , the process

N
F
t = exp

{
N

(
QN[0,t](F) − 1

2

∫ t

0
ds

[
πN
s ⊗ πN

s

(
λF − λ

) + 1

N
πN
s

(
�F − �

)])}
(3.7)

is aPN
v positive super-martingale for each v ∈ �N ,0, see e.g. [14,App. 1, Prop. 2.6]. Choosing

F = γ , with γ a positive constant, for each � > 0

P
N
νN

((
πN , QN ) ∈ B�,h

)
= E

N
νN

(
N

γ

T

(
N

γ

T

)−11IB�,h (π
N , QN )

)

≤ exp{−γ N� + (eγ − 1)NC(1 + 2h)T },
where in last inequality we have used (2.2). ��

Proof of Lemma 3.4 In view of the balance equation (2.6) and Lemma 3.2, it is enough to
show that for any h > 0 there exists a function c : (0, 1) → R+ with c(δ) ↑ +∞ as δ ↓ 0
such that, for any ε > 0

P
N
νN

(
sup

t∈[0,T−δ]
QN[t,t+δ](1) > ε, sup

t∈[0,T ]
πN
t (ζ ) ≤ h

)
≤ e−Nc(δ).

with ζ(v) = |v|2. By a straightforward inclusion of events, the previous bound follows from
1

δ
sup

t∈[0,T−δ]
P
N
νN

(
QN[t,t+δ](1) > ε, sup

t∈[0,T ]
πN
t (ζ ) ≤ h

)
≤ e−Nc(δ).

Consider the super-martingale (3.7) with F = γ 1I[t,t+δ], γ > 0. Using the same argument
of the previous lemma and (2.2) we deduce

P
N
νN

(
QN[t,t+δ](1) > ε, sup

t∈[0,T ]
πN
t (ζ ) ≤ h

)
≤ exp

{
− N

[
γ ε − δ (eγ − 1)C(1 + 2h)

]}
.

The proof is concluded by choosing γ = log(1/δ). ��

123



10 Page 10 of 27 G. Basile

Upper Bound on Compacts

Given a bounded continuous function φ on Rd we define the probability measure mφ on Rd

by mφ(dv) = m(dv)eφ/m(eφ) and we set μN
φ = m⊗N

φ . Moreover, recall the definition (3.6)

of λF .

Lemma 3.6 For any (φ, F) ∈ Cb(R
d) ×Cb(R

+ × (Rd)
2 × (Rd)

2
) such that mφ is centered

and F(t; v, v∗, v′, v′∗) = F(t; v∗, v, v′, v′∗) = F(t; v, v∗, v′∗, v′), and anymeasurable subset
B ⊂ S

lim
N→∞

1

N
logPN

νN

(
(πN , QN ) ∈ B

)
≤ − inf

(π,Q)∈B Iφ,F (π, Q), (3.8)

where

Iφ,F (π, Q) := π0(φ) − log
(
m(eφ)

) + Q(F) − 1

2

∫ T

0
dt πt ⊗ πt (λ

F − λ). (3.9)

Proof Consider the perturbed initial distribution ν̃N = μN
φ ( · | ∑i vi = 0). Recalling the

definition of the super-martingale NF
t in (3.7), we write

PνN

(
(πN , QN ) ∈ B

)
=

∫
dν̃N dνN

dν̃N
E
N
v

(
N

F
T

(
N

F
T

)−11IB(πN , QN )
)

Recalling that �(v) := λ(v, v), and using Lemma 3.5, we get

PνN

(
(πN , QN ) ∈ B

)

≤ sup
(π,Q)∈B

e−Nπ0(φ) f
φ
N (0)

fN (0)

(
m(eφ)

)N
e−N

{
Q(F)− 1

2

∫ T
0 dt [πt⊗πt (λ

F−λ)+ 1
N πt (�

F−�)]
}

× E
N
νN

(
eNπN

0 (φ)

(
m(eφ)

)N
fN (0)

f φ
N (0)

N
F
T 1IB(πN , QN )

)

≤ sup
(π,Q)∈B

e−Nπ0(φ) f
φ
N (0)

fN (0)

(
m(eφ)

)N
e−N

{
Q(F)− 1

2

∫ T
0 dt πt⊗πt (λ

F−λ)+ 1
N TC

}
E
N
ν̃N (NF

T )

where in the last inequality we used (2.2). The statement is achieved by observing that
E
N
ν̃N (NF

T ) ≤ 1, and noting that by the local central limit theorem both 1
N log f φ

N (0) and
1
N log fN (0) vanish as N → +∞.

Recall that H(·|m) denotes the relative entropy and let J be the functional defined in (2.8).

Proposition 3.7 (Variational characterization of the rate functional) For any pair (π, Q) ∈
S satisfying (i) and (ii) in Definition 2.2

H(π0|m) = sup
φ

{
π0(φ) − log

(
m(eφ)

)}
,

J (π, Q) = sup
F

{
Q(F) − 1

2

∫ T

0
dt πt ⊗ πt (λ

F − λ)
}
.

(3.10)

In the first formula the supremum is carried out over the continuous and boundedφ : Rd → R

such that the probability mφ (as defined in Lemma 3.5) is centered. In the second formula the
supremum is carried out over all continuous and bounded F : [0, T ] × (Rd)2 × (Rd)2 → R

such that F(t; v, v∗, v′, v′∗) = F(t; v∗, v, v′, v′∗) = F(t; v, v∗, v′∗, v′).
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Large Deviations for Kac-Like Walks Page 11 of 27 10

Since the set ofπ satisfying the condition in Definition 2.2, items (i), (ii), is a closed subset
of D([0, T ];P0(R

d)), the previous characterization of the rate functional readily implies
the lower semicontinuity of I ; moreover, if supF {Q(F) − 1

2

∫ T
0 dt πt ⊗ πt (λ

F − λ)} < +∞
then Q � Qπ , i.e., (π, Q) ∈ Sac.

Proof The first statement follows from the variational characterization of the relative entropy
and the observation that since π0 is centered it is enough to consider φ satisfying the stated
constraint.

To prove the second statement, recall the definition of Qπ in (2.7) and observe that

1

2

∫ T

0
dt πt ⊗ πt (λ

F − λ) = Qπ
(
eF − 1

)
.

This implies that if supF
[
Q(F) − 1

2

∫ T
0 dt πt ⊗ πt (λ

F − λ)
]
is finite, then Q is absolutely

continuous with respect to Qπ .
The proof is now completed by a direct computation, see Lemma 4.4 in [3]. ��

Proof of Theorem 2.4: upper bound By the exponential tightness in Proposition 3.1, to prove
the upper bound it is enough to show the statement for compacts. By Lemma 3.6 and a mini-
max argument, see e.g. [14, App.2, Lemma 3.2], the upper bound holds with the functional

Î (π, Q) = sup
φ,F

Iφ,F (π, Q).

Finally, by Proposition 3.7, Î = I . ��

4 Lower Bound

In order to obtain the large deviation lower bound, given (π, Q) we need to produce a
perturbation of the dynamics such that the law of large number for (πN , QN ) is (π, Q).
While the compactness of (πN , QN ) follows from the arguments of the previous section, in
order to identify the limit point we need uniqueness of the perturbedBoltzmann-Kac equation
that we are able to prove only if the perturbed scattering rate is bounded. Therefore, we shall
first prove the lower bound for open neighborhoods of “nice” (π, Q), and then use a density
argument, that will be completed with the restriction that Q has bounded second moment.

Perturbed KacWalks

We start by the following law of large numbers for a class of perturbed Kac’s walks. Consider
perturbed time-dependent collision rates r̃t , with density B̃t , i.e.

r̃t (v, v∗; dv′, dv′∗) = B̃t (v, v∗;w′) dw′, (4.1)

which we assume to meet condition (iv) in Assumption 2.1 uniformly for t ∈ [0, T ], and
to satisfy the following extra condition. There exists C < +∞ such that for any t, v, v∗ ∈
[0, T ] × (Rd)2

λ̃t (v, v∗) =
∫

r̃t (v, v∗; dv′, dv′∗) ≤ C . (4.2)

Given a probability ν on �N ,0 we denote by P̃
N
ν the law of the perturbed Kac walk with

initial datum ν.
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10 Page 12 of 27 G. Basile

Lemma 4.1 Fix a sequence of initial conditions νN as inAssumption 2.3. As N → ∞, the pair
(πN , QN ) converges, in P̃N

νN probability, to ( f dv , q dt dv dv∗ dw′), where qt (v, v∗, w′) =
1
2 ft (v) ft (v∗)B̃t (v, v∗, w′) and f ∈ C

([0, T ]; L1(Rd)
)
is the unique solution to the per-

turbed Kac’s equation

∂t ft (v) =
∫
dv∗ dw′ [B̃t (v

′, v′∗;w) ft (v
′) ft (v′∗) − B̃t (v, v∗;w′) ft (v) ft (v∗)

]
,

f0(·) = dm
dv ,

(4.3)

where v′ = v+v∗
2 + w′√

2
, v′∗ = v+v∗

2 − w′√
2
, andw = v−v∗√

2
. Here we understand that (4.3) holds

by integrating against continuous, bounded test functions which are continuous differentiable
in time.

Proof Observe that the large deviation upper bound proven in the previous section holds also
for the perturbed Kac’s walk. The exponential tightness implies that the sequence {̃PN

νN ◦
(πN , QN )−1} is precompact in P0(S ). Moreover, by the large deviation upper bound,
any cluster point P̃ of this sequence satisfies P̃({

(π, Q) : Ĩ (π, Q) = 0}) = 1 where the
rate function Ĩ is defined as I in (2.8), (2.10), with the rate r replaced by the perturbed
rate r̃ . Since Ĩ (π, Q) < +∞ we get (π, Q) ∈ Sac, in particular πt (dv) = ft (v) dv and
Q(dt; dv, dv∗, dv′, dv′∗) = qt (v, v∗;w′) dt dv dv∗ dw′ for some densities f and q . Then
Ĩ (π, Q) = 0 implies Q = Q̃π , where Q̃π is defined as in (2.7) with r replaced by r̃ . The
balance equation (2.6) thus amounts to the weak formulation of (4.3).

It remains to show that f ∈ C([0, T ]; L1(Rd)) and that the solution to (4.3) is unique.
Choosing test functions independent of time and integrating (4.3) we deduce that for each
t ∈ [0, T ] and Lebesgue almost every v it actually holds

ft (v) = f0(v)

+
∫ t

0
ds

∫
dv∗ dw′ [B̃s(v

′, v′∗;w) fs(v
′) fs(v′∗) − B̃s(v, v∗;w′) fs(v) fs(v∗)

]
.

(4.4)

Since λ̃ is bounded, it is now straightforward to show that f ∈ C([0, T ]; L1(Rd)). Indeed,
letting C be the constant in (4.2), from (4.4) we get ‖ ft − fs‖L1 ≤ 2C(t − s) for 0 ≤ s ≤
t ≤ T . Finally, using again (4.2), uniqueness is achieved by applying Gronwall’s lemma to
(4.4) . ��

The collection of “nice” (π, Q) is specified as follows.

Definition 4.2 Let S̃ be the collection of elements (π, Q) ∈ Sac whose densities ( f , q) are
such that

ess supt,v,v∗,w′
qt (v, v∗;w′)
ft (v) ft (v∗)

< +∞, (4.5)

and

ess supt,v,v∗

∫
dw′ qt (v, v∗;w′)

ft (v) ft (v∗)
eη|w′|2 < +∞, (4.6)

for some η > 0.
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Large Deviations for Kac-Like Walks Page 13 of 27 10

Given (π, Q) ∈ S̃ , denote by r̃t the time dependent perturbed rate whose density is
defined by

B̃t (v, v∗, w′) = 2 qt (v, v∗;w′)
ft (v) ft (v∗)

, (4.7)

that meets the condition (iv) in Assumption 2.1 uniformly for t ∈ [0, T ] and the extra
assumption (4.2).

The next statement provides the large deviation lower bound for neighborhood of elements
in S̃ .

Proposition 4.3 Let (π, Q) ∈ S̃ . Assume that π0 satisfies items (i), (ii) in Assumption 2.3,
and suppose π0(dv) = eφm(dv)/m(eφ) for some φ bounded and continuous. Moreover,
denote by ν̃N = π⊗N

0 (·| ∑i vi = 0) the corresponding probability on �N ,0. Then

lim
N→∞

1

N
H

(
P̃
N
ν̃N |PN

νN

)
= I (π, Q).

We premise the following lemma.

Lemma 4.4 Set ζ(v) = |v|2 and F̄(t, v, v∗, w′) = F̄(w′) = 1 + |w′|2, then
sup
N

Ẽν̃N

(
sup

t∈[0,T ]
πN
t (ζ )

)
< +∞,

sup
N

Ẽν̃N

(
QN (F̄)2

)
< +∞.

Proof We write

Ẽν̃N

(
sup

t∈[0,T ]
πN
t (ζ )

) =
∫ ∞

0
d� P̃ν̃N

(
sup

t∈[0,T ]
πN
t (ζ ) > �

)
.

The first bound in the statement is achieved by observing that Lemma 3.2 holds also for the
perturbed chain.

In order to prove the second bound, let

M̃N
t := QN[0,t](F̄) − 1

N 2

∑
{i, j}

∫ t

0
ds

∫
dw′ B̃s(vi , v j , w

′)F̄(w′),

that it is a P̃ν̃N martingale, with predictable quadratic variation

〈M̃N 〉t = 1

N 2

∑
{i, j}

∫ t

0
ds

∫
dw′ B̃s(vi , v j , w

′)F̄(w′).

In view of (4.7) and (4.6) in Definition 4.2, the random variable 〈M̃N 〉T is uniformly bounded
in N . This completes the proof. ��
Proof of Proposition 4.3 We first prove that

lim
N→∞

1

N
H(ν̃N |νN ) = H(π0|m). (4.8)

By Lemma 3.5,

1

N
H(ν̃N |νN ) = ν̃N (

πN (φ)
) − logm(eφ) + 1

N
log

fN (0)

f φ
N (0)

,
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10 Page 14 of 27 G. Basile

where, by the local central limit theorem, the last term on the right hand side vanishes as
N → +∞. As a corollary of Lemma 4.1 we deduce that πN converges in ν̃N -probability to
π0. Hence, in view of assumptions on φ, we deduce

lim
N→∞

1

N
H(ν̃N |νN ) = π0(φ) − logm(eφ) = H(π0|m).

We now show that

lim
N→∞

1

N
H

(
P̃
N
ν̃N |PN

ν̃N

) = J (π, Q). (4.9)

In view of the assumptions on r̃t the super-martingale defined in (3.7) with Ft = log(dr̃t/ dr)
is actually a martingale and its value at time T is the Radon-Nykodim derivative of P̃N

ν̃N with

respect to PN
ν̃N . Since λF

t = λ̃t and �F
t (v) = λ̃t (v, v) =: �̃t ,

1

N
H

(
P̃
N
ν̃N |PN

ν̃N

) = Ẽν̃N

(
QN (F) − 1

2

∫ T

0
dt

[
πN
t ⊗ πN

t (λ̃t − λ) + 1

N
πN
t (�̃t − �)

])
.

By definition of S̃

Ft = log
2 qt (v, v∗, w′)

ft (v) ft (v∗)B(v, v∗, w′)
≤ C(1 + |w′|2).

where we used Assumption 2.1, item (iii).
Now observe that, by Lemma 4.1, (πN , QN ) converges to (π, Q) in P̃

N
ν̃N probability.

Moreover, Lemma 4.4 provides sufficient conditions for the uniform integrability of QN (F)

and of
∫ T
0 dt π

N
t ⊗πN

t (λ). Finally, by the boundedness of λ̃t and the absolutely continuity of
πt we obtain

lim
N→∞

1

N
H

(
P̃
N
ν̃N |PN

ν̃N

) = Q(F) − 1

2

∫ T

0
dt πt ⊗ πt (λ

F − λ) = J (π, Q).

Recalling (2.10), the statement follows from (4.8) and (4.9). ��
By general results, see e.g. [16], the previous proposition implies the following lower

bound statement.

Corollary 4.5 Let νN be as in Assumption 2.3 and set

Ĩ (π, Q) =
{
I (π, Q) if (π, Q) ∈ S̃

+∞ otherwise.

Then the sequence
{
P
N
νN ◦ (πN , QN )−1

}
satisfies a large deviations lower bound with rate

function Ĩ .

Approximating Paths with Bounded Rate Function

Recall that the set Ŝ has been defined in (2.9).

Theorem 4.6 For each (π, Q) ∈ Ŝ such that I (π, Q) < +∞ there exists a sequence
{(πn, Qn)} ⊂ S̃ ∩ Ŝ satisfying (πn, Qn) → (π, Q) and I (πn, Qn) → I (π, Q).

The lower bound in Theorem 2.4 follows directly from Corollary 4.5 and the above
theorem. In order to prove it, we premise the following lemma.
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Lemma 4.7 Let (π, Q) ∈ Ŝ be such that I (π, Q) < +∞. Denote by ( f , q) the densities

of (π, Q). Moreover, set σ := B(v, v∗, w′)/g(w′) and � := log
( 2 q(v,v∗,w′)
f (v) f (v∗)g(w′)

)
, where g is

the standard Gaussian density on Rd . Then

(i)
∫

Q(dt; dv, dv∗, dv′, dv′∗)
(|v|2 + |v∗|2 + |v′|2 + |v′∗|2

)
< +∞.

(ii) I (π, Q) = H(π0|m) + Q(�) − Q(log σ) − Q(1) + Qπ (1).

Proof We start by proving
∫

Q(dt; dv, dv∗, dv′, dv′∗)|v′ − v′∗|2 < +∞. (4.10)

By Assumption 2.1, item (iv), there exists η > 0 such that
∫

Qπ (dt; dv, dv∗, dv′, dv′∗) exp{η|v′ − v′∗|2} < +∞.

Recall that I (π, Q) = H(π0|m) + J (π, Q), where J is defined in (2.8). By the variational
representation of J in Proposition 3.7, for any F bounded and continuous

Q(F) ≤ 1

2

∫ T

0
dt πt ⊗ πt (λ

F − λ) + J (π, Q).

By a truncation argument, we can choose F = η|v′ − v′∗|2, and thus deduce (4.10).
Let ζn(v) = |v|2 ∧ n. By using the continuity equation we get

πT (ζn) − π0(ζn) =
∫

dQ
[
ζn(v

′) + ζn(v
′∗) − ζn(v) − ζn(v∗)].

By item (ii) in Definition 2.2, (2.9), and (4.10), taking the limit n → ∞ we deduce
∫

Q(dt; dv, dv∗, dv′, dv′∗)
(|v|2 + |v∗|2

)
< +∞.

which, together with the conservation of the momentum, implies the statement (i).
In view of Assumption 2.1, items (iii) and (v), the statement (ii) follows from (i). ��

Proof of Theorem 4.6 Observe that by the lower semicontinuity of I , for any sequence
(πn, Qn) → (π, Q)we have limn I (πn, Qn) ≥ I (π, Q). The converse inequality is achieved
by combining steps 1 and 2 below and a standard diagonal argument.
Step 1 - Convolution. Since I (π, Q) < +∞, there exist ( f , q) such that dπt = ft (v) dv
and dQ = qt (v, v∗, w′) dt dv dv∗ dw′ where w = (v − v∗)/

√
2.

Given 0 < δ < 1, let gδ be the Gaussian kernel on Rd with variance δ and define

f δ
t (v) =

∫
du gδ(v − u) ft (u)

qδ
t (v, v∗, w′) =

∫
du du∗ dz′ gδ(v − u)gδ(v∗ − u∗)gδ(w

′ − z′)qt (u, u∗, z′).

We now show that the pair ( f δ, qδ) satisfies the balance equation. Given a test function φ

and denoting by ∗ the convolution
∫ T

0
dt

∫
dv dv∗ dw′ qδ

t (v, v∗, w′)φt (v) =
∫ T

0
dt

∫
dv dv∗ dw′ qt (v, v∗, w′)gδ ∗ φt (v).
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10 Page 16 of 27 G. Basile

One can repeat the same argument with φ(v) replaced by φ(v∗). Moreover, since
gδ(v)gδ(v∗)gδ(w

′) = gδ(v
′)gδ(v

′∗)gδ(w), where w = (v − v∗)/
√
2, it holds also when

φ(v) is replaced by φ(v′), φ(v′∗). Using the balance equation for the pair ( f , q) with the test
function gδ ∗ φ we deduce that ( f δ, qδ) satisfies the balance equation.

Now we show that

lim sup
δ→0

I ( f δ, qδ) ≤ I (π, Q). (4.11)

To this end, we use the decomposition provided by item (ii) of Lemma (4.7). We start
by observing that, in view of (2.2) and supt πt (ζ ) < +∞, ζ(v) = |v|2, by dominated
convergence

lim
δ→0

1

2

∫
dt dv dv∗ f δ

t (v) f δ
t (v∗)λ(v, v∗) = Qπ (1).

Analogously, since | log σ | ≤ C(|v|2 + |v∗|2 + |w′|2), in view of Lemma 4.7, item (i)

lim
δ→0

∫
dt dv dv∗ dw′ qδ

t (v, v∗, w′)
(
1 + log σ(v, v∗, w′)

) ≤ Q(1) + Q(log σ).

By the convexity of the map [0,+∞)2 � (a, b) �→ a log(a/b) and Jensen’s inequality
∫

dt dv dv∗ dw′ qδ
t (v, v∗, w′) log 2 qδ

t (v, v∗, w′)
f δ
t (v) f δ

t (v∗)g1+δ(w′)
≤ Q(�).

By Lemma 4.7, item (i),

lim
δ→0

∫
dt dv dv∗ dw′ qδ

t (v, v∗, w′) log g1+δ(w
′)

g1(w′)
= 0.

Gathering the above statements we deduce

lim sup
δ→0

J ( f δ, qδ) ≤ J (π, Q).

To conclude the proof of (4.11) it remains to show that

lim sup
δ→0

H( f δ
0 |m) ≤ H( f0|m). (4.12)

By item (iii) in Assumption 2.3, since f0 has bounded second moment, we have

H( f δ
0 |m) =

∫
f δ
0 log f δ

0 +
∫

f δ
0 log

1

m
.

The bound (4.12) follows by using item (iii) in Assumption 2.3 and Jensen’s inequality.
Step 2 - Truncation of the flux. Given a pair ( f , q) that satisfies the balance equation, we
denote by q(i)

t , i = 1, . . . , 4 the marginal of qt respectively on v, v∗, v′, v′∗. Then q
(1)
t = q(2)

t ,

q(3)
t = q(4)

t , and the balance equation reads

∂t ft = 2
(
q(3)
t − q(1)

t
)
.

In the sequel we assume ( f , q) such that I ( f , q) < +∞, f strictly positive on compacts
uniformly in time, and q(3)

t ∈ L1([0, T ]; L2(Rd)). Observe that pair ( f δ, qδ) constructed in
Step 1 meets the above conditions. Indeed, by item (ii) in Definition 2.2, for each compact
subset K ∈ R

d and δ ∈ (0, 1), there exists cK ,δ > 0 such that, for any t ∈ [0, T ] we have
infv∈K gδ ∗ ft ≥ cK ,δ . Moreover, by Young inequality,

∫ T
0 dt ‖qδ,(3)

t ‖L2 ≤ cδQ(1).
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Given � > 0, set �� the subset of V given by

�� = {(V , w,w′) : |V |2 + |w|2 + |w′|2 ≤ �2},
and define ( f̃ �, q̃�) by

q̃� = (q ∧ �)1I��

f̃ �
t = f0 + 2

(∫ t

0
ds

(
q̃�,(3)
s − q̃�,(1)

s

)
+

∫ T

0
ds

(
q(3)
s − q̃�,(3)

s

))
1I|v|≤�.

(4.13)

Set ( f �, q�) = c�( f̃ �, q̃�) where

c−1
� = 1 + 2

∫ T

0
ds

∫
|v|≤�

dv
(
q(3)
s − q̃�,(3)

s

)

Observe that ∫ t

0
ds

(
q̃�,(3)
s − q̃�,(1)

s

)
+

∫ T

0
ds

(
q(3)
s − q̃�,(3)

s

)

=
∫ t

0
ds

(
q(3)
s − q̃�,(1)

s

)
+

∫ T

t
ds

(
q(3)
s − q̃�,(3)

s

)
.

(4.14)

The previous identity implies that if |v| ≤ �, then f �
t ≥ c� ft , while if |v| > �, then f �

t = c� f0.
In particular, for any t , f �

t > 0, and
∫

f �
t = 1. Observe that by construction the pair ( f �, q�)

satisfies the balance equation and it is an element of S̃ (see definition 4.2), since q� is bounded
and compactly supported and f is strictly positive on compacts, uniformly in time.Moreover,
( f �, q�) converges to ( f , q).

Now we prove that

lim
�→+∞ I ( f �, q�) ≤ I ( f , q).

We start by proving that

lim
�→+∞ H( f �

0 |m) ≤ H( f0|m). (4.15)

By definition

f �
0 = c� f0 + (1 − c�)h̄

�

where h̄� = h�∫
h� where

h� = 2

(∫ T

0
ds

(
q(3)
s − q̃�,(3)

s

))
1I|v|≤�.

Since c� → 1, by the convexity of H(·|m) it is enough to show

(1 − c�)H(h̄�|m) → 0.

Observe that

(1 − c�)H(h̄�|m) = c�

∫
h� log h� + (1 − c�) log

c�

1 − c�

+ c�

∫
h� log

1

m
.

Since, by assumption on q�,(3), h� ∈ L2 and it converges to zero point-wise, using item (iii)
of Assumption 2.3, we deduce (4.15) by dominated convergence.
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It remains to show that

lim
�→+∞ J ( f �, q�) ≤ J ( f , q). (4.16)

Recalling the scattering rate λ defined in (2.1), we rewrite

J ( f �, q�) =
∫ T

0
dt

∫
��

dv dv∗ dw′{q� log
2 q�

f � f �∗ B
− q� + 1

2
f � f �∗ B

}
.

Since
∫
q| log(2 q/ f f∗B)| < +∞, using the bound f � ≥ c� f for |v| ≤ �, by dominated

convergence

lim
�→∞

∫ T

0
dt

∫
��

dv dv∗ dw′ q� log
2 q�

f � f �∗ B
=

∫ T

0
dt

∫
dv dv∗ dw′ q log 2 q

f f∗B
.

Recalling (2.2), item (i) in Lemma 4.7 implies the uniform integrability of λ with respect to
f � f �∗ , hence

lim
�→∞

1

2

∫ T

0
dt

∫
��

dv dv∗ dw′ f � f �∗ B = 1

2

∫ T

0
dt

∫
dv dv∗ f f∗λ, (4.17)

which concludes the proof of (4.16). ��

Example of (�,Q) ∈ S \ Ŝ with Finite Rate Function

In Theorem 2.4 the upper and lower bounds match only for (π, Q) ∈ Ŝ . Here we provide
an example of (π, Q) ∈ S \ Ŝ with finite cost.

Fix T > 1. Recalling that g is the standard Gaussian density on R
d , consider the pair

( f , q) given by

qt (v, v∗, w′) = 1

2

⎧⎪⎪⎨
⎪⎪⎩
Ag(v)g(v∗)

1

1 + |w′|d+3 , t ∈ [0, 1)
1

1 + |v + v∗|d+1 g((v − v∗)/
√
2)g(w′), t ∈ [1, T ],

where A−1 = ∫
dw′ 1

1+|w′|d+3 , and

ft (v) =
{

(1 − t)g(v) + th(v), t ∈ [0, 1),
h(v) t ∈ [1, T ],

where

h(v) =A
∫

dv∗ dw′ g
(

v+v∗
2 + w′√

2

)
g
(

v+v∗
2 − w′√

2

) 1

1 + (|v − v∗|/
√
2
)d+3

=2d A
∫

du g
(√

2u
) 1

1 + (
√
2|v − u|)d+3

.

For t ∈ [1, T ], qt is invariant with respect to (v, v∗, v′, v′∗) �→ (v′, v′∗, v, v∗). Hence, by
construction, the pair (π, Q) whose densities are ( f , q) satisfies the balance equation (2.6).
Moreover, (π, Q) ∈ Sac and (π, Q) /∈ Ŝ . We next show that I (π, Q) < +∞. By item (iii)
in Assumption 2.3, H(g|m) < +∞ and, by construction, Q(1) and Qπ (1) are both finite.
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We observe that, since ft (v) ≥ (1 − t)g(v), t ∈ [0, 1], by item (iii) in Assumption 2.1
∫ 1

0
dt

∫
dv dv∗ dw′ qt (v, v∗, w′) log 2 qt (v, v∗, w′)

ft (v) ft (v∗)B(v, v∗, w′)

≤ A

2

∫ 1

0
dt

∫
dv dv∗ dw′ g(v)g(v∗)

1

1 + |w′|d+3 log
ec0|w′|2

(1 + |w′|d+3)(1 − t)2g(v)g(v∗)c0
,

which is finite. Moreover, for t ∈ [1, T ]

qt (v, v∗, w′) log 2 qt (v, v∗, w′)
ft (v) ft (v∗)B(v, v∗, w′)

≤ 1

2

1

1 + |v + v∗|d+1 g((v − v∗)/
√
2)g(w′)

× log
g((v − v∗)/

√
2)g(w′)ec0|w′|2

(1 + |v + v∗|d+1)g((v − v∗)/
√
2)h(v)h(v∗)c0

.

Since there exists C such that h(v) ≥ C 1
1+|v|d+3 , we deduce

∫ T

1
dt

∫
dv dv∗ dw′ qt (v, v∗, w′) log 2 qt (v, v∗, w′)

ft (v) ft (v∗)B(v, v∗, w′)
< +∞.

The previous bounds imply I (π, Q) < +∞.

5 Projection on the Empirical Measure

In this section we analyze the large deviation asymptotics of the empirical measure only. By
contraction principle, the corresponding rate function is obtained by projecting the joint rate
function I . Regarding the upper bound, we prove that this projection corresponds to the rate
function in [7,15,18]. For the lower bound, we identify the projection of I only for suitable
π .

Let I1 : D([0, T ];P0(R
d)) → [0,+∞] be defined by I1(π) = H(π0|m)+ J1(π), when

π meets conditions (i) and (ii) in Definition 2.2, and I1(π) = +∞ otherwise. Here

J1(π) = sup
φ

{
πT (φT ) − π0(φ0) −

∫ T

0
dt πt (∂tφ) − Qπ

(
e∇̄φ − 1

)}
, (5.1)

where ∇̄φ = φ(v′) + φ(v′∗) − φ(v) − φ(v∗) and the supremum is carried over the functions
φ : [0, T ]×R

d → R continuous, bounded and continuously differentiable in t with bounded
derivative.

Proposition 5.1 For any π ∈ D([0, T ];P0(R
d))

inf
Q

I (π, Q) ≥ I1(π). (5.2)

Moreover, if π is such that the supremum in (5.1) is achieved, then

inf
Q

I (π, Q) = I1(π). (5.3)

Proof Recalling Proposition 3.7, the proof of (5.2) is achieved by choosing F = ∇̄φ in
(3.10). To prove the second statement, we first note that if the supremum is achieved at some
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φ, then for any ψ continuous, bounded and continuously differentiable in t with bounded
derivative

πT (ψT ) − π0(ψ0) −
∫ T

0
dt πt (∂tψ) = Qφ(∇̄ψ), dQφ := dQπe∇̄φ.

Recalling (2.8), by choosing Q = Qφ , a direct computation implies infQ J (π, Q) ≤
J (π, Qφ) = J1(π). ��

6 Gradient Flow Formulation of the Boltzmann-Kac Equation

Assuming the detailed balance condition, here we derive the gradient flow formulation of
the Boltzmann-Kac equation (1.1) associated to the large deviation rate function (1.3). We
remark that such formulation is logically independent of the validity of the large deviation
principle.

Let M be the standard Maxwellian onRd . In this section we assume that the collision rate
r satisfies the following detailed balance condition

M(dv)M(dv∗)r(v, v∗; dv′, dv′∗) = M(dv′)M(dv′∗)r(v′, v′∗; dv, dv∗). (6.1)

This implies that the Kac walk on �N is reversible with respect to the product measure∏N
k=1 M(dvk). We still consider the Kac walk restricted to �N ,0, then the corresponding

reversible measure is the product measure
∏N

k=1 M(dvk) conditioned to N−1 ∑
k vk = 0,

that is a Gaussian measure on �N ,0.
In this section we express the empirical measure and flow in terms of their densities with

respect to Maxwellians.
Let H : P0(R

d) → [0,+∞] be the relative entropy with respect to M , i.e. H(π) :=
H(π |M). For π ∈ P0(R

d) with bounded second moment, define the non linear Dirichlet
form D : P0(R

d) → [0,+∞] as the lower semicontinuous map defined by

D(π) := sup
φ

{ ∫
π(dv)π(dv∗)r(v, v∗, dv′, dv′∗)

(
1 − eφ(v′)+φ(v′∗)−φ(v)−φ(v∗))} (6.2)

where the supremum is carried out over the continuous and bounded functions φ : Rd → R.
Note that D(π) is well defined in view of (2.2). To illustrate this definition, consider the
Markov generator L acting on functions ξ : Rd × R

d → R as

Lξ(v, v∗) =
∫

r(v, v∗; dv′, dv′∗)
[
ξ(v′, v′∗) − ξ(v, v∗)

]
.

By the detailed balance condition, L is reversible with respect to the product measure
M(dv) M(dv∗). The variational representation (6.2) thus corresponds to the Donsker-
Varadhan functional E , that it is defined on the probabilities on Rd × R

d by

E(�) = sup
ξ

{
−

∫
�(dv, dv∗) e−ξLeξ

}
,

where the supremum is carried out over the continuous and bounded functions ξ : Rd ×
R
d → R. Then D(π) = E(π × π), observe indeed, as proven in Lemma 6.2 below, that

for product measures � we can restrict the class test functions ξ to functions of the form
ξ(v, v∗) = φ(v) + φ(v∗).
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On the set of functions G : Rd ×R
d ×R

d ×R
d → R, let ϒ be the involution defined by

(ϒG) (v, v∗, v′, v′∗) := G(v′, v′∗, v, v∗). Recalling the definition of Qπ in (2.7), we define
the kinematic term as the lower semicontinuous functional R on the pairs (π, Q) satisfying
conditions (i) and (ii) in Definition 2.2

R(π, Q) := sup
α,F

{
2 Q(F) − Qπ

([
eF − 1

]
α−1 + [

eϒF − 1
]
ϒα

)}
. (6.3)

where the supremum is carried out over the bounded and continuous F, α : [0, T ] ×(
R
d
)2×(

R
d
)2 → R satisfying F(t, v, v∗, v′, v′∗) = F(t, v∗, v, v′, v′∗) = F(t, v, v∗, v′∗, v′),

α(t, v, v∗, v′, v′∗) = α(t, v∗, v, v′, v′∗) = α(t, v, v∗, v′∗, v′), and inf α > 0.
The main result of this section provides, when the detailed balance condition (6.1) holds,

a gradient flow formulation of the Boltzmann-Kac equation. Recall that the functionals J
and I have been introduced in (2.8) and (2.10) and that Ŝ is the set of paths (π, Q) ∈ Sac

that satisfy (2.9).

Theorem 6.1 Assume that H(π0) < +∞. For each (π, Q) ∈ Ŝ

J (π, Q) = 1

2

[H(πT ) − H(π0)
] + 1

2

∫ T

0
dt D(πt ) + 1

2
R(π, Q). (6.4)

In particular, when the scattering rate λ is bounded, I (π, Q) = 0 if and only if π0 = m and

H(πT ) +
∫ T

0
dt D(πt ) + R(π, Q) ≤ H(m). (6.5)

We start by the following characterization of the Dirichlet formD and the kinematic term
R in which we recall that V is the hyperplane of (Rd)2 × (Rd)2 defined by v + v∗ = v′ + v′∗
and r(v, v∗; dv∗, dv′∗) = σ(v, v∗, w′)M(dw′) where w′ = (v′ − v′∗)/

√
2.

Lemma 6.2 Let π ∈ P0(R
d) be such that π(dv) = h(v)M(dv), π(ζ ) < +∞, ζ(v) = |v|2,

and D(π) < +∞. Then
√
h(v)h(v∗)h(v′)h(v′∗) σ (v, v∗, w′) ∈ L1(V, M(dv)M(dv∗)M(dw′)

)
(6.6)

and

D(π) =
∫

M(dv)M(dv∗)M(dw′) h(v)h(v∗)σ (v, v∗, w′)

−
∫

M(dv)M(dv∗)M(dw′)
√
h(v)h(v∗)h(v′)h(v′∗) σ (v, v∗, w′).

(6.7)

Moreover, set dπt = ht dM, dQ = dt pt (V , w,w′)M(dV )M(dw)M(dw′), and
r(v, v∗; dv′, dv′∗) = σ̄ (V ;w,w′)M(dw′) where V = (v + v∗)/

√
2, w = (v − v∗)/

√
2,

and w = (v′ − v′∗)/
√
2. Then, if R(π, Q) < +∞,

R(π, Q) = 2
∫
dtM(dV )M(dw)M(dw′)

×
[
pt (V , w,w′) log 2 pt (V , w,w′)√

ht (v)ht (v∗)ht (v′)ht (v′∗) σ̄ (V ;w,w′)

− pt (V , w,w′) + 1

2

√
ht (v)ht (v∗)ht (v′)ht (v′∗) σ̄ (V ;w,w′)

]
.

(6.8)
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Proof We first note that

D(π) = 1

2

∫
M(dv)M(dv∗) r(v, v∗; dv′, dv′∗)

[√
h(v′)h(v′∗) − √

h(v)h(v∗)
]2

. (6.9)

Indeed, by standard arguments, see e.g. [14, App. 1, Thm. 10.2], D(π) is bounded above by
the right hand side in the previous displayed formula. The converse inequality is obtained by
choosing as test function a sequence of continuous and bounded φn that converges to 1

2 log h.
Recalling (2.2), the proof of (6.6) is achieved by expanding the square on the right hand

side of (6.9) and using the detailed balance condition. The representation (6.7) now follows
directly by (6.9). Finally, by (6.6) and using that Q(1) < +∞, the representation (6.8) is
achieved by a direct computation. ��

Proof of Theorem 6.1 Recalling that S̃ has been introduced in (4.2), we show that (6.4)
holds for (π, Q) ∈ S̃ . We write πt (dv) = ht (v)M(dvv), Q(dt; dv, dv∗, dv′, dv′∗) =
pt (V , w,w′) dtM(dV )M(dw)M(dw′), r(v, v∗; dv′, dv′∗) = σ̄ (V ;w,w′)M(dw′) where
V = (v + v∗)/

√
2, w = (v − v∗)/

√
2, and w = (v′ − v′∗)/

√
2. Setting �(a, b) :=

a log(a/b) − (a − b), by (2.8)

J (π, Q) =
∫
dtM(dV )M(dw)M(dw′)�

(
pt (V , w,w′), 1

2ht (v)ht (v∗)σ̄ (V , w,w′)
)
.

We observe that for each ā > 0,

�(a, b) = �(ā, b) + log
ā

b
(a − ā) + �(a, ā)

and use this decomposition with ā = 1
2

√
ht (v)ht (v∗)ht (v′)ht (v′∗) σ̄ (V ;w,w′). We deduce

J (π, Q) = J1(π, Q) + J2(π, Q) + J3(π, Q)

where, by using the detailed balance condition σ̄ (V , w,w′) = σ̄ (V , w′, w),

J1(π, Q) = 1

2

∫
dtM(dV )M(dw)M(dw′)

×
[√

ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V , w,w′) log
√
ht (v′)ht (v′∗)√
ht (v)ht (v∗)

− √
ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V ;w,w′) + ht (v)ht (v

′)σ̄ (V ;w,w′)
]

= 1

2

∫
dtM(dV )M(dw)M(dw′)

×
[
ht (v)ht (v

′)σ̄ (V , w,w′) − √
ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V ;w,w′)

]

= 1

2

∫ T

0
dt D(πt ).
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Again by the detained balance condition and the balance equation (2.6),

J2(π, Q) =
∫
dtM(dV )M(dw)M(dw′)

×
[
log

√
ht (v′)ht (v′∗)√
ht (v)ht (v∗)

(
pt (V , w, w′) − 1

2

√
ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V ; w, w′)

)]

=
∫
dtM(dV )M(dw)M(dw′) pt (V , w, w′) log

√
ht (v′)ht (v′∗)√
ht (v)ht (v∗)

= 1

2

[
H(πT ) − H(π0)

]
.

Finally,

J3(π, Q) =
∫
dtM(dV )M(dw)M(dw′)

×
[
pt (V , w,w′) log 2 pt (V , w,w′)√

ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V ;w,w′)

− pt (V , w,w′) + 1

2

√
ht (v)ht (v∗)ht (v′)ht (v′∗)σ̄ (V ;w,w′)

]

= 1

2
R(π, Q)

that concludes the proof of (6.4) when (π, Q) ∈ S̃.
In particular, we have shown that for (π, Q) ∈ S̃ it holds

H(πT ) ≤ H(π0) + J (π, Q) (6.10)

By Theorem 4.6 and the lower-semicontinuity of the relative entropy we then get the previous
bound for any path (π, Q) ∈ Ŝ; henceH(πT ) < +∞whenH(π0) and J (π, Q) are bounded.

Fix (π, Q) ∈ Ŝ . To prove that (6.4) holds for (π, Q), we will construct a sequence
S̃ ∩ Ŝ � (πn, Qn) → (π, Q) such that

lim
n

J (πn, Qn) ≤ J (π, Q)

lim
n

H(πn
0 ) ≤ H(π0), lim

n
H(πn

T ) ≤ H(πT ),

lim
n

∫ T

0
dt D(πn

t ) ≤
∫ T

0
dt D(πt )

lim
n

R(πn, Qn) ≤ R(π, Q).

(6.11)

Observe in fact that the converse inequalities follows from the lower-semicontinuity of J ,
H, D, and R.

Let (πn, Qn) be the sequence constructed in the proof of Theorem 4.6, so that the first
inequality in (6.11) holds. The proof of the others is achieved in two steps.
Step 1 - Convolution. Let ( f δ, qδ) be the sequence constructed in Step 1 in the proof of
Theorem 4.6, and let (hδ, pδ) such that πδ(dv) = f δ(v) dv = hδ(v)M(dv) and dQδ =
dtqδ

t (v, v∗, w′) dv dv∗ dw′ = dt pδ
t (V , w,w′)M(dV )M(dw)M(dw′).

We observe that proof of the second line in (6.11) is achieved by the same argument in
Step 1 of Theorem 4.6. We now show that

lim
δ

∫ T

0
dt D(πδ

t ) ≤
∫ T

0
dt D(πt ). (6.12)
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We use the representation of D provided by Lemma 6.2. By (2.2) and item (ii) in Definition
2.2 we deduce

lim
δ→0

∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)hδ

t (v)hδ
t (v∗)σ (v, v∗, w′)

=
∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)ht (v)ht (v∗)σ (v, v∗, w′).

On the other hand, since hδ
t → ht a.e., by Fatou’s lemma

lim
δ→0

−
∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)

√
hδ
t (v)hδ

t (v∗)hδ
t (v

′)hδ
t (v

′∗) σ (v, v∗, w′)

≤ −
∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)

√
ht (v)ht (v∗)ht (v′)ht (v′∗) σ (v, v∗, w′),

which concludes the proof of (6.12). Observe that the lower semicontinuity of D actually
implies

∫ T
0 dt D(πδ

t ) → ∫ T
0 dt D(πt ), so that by Lemma 6.2

lim
δ→0

∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)

√
hδ
t (v)hδ

t (v∗)hδ
t (v

′)hδ
t (v

′∗) σ (v, v∗, w′)

=
∫ T

0
dt

∫
M(dv)M(dv∗)M(dw′)

√
ht (v)ht (v∗)ht (v′)ht (v′∗) σ (v, v∗, w′).

(6.13)

We conclude the step by showing that

lim
δ→0

R(πδ, Qδ) ≤ R(π, Q). (6.14)

By the representation provided by (6.8) and Lemma 4.7

R(π, Q) =Q(�) + Q(�′) − 2Q(log σ) − 2Q(1)

+
∫

dt M(dv)M(dv∗)M(dw′)
√
ht (v)ht (v∗)ht (v′)ht (v′∗)σ (v, v∗, w′),

where � = log 2q(v,v∗,w′)
f (v) f (v∗)g1(w′) , �

′ = log 2q(v,v∗,w′)
f (v′) f (v′∗)g1(w)

,

We start by observing that Qδ(1) → Q(1), then in view of (6.13) it is enough to show
that

lim
δ→0

∫
dtM(dV )M(dw)M(dw′) pδ

t (V , w,w′) log 2 pδ
t (V , w,w′)√

hδ
t (v)hδ

t (v∗)hδ
t (v

′)hδ
t (v

′∗) σ̄ (V ;w,w′)

≤
∫
dtM(dV )M(dw)M(dw′) pt (V , w,w′) log 2 pt (V , w,w′)√

ht (v)ht (v∗)ht (v′)ht (v′∗) σ̄ (V ;w,w′)
.
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Observe that∫
dtM(dV )M(dw)M(dw′) pδ

t (V , w,w′) log 2 pδ
t (V , w,w′)√

hδ
t (v)hδ

t (v∗)hδ
t (v

′)hδ
t (v

′∗) σ̄ (V ;w,w′)

= 1

2

∫
dt dv dv∗ dw′ qδ

t (v, v∗, w′) log 2 qδ
t (v, v∗, w′)

f δ
t (v) f δ

t (v∗)g1+δ(w′)

+ 1

2

∫
dt dv dv∗ dw′ qδ

t (v, v∗, w′) log 2 qδ
t (v, v∗, w′)

f δ
t (v′) f δ

t (v′∗)g1+δ(w)

+ 1

2

∫
dt dv dv∗ dw′ qδ

t (v, v∗, w′) log g1+δ(w)g1+δ(w
′)

B(v, v∗, w′)2
.

The proof is achieved by the same argument in Step 1 of Theorem 4.6.
Step 2 - Truncation of the flux. As in the Theorem 4.6 we now assume f strictly positive
on compacts uniformly in time and q(3)

t ∈ L1([0, T ]; L2(Rd)). We denote by ( f �, q�) the
sequence constructed in Step 2 in the proof of Theorem 4.6.

By the argument in Step 2 of Theorem 4.6, lim� H(π�
0 ) = H(π0), we now show that

lim
�

H(π�
T ) ≤ H(πT ). (6.15)

Recalling (4.13) we write

f �
T = c� f0 + 2c�

(∫ T

0
ds

[
q(3)
s − q̃�,(1)

s

])
1I|v|≤�

=
⎧⎨
⎩
c� fT + 2c�

∫ T

0
ds

[
q(1)
s − q̃�,(1)

s

]
if |v| ≤ �

c� f0 if |v| > �.

Set

f̂ �
T := c�a�

{
fT + 2

( ∫ T

0
ds

[
q(1)
s − q̃�,(1)

s

])
1I|v|≤�

}

where 1/a� = c� + 1/c� − 1. Observe that f̂ �
T is a probability density. Since 0 < c�a� < 1,

by using (6.10) and applying the argument leading to (4.15), we deduce that lim� H( f̂ �
T ) ≤

H( fT ) and lim�

∣∣H( f �
T ) − H( f̂ �

T )
∣∣ = 0. This completes the proof of (6.15).

By the representation of D provided by Lemma 6.2, using (4.17) and Fatou’s lemma we
conclude that

lim
�

∫ T

0
dt D(π�

t ) ≤
∫ T

0
dt D(πt ). (6.16)

It remains to show that

lim
�

R(π�, Q�) ≤ R(π, Q). (6.17)

This is achieved by using the representation (6.8) and the argument in Step 2 of Theorem
4.6.

To prove the second statement of the theorem, observe that if I (π, Q) = 0 then π has
bounded second moment, Q = Qπ , and H(π |m) = 0. Therefore π0 = m and, when λ is
bounded, (π, Qπ ) ∈ Ŝ . By (6.4), the inequality (6.5) amounts to J (π, Qπ ) ≤ 0. ��
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