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Abstract

Consider the Allen—Cahn equation on the d-dimensional torus, d = 2, 3, in the
sharp interface limit. As is well known, the limiting dynamics is described by the
motion by mean curvature of the interface between the two stable phases. Here, we
analyze a stochastic perturbation of the Allen—Cahn equation and describe its large
deviation asymptotics in a joint sharp interface and small noise limit. Relying on
previous results on the variational convergence of the action functional, we prove
the large deviations upper bound. The corresponding rate function is finite only
when there exists a time evolving interface of codimension one between the two
stable phases. The zero level set of this rate function is given by the evolution by
mean curvature in the sense of Brakke. Finally, the rate function can be written in
terms of the sum of two non-negative quantities: the first measures how much the
velocity of the interface deviates from its mean curvature, while the second is due
to the possible occurrence of nucleation events.

1. Introduction

The van der Waals theory of phase transitions [12,45] is based on the excess
free energy functional,

Fu) = /[%|Vu|2 + W(u)] dx, (1.1)

where u: RY — R is the local order parameter and W: R — [0, 4-00) is a smooth,
symmetric, double well potential whose minimum value, chosen to be zero, is
attained at, say, u4. The constant functions u(x) = u+ are interpreted as the pure
phases of the system. The potential W (1) represents the excess “mean field” free
energy density of the homogenous state u with respect to the pure phases u., while
the gradient term in (1.1) penalizes spatial variations of u.
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The sharp interface limit of (1.1) has been analyzed in [37] and extensively
studied afterwards, see [2] for a review. The limit of the (properly rescaled) free
energy turns out to be finite only if « is a function of bounded variation taking values
in {u_, u}. For u in this set, the limiting functional is given by  H¢~1(S,,), where
S, denotes the jump set of u and H?~1(S,) is its (d — 1)-dimensional Hausdorff
measure. The surface tension t is given by

T = /u+\/2W(s)ds. (1.2)

‘We note that T can also be characterized as the minimum value of the one-dimensional
excess free energy JF in (1.1) with the constraint #(x) — u4 as x — =£o0.

After the pioneering paper [4], the L?-gradient flow of (1.1), 1.e., the semi-linear
parabolic equation,

qu = Au— W', (1.3)

has become a basic model in the kinetics of phase separation and interface dynamics
for systems with a non-conserved order parameter u = u;(x).

Consider the evolution induced by (1.3) under diffusive rescaling of time and
space. For suitably prepared initial data, which approaches a sharp interface between
the pure phases u4, the asymptotics of the solution to (1.3) is described by the
motion by mean curvature of the interface. This has been proven in [32] in the
weak formulation of the mean curvature flow in terms of Brakke motions [9], see
also, e.g., [6,16], for similar results in the framework of the level-set formulation.

From both a phenomenological and a conceptual viewpoint, the addition of a
random forcing term to (1.3), that models the thermal fluctuation in the system, ap-
pears quite natural. Assuming this forcing to be Gaussian and translation covariant,
we are led to consider the stochastic partial differential equation,

du = Au— W' W) + 217, (1.4)

where A > 0 measures the strength of the noise and 7" is a mean zero Gaussian
space-time noise, that is white in time and whose space correlation is of order y,

e.g.,
E(n” (.00’ (. X)) =8¢ -, —x), 1@ =y %@ %, 15

where 1 is a smooth positive function on R? with compact support. For y > 0 the
well-posedness and regularity properties of (1.4) in space dimension d < 3 are
discussed in [5].

We understand that for y = 0 the process n? is the space-time white noise.
In this case—in space dimension d > 1—the well-posedness of (1.4) becomes a
major issue and a proper renormalization of the non linear term W’ is needed. In
dimension d = 2, when W is a polynomial, this renormalization amounts to the
Wick ordering [3,14,27,38]. In dimension d = 3, the renormalization of the non
linearity is more involved; for a quartic potential W, the existence and uniqueness of
local-in-time solutions is proven in [22] and, more recently, global well-posedness
has been obtained in [39].
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Consider (1.4) in a bounded volume A on the time interval [0, T']. The corre-
sponding large deviations are analyzed in [11] in the joint limit A — 0, y — O.
Under suitable conditions on these sequences, it is shown that the rate function is
given, as it can be guessed from the Freidlin-Wentzell theory for finite dimension
diffusion processes [21], by

T
J(u) = l/ / [0 — (Au— W' )] dx dr. (1.6)
4Jo Ja

Informally, denoting by u*7 the solution to (1.4), the large deviations statement
corresponds to the asymptotics,

P(u™? € B) = exp {—,\‘ inf J(u)}.
ueB

In space dimension d < 3, the same rate function is obtained in the case of space-
time white noise, that is when the parameter y is set equal to zero from the beginning.
This has been proven in [18] for d = 1, in [28] for d = 2 (to be precise, it is there
considered a non-local version of (1.4)), and [23] for d = 2, 3. As we mentioned
above, in space dimension d = 2, 3, the reaction term W' has to be renormalized
by subtracting infinite terms. On the other hand, the rate function is (1.6) without
any renormalization on W’. Very loosely, the underlying reason is the following:
the large deviations principle is established in a weak topology and, although the
added counter-terms are infinite (diverging as y — 0 if the noise is mollified as in
(1.5)), they are multiplied by X and therefore irrelevant for the large deviations.

The purpose of the present paper is to analyze the large deviations asymptotics of
(1.4) under diffusive rescaling of space and time, i.e., in the sharp interface (singular)
limit. By denoting with ¢ the scaling parameter and redefining the parameters A
and y, we thus consider the stochastic equation,

1
du = Au— = W'(u) +~2x77, (1.7)
&

on a bounded volume that, to avoid the somewhat delicate issue of boundary condi-
tions, we choose to be the d—dimensional torus. We are now interested in the joint
limite, A,y — 0.

To pursue the above program, one possibility is to take first the limit A, y — 0
and then ¢ — 0. In view of the result in [11], one is then led to analyze the
variational convergence, more precisely the I"-convergence [13], of the sequence
of action functionals (/) defined by

T 2
I.(u) = %8/(; fA |:8,u — (Au — éW/(u)>i| dx dt, (1.8)

in which the pre-factor ¢ has been inserted to have a finite limit. The problem of
the variational convergence of (/) has been analyzed in [30,31], precisely with
the motivation of the large deviations asymptotics of the stochastic Allen—Cahn
equation, and in greater detail in [40]. The precise definition of the limiting func-
tional requires tools from geometric measure theory and it is deferred to the next
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section. Here, we just give a heuristic description of the results obtained in [30,40].
Assume d < 3. The limiting functional is finite only if u takes value in {u4} and
in the simplest case of interfaces with multiplicity one is given by

_T r 2 d—1
Io(u) = 1 [ve — Hy |7 dH®™" dt + Lnuel (u), (1.9)
0 Jx,

where 7 is defined in (1.2), X is the boundary of {x: u;(x) = u4}, v; is the nor-
mal velocity of this set, and H; its mean curvature vector. Finally, Iy, takes into
account the possible occurrence of nucleation events, corresponding to appearance
of pieces of interfaces at some intermediate times. There are a few caveats in the
previous statement. As emphasized in [40], interfaces need to be counted with their
multiplicity, and therefore the natural variable to describe the variational conver-
gence of (I;) is not the order parameter u but rather the general varifold (which
does count multiplicity of interfaces) associated to it and the definition of (1.9)
has to be extended accordingly. While a I"-lim inf estimate for (/) is proven in
[40], a corresponding I"-lim sup estimate is proven in [30] only for special “nice”
paths. To identify the I"-limit it is thus needed a density theorem for the limiting
functional Iy, which does not appear to be presently available.

In the present paper, we fix (suitable) sequences Ay, . — 0 and consider
directly the asymptotics of the stochastic equation (1.7) for space dimensiond < 3.
Under natural assumptions on the initial datum, we prove the large deviations upper
bound with speed £, and rate function that, in the simplest case of interfaces with
multiplicity one, reads,

T
I(u)=£/ / lve — He|* AR dr + Lging (w). (1.10)
4Jo Jx,

The rate function here derived improves the one introduced in [40] in two
aspects. We provide a variational characterization of g in (1.10) that is strictly
larger of Iyl in (1.9). With this characterization, it is readily seen that the zero level
set of [ is given, as it should be, by the motions by mean curvature in the Brakke
formulation. Besides, in describing the large deviations asymptotics, we do not
only consider the general varifold associated to u, but include the order parameter
u itself. We show that the rate function / is finite only if the map # +— u; is continuos
in L'. This excludes the occurrence of spurious nucleation events; essentially, it
implies that outside the jump set of u only nucleations with even multiplicity are
allowed. This cannot be detected by looking only at the varifold.

From a technical viewpoint, our results will be obtained by suitably blending
arguments from the analysis of the action functional, mostly imported from [40]
(which relies on previous results, e.g., [26,32,42]), with basic tools of stochastic
calculus and large deviations estimates for Markov processes. The restrictiond < 3
is inherited both from the analysis of the regularity properties of the stochastic
equation (2.5) [5], and, as in [40], from the validity of the static result in [42].

We remark that, although the model equations are quite different, our analysis
has similar features to the one of stochastic conservation laws in [36]. Finally, we
mention that the large deviation asymptotics of a different stochastic perturbation
of the Allen—Cahn equation has been recently analyzed in [24].
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2. Notation and Results

We start by introducing, referring to [43] for a detailed exposition, the tools
from geometric measure theory that are relevant for our purposes. We denote by T¢
the d-dimensional torus R?/Z? and by dx the Haar measure on T. In the sequel,
we systematically identify functions (respectively measures) on T¢ with 1-periodic
functions (respectively measures) on R?. Throughout the paper, we shall shorthand
LP = LP(TY), p € [1,+00], and let H* = H*(T%), s € R, be the fractional
Sobolev space. Finally, given a topological space E we denote by Cg (E) the set of
continuous functions on E with compact support and by B(E) its Borel o -algebra.

2.1. Rectifiable measures

We denote by M the set of (signed) Radon measures on ’]I‘d, and by M4
its positive cone. Furthermore, we let HA-1 (respectively H ) be the (d — 1)-
dimensional Hausdorff measure on T¢ (respectively R¥).

A set M C T is rectifiable (more precisely (d — 1)-countably rectifiable) iff
there exists a countable collection (¢ ) of Lipschitz functions from RI-1 o T9
such that H/=1 (M \ U, ¢x(RI~1)) = 0.

Given u € M, the tangent measure (more precisely the (d — 1)-dimensional
tangent measure) of z at x € T is the positive Radon measure T iz on R? defined
by

Tein(9) —lfi%ﬁ/ poncidu. ¢ CkR,

provided that the limit exists, where 7, : RY — R is defined by nxa(y) =
ANy —x).

Definition 2.1. (Rectifiable and integral measures) A measure u € M is called
rectifiable (more precisely (d — 1)-rectifiable) if either of the following equivalent
conditions is met:

a)dpu = 0 dHY' L M for some rectifiable 7~ '-measurable set M and some
6 € L'(HI=1LM; (0, 00)).
b) For p-a.e. x € T¢, a tangent measure T .« exists, it is unique, and it is given by

Tep = 0(0)HE L2 (), (2.1)

for some (d — 1)-plane ¥ (x) of R and some strictly positive real § € L'
(M4~ M; (0, 00)).

The (d — 1)-plane ¥ (x) in (2.1) is called the tangent plane of p at x and will be
denoted by t, . The real 6 (x) is called the multiplicity of t, u and will be denoted
by 0(u, x).

A rectifiable measure p is called integral iff p-a.e. the multiplicity is an integer,
ie.,0(u,-) e N.
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Weregard BV (T?; {£1}) asasubsetof L!. Givenu € BV (T¢; {+1}), we denote by
S, the so-called measure theoretic boundary of {# = 1}, i.e., the set of points where
u is essentially discontinuous, which is a rectifiable set. Moreover, by denoting with
|Vu| the total variation measure of u, it is a rectifiable integral measure and, more
precisely, |Vu| = 2H4=1_S,,. Furthermore, there exists n € L' (|Vu|; R?) such
that dVu = nd|Vu| and, for |Vul-a.e. x, |[n(x)| = 1 and n(x) L 7,|Vu].

2.2. Varifolds

A general varifold (more precisely, a general (d — 1)-varifold) is a positive
Radon measure on T¢ x Ag_;, where Ag_; is the Grassmanian manifold of un-
oriented (d — 1)-planes in R?. We denote by V the set of all general varifolds.

A general varifold V € V can be disintegrated as V (dx, dX) = u(dx) g, (dX),
where 1 € M and, for u-a.e. x € T?, g, is a probability measure on Ay_;. The
measure pu is called the mass measure of V and will be denoted by |V|.

In the sequel, we shall denote by a - b the inner product between the vectors
a,b € RY, and by |a| the associate Euclidean norm. Given a # 0 we denote by
al the (d — 1)-plane orthogonal to a. For ¥ € A,_1, we also denote by X the
orthogonal projection onto X.

The first variation 8V of V € V is the linear functional on C'! (T?; R¥) defined
by

SV () = /Tr(DnTz)V(dx,d):), n e Ccl(T¢; RY),

where Dn is the Jacobian matrix of n and the superscript T denotes transposition.
If 8V is a R¥-valued Radon measure, absolutely continuous with respect | V|, then
8V can be represented as

V() =—IVI(n- H),

for some H € L'(T?, |V|; R?), which is called the (weak) mean curvature vector.
A general varifold V is rectifiable iff there exists a rectifiable measure u € M
such that

/f(x, D)V (dx, dE) = /f(x, ) udx).  f e CT x Ag_y).

Note that if such p exists then 4 = |V| and V(dx,dX) = u(dx)d,, , (dX).

Finally, a rectifiable varifold V' e V is called integral iff | V| is an integral mea-
sure. Observe that there is a one-to-one correspondence between integral varifolds
and integral measures.

Let M(Td x Ag—1) be the set of Radon measures on T x Ag_; equipped
with the total variation norm. Given 7 > 0, we denote by L*°([0, T]; M(Td X
Ag—1)) the set of maps (up to a.e. equivalence) ¢ — V; essentially bounded and
weak*-measurable, i.e., such that t — V;(f) is measurable for any f € C (']I‘d X
Ag—1). Notice that L*° ([0, T']; M(Td X Ag—1)) is the dual of the separable Banach
space L'([0, T1; C(T? x Ag4_1)) [44]. Thus L*®([0, T]; M(T? x Ay_1)) can
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be endowed with the bounded weak* topology; namely, by definition, a set is
open iff its intersection with each bounded set is relatively open in the weak*
topology. In addition, norm bounded subsets in L*°([0, T']; M(’]I‘d X Ag_1)) are
metrizable and precompact in the bounded weak* topology. We regard ) as a subset
of M(T? x Ag_1) and set,

V :=L*([0,T];V) endowed with the bounded weak* topology,  (2.2)

i.e., V is the positive cone of L°*°([0, T']; M (Td x Ag—1)) endowed with the relative
topology. Elements of V are denoted by V' = (V;)s¢[0,7]. The following definition
of L2-flows has been introduced in [40]:

Definition 2.2. (L2-flows) An element V € V is called an L2-flow provided it
meets the following three conditions:

(a) Fora.e.t € [0, T], V; is an integral varifold.
T T
1
(b) sup { / 8Vi(ny) dt — 7 / |V,|(|17t|2) dt} < 00, where the supremum is car-
n 0 0

ried out over n € C'([0, T'] x T%; RY).
(c) There exists v € L2([0, T'] x T¢, |V;| dt; RY) such that

v(x) LoVl |Vi]ds-ae. 2.3)

and
T
sup / [Vil e + Vg - vp) dt < 400, 2.4
v Jo

where the supremum is carried over all Y € C}< ((0, T) x T?) such that ||/ || oo <
1.

By Riesz’s representation lemma, b) implies that, for a.e. t € [0, T'], V; admits a
mean curvature vector H; and (H;);¢[o,7] belongs to Lz([O, T] x T4, |V;| dt; Rd).
Any vector v € L2([0, T] x T4, |V,|dt; RY) satisfying condition c) is called a
velocity of the L2-flow V. As proven in [40, Prop. 3.3], v is uniquely determined
in the points (¢, x) € (0, T) x T¢ where both tangential planes T¢,x»|V]and Ty | V;|
exist. However, it is not known whether this uniqueness set has full | V;|d¢-measure.

Remark 2.3. If V is an L?-flow then the map (0, T) > t — |V;|(¢) has bounded
variation for each ¢ € C 1(T9) and therefore, as observed in [40, Rem. 3.2], it is
possible to choose a representative for which there exists a countable set Dy C
(0, T) such that the map ¢ +— |V;|(¢) is continuous on (0, 7') \ Dy for any ¢ €
C1(T?). Furthermore, in view of the mass bound ess supg; 7 I VilllTy < oo,
it is easy to construct a function u : [0, T] — M such that u, = |V;| for
t € [0, T]\ Dy and t — u:(¢) is cadlag (or caglad), i.e., right-continuous with
left limits, for every ¢ € C(T%.
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2.3. The model

We consider the Allen—Cahn equation on the d-dimensional torus ’]I‘d, d <3,
with scaling parameter ¢ and double well potential W, stochastically perturbed by
a space-colored noise that however becomes white in the limit ¢ — 0.

The assumptions on the potential W, which have been tailored to include the
paradigmatic case W (u) = le(l — u?)2, are detailed below.

Assumption 2.4. (Assumptions on W)

LW e C*R;[0,400)), W(u) = 0iff u = £1, W/(£l) > 0, and W is
uniformly convex at infinity, i.e., there exists a constant C € (0, +00) and a
compact K C R such that W”(u) > L forany u ¢ K.

2. W has at most growth 4, i.e., there exists a constant C € (0, +00) such that
[W(u)| < C(lul* + 1) for any u € R.

3. W’ has at most growth 3, i.e., there exists a constant C € (0, +00) such that
W )| < C(lul> + 1) for any u € R.

4. There exists a constant C € (0, +00) such that |[W”(u)| £ C(+/W (u) + 1) for
any u € R.

Hereafter, uy = 41 are the pure phases and 7 = f_lla/2W(s) ds is the surface
tension with W satisfying the above assumptions.
The dynamics is specified by the stochastic partial differential equation,

1
du = [Au - 8—2W’(u)] dr 4 /22, do?, 2.5)

where A, > 0 and «? is the Gaussian process on C([0, T]; H™*), s > d/2, with
mean zero and covariance,

Elof (@) ap)] =t At'(jex @, jex V)0, @, ¥ € HY,

in which j, € H'! is an approximation to the Dirac 8, and % denotes the convolution
on T?.

GivenT > 0,& > 0,and ﬁg € H! as proven in [5], there exists a unique process
in C([0, T1; L?) that solves the Cauchy problem for (2.5) with initial condition
ig. We denote by P, the law of this solution that, again by [5], satisfies P.(u €
C([0,T]; H") N L?([0, T]; H?)) = 1. The main aim is to analyze the asymptotic
behavior of (2.5) in the singular limit ¢ — 0 and A, — 0. To carry out this analysis
we enforce, throughout the paper, the following condition on j, and A;:

tim (e[ 22 + 67 2] e 22) = 0. 26

Notice, for instance, that if j.(-) = 8’ij(o/8/3), 0 < B <1, forsome j € H!,
then (2.6) holds when A, = o(g!tF9).
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The deterministic Allen—Cahn equation, i.e., (2.5) without noise, is the L2-
gradient flow of the van der Waals’ free energy functional F,: L' — [0, +00]
defined by

e , 1 . 1
§|Vu| +-W)|dx ifueH',
&

+00 otherwise.

Fo(u) = 2.7

Observe that since W has at most quartic growth and d < 3, by Sobolev embedding,
u € H' implies W(u) € L'.

Given u € L?, we introduce the free energy measure, as the positive Radon
measure on T¢ defined by

€ , 1 . |
§|Vu| +-W)| dx ifue H',
e

pe(dx) == (2.8)
0 otherwise,
and the associate general varifold
“(dx) ey (AX) ifu € HY,
Vi (dx, dx) = | P (@0 o (d2) il u e ] (2.9)
0 otherwise .
Here, the unit vector n” is given by
Vu .
—, ifVu #0,
n" := { |Vu| (2.10)
eo otherwise,

where, foru € H', the vector Vu is defined dx-a.e. and eo is an arbitrary fixed unit
vector. In particular, |V}| = p.

The initial datum i is assumed to be deterministic and to meet the following
conditions.

Assumption 2.5. (Conditions on the initial datum)
(a) (itf)e=0 C H' and @)}‘E(ﬁg) < +o00.
£—>

(b) As ¢ — 0 the sequence (ﬁg_)e converges in L' to some iig € BV (T%; {£1}).
(c) As ¢ — 0 the sequence (,uZO) converges as Radon measure to some [i(.

Observe that the requirement of the convergences in items (b) and (c) follows,
possibly by extracting a subsequence, from the equi-boundedness in (a), see, e.g.,
[37].

Our aim s to investigate the asymptotic behavior of the sequence of probabilities
(Py)e~0 as € — 0. To this end, set

U:=C(0,T];: L") endowed with the norm topology, 2.11)

recall the definition (2.9) of the general varifold associated to a profile u € L?, and
the definition of the space V in (2.2). Given u = (u;):c[0,71 € C([0, T']; L), we let
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V! € V be defined by V;f, =VM 1e[0,T],ifueCq0,T]: HY), and Vs’fl =0,
t € [0,T], otherwise. Since V is endowed with the bounded weak* topology,
by Lemma A.1 the map C([0, T']; LY 5 u > VY € V is Borel measurable
and therefore the map C([0, T1; L?) 5 u — (u, V) eUxVisBU)® B(V)
measurable. Note that since U has a countable basisthen B(U x V) = B(U)®QB(V),
see [8, Lemma 6.4.2]. We can thus regard (Pg o (u, Vg”)’l)bo as a sequence of
probabilities on (U x V, B(U x V)) and analyze its large deviations asymptotics
as ¢ — 0. To formulate such a large deviations principle however, we need a few
more notations and definitions.

2.4. Admissible pairs

It turns out that not all the elements in U x V are significant for the large
deviations asymptotics and here we describe the relevant ones as cluster points of
((us, V€”£))8>0 for suitable (deterministic) sequences (u°)¢~¢. Unfortunately, this
description is somewhat technically involved; it has been engineered to make the
rate function of the large deviations upper bound (that we prove) as large as pos-
sible, and to guarantee its goodness (i.e., its coercivity and lower semicontinuity).
The proof of a matching lower bound (that we do not discuss) should rely on a
suitable density theorem. In this respect, the characterization of the rate function
here provided might be of some help.

Given u € U and § > 0 we denote by 0 (u; §) its continuity modulus, i.e.,

@ u; 8) := sup luy —ugllp1. (2.12)
1,5€[0,T]
t—s]=8

Given z € L'([0, T1), according to the Kolmogorov—Riesz-Fréchet compactness
criterion (see, e.g., [10, Thm. 4.26]), we let ! (z; 8) beits Ll—continuity modulus
regarding L([0, T]) as a subset of LL(R), i.e.,

5 T
®'(z;8) == sup ( (ze| + lzr— ) de +/ |zt — 2i—s dt) . (2.13)
§e(0,81 \J0 8

Finally, we introduce the diffuse Willmore functional WV : L' — [0, +00], defined
by

1 LN, 5
Wi () = g/<8Au—gW(u)> dx ifue H-. (2.14)

+00 otherwise.

Observe that since W' has at most cubic growth and d < 3, by Sobolev embedding,
u € H' implies W' (u) € L.

In the following definition we fix oy € (0, ﬁ), az € (0, %), and a countable
set {¢p;} C C 1(T9), dense in the unit ball. The condition iy < ﬁ is not optimal
and is due to technical issues.
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Definition 2.6. (Admissible pairs) Recall the definitions of V and U in (2.2) and
(2.11). Given £ = (£1, £, £3) € (0, 00)3, let I'y, the set of L-admissible pairs,
be the collection of elements in U x V such that (1, V) = lim, (u?, Vsug) in the
topology of U x V for some sequence (%), C C([0, T]; HY ﬂLz([O, T1; H2),
¢ | 0, meeting the following conditions for any ¢ and for any 6 € (0, T']:

(a) ug = ug with (i)e~0 as in Assumption 2.5.

T

(b) sup Fe(ul) +/ Weui)de < £.
tel0,T] 0

(©) @ (u®; 8) < £,5% .

(d) Letting z¢(¢) € L'([0, T]) be defined by z°(¢), = |V, (¢), ¢ € C (T,
then forany 1 < j < |(eAs)~"'| we have w](z€(¢j); 8) = ll¢jllcrray €38

We also define I' := [ J, I'¢ that will be called the set of admissible pairs. An

element V € V is called admissible iff (u, V) is an admissible pair for some

uel.

The next statement, which relies on results in [37,42], as detailed in “Ap-
pendix B”, shows that in dimension d < 3 the admissible pairs enjoy nice proper-
ties.

Theorem 2.7. Recall T denotes the surface tension as defined in (1.2). For each
£ € (0, 400)3 the set T'y is compact in U x V. Furthermore, if (u, V) € I'y then
uo = ug as in Assumption 2.5 and for any § € (0, T]:
(a) u € L®([0, T1; BV(T?; {£1})), esssup, [lu;|rv < 2¢1/7, and
0 (u; §) < £,8%2 .
(b) esssup, [[|Vi|lTv = €1 and
(b.1) fora.e.t € [0,T], 1 V; is an integral varifold,
(b.2) for a.e. t € [0,T], V; admits a mean curvature H; which satisfies
Jo Wil(H ) dr < ¢y,
(b.3) forany ¢ € Cl(Td)itholdsa)l(z(qﬁ); IS ¢l (ray 0383, where z(¢); :=
[Vil(@);
(c) fora.e.t €[0,T], 3d|Vu,| < 1d|V;l.

Statement (c) could be improved. Indeed, arguing as in [26, Thm. 1], it should be
actually possible to show that for a.e. t € [0, T'] one has |V;| = %IVu,I + Ty,
where [i; is a rectifiable measure with even multiplicity.

2.5. Brakke motion

For the present purpose of describing the asymptotic behavior of the stochas-
tically perturbed Allen—Cahn equation, we adopt a slightly different definition of
(weak) motion by mean curvature with respect to the one of Brakke motion [9].

Definition 2.8. (Brakke motion) Given a Radon measure jip € M, an element
V € V is called a Brakke motion with initial datum i iff V is admissible and for
each y € Cx ([0, T) x TY; Ry),

T
—ﬁo(wo)+/0 Vil (=00 = Hi - Ve + [Hi Py ) de S0, 2.15)
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where H; is the mean curvature vector of V;. Given iig € BV (T%; {£1}) and
o € My, apair (u, V) € U x V is called an enhanced Brakke motion with initial
datum (ug, o) iff (u, V) is an admissible pair, V' is a Brakke motion with initial
datum ftg, and ug = g (compare with [32, section 12] and [33]).

In view of Theorem 2.7, if V is admissible then it admits a mean curvature
vector in LZ([O, T] x T, | Vil dt; Rd), which implies that the above definition is
well posed. Moreover, if V is a Brakke motion then 71V is an L%-flow with
velocity v = H. Indeed, for a suitable choice of the positive test function, the in-
equality (2.15) easily implies (2.4), while the orthogonality condition (2.3) follows
from orthogonality of the mean curvature vector for integral varifolds [9, Chap. 5,
pag. 121].

It is possible to show that the previous definition of Brakke motion implies the
usual one. More precisely, if V is a Brakke motion with initial datum o and u;
is the caglad representative of | V;|, ¢t € [0, T], introduced in Remark 2.3, then for
each ¢ € C'(T¢) and each ¢ € [0, T),

im s (@) — e (P) <

s—1 s —1

wi (Hi- Vo —1H ).

where we understand that the right-hand side is —oo for the (zero measure) set
of times such that either H; does not exist or does not belong to Lz(ut; Rd),
see [17, Thm. 7.1]. Furthermore, (2.15) implies, in consistence with the possible
instantaneous disappearance of mass, the inequality o < fip as Radon measures.

2.6. The rate function

If V € V is admissible, 7'V is an L2-flow, and v is a velocity of 71V, we
set,

1 T
Le(V, v) = Zfo Vil <|vt - Ht|2) dr (2.16)

T

Ling(V, v) = s:;p {—ﬂo(vm +f0 IVil( = e — ve - Vb +vp - H, Wt)df} :

2.17)

where the supremum is carried out over all ¥ € C ,1< ([0, T) x T%) such that 0 <
v =1

Recall that I denotes the set of admissible pairs, see Definition 2.6, and let
I:U x V — [0, 400] be the functional defined by

inf{Zoc(V, v) + Ling(V, v)} if u,V) e I, "'V isan Lz-ﬂgv,
V .

I, V) = { 18)

+00 otherwise,

where the infimum is taken over all the possible velocities of V.
It is simple to check that 7 (u, V) = 0 iff (u, V) is an enhanced Brakke motion
with initial datum (¢, i) according to Definition 2.8.
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Let t — u; be the cadlag representative of ¢ + | V;| introduced in Remark 2.3
and denote by Dy its jump set. By localizing the test function ¥ in the variational
definition (2.17) around the set Dy, we deduce that

Lang (V. 0) 2 s0p (10(8) = @) + 3 sup (11:@) = - (@) = uar (V)
teDy

(2.19)

where the suprema are carried out over all ¢ € C ! (’]I‘d) such that 0 < ¢ < 1. The
right-hand side in (2.19) is the nucleation part of the rate function introduced in
[30,40]. The inequality Ising 2> Ihual is strict. Consider indeed an element V such
the map ¢ + u; has no jumps, but 7 — u;(¢) has a derivative with nontrivial
positive Cantor part for some ¢ € C1(T9), then Lsing (V) > 0 while the right-hand
side of (2.19) vanishes. To our knowledge, the possible occurrence of paths ¢t — 1,
such that j1;(¢) has a Cantor part for some ¢ € C' (T?) cannot be ruled out even in
the context of the derivation of Brakke motion as singular limit of the deterministic
Allen—Cahn equation. It would be interesting to establish a connection between the
rate function (2.18) and the one recently introduced in [35], that is defined by a
somewhat analogous variational expression.

2.7. Large deviations upper bound

For the reader convenience, we first recall the large deviations axiomatic, see,
e.g., [15]. Let (P¢) be a family of probability measures on a Hausdorff topological
space X'. The family (P;) satisfies the good large deviations principle with speed
Be | 0 and rate function J : X — [0, +oc] iff the following conditions are met:

(1) (Goodness) J has compact sub-level sets. L
(i1) (LD upper bound) For each closed set C C X, lin%) Belog P(C) £ — iléf J.
E—>

(iii) (LD lower bound) For each open set A C X, lim B, log P.(A) = — iI/le J.
e—0

The large deviations estimates (ii) and (iii) give a precise sense to the (logarithmic)
asymptotics P, (B) =< exp{—p, Uinf g J}. Observe that if the zero level set of J is
the singleton {so} then the large deviations upper bound together with the goodness
of J imply the law of large numbers P, — &,, (weakly as probability measure),
together with an exponential control on the error.

In the setting of the stochastic Allen—Cahn approximation to the mean curvature
flow, the following theorem provides a large deviations upper bound:

Theorem 2.9. (LD upper bound) Let d < 3 and P, be the law of the solution to
(2.5) with initial condition ii,. The sequence of probabilities (]P’S o (u, V;‘)’l) on
U x V satisfies a large deviations upper bound with speed e\, and good rate
function I: U x V — [0, 400] given by (2.18). Namely, I has compact sub-level
sets and, for each closed set C C U x V,

lim &2, log Pe{(u, V) € C} < —inf I. (2.20)
e—0 C
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As a corollary of this result, we deduce that the cluster points of the sequence
(]P’e o(u, Vg‘)_l) are supported by the enhanced Brakke motions with initial datum
(g, [10), in the sense of Definition 2.8. Even in the two-dimensional case there are
well-known examples in which uniqueness for Brakke mean curvature flow fails,
see, e.g., [9,34]. We have thus not obtained a genuine law of large numbers for the
stochastically perturbed Allen—Cahn equation. The reasonable hope, but apparently
quite impervious to pursuit, is that the stochastic perturbation selects the physical
motions. In this respect, Theorem 2.9 shows that the set of all possible Brakke
motions can be achieved with a probability not exponentially small, but gives no
further information about the limiting probability laws on this set.

2.8. Discrepancy measure

A crucial technical ingredient in the Allen—-Cahn approximation of the mean
curvature flow is the limiting equipartition of energy. For later use, we recall here
the precise statement. Given u € L? we introduce the discrepancy measure as the
signed Radon measure on T¢ defined by

£ 2_1 i 1
g {<2|W| SW(M)) dx, ifueH', oo

otherwise .

Givenu € C([0, T]; L?) welet& € L>([0, T]; M(T?)) be defined by &, = &
ifueC(0,T); H') and E;, = 0 otherwise. We observe that, as is well known, the
so-called monotone one dimensional entire stationary solutions of the deterministic
Allen—Cahn equation satisfy the equipartition of energy %|Vu|2 = %W(u). The
discrepancy measure quantifies the violation of this equipartition property:

The following statement is the content of [40, Prop. 6.1].

Lemma 2.10. Fix £; > 0 and let (u®) be a sequence meeting condition b) in
Definition 2.6. Then,

T
lim | {62y dr = 0.

2.9. Stochastic currents

The definition of curvature has been given for general varifolds and reduces to
the classical one when the varifold is rectifiable, its multiplicity is constant, and
it is supported by a smooth surface of codimension one. On the other hand, given
V = (V))iefo.1] € V, its associated velocities are defined only if T~V is an L2-
flow, in particular only if V; is rectifiable for a.e. ¢t € [0, T']. Therefore, for ¢ > 0,
the velocity of the path (V,!,);c[0,7] has been not defined yet. A similar issue is
also present in [40], where the velocity for ¢ > 0 is defined to be proportional to
—&Vu; d:u;. By using the measure-function pairs theory developed in [25], which
requires an L2-estimate on d;u, in [40] it is then shown that the limit of such
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velocities exists in a suitable sense and converges to a velocity of the limiting
L2-flow.

In the present stochastic case, the above strategy is not directly applicable, due to
the lack of control of the time derivative of the process. For ¢ > 0, we next define,
with Pg-probability one, the velocity of the general varifold V' as a stochastic
current, and regard it as a separate variable in the large deviations principle. Relying
on suitable super-exponential bounds, at the end of the argument, we are able to
show that currents can be represented in terms of velocities of L2-flows.

The stochastic current is defined as follows. Given s € R, let HS(A4_1; Rd) be
the vector-valued fractional Sobolev space on Ay—;. Fors = 0, it can be defined as
the domain of (I — A)*/? on L?(A4_1; R?) equipped with the graph-norm. Here
A denotes the Laplace-Beltrami operator on A;_; endowed with the standard
Riemaniann metric. As usual H (A _y; Rd), s > 0, is defined as the dual of
H*(Ag—1; RY). Observe that if s > 951 then H*(Aq—1; RY) < C(Aq—1; RY).
Given s € R and an Hilbert space H, we denote by H*(T¢; H) the H-valued
fractional Sobolev space on T¢. It can be defined in terms of the H-valued Fourier
series on T¢ with the usual norm. For s > % we have HS(T¢; H) — C(T%; H).
Given s € (—1, 1) and an Hilbert space H, we also let H*([0, T]; H) be the H-
valued fractional Sobolev space on [0, T']. For s € [0, 1), it can be defined via the
standard Gagliardo norm, while, as usual, H~*([0, T]; H), s € (—1, 0), is defined,
letting H' be the dual of H, as the dual of H*([0, T]; H'). For s > % we have
H*(0,T]; H) — C([0,T]; H). Finally, given s = (s1, 52, 53) € (—1,1) x R2,
we set

H® = H" ([o, T]: H® (Td; H (Ad_l; Rd))> . (2.22)

Observe that if s € (3, 1) x (4, 00) x (45, 00) then H® — C([0, T] x T? x
Aq—1; RY).
Fors € (%, 1) x (%, +00) x (%, +o00) and f € H® we define,

T

B = e [ (T g (@) du, (2.23)
0

where we recall that n” has been defined in (2.10) and the right-hand side is P,-a.s.
defined as an Itd’s stochastic integral with respect to the semimartingale u (for
the latter notions see, e.g., [15, Chap.4]). As follows from the theory of stochastic
currents for (2.5) developed in “Appendix C” (analogous to the analysis of stochastic
currents for finite dimensional diffusions in [20]), the map f — JZ(f) defines,
with P.-probability one, a linear functional on H®. We shall denote by u +— J
the associated H ~*-valued random variable.

Remark 2.11. Let L be the closure of the linear subspace of H® of functions of type
fi(x, 2) = Zn;(x), n € H([0, T]; H2(T¢; R?)) (recall that for ¥ € Ag_q,
the orthogonal projection onto X is still denoted by X'). From the very definition
of JY, it vanishes on L.

In the sequel, we shall regard n € H*' ([0, T']; H*2 (T9; RY)) also as the element
in H® defined by f"(x, ¥) = n,(x), and we shorthand JECF™ by JE().
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3. Super-Exponential Estimates

In this section we prove the probability estimates needed for the upper bound
of the large deviations. These will be achieved by suitable applications of It&’s
formula with respect to various semimartingales whose quadratic variations will
be explicitly computed (for an introduction to these notions we refer the unfamiliar
reader to, e.g., [15, Chap. 4]). Strictly speaking, It6’s formula will be applied to some
functions that are not C2. Nevertheless, the resulting formulae can be justified by
means of an appropriate truncation procedure, that is here completely omitted and
not further mentioned. We refer the interested reader to [5] for the details on this
truncation argument.

The following elementary observation will be used repeatedly in the sequel. If
By, ..., B, are measurable subsets of C ([0, T']; L2) then

n n
g logIP’g(UBi> < el logn —i—\/sks log P (B;). (3.1)
i=1 i=1
Hereafter, we shall denote by C a generic positive constant, independent of ¢,
whose numerical value may change from line to line and from one side to the other
in an inequality.

3.1. Energy estimate

In the context of the analysis of the action functional [40], from the equi-
boundedness of the action it is deduced a uniform bound for the free-energy func-
tional F, given by (2.7) and the time integral of the diffuse Willmore functional
W, defined by (2.14). In the stochastic setting, both the free energy and the time
integral of the diffuse Willmore functional can be arbitrarily large, however - as we
here show - this happens with probability super-exponentially small.

Proposition 3.1. Let P, be the law of the solution to (2.5) with initial datum 128.
Then there exists a constant £y € [1, +00) and gy > 0 such that for any € € (0, &o]
and ¥t € [£g, +00),

T

ehe log P, ( sup Fe(uy) —i—/ We (us) dt > E) < —i. (3.2)
1€[0,T] 0 20

We start by a general martingale inequality that generalizes the Bernstein inequality,

see, e.g., [41, Ex. VL.3.16], which is obtained by choosing 8 = 0 in Lemma 3.2

below. The next statement is a particular case of [36, Lemma 2] to which we refer

for the proof.

Lemma 3.2. Let M be a real, continuous, square integrable martingale starting
from 0 with quadratic variation [M). Given B 2 0 and C € (0, +00), for any
bounded stopping time t,

52
P(supM,>£, [M]r§,8supM,+C)§exp{——}, £ > 0.
1<t 1<t 2086+ 0)
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Proof of Proposition 3.1. By It6’s formula, with P.-probability one, for each ¢ €
[0, T],

t
Folur) + / We(ug) ds = Fui) + Ry + N;. (3.3)
0

where N is a continuous P.-martingale and the It6’s term is

t t
R, = SAS/ //[ng(x — y)]2 dxdyds + As/ /é(jg * jo) ()W (u) dx ds.
0 0

Therefore, for gy small enough (depending on T) and 0 < ¢ < g,

t
. _ . 1
|Ri| < erellVjell 7ot +¢ lxgnjgniz/ /|W”(u>|dx ds < C + - sup Fe(uy),
0 s<t

(3.4)

where we used that |[W”| < C(1 + ¢~ 'W) by Assumption 2.4 and that, in view of
(2.6), £ hclljell3, — Oase — 0.

By taking the supremum over time in (3.3) and using the previous bound we
get

1 ! _
— sup Fe(uy) +/ We(ug)ds = Fp(ig) +supNg < C +supNy,  (3.5)
25< 0 s<it <t

where C := Sup, <, Fe (i) < +00. The quadratic variation of N is

t
[N = 2/\8/
0

t
< Zekg/ We(ug) ds < 26 [C + sup Ny],
0 s<t

1 2
Je * (sAuS — —W/(us)) ds
e L?

(3.6)

where we used (3.5) in the last inequality. By applying Lemma 3.2 we deduce

14 b4
&g logIP}( sup N; > Z) < - < -
1€[0,T] 444Ce! 5

A

provided £ > £y := 4C + 1. Using (3.5), again the conclusion follows. O

3.2. Continuity moduli

In this subsection we prove the estimates on the continuity moduli needed for
the exponential tightness and to ensure that the rate function is finite only on the
set I' of admissible pairs, recall items (c) and (d) in Definition 2.6.
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Proposition 3.3. Let P, be the law of the solution to (2.5) with initial datum 128.
For each y € (0, ﬁ) there exist constants eg > 0,0 < 89 S 1 AT, and Cy = 1
such that the following holds. For any ¢ € (0, gol, for any é € (0, §y), and for any
¢ > 0 such that {577 > Colg with £y as in Proposition 3.1, we have

¢
Cod7’

Ehe logIP’g(woo(u; 8) > {) -

where ™ (u; §) is the continuity modulus defined in (2.12).
The proof of the previous bound relies on the following lemma:

Lemma 3.4. Let P, be the law of the solution to (2.5) with initial datum 128. Let
also G: R — R be defined by G(u) = f0"\/2W(v) dv and, given ¢ € L, set
z;p = fG(u,)¢> dx, t € [0, T]. For each y € (0, %) there exist constants gy > 0,
0 <8 S 1AT, and Cy € (0,+00) such that the following holds. For any
e € (0, g], any § € (0, 80), any ¢ > 0 such that ;87V > Ly, and any ¢ € L™,
¢lloc =1,

¢
ere logP sup |zqj I )
& & (ts|<5 t s C()(SV

Proof. By a simple inclusion of events, see e.g., the proof of Thm. 8.3 in [7], it is
enough to show that

T
sup &k log =P sup |z;’> - zf| > < - L, (3.7
5€[0,T—8] s tels,s+5] csr

for some constant C € (0, +00) independent on ¢, ¢, and &.
By It6 formula, with P, -probability one, foreach s € [0, T—é8]and ¢ € [s, s+6],

@ =2 =D+ RPN (38)

where

t 1
DY = f /\/ZW(M) (Au - —2W’(u)> $dxdr,
s 3
the It6 term is

t /
b, _ Wiu)p . .
R = )\e‘/; /—ZW(M) (Je * je)(0) dx dr,

and N,¢ S tels, Tl isa P.-martingale with quadratic variation,

t
(VO] = 4%/ . (qx/W(u,))Hi2 dr < 4618 sup Fo(uy).

rel0,T]
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To control the martingale part, given £ > 0, we bound

P, ( sup |Nt¢’s| > §> <P, ( sup Fe(uy) > Z)
tels,s+4]

rel0,T]

+ P, ( sup IND| > ¢, sup Fa(uy) < 5) :
tels,s+8] rel0,T]

Choosing 8y small enough so that £ = 2¢/+/8 > o, applying Proposition 3.1,
and Lemma 3.2 with 8 = 0 (both to the martingales N%-* and —N?-*) we deduce

recalling (3.1), that there exists a constant C > 0 such that, for all § small enough

b5 ¢
sup eAg logP sup |N/|>¢ ) Serelog3 — ——. 3.9)
5€[0,T—8] ‘ ‘ rels,s+5] ! ‘ CVs
Concerning the It6 term, for any ¢ € (0, 1)
, . |W' (ur)]
RPN S helljel72 8 sup [ o
rel0,T] W (u,)

§?»s||je||L25C SUP /(1+W(ur))dx

<Cé|1+ sup Fe(ur)| ,
rel0,7T]

where we used |[2W)~!/2W’| £ C(1 + W) and the assumption (2. 6) on je.
By choosing §p > 0 so small that (C«/g)_l >24 2661 we have £ 5 1> 26 5
hence, by Proposition 3.1 with £ = 2¢ /+/8 we obtain

b8 ¢
ere logP sup |R/7|>¢) < ———— (3.10)
¢ ‘ (le[s,s+8] 10\/_

Finally, by Cauchy—Swartz inequality,

b, o :
|Dt¢’,s| < \/5( sup /g’IZW(ur) dx) (/ VV@(ur)dr)2
rel0,T] 0

§ T
<\/; ( sup Fa(”r)+[ Wa(”)d”)»
0

- rel0,7]

where in the last step we used Young’s inequality. Hence

Pe( sup |D;p’s| >§) <P€< sup Fs(“r)‘l’/ We(”)dr>§f>
tels,s+4] rel0,7T]
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Choosing 8o small enough so that £ = ¢£+/2/5 > £y, applying Proposition 3.1 with
L =1¢4/2/§ = £y, we deduce

¢, ¢
sup ¢eie loglP sup |D/7|>¢ ) S ———. 3.11)
sel0. 78] “N\rewsss) 204/8

Since gi, — 0, log% = 0(871/2%7), and 877 > {o, choosing &g > 0 small
enough, the bound (3.7) follows from (3.8), (3.9), (3.10) and (3.11). O

To deduce Proposition 3.3 from the previous lemma, we need a rough “measure
of compactness” for the embedding BV < L!.

Lemma 3.5. Let K be the subset of L' given by K := {v € BV(T9): |vllgy < 1}.
There exists a constant C > 0 for which the following holds: for each o € (0, 1]
there exists a finite set {v1, ..., v, } such that IC C | J;{v € L': lv—v ;1 <o}

and N, < C(o=4™",

Proof. Given o € (0, 1] and mg € N to be fixed later, we let n = mg|1/0 ] and

write the fundamental domain Q = [0, 1)¢ of the torus T as disjoint union of nd

cubes Q7 of linear size 1/n corresponding to multi-indices i € {0, ...,n — 1}4.
Given f € Klet f; := |Q?|_1 le,_, f dx the average on each cube and f" :=

Yifi Xo! the piecewise constant approximation of f. By Holder, Sobolev, and
Sobolev-Poincaré inequalities, with 1/1* = 1 — 1/d, for any i we have,

A1 <10 e ) < Cn* M f sy < CnY,

/1% C
If = filloigy S 1071V = fillpeon < —1Dfllrvegy »
hence
C
n

If = flle <= IfallLe) < cnd=t, (3.12)

We let n=1Z = {m/n ; m € Z} and, fqr each f", we introduce its discrete
approximation f": Q — n~!Z by setting f" = n~! ) [nfilxon. Clearly,

- 1 N .
1" = M=) = pr I full ooy < Cn=1. (3.13)

By (3.12) and (3.13) we have || f — f” FAYEe)) < Cn~!' < o for mg large enough,
uniformly with respect to f. By construction, /" € Q, with

Q= {g = ZgiXQ?: gi € n'zZn [—Cndﬁl, Cndln .

1

As the cardinality Q,, is at most C (n4 )”d, the conclusion follows. 0O
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Proof of Proposition 3.3. Let G be the function defined in Lemma 3.4. We claim
that for each y € (0, ﬁ) there exist constants &g > 0, 89 € (0,T],and C1 = 1
such that the following holds. For any ¢ € (0, o], for any § € (0, &p), and for any
¢ > Osuch that £677 > C£o with €¢ as in Proposition 3.1, we have

¢
Ci187°

Ehe logIP’g(a)oo(G(u); 5) > ;) < (3.14)
We first show that the claim implies the statement of the proposition. Since W

has quadratic minima and it has at least quadratic growth, then there exists C > 0
such that |G ~!(a) — G~ (b)| £ C/]Ja — b] for any a, b € R. Hence,

lur — usll 0 < CVIIG ) — Guy)llp,

which implies the inclusion {®®(u;8) > ¢} C {w>®(Gu);8) > (¢/C)*}. By
applying (3.14), with y — 2y, ¢ — (¢/C)?, so that £2672Y > C2C 4y and
y € (0, ﬁ), the statement follows with Cy = max{1; C/C1/lo}.

We are left with the proof of (3.14). To this end, we observe that |[VG(u)| <
%|Vu|2 + %W(u) and, in view of Assumption 2.4, |G| £ C(W + 1) for some
C, = 1. Proposition 3.1 thus implies that, for any £ € [2Ca£g, +00),

l
Ehe long( s{gpﬂ(nG(u,)nLl+||VG(uz>||L1)>€) é—m. (3.15)
te|0,

Set K¢ := {v € BV(T%): ||v|gy < ¢}. For each p > 0, by Lemma 3.5 with

o= pE‘l, there exists a finite set {vq, ..., varl} C L' such that K, € Ui{v €
L' v — v .1 < p} and log N -1 < C[1 + (p~H? log(p~1)]. Furthermore,
foreach i, j = 1, ...,Np€_1 there is ¢; ; € L®° of unit norm, given by ¢ij =

sgn(v; — v;), such that |[v; —v;ll1 = f(vi — V)¢ j dx.
Given y € (0, %), choosing £ = {577 > 2Ca4y, (3.15) yields

ehe 10gPe({Glur) € Kgyv Vi € [0, TI) < —%. (3.16)

Choosing p = ¢ /5, we have the inclusion of events

{0®(Gw); 8) > ¢} N {Guy) € Kes—v V1 €10, T1}

c U{ sup /(G(uo ~ Guy))¢j dx > 4/5} ,
iJ

l—s<8

therefore by applying Lemma 3.4 with exponent y’ € (0, %) and ¢ 877 = £y, and
the above bound on log N,,-1, we obtain, by choosing &g such that A, < 1 for
& € [0, o,

Ehe logIE”g(woo(G(u); §) > ¢, {Gu) € Kesr Vi €10, T]})

< ehe logNZ,lg/S — % <CU+810gs™7) — % (3.17)
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Since ¢87Y = 2Ca4, by choosing y' € (yd, %), we have £877" > ¢ for any
6 € (0, 8p] and &g possibly smaller than the one in Lemma 3.4.
The bounds (3.16) and (3.17) then yield, for ¢ € (0, o],

el logP, (wOO(G(M); 3) > C)

¢ ¢ v _
<log2— —— A{—— —C(1+579] 5V},
=827 csr "lesr 1+ ogd )

which yields the claim for a possibly smaller choice of §p. O

Proposition 3.6. Let P be the law of the solution to (2.5) with initial datum ug,

For ¢ € CL(T9) et z? = |V€“),|(¢). For each o € (0, %) there exist constants
& > 0,0 <8 S 1AT,and C; 2 1 such that the following holds. For any
¢ € CH(TY) with ||¢llc1 £ 1, any e € (0, e2], any § € (0, 81), and any ¢ > 0 such
that £6~% > Cqly, with £y as in Proposition 3.1,

¢

ehe IOgPs(wl(Z(P; §)>1¢) < AT
c

(3.18)

where o' (z; 8) is the L' -continuity modulus defined in (2.13).

We start by a general compactness property for families of martingales. To put
the following result in perspective, consider a family of continuous real martin-
gales M¢, whose quadratic variation admits the bound d[M?]; < Cedr. Then, a
straightforward application of Berstein’s inequality yields a super-exponential es-
timate for its continuity modulus in C ([0, T']) (this is indeed the argument used in
Lemma 3.4). Next, we consider instead the case in which the quadratic variation
admits the bound [M®]r < CeT and deduce a super-exponential estimate for the
continuity modulus in L'([0, T)).

Lemma 3.7. Given T > 0 let M® = {Mf}ici0.11, ¢ € (0,¢'], be a family of
real, continuous, square integrable P.-martingales starting from 0 with quadratic
variation [M*®]. If there exist C' > 0 and £’ > 0 such that, for any ¢ € (0, '], and
(>0,
log Po (e~ [M*]7 > €) < —— 3.19

e logPy (e [M 17 > £) = — =, (3.19)
then, for each a € (0, %) there is C"” 2= 1 such that the following holds. For any
>0ands € (0,1 AT]withtd~% = C"l/, and any ¢ € (0, &'],

¢

EIOg]P)g(wl(Mg; ) > é‘) = _C//ga'

(3.20)

Proof. By the representation of continuous martingales as time-changed Brownian
motions, see, e.g., [41, Chap. V, Thm. 1.6],

¢ Law

MeE eap . (3.21)
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where B is a standard Brownian motion and 77 = e~ '[M?],. By the Borell’s
inequality [1, Thm. 2.1], for any « € |0, %) and S > 0,

B, — By A —es)?

P( sup |S—/S| > A ) <dexp (—Q> ., A>es, (322)
5,5'€[0,5] |s — s'|¥ 20§

where, using also the parabolic scale invariance of Brownian motion,

By 1
es:=E( sup % =827 %,
s,5'€[0,5] |S -9 |

(3.23)

Fixa € (0, 1), € = ¢, and let
|Mf — M|
Bg = sup —a f Ae s
t,t'€[0,T] It/ _T,/|
with Ay, > 0 to be fixed below. We have,
P (B5) < 2[Pe(B; N (5 < ) VR (zf > 1) .

By (3.21) the first probability in the right-hand side can be bounded by using

(3.22) and (3.23) with (X, S) replaced by (¢~ 5)»@, £), while a bound for the second

one is given by (3.19). Therefore, choosing A, = Ce'=® ¢ > C¢ for a suitable
=C (¢’, C") large enough we obtain, using (3.1),

1 1
e 20 — L2 %)? ¢
log P (B;) < elog4 + <810g4 _ gt 2’21_2“01 Y ) v <_ 5)

12
2C"

A

(3.24)

By using that M{ = 0, the monotonicity of ¢ — 7/, the concavity of x — x*, and
Jensen inequality, a straightforward computation yields

o' (M?;8) < 2Xe8 ()% + kng_“S“(t;)“ on the event By,
which implies, as L, = cel—e,
' (M8, 8) < C(28 4+ T'75%)¢ < C8%¢ on the event By N {t7 = €},
Hence, given { > 0and choosing ¢ = C¢57%, the set {w! (M?; 8) > }iscontained

in B; U {t}. > ¢}. By choosing C” 2 1 large enough, the estimate (3.20) follows
by (3.19) and (3.24). O
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Proof of Proposition 3.6. By Ito’s formula and (2.5),

=0
2=V + DY + D+ NP+ R, (3.25)

' 1
D! = —/ /v¢ - Vu (eAu - -W’m)) dx ds,
0 &

S 1 2
Df” = —/ /d) <8Au - —W/(u)> dx ds,
& Jo &

and, after a few integration by parts, the Itd term R? reads,

t
£ =er. [ [ [owlVict =T axayas
0

t
e / / ¢§(js £ j) O W () dx ds.
0

where

(3.26)

Finally, N? is a P.-martingale with quadratic variation,

t 1 2
[N?], = 2x,s/ [{jg » [sw Vi + ¢(£Au — —W/(u)>]} dx ds
0 &
! 2 2 2 1 1 2
< 48)»8/ f[e|v¢| IVul® + ¢ —<8Au - —W/(u)> ]dx ds
0 & &
2 > [T
<4en 21Vl sup Fu) -+ 191, [ Wt ar]
5€[0,T] 0
By Proposition 3.1, this bound implies that there exists C > 0 such that, for

any 0 < ¢ < ¢ggand £ > 8(1 + T)¥y,

14

e log P ((ere) ' [N? 6 =— '
ehelogPe((e2e) " IN*Ir > &) £ — o —

(3.27)

By applying Lemma 3.7 to the family of martingales {||¢||EIIN ¢}, thereis C” > 1
such that the following holds: for any ¢ > 0 and § € (0,1 A T] with £§7% =
4C"8(1 + T)£yp, and any ¢ € (0, &o],

¢
4C" (¢l + IVllo0) 8

e logPy (0! (N?;8) > ¢/4) < — (3.28)

We next estimate the second and third term on the right-hand side of (3.25). On
one hand,

b T T
/0(|D£"’2|+|D?f,|)dr+f(S |D?’2—D?;§|dr§38||¢noo/0 We(uy) dt.
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On the other hand, by Young’s inequality,

8
[0t 10g e
T 2
< 25||v¢||oo/ /[8|Vu|2+ l(eAu - 1W’(u)) ]dxdt
0 & 1

T
< 28] Vg lloc 27 sup Foes) + /0 W) di .
s€[0,T

and, for the same reason,

/ [DP! = D] dr < 81l [27 sup f(u5)+/ W) di |
s s€[0,7T]

Since ! (D?! 4+ D?2; 8) < w!(D?!; 8) + w' (D?2; §), by Proposition 3.1 and
the previous estimates we conclude there exists C > 0 such that for any ¢ > 0 and
5 € (0,1 AT] with {5_1 2 2(1 4+ 2T)£yp, and any ¢ € (0, &g],

erelogP, (o' (D! + D92 8) > ¢/2) < — £ . (3.29)

Co(lPlloe + IVllo)

It remains to consider the Ito term. In view of (2.6), (3.26), and the inequality
[W”| < C(1 + W), there exists &, < g such that for any ¢ € (0, &2] we have,

' (R?;8) < C8(1 + [|$llocT sup Fe(uy)).
s€[0,7T]

Again by Proposition 3.1, there exists C > 1 such that for any ¢ > 0 and § €
(0, 1 AT]with ¢8> 8C(1 + T)¥p, and any ¢ € (0, 2],

erelog P (0 (R?; 8) > ¢ /4) < S S (3.30)

Céllolloo

Combining (3.28), (3.29), and (3.30), a simple inclusion of events together with
(3.1) implies that there exists C > 1 such that for any { > O and 6 € (0,1 A T]
with 8% = C¥y, and any ¢ € (0, &3],

¢

Ae log P, (0! (2%: 8 <erelog3 — ——— .
EAg 10g s(w (z )>§)_850g Clill 16

Finally, since eA, — 0 as ¢ — 0, by choosing a possibly smaller ¢; the claim
(3.18) follows for C = 1 large enough. O
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3.3. Bounds on the stochastic currents

Recalling the definition of the stochastic currents in Subsection2.9, we first
prove that - with probability super-exponentially close to one - the stochastic current
J}! takes values in bounded subsets of H~°.

Lemma 3.8. Givens € (1, 1) x (4, +00) x (%51, +00),

lim Tim e, log Ps (|| 212, = —00.
 Jim Tim ¢ log (I 15— > £) = —o0
Proof. By Remark C.2,
1X11%— < C(CY, +C5.,), (3.31)
where
T P T
/ey, g/ /—|Vu,|2dxdt+/ We (uy) dt
’ 0o J 2 0
T
ST sup fs(uz)+/ We(uy) dt
t€[0,T] 0
and

C.=y / A+ 1+ k)21 + 1917512, (k, ) dg,

m,n,k

with (see (C.3) for the definition of the functions e;’f . q)

t
Zyy (k,q) = \/28)%/0 <«/§Vus AT GO |§—Zi§|)’ da§>L2.

By Proposition 3.1,

lim Tim ek log P, (C‘l‘g > z) - . (3.32)
L—+00 e—0 ’
Now set
yi= 2. /(1 + 1) 7 (1 P+ g1 7 da,
m,n.k
and introduce the probability measure I" on {1, ...,d} x Z4 X 74 x RY defined
by
r(da) =y~ (1+ 271+ k)72 + 1g1)) ™ dp (m, k. n) dg.
a = (m,n,k,q),

where g is the counting measure on {1, ..., d} x Z4 X 74 Let also e, = eZ’,k’q.

Then,

C.=v f Z5(a)? I (da), (3.33)
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where Z7 (a) = Zﬁj;"(k, q),t €10, T],is alP, continuous martingale. The bracket,
see, e.g., [41, Chap. IV, Def. 1.10], between Z¢(a) and Z*(b) is

[Z%(a), ZF (b)];
= 2eh, /ts<j€ * (Vus “eq(s. -, &)) Je * (Vus “ep(s, - M))) ds
0 [Vus| [Vius| L2

t
< 2erelleallsolienlion / f e[VusPdxds € Cehe sup Faluy).  (3.34)
0 s€[0,7]

We next introduce the family of P.-martingales Y/ (a) := Z (@) = [Z5(@))s,
tel0,T],ae{l,...,d} x Zs % 74 x R4, By a straightforward computation,
the bracket between Y?(a) and Y?(b) is

[Y*(a), Y (D)];

t
=4 / ZE(a)ZE(b) d[ZF (a), ZF (b)];
0

< Cee sup Feluy) / (Z:@? + Z:)?) ds
s'€[0,1]

2
< Cere sup Feluy) f Ys(a)+Ys8(b))ds+C(£/\g sup fg(us/)) .

s'€[0,1] s'el0,1]

Now, the process X¢ := [Yf(a) I'(da) is still a P, martingale with quadratic
variation,

[X°], = /[Yg(a), Y*(D)]; I'(da) I (db)

< Cele sup ]-'E(usr)/ ngs—i-C skg sup ]-'g(usr)>
s'€[0,¢] s'€[0,t]

2
< Cehe sup Fe(ug) sup X?—i—C(s)\S sup .7-"8(143/)) . (3.35)
s'€[0,1] s€(0,¢] s'€[0,1]

Given £, ¢/ > 0 we write,

P, (X*; > z) < IPS(XST >0, sup Foluy) < z’) —HPg( sup Fe(its) > z/).
s€[0,T] s€[0,7T]

The bound (3.35) and Lemma 3.2 imply

o V4
Tim e, 1 IP(XE ¢, Fe(us gz’)g— .
Tim ek log Pe (X7 > S:&;pﬂ e(ug) S ) = T

By using Proposition 3.1 and taking first the limit £ — -+o0 and then £ — +00
we conclude that

lim lim ei, log P, (X? > E) = —00. (3.36)

{—+00e—0
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We finally observe that by (3.33) and (3.34),

CGe=vXr+v /[Zs(a)]r I'(da) = yX7 + Cehe sup Fe(uy),
s€[0,T]

hence, applying (3.36) and once again Proposition 3.1,
lim 1lim ek log P, (C2 e > E) —00,

—+00e—0

which, together with (3.31) and (3.32), concludes the proof. O

The next two lemmata will allow us to represent currents in terms of velocities
of L2-flows.

Lemma 3.9.

1 T
lim sup hm Ehg log]P’g<J (- —/ Vg‘fz(|fr|2) dt > g) = —00,
0

£—>00 f £—0
where the supremum is carried out over f € C*®([0, T]1 x T¢ x Ag_1; RY).

Proof. From the very definition (2.23), J¥(f) = AJTC + NYf where
T 1
A"TC = —e/ /Vu, i, ) [Au — —ZW/(u)i| dx dt
0 €
and N/ is a continuous IP,-martingale with quadratic variation
t
. 2
[N/, = 2%, / | je * (Vus + £, @*)5)) |12 ds
0
t
< deh, / VE(ILf1%) ds, (3.37)
0

where we used that &|Vu|?> dx < 2d|V¥|.
By Young’s inequality,

1 T T
AJT” < Z/o Vg‘ft(|fl|2)dt+2/0 W, (1) dt,

so that, by Proposition 3.1,

1 T
lim sup hm ehe log P, (Af 4/0 Ve’fl(|ft|2) dr > Z) = —o00. (3.38)

{—o00 f e—0

In view of (3.37),

T
s 1 u 2 f 1 7
N/ — — \% dt < N/ — N .
t 4-/0 g»[('.fl' ) = t 168}\.5[ ]T
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For 8 > 0, by exponential Chebyshev inequality we get,

1 T
]P’S(N,f - 1/0 Ve (£P)de > z)

< o BUER {ﬁN.f'_LNf |
=° fP N T Teen2 T

By choosing 8 = 1/8 and using that [E, exp {aNtf — 1@’ [N/1r} < 1fora e R,
the above displayed bound yields

1 T
lim sup | hm ehe logP, (Nf - Z./o Vs'ft(lftlz) dr > E) = —00,

—)OO f
which, combined with (3.38), concludes the proof. 0O

In the following lemma we adopt the short notation introduced just after Re-
mark 2.11:

Lemma 3.10.

lim sup hm ere logP, (JM(VI//) ~|—/ A% t|(8,1ﬂ;)dt > E) —00,

{—o00 v e—>0

where the supremum is carried out over € CZ((0, T) x T9) such that | ||eo < 1.

Proof. By It6 formula and (2.5), after a few integrations by parts,
V2P 1) = Vo) = / V2 @) &t + ST ) + Nf + RY
T 1 , 2
_ - w(mu —-w (u)) dedr,  (3.39)
& Jo &

where R;/f is defined as in (3.26) with ¢ replaced by ¥ and NV is the continuous
P.-martingale given by

o /Ot (0] o s % W] s — (40, — gizw’ms)) as)
(3.40)

whose quadratic variation is

t
[NV, =2A8/0 Je *

S 2%

[ws (eAuS - éW’(us))] ; d

t ws(aAuS — éW’(uQ)HiZ ds

T
< 4en, / Weus)dt (as [[¥]loo < 1).
0
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By Proposition 3.1, Lemma 3.2 with 8 = 0, and the bound above,

lim sup IE)I}) &he logIP}( Np > K) = —00.

E—>oo¢s

Arguing as in the proof of (3.4) and recalling (2.6), for & small enough we have,

. _ . 1
IRY1 S (ehellVel2 T+~ el jel22) (€ + 5 sup Fotwy))
s<T

1
< C + = sup Fe(uy), (3.41)
2 s<T

where the constant C does not depend on the choice of ¥ with ||/ ||so < 1. Similarly,

for such ¢,
T 2 T
1/ /|W|(8Au—1W/(u)> dx d g/ W (u) dt.
& Jo & 0

Finally, VS'fT W) = Veu,o(wO) = 0 as ¥ has compact support. Therefore, by (3.39),
the proof is achieved gathering the above bounds and using Proposition 3.1. O

4. Large Deviations Upper Bound

Recall the definitions of V, U, and H® in (2.2), (2.11), and (2.22), and set
Z:=UxVxH®,

that we consider endowed with the product topology and the corresponding Borel
o -algebra. Note that, since U x H ~* has a countable basis, then B(Z) = B(U) ®
B(V) ® B(H™®), see [8, Lemma 6.4.2]. In this section we shall prove a large
deviations upper bound for the family of probability measures on Z defined by
(P, o (Zg)_l), where Z! := (u, V¥, J}') is a Borel map according to Lemma A.1
and Theorem C.1. Before stating the result we introduce the associated rate function.

Definition 4.1. Let D be the subset of Z given by the collection of elements Z =
(u, V, J) such that:

(@) (u, V) € I and 'V is an L2-flow.

(b) The functional J extends to a continuous linear functional on L?(V, d¢; RY)
satisfying J(f) = fOTff -vdV,dr, f e L>(V;dr; RY), where v is a velocity
of t71V.

Remark 4.2. The previous definition and the orthogonality condition (2.3) yield
the inclusion L C Ker J for any (u, V,J) € D, where L C H* is defined in
Remark 2.11. Note also that any functional f +— J(f) as in item (b) of Definition
4.1 with v € L2(V, dr; R?) defines an element of H 5.
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Given n € C*®([0,T] x T4 RY), x € C¥(0,T) x T R?), and ¥ €
CX([0, T)xT9; [0, 1)) suchthat /Y (T — ¥) € CL ([0, T)xTY),let IV : Z —
R be the functional defined by

"%V, v, J)

T
= —fo(Yo) — J () — /0 Vil (@) dt — J (V)

T . 5
+/0 SVi(@vr = D+ ‘/’t(l—wr))df—/o Val(Imel? + "2' ),

“.1)

with 19 as in item (c) of Assumption 2.5. Notice that, by definition of bounded
weak* topology on V, for each 5, x and ¥ the functions Z + Z70Y(Z) is
continuous because it is sequentially continuous along weak* convergent sequences
V, — V and H ~*-convergent sequences J,, — J.

Set

sup, 4 I"*V(Z) ifZe D,

I(Z) = Loo 4.2)

otherwise,

where the supremum is carried out over n € C*°([0, T1xT?; RY), x € CF (0, T)x

T¢; RY), and ¥ € CL([0, T) x T; [0, 1)) such that /Y (T — ) € C([0, T) x
T9).

Theorem 4.3. For each closed C C Z,
E)s)»e logP.(Z! € C) < — inf 7.

Moreover, I has compact sub-level sets.
We first show that the above statement implies the large deviations upper bound.

Proof of Theorem 2.9. By the contraction principle, see, e.g., [15, Thm. 4.2.1],
Theorem 4.3 implies the large deviations upper bound for the family (P;o(u, V') )
with good rate function

T(u,V)=inf{Z(u,V,J), JeH).

It remains to show that / = I with I as in (2.18). In view of (4.2) and Definition 4.1,
if (u,V) ¢TI or 771V is not an L2-flow then I(u, V) = I (u, V) = 400 and the
equality holds. Otherwise, (1, V) € I', T~'V is an L*-flow, and when computing
I(u, V) we can assume Z = (u, V, J) € D, i.e., J is given in terms of a velocity
vof 71V as in item b) of Definition 4.1. For such Z we have,

T T
0V(z) = _fo [Vil(ns - ve) At — feo (o) —[0 IVl @iy + v - Vi) de

T
- /(; |Vz|((2% = Dne - Hy + X - Hiy/ (1 — Tﬂt)) dt
|2

T
= [ v (i .
0 4
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Since CIO(O([O, T) x T9; R) is dense in L2([0, T]x T¥, | Vil dt; R9), the supremum
sup,, » I %V (Z) is equal to the critical value I X0V (Z), with 0, = %(H —v)—
Y H and x, = —2/¥ (1 — ) H. A straightforward computation yields,

1 T
XV (Z) :Z/o Vel (Jve — H,|2)dt
T
— (o) - fo Vil (8 + ve - Yy — vy - Hygr)dir.

Recalling (2.16), (2.17), and (2.18) we thus conclude that if (#, V) € I" and vy
is an L2-flow then, taking the infimum over J (i.e., in view of Remark 4.2, over all
the possible velocities v of V') we have,

I_(“a V) = inf SUPI"*’X*’W(Z) = inf{lyc(V, V) + Ling(V,V)} =1, V),
1% 'l// %
which complete the proof. O

4.1. A priori bounds

Fix a countable set (f®)reny € C([0, T x T x Ag_1; RY) dense in HS.
Given N € Nand m > 0 let

1 T
._ —S. (k)y _ = (k)2 <
Frn ._{(V,J)erH .lgcng[J(f ) 2/0 V(1 |)dt]:m}.

Similarly, fix a countable set (¥ ®)ren, with y® € C2((0, T) x T9) such that
¥ ® |l < 1, dense in the unit ball of Co((0, T') x T), and let

T
Gy N = {(v, eV xH™: max [J(w(")) +f |vt|(at1p§k))dt] < m}
' 1<KEN 0

Fix £ € ]Ri, recall Definition 2.6 of the set I'y and denote by A(I'g) the
collection of the open neighborhoods of I'y. For A € N'(I'y), m > 0, N € N, and
recalling Remark 2.11, we set

Deamn ={@. V. eZ i V)eA
(V.J) € Fun NGy, J(f)=0 V[ eLl.
Recall the definition (2.21) of the discrepancy measure £/ . The super-exponential

probability estimates in Propositions 3.1, 3.3, 3.6, and Lemmata 3.9 and 3.10, to-
gether with the deterministic bound in Lemma 2.10, yields the following statement:
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Proposition 4.4. For each { > 0,

T
;i_r)r(l) Ehe logIP’,,;(/O ”E;‘J”TV dr > ;) = —00.

Moreover,
lim sup lim ek, logP(ZY ¢ Dy A m.n) = —00,
£—00 eN €0
m_>+°°.Ae./\/’(F¢)

where by £ — oo we mean £; — +o00,i = 1,2, 3.

Proof. To prove the first bound we observe that, in view of Lemma 2.10, for each
¢ > 0and ¢ > 0 there exists &g such that for any 0 < ¢ < gy we have the inclusion

T T
{u:/O & Ny dr > ¢ < fu: tes{gpﬂﬂ(mH/() Wi (us)ds > ¢}

Taking the limite — 0 and then £ — oo, by Proposition 3.1 the first bound follows.
To prove the second bound we first write,

[ v. 1) ¢ Deamn) = v)g vl 1 ¢ Fon

U {(V, ) ¢ Gm,N} U [L ¢ KerJ] .

Clearly, by Remark 2.11 we have P, (u: L ¢ KerJ}) = 0. Moreover, by Lemma-
ta 3.9 and 3.10 we easily deduce,

lim sup lim e, logPs((V), JY) ¢ Fin) = —00,

m—>+00 ey €—0
and

lim sup lim ei, logP, (VY. J}) ¢ Gy,y) = —00.

m——+00 NeN €~

In view of the previous bounds in order to conclude the proof it suffices to show
that

lim sup lim ei, logPe((u, V) ¢ A) = —oo. (4.3)
l—)oerN’(rl)s—)O

Recalling Definition 2.6, for each fixed £ € Ri and ¢ € (0, 1) we set

]Cl,a = ﬂ ]Cf,g ’
pela,b,c,d}
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where, setting 8y = §27% with § = 89 A 81, 89 and 8 as in Propositions 3.3 and 3.6,
K3, ={u € C(0.T]: L?): up = gg} ,

K, ={u e C(0,T]; H') N L2([0, T]; H?):

T
sup Fe(ur) +f We(u,)de < Zl} s
tel0,T] 0

625_17&2 .
AT -2 K }

fo =N {recao. 13 17 0*ws 5 <
k
Lere)™") 5l—a3

Kee= (1 {” € C(10. T HY): o' (V1)) 60) < M;S“}},

41-o3 "k
j=1 k&

where aj = @j/l$jllcr. We claim that if there exist u® € Ky, for a se-
quence &, | 0, then there exists (u, V) € Iy such that, up to subsequences,
(u, V) = lim, (u®", Vs’ff") and (u®") satisfies conditions (a)—(d) in Definition 2.6.
It is straightforward to check that conditions (a)—(d) in Definition 2.6 hold for the
whole sequence (1°7). Indeed, (a) and (b) are trivial; moreover if u® € ICZ . then

X Wt 8) < ?ﬁ—j;'ja“z for 0 < § < § since @™ (+; 28) < 2w (-; §) for 28 < §;
whence (c) follows easily, as @ (-; 8) < 288 'w™(-; §) forany § < § < T'. Simi-
larly, since w!(-; 28) < 2w'(-; 8) for 28 < §,if u® € ICZS then o' (|V*|($}); ) <
Z;T(Sl'::‘; 8% for 0 < & < §; whence (d) holds as w'(:;8) < 285 'w!(-;8) for
any § < 8 < T. Finally, arguing as in the proof of Theorem 2.7, we deduce the
pre-compactness of the sequence (u°, V;f:") and the claim follows.

As a consequence of the previous claim, for each fixed £ € ]Ri and for each
A e N(Iy) wehave {u: (u, V¥) ¢ AyNK,, = ¥ for any ¢ small enough. Hence,
as ]P’E(ICZ’S) =1,

sup  lim e, logIF’s((u, V. ¢ A) < lim &A, log}P’s(u ¢ IC&S)
AeN(Ty) £—0 £—0
T B
<
< \/ gh_r)% ehe logPe(u ¢ IC“),
Befb,c,d}
“4.4)

and it remains to estimate the probabilities on the right-hand side. By Proposition 3.1
we have

lim Tim e, logPs(u ¢ K} ,) = —00 . (4.5)
£{—o00e—0 ?
Given ar € (0, ﬁ) we pick y € (o, ﬁ) and observe that for £, > 1 large enough
we have

Z2S]7a2

_ o ¢ Slfaz
usy ! = w-y 2

arTm = gpra | = Cobo.
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with Co and £g as in Proposition 3.3. By applying this proposition we get, for
ers < lande < g,

P ¢ K5,) S Y Pe(0®ws: §) > g) < Y e ) 6Cod)™!

kZO kZO
= Ze_CZZ(S)Ls)_ISZ27V < e—C(z(E)\g)_ISHZ_V Zefc(g;:zfyfguzfy)
k>0 >0

< Ce~Clalere) 16277

for positive constants C and C independent of A, € (0, 1), so that

lim hm el logP, (u ¢ Ky ) —00. (4.6)

{—o00e—

Given a3 € (0, %) we pick o € (a3, %) and observe that for £3 > 1 large
enough we have,

8B > Oyt

_ £3(§1—a3 o E3S]—0{3
o . a3—a
W= e e

with C and £g as in Proposition 3.6. By applying this proposition we get, for
ede <lande < &,

Lere)™1
Pe(u ¢ K9) = Y D Pe(w (VE1@)): 81) > &)

=1 k=0
-1 ~(ehe) ! ke -1 —Cly(ehe) 187
<@)' ) e M= (eae) 7Y e CBERI TN
k>0 k>0
T a3 —a —
< (ehp) " leCla(eR) 1503 Z —c (575 )

k>0
<c (M )—1 —Clz(ehg) 163

’

for positive constants C and C independent of A, € (0, 1), so that

lim lim ek, log P, (u ¢ IC‘Z 5) = —00. 4.7)

L—00e—0

Gathering together (4.4)—(4.7) the bound (4.3) follows. O

4.2. Exponential martingales

The upper bound will be achieved by a suitable exponential tilt of the proba-
bility IP,. This tilt is constructed by means of families of martingales that are here
introduced.
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Lemma 4.5. Given n € C*®([0, T1x T¢; RY) and y € CF ([0, T) x T9) let N7,
N>V be the Py-martingales defined by

, (4.8)

t
1
Ntl"’ = 8/0 (Vus -0y, dug — (Aus — S—ZW’(MS)> ds>L2
' 1 1
N = / <1/fs[ — e Aus + —W’(u)] du, — (Aus — —2W’(us)) ds> . (4.9)
0 & e L?
Then,
] T T
N =—J;‘(n)—/0 SV;fs(m-)der/O /n;‘-Dm ny d&! ds,  (4.10)
T
=0
N7V = — 1 (o) — /0 W @Bsr) ds — J (V) — RY,

1 [T 1 2
+ —f /w(mu - —W’(u)) dx ds, @.11)
& Jo &

where R? is a random variable for which there exists a sequence {; — Oase — 0
such that

lim e, log P, <|R$| > ;,s) = —c0. (4.12)
e—0
Finally, setting NV := N1 + N>V its quadratic variation satisfies,

T T
(ehe) ' INTV]r £ - 2/0 SV (2sms) ds +4/0 /n? - D(Ysmg) my d&; ds

T T
+2fO /|m|2d|v;fs|ds+2/0 /Imlzdéé‘,sds

T
+2/ /lwz(sAu - lW/(u))zdx ds. (4.13)
0 & &

Proof. The equation (4.10) follows from the identity below (with X = n,), which
holds for any time u € H' and vector field X € C o (T9; RY),

/w : X(gAu _ éW’(u))dx = SV(X) — /n” DXn"dg", (4.14)

whose proof can be found in [42]. The representation (4.11) is deduced noticing
that N2V is the same martingale (3.40) used in the proof of Lemma 3.10. Moreover,
the bound (4.12) follows from (3.41) together with (2.6) and Proposition 3.1, for
any ¢, vanishing slower than 5)w3||Vj5||i2 + ,9_1)\8||j8||i2 ase — 0.

We next observe that,

[NV ]y =2h, /T/{jg » [8Vu n— w(mu - éw/(u))]}zdx ds.
0
< —dedg /T/Vu . (1/fr])(8Au — lW’(u)) dx ds
0 &

r 20,12 1 2 1 2
+28)\8/ /[8|Vu| Inl~ + - <8Au——W’(u)) ]dxds,
0 & &
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from which (4.13) follows by applying (4.14) with X = vsn; to the first term in
the right-hand side, and (2.21) to the second one. O

Given(eRi,AeN(r‘g),m > 0,and N € N, for Z € Z, we set,

I1XV(Z) ifZ € Dy Am.Ns

v (7) = 4.15
t.Am, ) +00 otherwise. (.15)

v

The following lemma, which relies on the previous estimates, is the key step in the
proof of the large deviations principle:

Lemma 4.6. There exists a real sequence ag , — +00 as £, m — +00 such that
the following holds. For each £ € Ri, m>0 AeN([Ty),NeN,§ >0, each
functionsn € C*°([0, T1xT4; RY), x € CL ([0, T) x T RY), yr € C([0, T) x
T¢; [0, 1)) with supp(x) C supp(yr), and each Borel set B C Z,

hm &g log]P’E(Z” IS B) < — 1nf {[Igf‘;/:l v(Z) — 8] /\ag,m}.
Proof. Let N"¥¢ be the martingale introduced in Lemma 4.5 with  and v re-
placed by (¢.) "' and (eA,) ~ !y respectively. By using the exponential martingale
of N"¥-¢ we introduce the sub-probability,
1
APV = dPeexp | NJ TV~ E[NU’W’E]T]' (4.16)
By using (4.10), (4.11) and (4.13), and recalling (4.1),
1
NPVt — SNy
_ - =0
2 (2T 28 + o) — 1™ (o) —
2 X
/ J [ D = 20m) n = 0] det, a5+ REV ).

where

T
ROV (u) ::é/o /w(l - w)(sAu - éW/(u))zdx ds

T T |X |2
—/ 5V, (1, x/fs<1—ws>)ds+// v ja
0 0 4

Plugging A = ¢Vu - x into the inequality

2

Wl — 1//)<£Au — éW’(u))2 > /(= 1//)<£AM — éW’(u)) — ’\Z VieR,

we get,

1 (7 1 2
—/ /w(l—w)(aAu——W’(u)) dx ds
2
f/w VI —v (sAu——W(u) dxds //'vul 24
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which implies, by (4.14) with X = y;+/¥s(1 — ¥;) and definition (2.21),

2
R”(u)>/ / [ Xyl = o)t — 2 |agt, as.

4

To prove the statement we observe,

T
(2! e By |2! € BODeamn. / &% |y d <5, RY <2,
0 (4.17)

T
{28 ¢ Deamn} U fu: /O & oy ar > o) U fu: RY > 2.},

with Rg and ¢, as in (4.11)—~(4.12). Letting ¢, = |fto(Y0) — Mﬁg(lﬂoﬂ + ¢ we
bound,

T
P ( Z¥ eBmDMmN,/O ||g;ft||Tth§5,R¥§;£)

_ -1 W (zuy A
B (e D Cunr ) 1y (20)

exp | = (ehe)”! yelBE [TV (@) = Oy |
JAm N

A

[IA

A

- exp{ — (e2)”" inf (T34 (2) = Cyyopd — ;;]},

where ¥ denotes the expectation with respect to the measure Pg’w defined in
(4.16) and

1
Cox = ID(QY — D+ x V¥ (1 =) oo + 1%, + Z|||x|2||oo

By redefining §, the proof of the lemma is now achieved, in view of the inclusion
(4.17), by the previous bound, (4.12), and Proposition 4.4. O

4.3. Minimax

By applying a minimax argument, we next optimize the bound in Lemma 4.6
and deduce the large deviations upper bound for compacts.

Lemma 4.7. For each compact K C Z,

E)gxg logP:(Z € K) < — Znelg( I(2). (4.18)

Proof. First we notice that in view of Lemma 4.6 for each open set A C Z we
have

< _ . X% _
hm ere log P (Z € A) < nsllpw Sl;p_ASn:lII)VSZHGIE‘ {[Ie,A,m,N(Z) 8] /\ag,m}.

Notice that for each €, m, A, N, §, and each functions 7, x, ¥ with supp(x) C

supp(¥) the map Z [Igjfl:i v(Z) — 8] A agm is continuous. In view of the
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minimax lemma in [29, App. 2, Lemmata 3.2 and 3.3] (notice that both the proofs
hold true for compact sets in Hausdorff topological spaces), from the previous
bound we deduce that (4.18) holds with rate function

Zo = sup sup sup [Ig’f\‘le—(S]/\ag,m.
nx.y £ AmnNs

It thus remains to prove that Zp = Z. We first take the supremum over § > 0 and
A e N(Iy). We get

To =71y := sup sup ng;é/\agm,
n,x. ¥ &,m,N

where

XV (Z) ifZ € Doy,

TV 7y —
emn () 400 otherwise,

where Dy ,, N = ﬂAe/\/’(h) Dy A m n- Taking (f®)ren and (¥ ©) e as at the
beginning of Subsection4.1, we let

Fpi={(v.0)eVxH™: sup [1r®) - f /If(k)l avdr| < m},

Gy = {(v, JYEV X H™: sup [J(vw”‘)) +f0 v,(aﬂp“‘))dt] < m}

and set
Dl,m :Zm D(,m,N
N
:{(u, V.)YeZ : . V)erl,,

(V,J) € FnN G, J(f)=0 erL}. (4.19)
By taking the supremum over N, we deduce that
T1 =1 := sup supZz’é’w Adgm, (4.20)
nx &m
where
%Y (z) if Z € Dy
)%V (2) = " 421
en (2) +00 otherwise. “4-21)

Since (f®)en € HS C C([0, T]1x T x Ag_1; RY) with dense inclusions, if
(V, J) € F,, then J extends by density to a continuous functional on L2(V, dr; RY)
still denoted by J. By Riesz’s representation lemma there exist v € L2(V; dr; RY)
such that

T
J(f) =/ /f~vdV,dt, f e L*(V,dr; RY). (4.22)
0
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We claim that D = Ue,m Dy ,,, recall Definition 4.1. Clearly, the inclusion D C
Ue.m De.m holds by Definitions 2.2, 4.1 and Remark 4.2. To prove the other in-
clusion we first show that Z € Dy, implies T~V is an L>-flow with velocity
v. To this end, observe first that since (1, V) € I'y, conditions a) and b) in Def-
inition 2.2 are fulfilled by Theorem 2.7. Next, recalling the definition of L in
Remark 2.11, the definition of Dy , in (4.19) and the representation (4.22), for
each n € C®([0, T] x T¢; R?) we have,

/vz(x) - oy e () | Vi () df = 0,

where P; |y, is the orthogonal projector onto the tangent plane to |V;| at the point
x. This equation implies that v;(x) L t,|V;| for | V;|d¢t-a.e. (¢, x), i.e., the orthog-
onality condition (2.3) in Definition 2.2. Moreover, condition (2.4) is equivalent to
the statement (V, J) € |J,, G in view of the density of (¥ %) en in the unit ball
of Co((0, T) x T4). We conclude that t~'V is L2-flow with velocity v. Since, by
Definition 2.6, I' = | J, I'¢, the inclusion D O, ,,, D¢, follows.

The previous claim readily implies that

m%V(Z) ifZeD,
supIg’j’w(Z) = i
em +00 otherwise.
Hence, by (4.2) and (4.20),Z =7,. O

4.4. Conclusion

Given a sequence B | 0, we recall that a family of probabilities measures P,
on a Hausdorff topological space X is exponentially tight with speed B, iff there
exists a sequence of compacts K, C X such that

, lim hm Be log P (Ke ) —00.
—+00

Lemma 4.8. The family of probabilities (P, o (Zg)_1)5>o on Z is exponentially
tight with speed €\g.

Proof. We shall prove separately the exponential tightness of each variable. Con-
cerning the compactness of u, for any £ > 0, as in the proof of Proposition 4.4 we
introduce the following subset of U:

ol—ap

o <. f3
Ke={ueU: sup IGu)lpy <€ @) <

< a0 Yken],
1€[0,T] AT'—*2

where, asin Lemma 3.4, G(u) = [, +/2W(v)dv and § = §27*. Combining (3.15)
and (4.6) we have the estimate,

lim hm erg logP, (u ¢ Kg) —00.

{—+00e—0
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Moreover, arguing as in the proof of Theorem 2.7, from the compact embedding
BV <> L! and the equi-continuity of elements in K, as 8t — 0 we deduce that
K, C U is compact by Ascoli-Arzela theorem.

Recalling that V is equipped with the bounded weak* topology, norm bounded
sets are precompact. Hence the exponential tightness of V is a direct consequence
of Proposition 3.1, by choosing K¢ = {V € V: esssup, (o711 VillTv < ¢} which
is compact.

We finally prove the exponential tightness of /. Givens € (%, D x (2, +00) x
(451, +o00) picko € (3, s1)x (4, 52)x (452, 53). By Sobolev embedding, bounded
sets in H ™7 are precompact in H ~*. Therefore, the tightness of J follows from
Lemma 3.8, by choosing Ky, ={J € H™*: ||J||%1,,, < ¢} which is compact. O

Proof of Theorem 4.3. The exponential tightness in Lemma 4.8 together with the
upper bound for compacts in Lemma 4.7 imply the upper bound for closed sets by
[15, Lemma 1.2.18]. It remains to prove the goodness of the rate function Z.

Recall that, as shown in the proof of Lemma 4.7, 7 = 7,, where 75 is defined in
(4.20). Let us first prove that, for each £ and m, the set Dy ,, in (4.19) is compact. By
Theorem 2.7, I'y is a compact subset of U x V. Moreover, the sets F,, and G,, are
closed subsets of V x H~*. Since the embedding M ([0, T] x T¢ x A4_1; RY) —
H™* is compact, the compactness of Dy ,, follows from a total variation upper
bound for J. To this end, we observe thatif (u, V, J) € Dy, then the representation
(4.22) gives, for each f € C([0, T] x T¢ x Ag_1; RY),

[T Il 2w, anray 1 22 (v, array S meesssup [[VilllTv | flloo = meill flloo-
t

Since for each n, x, ¥ the functional I1 XV as defined in (4.1) is continuous, we
get that the functional in (4.21) is lower semicontinuous. This implies the lower
semicontinuity of Z,. Finally, since ag ,, — +00, for each ¢ € R there exists
£, m such that {Zy < g} C Dy, which implies that {Z, < g} is pre-compact. O

Appendix A. Measurability Issues

Lemma A.1. The map C([0, T1; LY 5 u V4 e V defined by ng, = Vi
t €[0,T], foru € C([0,T]; HY, and ng, = 0,1t € [0, T], otherwise, is Borel
measurable.

Proof. First we note that C ([0, T]; Hl) is a Borel subset of C([0, T']; Lz). We
claim that, for any f € L! ([0, T1; C('H‘d x Ag4_1)), the function

T
CAO, T HY s u v ' (u) := / VE(f)dr eR
0

is measurable with respect to the Borel o-algebra of C ([0, T]; L?) restricted to
C(0,T]; HY. To prove this claim we introduce the following two-parameters
approximation. Given two sequences 6; | 0 and n, | 0, we set Ry = (Id —
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SA)~ ' L2 — H?and ¢, : R — R be a continuous function such that 0 < ¢, <
1, ¢p(€) =0for&é <0, and ¢, (&) = 1 for &€ > n;,. We then define

T 1
f _ (VRyuy)
iy = [ [ [n0v R (5, SR

+ (1= gn(IV Retr ) i (x. ) [ dv) .

‘We note that Fk{h as a functionon C ([0, T']; Hl) is continuous in the C ([0, T']; Lz)-
topology. Moreover, as k — o0, Fk‘f "= th pointwise on C([0, T']; H 1), where

T 1
f . (Vuy)
rfw = [ [lovens(x o)

+ (1= gn(IVue) i (x, ) [t @) i,

In particular, the map C([0,T]; H') > u — F,f (u) is measurable with respect
to the Borel o -algebra of C ([0, T']; L?) restricted to C ([0, T]; HY). By dominated
convergence, as h — 00, F,f —rf pointwise on C ([0, T]; H 1), hence the claim
follows.

In order to prove the required measurability, we write C ([0, T']; H by = U ren Ces
where C; := {u € C([0,T]; H'): lullcgry = €} and, similarly, V = (J,,cy Vin
where V,,, := {V € V:esssup, |Villry < m}. Clearly it is enough to show that
each restriction of C; > u +— V! € V is measurable. Next, we notice that, by
Sobolev embedding, |V, |Tv = |ug  Irv < Ce(1+ ||u,||‘;l,), hence if u € Cy then
there exists m* = m™ (g, £) such that V' € V,«. It is therefore enough to show
the Borel measurability of the map C¢ > u +— VY € V,,;». Since V= is endowed
with the weak* topology induced by the duality with the separable Banach space
L! ([0, T1; C(']I‘d X Ag—1)) then the topology of V= has a countable basis and it is
a compact metric space. Therefore, by definition of weak* topology and the initial
claim the statement follows. 0O

Appendix B. Deterministic Bounds

Proof of Theorem 2.7. We start by proving item (a). The first statement, i.e., u €
L>®((0, T); BV(T%)); {£1}), follows from the strong convergence in U and the
static result from [37], which yields the estimate T ||lu; |7y < 2liminf, F(u}) for
a.e.t € (0, 7). Finally, the last statement follows from the lower semicontinuity of
@™ (-, ).

To prove item (b), first we observe that the bound esssup, |||Vi|llrv < £1
follows readily from the weak™* lower semicontinuity of the normin V and condition
(b) in Definition 2.6. Now we prove (b.2). We fix a vector field n € C Lo, 71 x
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Td: Rd) and, as in (4.14), we write,

T o T 1
/ SV () dr :/ /Wf.n,<muf - -W’(uf))dxdt
0 ' 0 2

T
- / f n’" . D, dg dr.
0

By Lemma 2.10, Cauchy—Schwartz inequality, and condition (b) in Definition 2.6,
as ¢ — 0 we have,

T 12 T 5 1/2
|| svin ] = ([ ivianyan)

By density, we can apply the Riesz representation theorem to obtain fOTS Vi(ny) dt
= —fOT|Vt|(H - ) dt for some H € L2([0, T x T¢, |V,|dr; R?) satisfying the
bound in (b.2) and for any vector field n € C L0, T1x T9; RY). By Fubini theorem
we conclude that for a.e. t € [0, T'] the varifold V; has bounded first variation
represented by the mean curvature vector H; € L2(T4, [Vil; R9). The proof of
(b.2) is thus completed.

In order to prove (b.1), let {¢;} be the dense subset in the unit ball of C L(T9)
in Definition 2.6. In view of conditions (b) and (d) in Definition 2.6, by the
Kolmogorov—Riesz—Fréchet compactness criterion, we can pass to a subsequence
so that there exists lim, |V,“E|(¢j) in L'([0, T1) and for a.e. t € (0, T) for any
Jj € N. Moreover, in view of the uniform mass bound (b) the same holds for any
¢ € C(T9) by density and homogeneity. On the other hand, since (|V* |)s=0 C
L®°([0, T]; M) is uniformly bounded, up to subsequence |[V*'| — u weak-
ly* for some p € L*([0, T]; M) and esssup,c(o. 7y lli4ellTv < £1. Thus, by
dominated convergence u;(¢) = lim, |V,”‘g |(¢) for ae. t € [0, T], i.e., up to sub-
sequences, (; = lim, |Vt"g| weakly as measures for a.e. r € (0, T). By condition

(b) in Definition 2.6 and Fatou’s lemma we have fOT lim, W, (1) dt < €1, hence
for a.e. t € [0, T], possibly passing to a further subsequence depending on ¢, we
have that lim, W, (u?) < +o00. Applying [42, Thms. 4.1, 5.1] we deduce that, a.e.
t € [0, T], us is rectifiable and r’l,ut is an integral measure. By (b.2) for a.e.
¢t € [0, T] the varifold V; has bounded first variation and 7! |V¢| is an integral
measure, thus 7~!V; is an integral varifold by Allard rectifiability theorem (see,
e.g., [43, Thm. 42.4]). Finally, item b.3) follows from the lower semicontinuity of
ol 8).

Item (c) follows easily from the inequality |VG (uf)|dx < ,u“f (dx) (i.e., the
standard trick from [37]) with G (u) := f(;‘«/ZW(v) dv as in Lemma 3.4, the lower
semicontinuity of BV -norm with respect to L !-convergence and item (c), recalling
thatt = G(1) — G(—1).

It remains to show the compactness of I'y. By properties (a) and (b) proven
above, I'y is a norm bounded subset of U x V. Hence, as recalled in Section 2, it is
metrizable so that it is compact iff it is sequentially compact. Let ((u,, V,)) C I'y.
In view of property (a) and the compact embedding BV < L!, the sequence
(un) C U is precompact by Ascoli-Arzela theorem. On the other hand (V) C V
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is precompact in view of the uniform mass bound in (b).) Thus, up to subsequences
(u, V) = lim, (u,, V,) and it remains to show that (u, V) € I'y. This follows easily
by constructing a diagonal sequence (u?, VE“S)DO, W®)e=0 C C([0,T]; HYH N
L%([0, T]; H?), from the approximating sequences for each (i, V,,) which keeps
the conditions (a)-(d) in Definition 2.6. 0O

Appendix C. Stochastic Currents

Let us first briefly review the theory of It6 stochastic currents for semimartin-
gales in R" as developed, e.g., in [20]. Let (X;);¢[0,7] be a continuous semimartin-
gale on R” and f: R" — R" a smooth vector field with compact support. Then
the Itd stochastic integral J (f) := fOT f(X;)-dX; is well defined with probability
one. Since the exceptional set depends on f, it is not obvious that, with probability
one, the map f — J(f) extends to a continuous linear functional on a suitable
functional space for the vector field f. This issue is solved in [20, Thm. 9], where
it is shown that, with probability one, f — J(f) defines a continuous linear
functional on H*(R"; R") for s > n/2.

Here, we develop a theory of stochastic currents for the processes obtained by
solving the stochastic Allen—Cahn equation (2.5). We do not attempt a theory of
infinite dimensional currents but we define them on a restricted class of vector fields
that are sufficient for our purposes. This analysis does not depend on the scaling
parameters € and X, therefore, to simplify the notation, throughout this section we
set & = A = 1 and drop them from the notation.

As proven in [5], given iip € H' and T > 0 there exists a unique strong
solution to (2.5) with initial condition uy. Moreover, denoting by IP the induced law
on 2 := C([0, T1; L?), it satisfies P(u € C([0, T1]; H") N L*([0, T1; H*)) = 1
and for p € [1, 0o) there exists C = C(ug, T, p) > 0 such that

T
IE( sup .7-"(u,)+/ W(u,)dt)p <c. (C.1)
te(0,7T] 0

Given H* = H% ([0, T]; H2(T; H3(Ag_1; RY))), with s = (s1, 52,53) €
(3. 1) x (4, +00) x (45, +00) and f € H®, the definition (2.23) reads,

T
JU) = —/0 (Vi - fi (-, 0))),2 du, (C2)

where we recall that n” has been defined in (2.9).

Theorem C.1. Given s € (%, 1) x (%, +00) X (%, +00), there exists a measur-
able map ® : 2 — H ™S such that P-a.s. (O (u), ) = J"“(f) forall f € H®.

Proof. Up to isometries, Ag—1(R?) = A(RY) = S91/{£1}, hence we can
identify H%(Ag—1; RY) = H3,, (S~ RY) ¢ H* (8971, R?), the closed subspace
of even vector fields. We recall that for s > %there exists a bounded linear extension

operator Ext: H*(§?"1; RY) — HS+1(RY: RY). Let s” = (s1. 5. 53 + %) and set

H = HOV((0, T); H (T B3 (RY RY))).
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With a slight abuse of notation, we also denote by Ext: H® — S the bounded
operator induced by the extension operator above. Note that, in view of the choice
of s, there is a continuos embedding H Co([0, T] x T x R4; R4 ). Hereafter,
for f € H we set g := Ext(f), so that g € H* .

It is convenient to characterize the elements of H* throughout their Fourier
expansion. To this end, we introduce the functions e} : [0, T'] x T x RY — ¢4
defined by

2 — 38,0 nmt . eldp
e (t,x,p) = %7 cos (—) g2mikx €m, C3
n,k,q( p) \/T T (27[)(1/2 m ( )
wheren € Z4, k € 74, q € R4 andey, ..., e4 1s the canonical basis in RY. For g,

as above, we denote by

T
g, (k. q) 1=/0 //[e,’,”,k’q]*-gdpdxdt

its Fourier coefficients, where * denotes complex conjugation. We remark that, by
extending g to an even function of t € [T, T'] and expanding it as a Fourier series,
an equivalent norm in H* is given by

1
lelly = > /<1+n2>“(1+|k|2>”<1+|q|2>s3+f|§;"<k,q>|2dq. (C4)

m,n.k

The dual space (Hs/)’ can be identified with " under the natural L2-pairing (-, -)
of the Fourier coefficients.
Since g = Ext(f), (C.2) reads,

T
JU(f) = - fo (Vi - (-, ). duy) . (C5)

We observe that f +— J“(f) is a linear map from H*® to the measurable
functions of u. Now, we claim that there exists a random constant C = C(u) such
that C € L2(£2; dP) and [J“COI S CN fllmgs, f € HE. Postponing the proof of the
claim, we first show how this implies the existence of the map ©.

We present below a direct construction which is alternative to the abstract results
in the literature, see, e.g., [19, Lemma 2.2]. Consider the map /5, acting on the set
of simple functions on §2 taking value in H®, defined by setting

B@) =E( Y 7" (fxa,).

where @ = . fixo, with (£2;) a finite measurable partition of £2 and f; € H®.
From the claim and the Cauchy—Schwartz inequality,

B(@)| < E(chlﬁllmm,-) < ||C||Lz<m[E(Z ||ﬁ||2><9f)]1/2

= ICll 2 ) 1Pl 2 (2. %)
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Therefore, B is linear and bounded, whence it extends by density to L2(2; HY).
Since (LZ(Q; Hs))/ = L?(£2; H®), there is a unique ¥ € L*(£2; H™*) such
that, for any measurable subset 2’ of £2 and any f € H,

E((¥, f)xe) = B(fxa).

As B(fxa) = E(J“(f)xg), by the arbitrariness of £2” it follows that P-a.s.
(W, fy = J"“(f) forany f € H®. Choosing ®@: 2 — H % as any representative
of ¥, we have that P-a.s. (®(u), f) = J*“(f).

It remains to prove the claim. To this end, we write J“(f) = A; + N 7{ where,

‘ T
A; = _/o <Vu, -g;(, Vu, \) (Au; — W/(u’)))LZ d

and

By setting

T T
Ci :=/ /|Vul|2dx dt/ W(u,) dt, (C.6)
0 0

from Cauchy—Schwartz inequality we get,
AL < cilgl’ £ CCillgl? < CCrllF 1y

By (C.1), the random constant C; is such that C; € L(£2; dP).
To analyze the martingale part N 7[ , we first observe that, as follows from Fourier

inversion formula for g and the stochastic Fubini’s theorem (see also [20, Lemma
8]), that P-a.s.

Nf = / ' (k,q)*Z)' (k,q)dq, (C.7)

m,n.k

where Z' (k, q) is the complex random variable

T
500 = [ 90 ). ],

By setting

=y /(1+n2> T+ DR (g2 Z (k g) 2 dg. (C8)

m,n,k

from Cauchy—Schwartz inequality in (C.7) we get,

NP < Callgll? £ CColl f 11y
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The random constant C, is such that C> € L(£2; dP). In fact, by a straightforward
computation and using again (C.1),

T
’ dt

m Vu 2
' 1
’J * (V”t 'en,k,q(t’ " |W,|))’

E|Z"(k, q)|* = 2FE
123 (k. )] /O L

dr

T 2
m Vu
= Z]Efo ”V“’ kg (1 |Vu§|)‘ 12

T
< 2lley kg l% E/o /qu,|2dx dr < C,

for some C depending only ond and T'. Since s € (%, 1) x (4, +00) X (d;l, +00),
we then get

EC, < CZ/H + )T+ DR+ g dg < oo
n,k

By the previous estimates, the claim is thus proven with C = C4/C; +C,. O
Remark C.2. In the proof of the previous theorem, we actually proven the estimate,
1“1 < C(C1+Ca),

where the P-a.s. finite random constant C; = C;(u) and C, = C»(u) are defined in
(C.6) and (C.8) respectively.
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