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Abstract

Consider the Allen–Cahn equation on the d-dimensional torus, d = 2, 3, in the
sharp interface limit. As is well known, the limiting dynamics is described by the
motion by mean curvature of the interface between the two stable phases. Here, we
analyze a stochastic perturbation of the Allen–Cahn equation and describe its large
deviation asymptotics in a joint sharp interface and small noise limit. Relying on
previous results on the variational convergence of the action functional, we prove
the large deviations upper bound. The corresponding rate function is finite only
when there exists a time evolving interface of codimension one between the two
stable phases. The zero level set of this rate function is given by the evolution by
mean curvature in the sense of Brakke. Finally, the rate function can be written in
terms of the sum of two non-negative quantities: the first measures how much the
velocity of the interface deviates from its mean curvature, while the second is due
to the possible occurrence of nucleation events.

1. Introduction

The van der Waals theory of phase transitions [12,45] is based on the excess
free energy functional,

F(u) :=
∫ [

1

2
|∇u|2 + W (u)

]
dx, (1.1)

where u : Rd → R is the local order parameter and W : R → [0,+∞) is a smooth,
symmetric, double well potential whose minimum value, chosen to be zero, is
attained at, say, u±. The constant functions u(x) = u± are interpreted as the pure
phases of the system. The potential W (u) represents the excess “mean field” free
energy density of the homogenous state u with respect to the pure phases u±, while
the gradient term in (1.1) penalizes spatial variations of u.
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The sharp interface limit of (1.1) has been analyzed in [37] and extensively
studied afterwards, see [2] for a review. The limit of the (properly rescaled) free
energy turns out to be finite only if u is a function of bounded variation taking values
in {u−, u+}. For u in this set, the limiting functional is given by τ Hd−1(Su), where
Su denotes the jump set of u and Hd−1(Su) is its (d − 1)-dimensional Hausdorff
measure. The surface tension τ is given by

τ =
∫ u+

u−

√
2W (s) ds. (1.2)

Wenote that τ can alsobe characterized as theminimumvalueof theone-dimensional
excess free energy F in (1.1) with the constraint u(x)→ u± as x →±∞.

After the pioneering paper [4], the L2-gradient flowof (1.1), i.e., the semi-linear
parabolic equation,

∂t u = Δu − W ′(u), (1.3)

has become a basicmodel in the kinetics of phase separation and interface dynamics
for systems with a non-conserved order parameter u = ut (x).

Consider the evolution induced by (1.3) under diffusive rescaling of time and
space. For suitably prepared initial data,which approaches a sharp interface between
the pure phases u±, the asymptotics of the solution to (1.3) is described by the
motion by mean curvature of the interface. This has been proven in [32] in the
weak formulation of the mean curvature flow in terms of Brakke motions [9], see
also, e.g., [6,16], for similar results in the framework of the level-set formulation.

From both a phenomenological and a conceptual viewpoint, the addition of a
random forcing term to (1.3), that models the thermal fluctuation in the system, ap-
pears quite natural. Assuming this forcing to be Gaussian and translation covariant,
we are led to consider the stochastic partial differential equation,

∂t u = Δu − W ′(u)+√
2λ ηγ , (1.4)

where λ > 0 measures the strength of the noise and ηγ is a mean zero Gaussian
space-time noise, that is white in time and whose space correlation is of order γ ,
e.g.,

E
(
ηγ (t, x)ηγ (t ′, x ′)

) = δ(t − t ′) ıγ (x − x ′), ıγ (x) = γ−d ı(γ−1x), (1.5)

where ı is a smooth positive function on R
d with compact support. For γ > 0 the

well-posedness and regularity properties of (1.4) in space dimension d � 3 are
discussed in [5].

We understand that for γ = 0 the process ηγ is the space-time white noise.
In this case—in space dimension d > 1—the well-posedness of (1.4) becomes a
major issue and a proper renormalization of the non linear term W ′ is needed. In
dimension d = 2, when W is a polynomial, this renormalization amounts to the
Wick ordering [3,14,27,38]. In dimension d = 3, the renormalization of the non
linearity ismore involved; for a quartic potential W , the existence and uniqueness of
local-in-time solutions is proven in [22] and, more recently, global well-posedness
has been obtained in [39].
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Consider (1.4) in a bounded volume Λ on the time interval [0, T ]. The corre-
sponding large deviations are analyzed in [11] in the joint limit λ → 0, γ → 0.
Under suitable conditions on these sequences, it is shown that the rate function is
given, as it can be guessed from the Freidlin-Wentzell theory for finite dimension
diffusion processes [21], by

J (u) = 1

4

∫ T

0

∫
Λ

[
∂t u − (

Δu − W ′(u)
)]2 dx dt. (1.6)

Informally, denoting by uλ,γ the solution to (1.4), the large deviations statement
corresponds to the asymptotics,

P(uλ,γ ∈ B) � exp

{
−λ−1 inf

u∈B
J (u)

}
.

In space dimension d � 3, the same rate function is obtained in the case of space-
timewhite noise, that iswhen the parameterγ is set equal to zero from thebeginning.
This has been proven in [18] for d = 1, in [28] for d = 2 (to be precise, it is there
considered a non-local version of (1.4)), and [23] for d = 2, 3. As we mentioned
above, in space dimension d = 2, 3, the reaction term W ′ has to be renormalized
by subtracting infinite terms. On the other hand, the rate function is (1.6) without
any renormalization on W ′. Very loosely, the underlying reason is the following:
the large deviations principle is established in a weak topology and, although the
added counter-terms are infinite (diverging as γ → 0 if the noise is mollified as in
(1.5)), they are multiplied by λ and therefore irrelevant for the large deviations.

The purpose of the present paper is to analyze the large deviations asymptotics of
(1.4) under diffusive rescaling of space and time, i.e., in the sharp interface (singular)
limit. By denoting with ε the scaling parameter and redefining the parameters λ
and γ , we thus consider the stochastic equation,

∂t u = Δu − 1

ε2
W ′(u)+√

2λ ηγ , (1.7)

on a bounded volume that, to avoid the somewhat delicate issue of boundary condi-
tions, we choose to be the d–dimensional torus. We are now interested in the joint
limit ε, λ, γ → 0.

To pursue the above program, one possibility is to take first the limit λ, γ → 0
and then ε → 0. In view of the result in [11], one is then led to analyze the
variational convergence, more precisely the Γ -convergence [13], of the sequence
of action functionals (Iε) defined by

Iε(u) = 1

4
ε

∫ T

0

∫
Λ

[
∂t u −

(
Δu − 1

ε2
W ′(u)

)]2
dx dt, (1.8)

in which the pre-factor ε has been inserted to have a finite limit. The problem of
the variational convergence of (Iε) has been analyzed in [30,31], precisely with
the motivation of the large deviations asymptotics of the stochastic Allen–Cahn
equation, and in greater detail in [40]. The precise definition of the limiting func-
tional requires tools from geometric measure theory and it is deferred to the next
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section. Here, we just give a heuristic description of the results obtained in [30,40].
Assume d � 3. The limiting functional is finite only if u takes value in {u±} and
in the simplest case of interfaces with multiplicity one is given by

I0(u) = τ

4

∫ T

0

∫
Σt

|νt − Ht |2 dHd−1 dt + Inucl(u), (1.9)

where τ is defined in (1.2), Σt is the boundary of {x : ut (x) = u+}, νt is the nor-
mal velocity of this set, and Ht its mean curvature vector. Finally, Inucl takes into
account the possible occurrence of nucleation events, corresponding to appearance
of pieces of interfaces at some intermediate times. There are a few caveats in the
previous statement. As emphasized in [40], interfaces need to be counted with their
multiplicity, and therefore the natural variable to describe the variational conver-
gence of (Iε) is not the order parameter u but rather the general varifold (which
does count multiplicity of interfaces) associated to it and the definition of (1.9)
has to be extended accordingly. While a Γ -lim inf estimate for (Iε) is proven in
[40], a corresponding Γ -lim sup estimate is proven in [30] only for special “nice”
paths. To identify the Γ -limit it is thus needed a density theorem for the limiting
functional I0, which does not appear to be presently available.

In the present paper, we fix (suitable) sequences λε, γε → 0 and consider
directly the asymptotics of the stochastic equation (1.7) for space dimension d � 3.
Under natural assumptions on the initial datum, we prove the large deviations upper
bound with speed ελε and rate function that, in the simplest case of interfaces with
multiplicity one, reads,

I (u) = τ

4

∫ T

0

∫
Σt

|νt − Ht |2 dHd−1 dt + Ising(u). (1.10)

The rate function here derived improves the one introduced in [40] in two
aspects. We provide a variational characterization of Ising in (1.10) that is strictly
larger of Inucl in (1.9).With this characterization, it is readily seen that the zero level
set of I is given, as it should be, by the motions by mean curvature in the Brakke
formulation. Besides, in describing the large deviations asymptotics, we do not
only consider the general varifold associated to u, but include the order parameter
u itself.We show that the rate function I is finite only if themap t 	→ ut is continuos
in L1. This excludes the occurrence of spurious nucleation events; essentially, it
implies that outside the jump set of u only nucleations with even multiplicity are
allowed. This cannot be detected by looking only at the varifold.

From a technical viewpoint, our results will be obtained by suitably blending
arguments from the analysis of the action functional, mostly imported from [40]
(which relies on previous results, e.g., [26,32,42]), with basic tools of stochastic
calculus and large deviations estimates forMarkov processes. The restriction d � 3
is inherited both from the analysis of the regularity properties of the stochastic
equation (2.5) [5], and, as in [40], from the validity of the static result in [42].

We remark that, although the model equations are quite different, our analysis
has similar features to the one of stochastic conservation laws in [36]. Finally, we
mention that the large deviation asymptotics of a different stochastic perturbation
of the Allen–Cahn equation has been recently analyzed in [24].
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2. Notation and Results

We start by introducing, referring to [43] for a detailed exposition, the tools
from geometric measure theory that are relevant for our purposes. We denote byTd

the d-dimensional torus Rd/Zd and by dx the Haar measure on T
d . In the sequel,

we systematically identify functions (respectively measures) onTd with 1-periodic
functions (respectively measures) onRd . Throughout the paper, we shall shorthand
L p = L p(Td), p ∈ [1,+∞], and let Hs = Hs(Td), s ∈ R, be the fractional
Sobolev space. Finally, given a topological space E we denote by CK (E) the set of
continuous functions on E with compact support and by B(E) its Borel σ -algebra.

2.1. Rectifiable measures

We denote by M the set of (signed) Radon measures on T
d , and by M+

its positive cone. Furthermore, we let Hd−1 (respectively Hd−1
Rd ) be the (d − 1)-

dimensional Hausdorff measure on T
d (respectively R

d ).
A set M ⊂ T

d is rectifiable (more precisely (d − 1)-countably rectifiable) iff
there exists a countable collection (φk) of Lipschitz functions from R

d−1 to T
d

such that Hd−1(M \⋃k φk(R
d−1)) = 0.

Given μ ∈ M+, the tangent measure (more precisely the (d − 1)-dimensional
tangent measure) of μ at x ∈ T

d is the positive Radon measure Txμ on Rd defined
by

Txμ(φ) := lim
λ↓0

1

λd−1

∫
Rd
φ ◦ ηx,λdμ , φ ∈ CK (R

d),

provided that the limit exists, where ηx,λ : R
d → R

d is defined by ηx,λ(y) =
λ−1(y − x).

Definition 2.1. (Rectifiable and integral measures) A measure μ ∈ M+ is called
rectifiable (more precisely (d − 1)-rectifiable) if either of the following equivalent
conditions is met:

a) dμ = θ dHd−1 M for some rectifiable Hd−1-measurable set M and some
θ ∈ L1(Hd−1 M; (0,∞)).

b) For μ-a.e. x ∈ T
d , a tangent measure Txμ exists, it is unique, and it is given by

Txμ = θ(x)Hd−1
Rd Σ(x), (2.1)

for some (d − 1)-plane Σ(x) of Rd and some strictly positive real θ ∈ L1

(Hd−1 M; (0,∞)).
The (d − 1)-plane Σ(x) in (2.1) is called the tangent plane of μ at x and will be
denoted by τxμ. The real θ(x) is called the multiplicity of τxμ and will be denoted
by θ(μ, x).
A rectifiable measure μ is called integral iff μ-a.e. the multiplicity is an integer,
i.e., θ(μ, ·) ∈ N.
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Weregard BV (Td; {±1}) as a subset of L1.Givenu ∈ BV (Td; {±1}),wedenote by
Su the so-called measure theoretic boundary of {u = 1}, i.e., the set of points where
u is essentially discontinuous, which is a rectifiable set.Moreover, by denoting with
|∇u| the total variation measure of u, it is a rectifiable integral measure and, more
precisely, |∇u| = 2Hd−1 Su . Furthermore, there exists n ∈ L1(|∇u|;Rd) such
that d∇u = n d|∇u| and, for |∇u|-a.e. x , |n(x)| = 1 and n(x) ⊥ τx |∇u|.

2.2. Varifolds

A general varifold (more precisely, a general (d − 1)-varifold) is a positive
Radon measure on T

d × Λd−1, where Λd−1 is the Grassmanian manifold of un-
oriented (d − 1)-planes in Rd . We denote by V the set of all general varifolds.

A general varifold V ∈ V can be disintegrated as V (dx, dΣ) = μ(dx) ℘x (dΣ),
where μ ∈ M+ and, for μ-a.e. x ∈ T

d , ℘x is a probability measure onΛd−1. The
measure μ is called the mass measure of V and will be denoted by |V |.

In the sequel, we shall denote by a · b the inner product between the vectors
a, b ∈ R

d , and by |a| the associate Euclidean norm. Given a �= 0 we denote by
a⊥ the (d − 1)-plane orthogonal to a. For Σ ∈ Λd−1, we also denote by Σ the
orthogonal projection onto Σ .

The first variation δV of V ∈ V is the linear functional on C1(Td;Rd) defined
by

δV (η) =
∫
Tr(Dη�Σ) V (dx, dΣ), η ∈ C1(Td;Rd),

where Dη is the Jacobian matrix of η and the superscript � denotes transposition.
If δV is a Rd -valued Radon measure, absolutely continuous with respect |V |, then
δV can be represented as

δV (η) = −|V |(η · H),

for some H ∈ L1(Td , |V |;Rd), which is called the (weak) mean curvature vector.
A general varifold V is rectifiable iff there exists a rectifiable measureμ ∈ M+

such that∫
f (x,Σ)V (dx, dΣ) =

∫
f (x, τxμ)μ(dx), f ∈ C(Td ×Λd−1).

Note that if such μ exists then μ = |V | and V (dx, dΣ) = μ(dx)δτxμ(dΣ).
Finally, a rectifiable varifold V ∈ V is called integral iff |V | is an integral mea-

sure. Observe that there is a one-to-one correspondence between integral varifolds
and integral measures.

Let M(Td × Λd−1) be the set of Radon measures on T
d × Λd−1 equipped

with the total variation norm. Given T > 0, we denote by L∞([0, T ];M(Td ×
Λd−1)) the set of maps (up to a.e. equivalence) t 	→ Vt essentially bounded and
weak*-measurable, i.e., such that t → Vt ( f ) is measurable for any f ∈ C(Td ×
Λd−1). Notice that L∞([0, T ];M(Td×Λd−1)) is the dual of the separable Banach
space L1([0, T ];C(Td × Λd−1)) [44]. Thus L∞([0, T ];M(Td × Λd−1)) can
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be endowed with the bounded weak* topology; namely, by definition, a set is
open iff its intersection with each bounded set is relatively open in the weak*
topology. In addition, norm bounded subsets in L∞([0, T ];M(Td × Λd−1)) are
metrizable and precompact in the boundedweak* topology.We regardV as a subset
of M(Td ×Λd−1) and set,

V := L∞([0, T ];V) endowed with the bounded weak* topology, (2.2)

i.e.,V is the positive cone of L∞([0, T ];M(Td×Λd−1)) endowedwith the relative
topology. Elements of V are denoted by V = (Vt )t∈[0,T ]. The following definition
of L2-flows has been introduced in [40]:

Definition 2.2. (L2-flows) An element V ∈ V is called an L2-flow provided it
meets the following three conditions:

(a) For a.e. t ∈ [0, T ], Vt is an integral varifold.

(b) sup
η

{ ∫ T

0
δVt (ηt ) dt − 1

2

∫ T

0
|Vt |(|ηt |2) dt

}
<∞, where the supremum is car-

ried out over η ∈ C1([0, T ] × T
d;Rd).

(c) There exists ν ∈ L2([0, T ] × T
d , |Vt | dt;Rd) such that

νt (x) ⊥ τx |Vt | |Vt | dt - a.e. (2.3)

and

sup
ψ

∫ T

0
|Vt | (∂tψt + ∇ψt · νt ) dt < +∞, (2.4)

where the supremum is carried over allψ ∈ C1
K ((0, T )×T

d) such that ‖ψ‖∞ �
1.

By Riesz’s representation lemma, b) implies that, for a.e. t ∈ [0, T ], Vt admits a
mean curvature vector Ht and (Ht )t∈[0,T ] belongs to L2([0, T ] ×T

d , |Vt | dt;Rd).
Any vector ν ∈ L2([0, T ] × T

d , |Vt | dt;Rd) satisfying condition c) is called a
velocity of the L2-flow V . As proven in [40, Prop. 3.3], ν is uniquely determined
in the points (t, x) ∈ (0, T )×T

d where both tangential planes T(t,x)|V | and Tx |Vt |
exist. However, it is not known whether this uniqueness set has full |Vt |dt-measure.

Remark 2.3. If V is an L2-flow then the map (0, T ) � t 	→ |Vt |(φ) has bounded
variation for each φ ∈ C1(Td) and therefore, as observed in [40, Rem. 3.2], it is
possible to choose a representative for which there exists a countable set DV ⊂
(0, T ) such that the map t 	→ |Vt |(φ) is continuous on (0, T ) \ DV for any φ ∈
C1(Td). Furthermore, in view of the mass bound ess sup0<t<T ‖|Vt |‖T V < ∞,
it is easy to construct a function μ : [0, T ] → M+ such that μt = |Vt | for
t ∈ [0, T ] \ DV and t 	→ μt (φ) is càdlàg (or càglàd), i.e., right-continuous with
left limits, for every φ ∈ C(Td).
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2.3. The model

We consider the Allen–Cahn equation on the d-dimensional torus Td , d � 3,
with scaling parameter ε and double well potential W , stochastically perturbed by
a space-colored noise that however becomes white in the limit ε→ 0.

The assumptions on the potential W , which have been tailored to include the
paradigmatic case W (u) = 1

4 (1− u2)2, are detailed below.

Assumption 2.4. (Assumptions on W )

1. W ∈ C2
(
R; [0,+∞)), W (u) = 0 iff u = ±1, W ′′(±1) > 0, and W is

uniformly convex at infinity, i.e., there exists a constant C ∈ (0,+∞) and a
compact K ⊂ R such that W ′′(u) � 1

C for any u �∈ K .
2. W has at most growth 4, i.e., there exists a constant C ∈ (0,+∞) such that
|W (u)| � C(|u|4 + 1) for any u ∈ R.

3. W ′ has at most growth 3, i.e., there exists a constant C ∈ (0,+∞) such that
|W ′(u)| � C(|u|3 + 1) for any u ∈ R.

4. There exists a constant C ∈ (0,+∞) such that |W ′′(u)| � C(
√

W (u)+ 1) for
any u ∈ R.

Hereafter, u± = ±1 are the pure phases and τ = ∫ 1
−1

√
2W (s) ds is the surface

tension with W satisfying the above assumptions.
The dynamics is specified by the stochastic partial differential equation,

du =
[
Δu − 1

ε2
W ′(u)

]
dt +√

2λε dα
ε
t , (2.5)

where λε > 0 and αε is the Gaussian process on C([0, T ]; H−s), s > d/2, with
mean zero and covariance,

E
[
αεt (ϕ) α

ε
t ′(ψ)

] = t ∧ t ′
〈
jε ∗ ϕ, jε ∗ ψ

〉
L2 , ϕ, ψ ∈ Hs,

in which jε ∈ H1 is an approximation to the Dirac δ, and ∗ denotes the convolution
on T

d .
Given T > 0, ε > 0, and ūε0 ∈ H1, as proven in [5], there exists a unique process

in C([0, T ]; L2) that solves the Cauchy problem for (2.5) with initial condition
ū0. We denote by Pε the law of this solution that, again by [5], satisfies Pε(u ∈
C([0, T ]; H1) ∩ L2([0, T ]; H2)) = 1. The main aim is to analyze the asymptotic
behavior of (2.5) in the singular limit ε→ 0 and λε → 0. To carry out this analysis
we enforce, throughout the paper, the following condition on jε and λε:

lim
ε→0

(
ελε

∥∥∇ jε
∥∥2

L2 + ε−1λε
∥∥ jε

∥∥2
L2

)
= 0. (2.6)

Notice, for instance, that if jε(·) = ε−βd j (·/εβ), 0 < β � 1, for some j ∈ H1,
then (2.6) holds when λε = o(ε1+βd).
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The deterministic Allen–Cahn equation, i.e., (2.5) without noise, is the L2-
gradient flow of the van der Waals’ free energy functional Fε : L1 → [0,+∞]
defined by

Fε(u) :=
⎧⎨
⎩
∫ [

ε

2
|∇u|2 + 1

ε
W (u)

]
dx if u ∈ H1,

+∞ otherwise.
(2.7)

Observe that since W has atmost quartic growth and d � 3, by Sobolev embedding,
u ∈ H1 implies W (u) ∈ L1.

Given u ∈ L2, we introduce the free energy measure, as the positive Radon
measure on T

d defined by

μu
ε (dx) :=

⎧⎨
⎩
[
ε

2
|∇u|2 + 1

ε
W (u)

]
dx if u ∈ H1,

0 otherwise,
(2.8)

and the associate general varifold

V u
ε (dx, dΣ) :=

{
μu
ε (dx) δ(nu)⊥(dΣ) if u ∈ H1,

0 otherwise .
(2.9)

Here, the unit vector nu is given by

nu :=
⎧⎨
⎩

∇u

|∇u| , if ∇u �= 0,

e0 otherwise,
(2.10)

where, for u ∈ H1, the vector ∇u is defined dx-a.e. and e0 is an arbitrary fixed unit
vector. In particular, |V u

ε | = μu
ε .

The initial datum ūε0 is assumed to be deterministic and to meet the following
conditions.

Assumption 2.5. (Conditions on the initial datum)

(a) (ūε0)ε>0 ⊂ H1 and lim
ε→0

Fε(ūε0) < +∞.
(b) As ε→ 0 the sequence (ūε0) converges in L1 to some ū0 ∈ BV (Td; {±1}).
(c) As ε→ 0 the sequence (μ

ūε0
ε ) converges as Radon measure to some μ̄0.

Observe that the requirement of the convergences in items (b) and (c) follows,
possibly by extracting a subsequence, from the equi-boundedness in (a), see, e.g.,
[37].

Our aim is to investigate the asymptotic behavior of the sequence of probabilities
(Pε)ε>0 as ε→ 0. To this end, set

U := C([0, T ]; L1) endowed with the norm topology, (2.11)

recall the definition (2.9) of the general varifold associated to a profile u ∈ L2, and
the definition of the space V in (2.2). Given u = (ut )t∈[0,T ] ∈ C([0, T ]; L2), we let
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V u
ε ∈ V be defined by V u

ε,t = V ut
ε , t ∈ [0, T ], if u ∈ C([0, T ]; H1), and V u

ε,t = 0,
t ∈ [0, T ], otherwise. Since V is endowed with the bounded weak* topology,
by Lemma A.1 the map C([0, T ]; L2) � u 	→ V u

ε ∈ V is Borel measurable
and therefore the map C([0, T ]; L2) � u 	→ (u, V u

ε ) ∈ U × V is B(U) ⊗ B(V )
measurable.Note that sinceU has a countable basis thenB(U×V ) = B(U)⊗B(V ),
see [8, Lemma 6.4.2]. We can thus regard

(
Pε ◦ (u, V u

ε )
−1

)
ε>0 as a sequence of

probabilities on (U × V ,B(U × V )) and analyze its large deviations asymptotics
as ε → 0. To formulate such a large deviations principle however, we need a few
more notations and definitions.

2.4. Admissible pairs

It turns out that not all the elements in U × V are significant for the large
deviations asymptotics and here we describe the relevant ones as cluster points of(
(uε, V uε

ε )
)
ε>0 for suitable (deterministic) sequences (uε)ε>0. Unfortunately, this

description is somewhat technically involved; it has been engineered to make the
rate function of the large deviations upper bound (that we prove) as large as pos-
sible, and to guarantee its goodness (i.e., its coercivity and lower semicontinuity).
The proof of a matching lower bound (that we do not discuss) should rely on a
suitable density theorem. In this respect, the characterization of the rate function
here provided might be of some help.

Given u ∈ U and δ > 0 we denote by ω∞(u; δ) its continuity modulus, i.e.,

ω∞(u; δ) := sup
t,s∈[0,T ]
|t−s|�δ

‖ut − us‖L1 . (2.12)

Given z ∈ L1([0, T ]), according to the Kolmogorov–Riesz–Fréchet compactness
criterion (see, e.g., [10, Thm. 4.26]), we let ω1(z; δ) be its L1-continuity modulus
regarding L1([0, T ]) as a subset of L1(R), i.e.,

ω1(z; δ) := sup
δ′∈(0,δ]

(∫ δ′

0
(|zt | + |zT−t |) dt +

∫ T

δ′
|zt − zt−δ′ | dt

)
. (2.13)

Finally, we introduce the diffuseWillmore functionalWε : L1 → [0,+∞], defined
by

Wε(u) :=

⎧⎪⎨
⎪⎩
1

ε

∫ (
εΔu − 1

ε
W ′(u)

)2

dx if u ∈ H2.

+∞ otherwise.
(2.14)

Observe that since W ′ has at most cubic growth and d � 3, by Sobolev embedding,
u ∈ H1 implies W ′(u) ∈ L2.

In the following definition we fix α2 ∈ (0, 1
4d ), α3 ∈ (0, 12 ), and a countable

set {φ j } ⊂ C1(Td), dense in the unit ball. The condition α2 < 1
4d is not optimal

and is due to technical issues.



LDP for Stochastic PDE Approximation of the Mean Curvature Flow

Definition 2.6. (Admissible pairs) Recall the definitions of V and U in (2.2) and
(2.11). Given � = (�1, �2, �3) ∈ (0,∞)3, let Γ �, the set of �-admissible pairs,
be the collection of elements in U × V such that (u, V ) = limε(uε, V uε

ε ) in the
topology ofU×V for some sequence (uε)ε>0 ⊂ C([0, T ]; H1)∩ L2([0, T ]; H2),
ε ↓ 0, meeting the following conditions for any ε and for any δ ∈ (0, T ]:
(a) uε0 = ūε0 with (ū

ε
0)ε>0 as in Assumption 2.5.

(b) sup
t∈[0,T ]

Fε(uεt )+
∫ T

0
Wε(u

ε
t ) dt � �1.

(c) ω∞(uε; δ) � �2δ
α2 .

(d) Letting zε(φ) ∈ L1([0, T ]) be defined by zε(φ)t := |V uε
ε,t |(φ), φ ∈ C1(Td),

then for any 1 ≤ j ≤ �(ελε)−1� we have ω1(zε(φ j ); δ) � ‖φ j‖C1(Td ) �3δ
α3 .

We also define Γ := ⋃
� Γ � that will be called the set of admissible pairs. An

element V ∈ V is called admissible iff (u, V ) is an admissible pair for some
u ∈ U .

The next statement, which relies on results in [37,42], as detailed in “Ap-
pendix B”, shows that in dimension d � 3 the admissible pairs enjoy nice proper-
ties.

Theorem 2.7. Recall τ denotes the surface tension as defined in (1.2). For each
� ∈ (0,+∞)3 the set Γ � is compact in U × V . Furthermore, if (u, V ) ∈ Γ � then
u0 = ū0 as in Assumption 2.5 and for any δ ∈ (0, T ]:
(a) u ∈ L∞([0, T ]; BV (Td; {±1})), ess supt ‖ut‖TV � 2�1/τ , and
ω∞(u; δ) � �2δ

α2 .

(b) ess supt ‖|Vt |‖TV � �1 and
(b.1) for a.e. t ∈ [0, T ], τ−1Vt is an integral varifold,
(b.2) for a.e. t ∈ [0, T ], Vt admits a mean curvature Ht which satisfies∫ T

0 |Vt |(|Ht |2) dt � �1.
(b.3) for anyφ ∈ C1(Td) it holdsω1(z(φ); δ) � ‖φ‖C1(Td ) �3δ

α3 ,where z(φ)t :=
|Vt |(φ);

(c) for a.e. t ∈ [0, T ], 1
2 d|∇ut | � 1

τ
d|Vt |.

Statement (c) could be improved. Indeed, arguing as in [26, Thm. 1], it should be
actually possible to show that for a.e. t ∈ [0, T ] one has |Vt | = τ

2 |∇ut | + τ μ̃t ,
where μ̃t is a rectifiable measure with even multiplicity.

2.5. Brakke motion

For the present purpose of describing the asymptotic behavior of the stochas-
tically perturbed Allen–Cahn equation, we adopt a slightly different definition of
(weak) motion by mean curvature with respect to the one of Brakke motion [9].

Definition 2.8. (Brakke motion) Given a Radon measure μ̄0 ∈ M+, an element
V ∈ V is called a Brakke motion with initial datum μ̄0 iff V is admissible and for
each ψ ∈ C1

K

([0, T )× T
d;R+

)
,

− μ̄0(ψ0)+
∫ T

0
|Vt |

(
−∂tψt − Ht · ∇ψt + |Ht |2ψt

)
dt � 0, (2.15)
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where Ht is the mean curvature vector of Vt . Given ū0 ∈ BV (Td; {±1}) and
μ̄0 ∈ M+, a pair (u, V ) ∈ U×V is called an enhanced Brakke motion with initial
datum (ū0, μ̄0) iff (u, V ) is an admissible pair, V is a Brakke motion with initial
datum μ̄0, and u0 = ū0 (compare with [32, section12] and [33]).

In view of Theorem 2.7, if V is admissible then it admits a mean curvature
vector in L2([0, T ] × T

d , |Vt | dt;Rd), which implies that the above definition is
well posed. Moreover, if V is a Brakke motion then τ−1V is an L2-flow with
velocity ν = H . Indeed, for a suitable choice of the positive test function, the in-
equality (2.15) easily implies (2.4), while the orthogonality condition (2.3) follows
from orthogonality of the mean curvature vector for integral varifolds [9, Chap. 5,
pag. 121].

It is possible to show that the previous definition of Brakke motion implies the
usual one. More precisely, if V is a Brakke motion with initial datum μ̄0 and μt

is the càglàd representative of |Vt |, t ∈ [0, T ], introduced in Remark 2.3, then for
each φ ∈ C1(Td) and each t ∈ [0, T ),

lim
s→t

μs(φ)− μt (φ)

s − t
� μt

(
Ht · ∇φ − |Ht |2φ

)
,

where we understand that the right-hand side is −∞ for the (zero measure) set
of times such that either Ht does not exist or does not belong to L2(μt ;Rd),
see [17, Thm. 7.1]. Furthermore, (2.15) implies, in consistence with the possible
instantaneous disappearance of mass, the inequality μ0 ≤ μ̄0 as Radon measures.

2.6. The rate function

If V ∈ V is admissible, τ−1V is an L2-flow, and ν is a velocity of τ−1V , we
set,

Iac(V, ν) := 1

4

∫ T

0
|Vt |

(∣∣νt − Ht
∣∣2) dt (2.16)

Ising(V, ν) := sup
ψ

{
−μ̄0(ψ0)+

∫ T

0
|Vt |

(− ∂tψt − νt · ∇ψt + νt · Ht ψt
)
dt

}
,

(2.17)

where the supremum is carried out over all ψ ∈ C1
K ([0, T ) × T

d) such that 0 �
ψ � 1.

Recall that Γ denotes the set of admissible pairs, see Definition 2.6, and let
I : U × V → [0,+∞] be the functional defined by

I (u, V ) :=
{
inf
ν
{Iac(V, ν)+ Ising(V, ν)} if (u, V ) ∈ Γ , τ−1V is an L2-flow,

+∞ otherwise,
(2.18)

where the infimum is taken over all the possible velocities of V .
It is simple to check that I (u, V ) = 0 iff (u, V ) is an enhanced Brakke motion

with initial datum (ū0, μ̄0) according to Definition 2.8.
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Let t 	→ μt be the càdlàg representative of t 	→ |Vt | introduced in Remark 2.3
and denote by DV its jump set. By localizing the test function ψ in the variational
definition (2.17) around the set DV , we deduce that

Ising(V, ν) � sup
φ

(
μ0(φ)− μ̄0(φ)

)
+

∑
t∈DV

sup
φ

(
μt (φ)− μt−(φ)

)
=: Inucl(V ),

(2.19)

where the suprema are carried out over all φ ∈ C1(Td) such that 0 � φ � 1. The
right-hand side in (2.19) is the nucleation part of the rate function introduced in
[30,40]. The inequality Ising � Inucl is strict. Consider indeed an element V such
the map t 	→ μt has no jumps, but t 	→ μt (φ) has a derivative with nontrivial
positive Cantor part for some φ ∈ C1(Td), then Ising(V ) > 0 while the right-hand
side of (2.19) vanishes. To our knowledge, the possible occurrence of paths t 	→ μt

such that μt (φ) has a Cantor part for some φ ∈ C1(Td) cannot be ruled out even in
the context of the derivation of Brakke motion as singular limit of the deterministic
Allen–Cahn equation. It would be interesting to establish a connection between the
rate function (2.18) and the one recently introduced in [35], that is defined by a
somewhat analogous variational expression.

2.7. Large deviations upper bound

For the reader convenience, we first recall the large deviations axiomatic, see,
e.g., [15]. Let (Pε) be a family of probability measures on a Hausdorff topological
space X . The family (Pε) satisfies the good large deviations principle with speed
βε ↓ 0 and rate function J : X → [0,+∞] iff the following conditions are met:

(i) (Goodness) J has compact sub-level sets.
(ii) (LD upper bound) For each closed set C ⊂ X , lim

ε→0
βε logPε(C) � − inf

C
J .

(iii) (LD lower bound) For each open set A ⊂ X , lim
ε→0

βε logPε(A) � − inf
A

J .

The large deviations estimates (ii) and (iii) give a precise sense to the (logarithmic)
asymptotics Pε(B) � exp{−β−1

ε infB J }. Observe that if the zero level set of J is
the singleton {s0} then the large deviations upper bound together with the goodness
of J imply the law of large numbers Pε → δs0 (weakly as probability measure),
together with an exponential control on the error.

In the setting of the stochastic Allen–Cahn approximation to themean curvature
flow, the following theorem provides a large deviations upper bound:

Theorem 2.9. (LD upper bound) Let d � 3 and Pε be the law of the solution to
(2.5) with initial condition ūε0. The sequence of probabilities

(
Pε ◦ (u, V u

ε )
−1

)
on

U × V satisfies a large deviations upper bound with speed ελε and good rate
function I : U × V → [0,+∞] given by (2.18). Namely, I has compact sub-level
sets and, for each closed set C ⊂ U × V ,

lim
ε→0

ελε logPε
{
(u, V u

ε ) ∈ C
}

� − inf
C

I. (2.20)



Lorenzo Bertini, Paolo Buttà & Adriano Pisante

As a corollary of this result, we deduce that the cluster points of the sequence(
Pε ◦ (u, V u

ε )
−1

)
are supported by the enhanced Brakke motions with initial datum

(ū0, μ̄0), in the sense of Definition 2.8. Even in the two-dimensional case there are
well-known examples in which uniqueness for Brakke mean curvature flow fails,
see, e.g., [9,34]. We have thus not obtained a genuine law of large numbers for the
stochastically perturbedAllen–Cahn equation. The reasonable hope, but apparently
quite impervious to pursuit, is that the stochastic perturbation selects the physical
motions. In this respect, Theorem 2.9 shows that the set of all possible Brakke
motions can be achieved with a probability not exponentially small, but gives no
further information about the limiting probability laws on this set.

2.8. Discrepancy measure

A crucial technical ingredient in the Allen–Cahn approximation of the mean
curvature flow is the limiting equipartition of energy. For later use, we recall here
the precise statement. Given u ∈ L2 we introduce the discrepancy measure as the
signed Radon measure on Td defined by

dξu
ε :=

{(
ε
2 |∇u|2 − 1

ε
W (u)

)
dx, if u ∈ H1,

0 otherwise .
(2.21)

Given u ∈ C([0, T ]; L2)we let ξu
ε ∈ L∞([0, T ];M(Td)) be defined by ξu

ε,t = ξut
ε

if u ∈ C([0, T ]; H1) and ξu
ε,t = 0 otherwise.We observe that, as is well known, the

so-called monotone one dimensional entire stationary solutions of the deterministic
Allen–Cahn equation satisfy the equipartition of energy ε

2 |∇u|2 = 1
ε

W (u). The
discrepancy measure quantifies the violation of this equipartition property:

The following statement is the content of [40, Prop. 6.1].

Lemma 2.10. Fix �1 > 0 and let (uε) be a sequence meeting condition b) in
Definition 2.6. Then,

lim
ε→0

∫ T

0

∥∥ξuε
ε,t

∥∥
TV dt = 0.

2.9. Stochastic currents

The definition of curvature has been given for general varifolds and reduces to
the classical one when the varifold is rectifiable, its multiplicity is constant, and
it is supported by a smooth surface of codimension one. On the other hand, given
V = (Vt )t∈[0,T ] ∈ V , its associated velocities are defined only if τ−1V is an L2-
flow, in particular only if Vt is rectifiable for a.e. t ∈ [0, T ]. Therefore, for ε > 0,
the velocity of the path (V u

ε,t )t∈[0,T ] has been not defined yet. A similar issue is
also present in [40], where the velocity for ε > 0 is defined to be proportional to
−ε∇ut ∂t ut . By using the measure-function pairs theory developed in [25], which
requires an L2-estimate on ∂t u, in [40] it is then shown that the limit of such
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velocities exists in a suitable sense and converges to a velocity of the limiting
L2-flow.

In the present stochastic case, the above strategy is not directly applicable, due to
the lack of control of the time derivative of the process. For ε > 0, we next define,
with Pε-probability one, the velocity of the general varifold V u

ε as a stochastic
current, and regard it as a separate variable in the large deviations principle. Relying
on suitable super-exponential bounds, at the end of the argument, we are able to
show that currents can be represented in terms of velocities of L2-flows.

The stochastic current is defined as follows. Given s ∈ R, let Hs(Λd−1;Rd) be
the vector-valued fractional Sobolev space onΛd−1. For s � 0, it can be defined as
the domain of (I − Δ)s/2 on L2(Λd−1;Rd) equipped with the graph-norm. Here
Δ denotes the Laplace-Beltrami operator on Λd−1 endowed with the standard
Riemaniann metric. As usual H−s(Λd−1;Rd), s > 0, is defined as the dual of
Hs(Λd−1;Rd). Observe that if s > d−1

2 then Hs(Λd−1;Rd) ↪→ C(Λd−1;Rd).
Given s ∈ R and an Hilbert space H , we denote by Hs(Td; H) the H -valued
fractional Sobolev space on Td . It can be defined in terms of the H -valued Fourier
series on T

d with the usual norm. For s > d
2 we have Hs(Td; H) ↪→ C(Td ; H).

Given s ∈ (−1, 1) and an Hilbert space H , we also let Hs([0, T ]; H) be the H -
valued fractional Sobolev space on [0, T ]. For s ∈ [0, 1), it can be defined via the
standard Gagliardo norm, while, as usual, H−s([0, T ]; H), s ∈ (−1, 0), is defined,
letting H ′ be the dual of H , as the dual of Hs([0, T ]; H ′). For s > 1

2 we have
Hs([0, T ]; H) ↪→ C([0, T ]; H). Finally, given s = (s1, s2, s3) ∈ (−1, 1) × R

2,
we set

Hs := Hs1
(
[0, T ]; Hs2

(
T

d; Hs3
(
Λd−1;Rd

)))
. (2.22)

Observe that if s ∈ ( 12 , 1) × ( d
2 ,∞) × ( d−1

2 ,∞) then Hs ↪→ C([0, T ] × T
d ×

Λd−1;Rd).
For s ∈ ( 12 , 1)× ( d

2 ,+∞)× ( d−1
2 ,+∞) and f ∈ Hs we define,

J u
ε ( f ) := −ε

∫ T

0
〈∇ut · ft

(
·, (nu)⊥

)
, dut 〉L2 , (2.23)

where we recall that nu has been defined in (2.10) and the right-hand side is Pε-a.s.
defined as an Itô’s stochastic integral with respect to the semimartingale u (for
the latter notions see, e.g., [15, Chap. 4]). As follows from the theory of stochastic
currents for (2.5) developed in “AppendixC” (analogous to the analysis of stochastic
currents for finite dimensional diffusions in [20]), the map f 	→ J u

ε ( f ) defines,
with Pε-probability one, a linear functional on Hs. We shall denote by u 	→ J u

ε

the associated H−s-valued random variable.

Remark 2.11. Let L be the closure of the linear subspace of Hs of functions of type
ft (x,Σ) = Σ ηt (x), η ∈ Hs1([0, T ]; Hs2(Td;Rd)) (recall that for Σ ∈ Λd−1,
the orthogonal projection onto Σ is still denoted by Σ). From the very definition
of J u

ε , it vanishes on L.

In the sequel, we shall regard η ∈ Hs1([0, T ]; Hs2(Td;Rd)) also as the element
in Hs defined by f ηt (x,Σ) = ηt (x), and we shorthand J u

ε ( f η) by J u
ε (η).



Lorenzo Bertini, Paolo Buttà & Adriano Pisante

3. Super-Exponential Estimates

In this section we prove the probability estimates needed for the upper bound
of the large deviations. These will be achieved by suitable applications of Itô’s
formula with respect to various semimartingales whose quadratic variations will
be explicitly computed (for an introduction to these notions we refer the unfamiliar
reader to, e.g., [15,Chap. 4]). Strictly speaking, Itô’s formulawill be applied to some
functions that are not C2. Nevertheless, the resulting formulae can be justified by
means of an appropriate truncation procedure, that is here completely omitted and
not further mentioned. We refer the interested reader to [5] for the details on this
truncation argument.

The following elementary observation will be used repeatedly in the sequel. If
B1, . . . , Bn are measurable subsets of C([0, T ]; L2) then

ελε logPε
( n⋃

i=1

Bi

)
� ελε log n +

n∨
i=1

ελε logPε(Bi ). (3.1)

Hereafter, we shall denote by C a generic positive constant, independent of ε,
whose numerical value may change from line to line and from one side to the other
in an inequality.

3.1. Energy estimate

In the context of the analysis of the action functional [40], from the equi-
boundedness of the action it is deduced a uniform bound for the free-energy func-
tional Fε given by (2.7) and the time integral of the diffuse Willmore functional
Wε defined by (2.14). In the stochastic setting, both the free energy and the time
integral of the diffuse Willmore functional can be arbitrarily large, however - as we
here show - this happens with probability super-exponentially small.

Proposition 3.1. Let Pε be the law of the solution to (2.5) with initial datum ūε0.
Then there exists a constant �0 ∈ [1,+∞) and ε0 > 0 such that for any ε ∈ (0, ε0]
and � ∈ [�0,+∞),

ελε logPε

(
sup

t∈[0,T ]
Fε(ut )+

∫ T

0
Wε(ut ) dt > �

)
� − �

20
. (3.2)

We start by a generalmartingale inequality that generalizes theBernstein inequality,
see, e.g., [41, Ex. VI.3.16], which is obtained by choosing β = 0 in Lemma 3.2
below. The next statement is a particular case of [36, Lemma 2] to which we refer
for the proof.

Lemma 3.2. Let M be a real, continuous, square integrable martingale starting
from 0 with quadratic variation [M]. Given β � 0 and C ∈ (0,+∞), for any
bounded stopping time τ ,

P

(
sup
t�τ

Mt > � , [M]τ � β sup
t�τ

Mt + C
)

� exp
{
− �2

2(β�+ C)

}
, � > 0.
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Proof of Proposition 3.1. By Itô’s formula, with Pε-probability one, for each t ∈
[0, T ],

Fε(ut )+
∫ t

0
Wε(us) ds = Fε(ūε0)+ Rt + Nt , (3.3)

where N is a continuous Pε-martingale and the Itô’s term is

Rt = ελε
∫ t

0

∫ ∫ [∇ jε(x − y)
]2 dx dy ds + λε

∫ t

0

∫
1

ε
( jε ∗ jε)(0)W

′′(u) dx ds.

Therefore, for ε0 small enough (depending on T ) and 0 < ε � ε0,

|Rt | � ελε‖∇ jε‖2L2 t + ε−1λε‖ jε‖2L2

∫ t

0

∫
|W ′′(u)| dx ds � C + 1

2
sup
s�t

Fε(us),

(3.4)

where we used that |W ′′| ≤ C(1+ ε−1W ) by Assumption 2.4 and that, in view of
(2.6), ε−1λε‖ jε‖2L2 → 0 as ε→ 0.

By taking the supremum over time in (3.3) and using the previous bound we
get

1

2
sup
s�t

Fε(us)+
∫ t

0
Wε(us) ds � Fε(ūε0)+ sup

s�t
Ns ≤ C̄ + sup

s�t
Ns , (3.5)

where C̄ := supε≤ε0 Fε(ūε0) < +∞. The quadratic variation of N is

[N ]t = 2λε

∫ t

0

∥∥∥ jε ∗
(
εΔus − 1

ε
W ′(us)

)∥∥∥2
L2

ds

� 2ελε

∫ t

0
Wε(us) ds � 2ελε

[
C̄ + sup

s�t
Ns

]
,

(3.6)

where we used (3.5) in the last inequality. By applying Lemma 3.2 we deduce

ελε logPε
(

sup
t∈[0,T ]

Nt > �
)

� − �

4+ 4C̄�−1
� −�

5
,

provided � ≥ �0 := 4C̄ + 1. Using (3.5), again the conclusion follows. ��

3.2. Continuity moduli

In this subsection we prove the estimates on the continuity moduli needed for
the exponential tightness and to ensure that the rate function is finite only on the
set Γ of admissible pairs, recall items (c) and (d) in Definition 2.6.
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Proposition 3.3. Let Pε be the law of the solution to (2.5) with initial datum ūε0.
For each γ ∈ (0, 1

4d ) there exist constants ε0 > 0, 0 < δ0 � 1 ∧ T , and C0 � 1
such that the following holds. For any ε ∈ (0, ε0], for any δ ∈ (0, δ0), and for any
ζ > 0 such that ζ δ−γ ≥ C0�0 with �0 as in Proposition 3.1, we have

ελε logPε
(
ω∞(u; δ) > ζ

)
� − ζ

C0δγ
,

where ω∞(u; δ) is the continuity modulus defined in (2.12).

The proof of the previous bound relies on the following lemma:

Lemma 3.4. Let Pε be the law of the solution to (2.5) with initial datum ūε0. Let
also G : R → R be defined by G(u) = ∫ u

0

√
2W (v) dv and, given φ ∈ L∞, set

zφt := ∫
G(ut )φ dx, t ∈ [0, T ]. For each γ ∈ (0, 12 ) there exist constants ε0 > 0,

0 < δ0 � 1 ∧ T , and C0 ∈ (0,+∞) such that the following holds. For any
ε ∈ (0, ε0], any δ ∈ (0, δ0), any ζ > 0 such that ζ δ−γ ≥ �0, and any φ ∈ L∞,
‖φ‖∞ = 1,

ελε logPε

(
sup

|t−s|�δ
|zφt − zφs | > ζ

)
� − ζ

C0δγ
.

Proof. By a simple inclusion of events, see e.g., the proof of Thm. 8.3 in [7], it is
enough to show that

sup
s∈[0,T−δ]

ελε log
T

δ
Pε

(
sup

t∈[s,s+δ]
|zφt − zφs | > ζ

)
� − ζ

Cδγ
, (3.7)

for some constant C ∈ (0,+∞) independent on φ, ζ , and δ.
By Itô formula,withPε-probability one, for each s ∈ [0, T−δ] and t ∈ [s, s+δ],

zφt − zφs = Dφ,st + Rφ,st + Nφ,st , (3.8)

where

Dφ,st :=
∫ t

s

∫ √
2W (u)

(
Δu − 1

ε2
W ′(u)

)
φ dx dr,

the Itô term is

Rφ,st = λε
∫ t

s

∫
W ′(u)φ√
2W (u)

( jε ∗ jε)(0) dx dr,

and Nφ,st , t ∈ [s, T ], is a Pε-martingale with quadratic variation,

[Nφ,s]t = 4λε

∫ t

s

∥∥∥ jε ∗
(
φ
√

W (ur )
)∥∥∥2

L2
dr � 4ελεδ sup

r∈[0,T ]
Fε(ur ).
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To control the martingale part, given � > 0, we bound,

Pε

(
sup

t∈[s,s+δ]
|Nφ,st | > ζ

)
�Pε

(
sup

r∈[0,T ]
Fε(ur ) > �

)

+ Pε

(
sup

t∈[s,s+δ]
|Nφ,st | > ζ, sup

r∈[0,T ]
Fε(ur ) � �

)
.

Choosing δ0 small enough so that � = 2ζ/
√
δ > �0, applying Proposition 3.1,

and Lemma 3.2 with β = 0 (both to the martingales Nφ,s and −Nφ,s) we deduce,
recalling (3.1), that there exists a constant C > 0 such that, for all δ small enough,

sup
s∈[0,T−δ]

ελε logPε

(
sup

t∈[s,s+δ]
|Nφ,st | > ζ

)
� ελε log 3− ζ

C
√
δ
. (3.9)

Concerning the Itô term, for any ε ∈ (0, 1),

|Rφ,st | � λε‖ jε‖2L2 δ sup
r∈[0,T ]

∫ |W ′(ur )|√
2W (ur )

dx

� λε‖ jε‖2L2 δC sup
r∈[0,T ]

∫
(1+ W (ur )) dx

≤ C δ

(
1+ sup

r∈[0,T ]
Fε(ur )

)
,

where we used |(2W )−1/2W ′| � C(1+ W ) and the assumption (2.6) on jε.
By choosing δ0 > 0 so small that (C

√
δ)−1 ≥ 2+2�−1

0 we have ζ
Cδ −1 ≥ 2ζ√

δ
,

hence, by Proposition 3.1 with � = 2ζ/
√
δ we obtain

ελε logPε

(
sup

t∈[s,s+δ]
|Rφ,st | > ζ

)
≤ − ζ

10
√
δ
. (3.10)

Finally, by Cauchy–Swartz inequality,

|Dφ,st | �
√
δ

(
sup

r∈[0,T ]

∫
ε−12W (ur ) dx

) 1
2 (∫ T

0
Wε(ur ) dr

) 1
2

�
√
δ

2

(
sup

r∈[0,T ]
Fε(ur )+

∫ T

0
Wε(u) dr

)
,

where in the last step we used Young’s inequality. Hence,

Pε

(
sup

t∈[s,s+δ]
|Dφ,st | > ζ

)
� Pε

(
sup

r∈[0,T ]
Fε(ur )+

∫ T

0
Wε(u) dr > ζ

√
2
δ

)
.
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Choosing δ0 small enough so that � = ζ√2/δ > �0, applying Proposition 3.1 with
� = ζ√2/δ ≥ �0, we deduce

sup
s∈[0,T−δ]

ελε logPε

(
sup

t∈[s,s+δ]
|Dφ,st | > ζ

)
� − ζ

20
√
δ
. (3.11)

Since ελε → 0, log 3
δ
= o(δ−1/2+γ ), and ζ δ−γ ≥ �0, choosing ε0 > 0 small

enough, the bound (3.7) follows from (3.8), (3.9), (3.10) and (3.11). ��
To deduce Proposition 3.3 from the previous lemma, we need a rough “measure

of compactness” for the embedding BV ↪→ L1.

Lemma 3.5. LetK be the subset of L1 given byK := {
v ∈ BV (Td) : ‖v‖BV � 1

}
.

There exists a constant C > 0 for which the following holds: for each σ ∈ (0, 1]
there exists a finite set {v1, . . . , vNσ } such that K ⊂ ⋃

i {v ∈ L1 : ‖v− vi‖L1 < σ }
and Nσ ≤ C(σ−d)σ

−d
.

Proof. Given σ ∈ (0, 1] and m0 ∈ N to be fixed later, we let n = m0�1/σ� and
write the fundamental domain Q = [0, 1)d of the torus Td as disjoint union of nd

cubes Qn
i of linear size 1/n corresponding to multi-indices i ∈ {0, . . . , n − 1}d .

Given f ∈ K let fi := |Qn
i |−1

∫
Qn

i
f dx the average on each cube and f n :=∑

i fiχQn
i
the piecewise constant approximation of f . By Holder, Sobolev, and

Sobolev-Poincaré inequalities, with 1/1∗ = 1− 1/d, for any i we have,

| fi | ≤ |Qn
i |−1/1∗‖ f ‖L1∗ (Q) ≤ Cnd−1‖ f ‖BV ≤ Cnd−1,

‖ f − fi‖L1(Qn
i )

� |Qn
i |1−1/1∗‖ f − fi‖L1∗ (Qn

i )
≤ C

n
‖D f ‖T V (Qn

i )
,

hence

‖ f − f n‖L1(Q) ≤
C

n
, ‖ fn‖L∞(Q) ≤ Cnd−1. (3.12)

We let n−1
Z = {m/n ; m ∈ Z} and, for each f n , we introduce its discrete

approximation f̃ n : Q → n−1
Z by setting f̃ n = n−1 ∑

i�n fi�χQn
i
. Clearly,

‖ f n − f̃ n‖L∞(Q) ≤ 1

n
, ‖ f̃n‖L∞(Q) ≤ Cnd−1. (3.13)

By (3.12) and (3.13) we have ‖ f − f̃ n‖L1(Q) � Cn−1 < σ for m0 large enough,

uniformly with respect to f . By construction, f̃ n ∈ Qn with

Qn :=
{

g =
∑

i

giχQn
i
: gi ∈ n−1

Z ∩
[
−Cnd−1,Cnd−1

]}
.

As the cardinality Qn is at most C(nd)n
d
, the conclusion follows. ��
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Proof of Proposition 3.3. Let G be the function defined in Lemma 3.4. We claim
that for each γ ∈ (0, 1

2d ) there exist constants ε0 > 0, δ0 ∈ (0, T ], and C1 � 1
such that the following holds. For any ε ∈ (0, ε0], for any δ ∈ (0, δ0), and for any
ζ > 0 such that ζ δ−γ ≥ C1�0 with �0 as in Proposition 3.1, we have

ελε logPε
(
ω∞(G(u); δ) > ζ

)
� − ζ

C1δγ
. (3.14)

We first show that the claim implies the statement of the proposition. Since W
has quadratic minima and it has at least quadratic growth, then there exists C > 0
such that |G−1(a)− G−1(b)| � C

√|a − b| for any a, b ∈ R. Hence,

‖ut − us‖L1 � C
√‖G(ut )− G(us)‖L1 ,

which implies the inclusion {ω∞(u; δ) > ζ } ⊂ {ω∞(G(u); δ) > (ζ/C)2}. By
applying (3.14), with γ → 2γ , ζ → (ζ/C)2, so that ζ 2δ−2γ � C2C1�0 and
γ ∈ (0, 1

4d ), the statement follows with C0 = max{1;C
√

C1/�0}.
We are left with the proof of (3.14). To this end, we observe that |∇G(u)| �

ε
2 |∇u|2 + 1

ε
W (u) and, in view of Assumption 2.4, |G| � C2(W + 1) for some

C2 � 1. Proposition 3.1 thus implies that, for any � ∈ [2C2�0,+∞),

ελε logPε
(

sup
t∈[0,T ]

(‖G(ut )‖L1 + ‖∇G(ut )‖L1
)
> �

)
� − �

40C2
. (3.15)

Set K� :=
{
v ∈ BV (Td) : ‖v‖BV � �

}
. For each ρ > 0, by Lemma 3.5 with

σ = ρ�−1, there exists a finite set {v1, . . . , vN
ρ�−1 } ⊂ L1 such that K� ⊂ ∪i {v ∈

L1 : ‖v − vi‖L1 < ρ} and log Nρ�−1 � C[1 + (�ρ−1)d log(�ρ−1)]. Furthermore,
for each i, j = 1, . . . , Nρ�−1 there is φi, j ∈ L∞ of unit norm, given by φi, j =
sgn(vi − v j ), such that ‖vi − v j‖L1 = ∫

(vi − v j )φi, j dx .
Given γ ∈ (0, 1

2d ), choosing � = ζ δ−γ ≥ 2C2�0, (3.15) yields

ελε logPε
({

G(ut ) ∈ Kζ δ−γ ∀ t ∈ [0, T ]}c) � − ζ

Cδγ
. (3.16)

Choosing ρ = ζ/5, we have the inclusion of events
{
ω∞(G(u); δ) > ζ} ∩ {

G(ut ) ∈ Kζ δ−γ ∀ t ∈ [0, T ]}

⊂
⋃
i, j

{
sup

|t−s|�δ

∫
(G(ut )− G(us))φi, j dx > ζ/5

}
,

therefore by applying Lemma 3.4 with exponent γ ′ ∈ (0, 12 ) and ζ δ−γ
′ � �0, and

the above bound on log Nρ�−1 , we obtain, by choosing ε0 such that ελε � 1 for
ε ∈ [0, ε0],

ελε logPε
(
ω∞(G(u); δ) > ζ, {G(ut ) ∈ Kζ δ−γ ∀ t ∈ [0, T ]})

� ελε log N 2
�−1ζ/5 −

ζ

Cδγ ′
� C(1+ δ−dγ log δ−γ )− ζ

Cδγ ′
. (3.17)
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Since ζ δ−γ � 2C2�0, by choosing γ ′ ∈ (γ d, 12 ), we have ζ δ−γ ′ � �0 for any
δ ∈ (0, δ0] and δ0 possibly smaller than the one in Lemma 3.4.

The bounds (3.16) and (3.17) then yield, for ε ∈ (0, ε0],

ελε logPε
(
ω∞(G(u); δ) > ζ

)

� log 2− ζ

Cδγ
∧
{ ζ

Cδγ ′
− C(1+ δ−γ d log δ−γ )

}
,

which yields the claim for a possibly smaller choice of δ0. ��
Proposition 3.6. Let Pε be the law of the solution to (2.5) with initial datum ūε0.

For φ ∈ C1(Td) let zφt := |V u
ε,t |(φ). For each α ∈ (0, 12 ) there exist constants

ε2 > 0, 0 < δ1 � 1 ∧ T , and C2 � 1 such that the following holds. For any
φ ∈ C1(Td) with ‖φ‖C1 � 1, any ε ∈ (0, ε2], any δ ∈ (0, δ1), and any ζ > 0 such
that ζ δ−α ≥ C2�0, with �0 as in Proposition 3.1,

ελε logPε
(
ω1(zφ; δ) > ζ ) � − ζ

C2‖φ‖C1δα
, (3.18)

where ω1(z; δ) is the L1-continuity modulus defined in (2.13).

We start by a general compactness property for families of martingales. To put
the following result in perspective, consider a family of continuous real martin-
gales Mε, whose quadratic variation admits the bound d[Mε]t � Cεdt . Then, a
straightforward application of Berstein’s inequality yields a super-exponential es-
timate for its continuity modulus in C([0, T ]) (this is indeed the argument used in
Lemma 3.4). Next, we consider instead the case in which the quadratic variation
admits the bound [Mε]T � CεT and deduce a super-exponential estimate for the
continuity modulus in L1([0, T ]).
Lemma 3.7. Given T > 0 let Mε = {Mε

t }t∈[0,T ], ε ∈ (0, ε′], be a family of
real, continuous, square integrable Pε-martingales starting from 0 with quadratic
variation [Mε]. If there exist C ′ > 0 and �′ > 0 such that, for any ε ∈ (0, ε′], and
� � �′,

ε logPε
(
ε−1[Mε]T > �

)
� − �

C ′ , (3.19)

then, for each α ∈ (0, 12 ) there is C ′′ � 1 such that the following holds. For any
ζ > 0 and δ ∈ (0, 1 ∧ T ] with ζ δ−α � C ′′�′, and any ε ∈ (0, ε′],

ε logPε
(
ω1(Mε; δ) > ζ ) � − ζ

C ′′δα
. (3.20)

Proof. By the representation of continuous martingales as time-changed Brownian
motions, see, e.g., [41, Chap. V, Thm. 1.6],

Mε Law= ε
1
2 Bτ ε , (3.21)



LDP for Stochastic PDE Approximation of the Mean Curvature Flow

where B is a standard Brownian motion and τ εt = ε−1[Mε]t . By the Borell’s
inequality [1, Thm. 2.1], for any α ∈ [

0, 12
)
and S > 0,

P

(
sup

s,s′∈[0,S]
|Bs − Bs′ |
|s − s′|α > λ

)
� 4 exp

(
− (λ− eS)

2

2σS

)
, λ � eS, (3.22)

where, using also the parabolic scale invariance of Brownian motion,

eS := E

(
sup

s,s′∈[0,S]
|Bs − Bs′ |
|s − s′|α

)
= S

1
2−αe1,

σS := sup
s,s′∈[0,S]

E

( |Bs − Bs′ |2
|s − s′|2α

)
= S1−2ασ1.

(3.23)

Fix α ∈ (0, 12 ), � � �′, and let

B� :=
{

sup
t,t ′∈[0,T ]

|Mε
t − Mε

t ′ |
|τ εt − τ εt ′ |α

� λ�

}
,

with λ� > 0 to be fixed below. We have,

Pε

(Bc
�

)
� 2

[
Pε

(Bc
� ∩ {τ εT � �}) ∨ Pε

(
τ εT > �

)]
.

By (3.21) the first probability in the right-hand side can be bounded by using

(3.22) and (3.23) with (λ, S) replaced by (ε− 1
2 λ�, �), while a bound for the second

one is given by (3.19). Therefore, choosing λ� = C̃�1−α , � � C̃�′ for a suitable
C̃ = C̃(ε′,C ′) large enough we obtain, using (3.1),

logPε
(Bc
�

)
� ε log 4+

(
ε log 4− ε (ε

− 1
2 λ� − � 1

2−αe1)2

2�1−2ασ1

)
∨
(
− �

C ′

)

� − �

2C ′ . (3.24)

By using that Mε
0 = 0, the monotonicity of t 	→ τ εt , the concavity of x 	→ xα , and

Jensen inequality, a straightforward computation yields

ω1(Mε; δ) � 2λ�δ(τ
ε
T )
α + λ�T 1−αδα(τ εT )α on the event B�,

which implies, as λ� = C̃�1−α ,

ω1(Mε; δ) � C̃(2δ + T 1−αδα)� � Cδα� on the event B� ∩ {τ εT � �}.
Hence, given ζ > 0 and choosing � = Cζ δ−α , the set {ω1(Mε; δ) > ζ } is contained
in Bc

� ∪ {τ εT > �}. By choosing C ′′ � 1 large enough, the estimate (3.20) follows
by (3.19) and (3.24). ��
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Proof of Proposition 3.6. By Ito’s formula and (2.5),

zφt = |V ū0ε
ε |(φ)+ Dφ,1t + Dφ,2t + Nφt + Rφt , (3.25)

where

Dφ,1t := −
∫ t

0

∫
∇φ · ∇u

(
εΔu − 1

ε
W ′(u)

)
dx ds,

Dφ,2t := 1

ε

∫ t

0

∫
φ

(
εΔu − 1

ε
W ′(u)

)2

dx ds,

and, after a few integration by parts, the Itô term Rφ reads,

Rφt =ελε
∫ t

0

∫ ∫
φ(x)

[∇ jε(x − y)
]2 dx dy ds

+ λε
∫ t

0

∫
φ
1

ε
( jε ∗ jε)(0)W

′′(u) dx ds.

(3.26)

Finally, Nφ is a Pε-martingale with quadratic variation,

[Nφ]t = 2λε

∫ t

0

∫ {
jε ∗

[
ε∇φ · ∇u + φ

(
εΔu − 1

ε
W ′(u)

)]}2
dx ds

� 4ελε

∫ t

0

∫ [
ε|∇φ|2|∇u|2 + φ2 1

ε

(
εΔu − 1

ε
W ′(u)

)2]
dx ds

� 4ελε
[
2T ‖∇φ‖2∞ sup

s∈[0,T ]
F(us)+ ‖φ‖2∞

∫ T

0
Wε(ut ) dt

]
.

By Proposition 3.1, this bound implies that there exists C > 0 such that, for
any 0 < ε < ε0 and � ≥ 8(1+ T )�0,

ελε logPε
(
(ελε)

−1[Nφ]T > �
)

� − �

C(‖φ‖∞ + ‖∇φ‖∞)2 . (3.27)

By applying Lemma 3.7 to the family of martingales {‖φ‖−1
C1 Nφ}ε there is C ′′ � 1

such that the following holds: for any ζ > 0 and δ ∈ (0, 1 ∧ T ] with ζ δ−α �
4C ′′8(1+ T )�0, and any ε ∈ (0, ε0],

ελε logPε
(
ω1(Nφ; δ) > ζ/4) � − ζ

4C ′′(‖φ‖∞ + ‖∇φ‖∞)δα . (3.28)

We next estimate the second and third term on the right-hand side of (3.25). On
one hand,

∫ δ

0

(∣∣Dφ,2t

∣∣+ ∣∣Dφ,2T−t

∣∣) dt +
∫ T

δ

∣∣Dφ,2t − Dφ,2t−δ
∣∣ dt � 3δ‖φ‖∞

∫ T

0
Wε(ut ) dt.
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On the other hand, by Young’s inequality,

∫ δ

0

(∣∣Dφ,1t

∣∣+ ∣∣Dφ,1T−t

∣∣) dt

� 2δ‖∇φ‖∞
∫ T

0

∫ [
ε|∇u|2 + 1

ε

(
εΔu − 1

ε
W ′(u)

)2]
dx dt

� 2δ‖∇φ‖∞
[
2T sup

s∈[0,T ]
Fε(us)+

∫ T

0
Wε(ut ) dt

]
,

and, for the same reason,

∫ T

δ

∣∣Dφ,1t − Dφ,1t−δ
∣∣ dt � δ‖∇φ‖∞

[
2T sup

s∈[0,T ]
F(us)+

∫ T

0
Wε(ut ) dt

]
.

Since ω1(Dφ,1 + Dφ,2; δ) � ω1(Dφ,1; δ) + ω1(Dφ,2; δ), by Proposition 3.1 and
the previous estimates we conclude there exists C > 0 such that for any ζ > 0 and
δ ∈ (0, 1 ∧ T ] with ζ δ−1 � 2(1+ 2T )�0, and any ε ∈ (0, ε0],

ελε logPε
(
ω1(Dφ,1 + Dφ,2; δ) > ζ/2) � − ζ

Cδ(‖φ‖∞ + ‖∇φ‖∞) . (3.29)

It remains to consider the Ito term. In view of (2.6), (3.26), and the inequality
|W ′′| ≤ C(1+ W ), there exists ε2 ≤ ε0 such that for any ε ∈ (0, ε2] we have,

ω1(Rφ; δ) ≤ Cδ(1+ ‖φ‖∞T sup
s∈[0,T ]

Fε(us)).

Again by Proposition 3.1, there exists C ≥ 1 such that for any ζ > 0 and δ ∈
(0, 1 ∧ T ] with ζ δ−1 � 8C(1+ T )�0, and any ε ∈ (0, ε2],

ελε logPε
(
ω1(Rφ; δ) > ζ/4) � − ζ

Cδ‖φ‖∞ . (3.30)

Combining (3.28), (3.29), and (3.30), a simple inclusion of events together with
(3.1) implies that there exists C ≥ 1 such that for any ζ > 0 and δ ∈ (0, 1 ∧ T ]
with ζ δ−α � C�0, and any ε ∈ (0, ε2],

ελε logPε
(
ω1(zφ; δ) > ζ ) � ελε log 3− ζ

C‖φ‖C1δα
.

Finally, since ελε → 0 as ε → 0, by choosing a possibly smaller ε2 the claim
(3.18) follows for C2 � 1 large enough. ��
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3.3. Bounds on the stochastic currents

Recalling the definition of the stochastic currents in Subsection2.9, we first
prove that - with probability super-exponentially close to one - the stochastic current
J u
ε takes values in bounded subsets of H−s.

Lemma 3.8. Given s ∈ ( 12 , 1)× ( d
2 ,+∞)× ( d−1

2 ,+∞),
lim

�→+∞ lim
ε→0

ελε logPε
(‖J u

ε ‖2H−s > �
) = −∞.

Proof. By Remark C.2,

‖J u
ε ‖2H−s � C

(Cu
1,ε + Cu

2,ε

)
, (3.31)

where
√
Cu
1,ε �

∫ T

0

∫
ε

2
|∇ut |2 dx dt +

∫ T

0
Wε(ut ) dt

� T sup
t∈[0,T ]

Fε(ut )+
∫ T

0
Wε(ut ) dt

and

Cu
2,ε =

∑
m,n,k

∫
(1+ n2)−s1(1+ |k|2)−s2(1+ |q|2)−s3 |Z ε,mn,T (k, q)|2 dq,

with (see (C.3) for the definition of the functions em
n,k,q )

Z ε,mn,t (k, q) =
√
2ελε

∫ t

0

〈√
ε∇us · em

n,k,q

(
s, ·, ∇us|∇us |

)
, dαεs

〉
L2
.

By Proposition 3.1,

lim
�→+∞ lim

ε→0
ελε logPε

(
Cu
1,ε > �

)
= −∞. (3.32)

Now set

γ :=
∑

m,n,k

∫
(1+ n2)−s1(1+ |k|2)−s2(1+ |q|2)−s3 dq,

and introduce the probability measure Γ on {1, . . . , d} × Z+ × Z
d × R

d defined
by

Γ (da) := γ−1(1+ n2)−s1(1+ |k|2)−s2(1+ |q|2)−s3 d℘(m, k, n) dq,

a = (m, n, k, q),

where ℘ is the counting measure on {1, . . . , d} × Z+ × Z
d . Let also ea := em

n,k,q .
Then,

Cu
2,ε = γ

∫
Z εT (a)

2 Γ (da), (3.33)
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where Z εt (a) = Z ε,mn,t (k, q), t ∈ [0, T ], is a Pε continuous martingale. The bracket,
see, e.g., [41, Chap. IV, Def. 1.10], between Z ε(a) and Z ε(b) is

[Z ε(a), Z ε(b)]t
= 2ελε

∫ t

0
ε
〈

jε ∗
(
∇us · ea

(
s, ·, ∇us|∇us |

))
, jε ∗

(
∇us · eb

(
s, ·, ∇us|∇us |

))〉
L2

ds

� 2ελε‖ea‖∞‖eb‖∞
∫ t

0

∫
ε|∇us |2 dx ds � Cελε sup

s∈[0,t]
Fε(us). (3.34)

We next introduce the family of Pε-martingales Y εt (a) := Z εt (a)
2 − [Z ε(a)]t ,

t ∈ [0, T ], a ∈ {1, . . . , d} × Z+ × Z
d × R

d . By a straightforward computation,
the bracket between Y ε(a) and Y ε(b) is

[Y ε(a),Y ε(b)]t
= 4

∫ t

0
Z εs (a)Z

ε
s (b) d[Z ε(a), Z ε(b)]s

� Cελε sup
s′∈[0,t]

Fε(us′)
∫ t

0

(
Z εs (a)

2 + Z εs (b)
2) ds

� Cελε sup
s′∈[0,t]

Fε(us′)
∫ t

0

(
Y εs (a)+ Y εs (b)

)
ds + C

(
ελε sup

s′∈[0,t]
Fε(us′)

)2
.

Now, the process Xεt := ∫
Y εt (a) Γ (da) is still a Pε martingale with quadratic

variation,

[Xε]t =
∫
[Y ε(a),Y ε(b)]t Γ (da) Γ (db)

� Cελε sup
s′∈[0,t]

Fε(us′)
∫ t

0
Xεs ds + C

(
ελε sup

s′∈[0,t]
Fε(us′)

)2

� Cελε sup
s′∈[0,t]

Fε(us′) sup
s∈[0,t]

Xεs + C
(
ελε sup

s′∈[0,t]
Fε(us′)

)2
. (3.35)

Given �, �′ > 0 we write,

Pε

(
XεT > �

)
� Pε

(
XεT > �, sup

s∈[0,T ]
Fε(us) � �′

)
+ Pε

(
sup

s∈[0,T ]
Fε(us) > �

′).

The bound (3.35) and Lemma 3.2 imply

lim
ε→0

ελε logPε
(

XεT > �, sup
s∈[0,T ]

Fε(us) � �′
)

� − �

2C�′
.

By using Proposition 3.1 and taking first the limit � → +∞ and then �′ → +∞
we conclude that

lim
�→+∞ lim

ε→0
ελε logPε

(
XεT > �

)
= −∞. (3.36)
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We finally observe that by (3.33) and (3.34),

Cu
2,ε = γ XεT + γ

∫
[Z ε(a)]T Γ (da) � γ XεT + Cελε sup

s∈[0,T ]
Fε(us),

hence, applying (3.36) and once again Proposition 3.1,

lim
�→+∞ lim

ε→0
ελε logPε

(
Cu
2,ε > �

)
= −∞,

which, together with (3.31) and (3.32), concludes the proof. ��
The next two lemmata will allow us to represent currents in terms of velocities

of L2-flows.

Lemma 3.9.

lim
�→∞ sup

f
lim
ε→0

ελε logPε
(

J u
ε ( f )− 1

2

∫ T

0
V u
ε,t

(| ft |2
)
dt > �

)
= −∞,

where the supremum is carried out over f ∈ C∞([0, T ] × T
d ×Λd−1;Rd).

Proof. From the very definition (2.23), J u
ε ( f ) = A f

T + N f
T where

A f
T = −ε

∫ T

0

∫
∇ut · ft (·, (nu)⊥)

[
Δu − 1

ε2
W ′(u)

]
dx dt

and N f is a continuous Pε-martingale with quadratic variation

[N f ]t = 2ε2λε

∫ t

0

∥∥ jε ∗
(∇us · fs(·, (nu)⊥)

)∥∥2
L2 ds

� 4ελε

∫ t

0
V u
ε,s

(| fs |2
)
ds, (3.37)

where we used that ε|∇u|2 dx � 2 d|V u
ε |.

By Young’s inequality,

A f
T � 1

4

∫ T

0
V u
ε,t

(| ft |2
)
dt + 2

∫ T

0
Wε(u) dt,

so that, by Proposition 3.1,

lim
�→∞ sup

f
lim
ε→0

ελε logPε
(

A f
T − 1

4

∫ T

0
V u
ε,t

(| ft |2
)
dt > �

)
= −∞. (3.38)

In view of (3.37),

N f
t − 1

4

∫ T

0
V u
ε,t

(| ft |2
)
dt � N f

t − 1

16ελε
[N f ]T .
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For β > 0, by exponential Chebyshev inequality we get,

Pε

(
N f

t − 1

4

∫ T

0
V u
ε,t

(| ft |2
)
dt > �

)

� e−β�/(ελε)Eε exp
{ β
ελε

N f
t − β

16(ελε)2
[N f ]T

}
.

By choosing β = 1/8 and using that Eε exp
{
aN f

t − 1
2a2[N f ]T

}
� 1 for a ∈ R,

the above displayed bound yields

lim
�→∞ sup

f
lim
ε→0

ελε logPε
(

N f
t − 1

4

∫ T

0
V u
ε,t

(| ft |2
)
dt > �

)
= −∞,

which, combined with (3.38), concludes the proof. ��
In the following lemma we adopt the short notation introduced just after Re-

mark 2.11:

Lemma 3.10.

lim
�→∞ sup

ψ

lim
ε→0

ελε logPε
(

J u
ε (∇ψ)+

∫ T

0
|V u
ε,t |(∂tψt ) dt > �

)
= −∞,

where the supremum is carried out overψ ∈ C∞
K ((0, T )×T

d) such that‖ψ‖∞ � 1.

Proof. By Itô formula and (2.5), after a few integrations by parts,

|V u
ε,T |(ψT )− |V u

ε,0|(ψ0) =
∫ T

0
|V u
ε,t |(∂tψt ) dt + J u

ε (∇ψ)+ NψT + RψT

− 1

ε

∫ T

0

∫
ψ
(
εΔu − 1

ε
W ′(u)

)2
dx dt, (3.39)

where Rψt is defined as in (3.26) with φ replaced by ψ and Nψ is the continuous
Pε-martingale given by

Nψt =
∫ t

0

〈
ψs

[
− εΔus + 1

ε
W ′(us)

]
, dus −

(
Δus − 1

ε2
W ′(us)

)
ds

〉
L2
,

(3.40)

whose quadratic variation is

[Nψ ]t = 2λε

∫ t

0

∥∥∥ jε ∗
[
ψs

(
εΔus − 1

ε
W ′(us)

)]∥∥∥2
L2

ds

� 2λε

∫ t

0

∥∥∥ψs

(
εΔus − 1

ε
W ′(us)

)∥∥∥2
L2

ds

� 4ελε

∫ T

0
Wε(us) dt (as ‖ψ‖∞ � 1).
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By Proposition 3.1, Lemma 3.2 with β = 0, and the bound above,

lim
�→∞ sup

ψ

lim
ε→0

ελε logPε
(
− NψT > �

)
= −∞.

Arguing as in the proof of (3.4) and recalling (2.6), for ε small enough we have,

|RψT | �
(
ελε‖∇ jε‖2L2 T + ε−1λε‖ jε‖2L2

)(
C + 1

2
sup
s�T

Fε(us)
)

� C + 1

2
sup
s�T

Fε(us), (3.41)

where the constantC does not depend on the choice ofψ with ‖ψ‖∞ � 1. Similarly,
for such ψ ,

1

ε

∫ T

0

∫
|ψ |

(
εΔu − 1

ε
W ′(u)

)2
dx dt �

∫ T

0
Wε(u) dt.

Finally, V u
ε,T (ψT ) = V u

ε,0(ψ0) = 0 asψ has compact support. Therefore, by (3.39),
the proof is achieved gathering the above bounds and using Proposition 3.1. ��

4. Large Deviations Upper Bound

Recall the definitions of V , U , and Hs in (2.2), (2.11), and (2.22), and set

Z := U × V × H−s,

that we consider endowed with the product topology and the corresponding Borel
σ -algebra. Note that, since U × H−s has a countable basis, then B(Z) = B(U)⊗
B(V ) ⊗ B(H−s), see [8, Lemma 6.4.2]. In this section we shall prove a large
deviations upper bound for the family of probability measures on Z defined by
(Pε ◦ (Zu

ε )
−1), where Zu

ε := (u, V u
ε , J u

ε ) is a Borel map according to Lemma A.1
andTheoremC.1.Before stating the resultwe introduce the associated rate function.

Definition 4.1. Let D be the subset of Z given by the collection of elements Z =
(u, V, J ) such that:

(a) (u, V ) ∈ Γ and τ−1V is an L2-flow.
(b) The functional J extends to a continuous linear functional on L2(Vt dt;Rd)

satisfying J ( f ) = ∫ T
0

∫
f · ν dVt dt , f ∈ L2(Vt dt;Rd), where ν is a velocity

of τ−1V .

Remark 4.2. The previous definition and the orthogonality condition (2.3) yield
the inclusion L ⊂ Ker J for any (u, V, J ) ∈ D, where L ⊂ Hs is defined in
Remark 2.11. Note also that any functional f 	→ J ( f ) as in item (b) of Definition
4.1 with ν ∈ L2(Vt dt;Rd) defines an element of H−s.
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Given η ∈ C∞([0, T ] × T
d;Rd), χ ∈ C∞

K ([0, T ) × T
d;Rd), and ψ ∈

C∞
K ([0, T )×T

d; [0, 1)) such that√ψ(1− ψ) ∈ C∞
K ([0, T )×T

d), letIη,χ,ψ : Z →
R be the functional defined by

Iη,χ,ψ(u, V, J )

:= −μ̄0(ψ0)− J (η)−
∫ T

0
|Vt |(∂tψt ) dt − J (∇ψ)

+
∫ T

0
δVt

(
(2ψt − 1)ηt + χt

√
ψt (1− ψt )

)
dt −

∫ T

0
|Vt |

(
|ηt |2 + |χt |2

4

)
dt,

(4.1)

with μ̄0 as in item (c) of Assumption 2.5. Notice that, by definition of bounded
weak* topology on V , for each η, χ and ψ the functions Z 	→ Iη,χ,ψ(Z) is
continuous because it is sequentially continuous alongweak* convergent sequences
Vn → V and H−s-convergent sequences Jn → J .

Set

I(Z) =
{
supη,χ,ψ Iη,χ,ψ(Z) if Z ∈ D,

+∞ otherwise,
(4.2)

where the supremumis carriedout overη ∈ C∞([0, T ]×T
d;Rd),χ ∈ C∞

K ([0, T )×
T

d;Rd), and ψ ∈ C∞
K ([0, T )×T

d; [0, 1)) such that√ψ(1− ψ) ∈ C∞
K ([0, T )×

T
d).

Theorem 4.3. For each closed C ⊂ Z,

lim
ε→0

ελε logPε
(
Zu
ε ∈ C

)
� − inf

C
I.

Moreover, I has compact sub-level sets.

We first show that the above statement implies the large deviations upper bound.

Proof of Theorem 2.9. By the contraction principle, see, e.g., [15, Thm. 4.2.1],
Theorem4.3 implies the largedeviations upper bound for the family (Pε◦(u, V u

ε )
−1)

with good rate function

Ī (u, V ) = inf{I(u, V, J ), J ∈ H−s}.
It remains to show that Ī = I with I as in (2.18). In view of (4.2) andDefinition 4.1,
if (u, V ) /∈ Γ or τ−1V is not an L2-flow then Ī (u, V ) = I (u, V ) = +∞ and the
equality holds. Otherwise, (u, V ) ∈ Γ , τ−1V is an L2-flow, and when computing
Ī (u, V ) we can assume Z = (u, V, J ) ∈ D, i.e., J is given in terms of a velocity
ν of τ−1V as in item b) of Definition 4.1. For such Z we have,

Iη,χ,ψ(Z) =−
∫ T

0
|Vt |(ηt · νt ) dt − μ̄0(ψ0)−

∫ T

0
|Vt |(∂tψt + νt · ∇ψt ) dt

−
∫ T

0
|Vt |

(
(2ψt − 1)ηt · Ht + χt · Ht

√
ψt (1− ψt )

)
dt

−
∫ T

0
|Vt |

(
|ηt |2 + |χt |2

4

)
dt.



Lorenzo Bertini, Paolo Buttà & Adriano Pisante

SinceC∞
K ([0, T )×T

d ;Rd) is dense in L2([0, T ]×T
d , |Vt | dt;Rd), the supremum

supη,χ Iη,χ,ψ(Z) is equal to the critical value Iη∗,χ∗,ψ (Z), with η∗ = 1
2 (H − ν)−

ψH and χ∗ = −2
√
ψ(1− ψ)H . A straightforward computation yields,

Iη∗,χ∗,ψ (Z) =1

4

∫ T

0
|Vt |

(∣∣νt − Ht
∣∣2) dt

− μ̄0(ψ0)−
∫ T

0
|Vt |

(
∂tψt + νt · ∇ψt − νt · Htψt

)
dt.

Recalling (2.16), (2.17), and (2.18) we thus conclude that if (u, V ) ∈ Γ and τ−1V
is an L2-flow then, taking the infimum over J (i.e., in view of Remark 4.2, over all
the possible velocities ν of V ) we have,

Ī (u, V ) = inf
ν
sup
ψ

Iη∗,χ∗,ψ (Z) = inf
ν
{Iac(V, ν)+ Ising(V, ν)} = I (u, V ) ,

which complete the proof. ��

4.1. A priori bounds

Fix a countable set ( f (k))k∈N ⊂ C∞([0, T ] × T
d × Λd−1;Rd) dense in Hs.

Given N ∈ N and m > 0 let

Fm,N :=
{
(V, J ) ∈ V × H−s : max

1�k�N

[
J ( f (k))− 1

2

∫ T

0
Vt
(| f (k)t |2) dt

]
� m

}
.

Similarly, fix a countable set (ψ(k))k∈N, with ψ(k) ∈ C∞
K ((0, T ) × T

d) such that
‖ψ(k)‖∞ � 1, dense in the unit ball of C0((0, T )× T

d), and let

Gm,N :=
{
(V, J ) ∈ V × H−s : max

1�k�N

[
J (∇ψ(k))+

∫ T

0
|Vt |(∂tψ

(k)
t ) dt

]
� m

}
.

Fix � ∈ R
3+, recall Definition 2.6 of the set Γ � and denote by N (Γ �) the

collection of the open neighborhoods of Γ �. For A ∈ N (Γ �), m > 0, N ∈ N, and
recalling Remark 2.11, we set

D�,A,m,N :=
{
(u, V, J ) ∈ Z : (u, V ) ∈ A,

(V, J ) ∈ Fm,N ∩ Gm,N , J ( f ) = 0 ∀ f ∈ L
}
.

Recall the definition (2.21) of the discrepancymeasure ξu
ε . The super-exponential

probability estimates in Propositions 3.1, 3.3, 3.6, and Lemmata 3.9 and 3.10, to-
gether with the deterministic bound in Lemma 2.10, yields the following statement:
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Proposition 4.4. For each ζ > 0,

lim
ε→0

ελε logPε
( ∫ T

0

∥∥ξu
ε,t

∥∥
TV dt > ζ

)
= −∞.

Moreover,

lim
�→∞

m→+∞
sup
N∈NA∈N (Γ �)

lim
ε→0

ελε logPε
(
Zu
ε /∈ D�,A,m,N

) = −∞,

where by � →∞ we mean �i →+∞, i = 1, 2, 3.

Proof. To prove the first bound we observe that, in view of Lemma 2.10, for each
ζ > 0 and � > 0 there exists ε0 such that for any 0 < ε < ε0 we have the inclusion

{
u :

∫ T

0

∥∥ξu
ε,t

∥∥
TV dt > ζ

}
⊂

{
u : sup

t∈[0,T ]
Fε(ut )+

∫ T

0
Wε(us)ds > �

}
.

Taking the limit ε→ 0 and then �→∞, by Proposition 3.1 the first bound follows.
To prove the second bound we first write,

{
(u, V, J ) /∈ D�,A,m,N

}
=
{
(u, V ) /∈ A

}
∪
{
(V, J ) /∈ Fm,N

}

∪
{
(V, J ) /∈ Gm,N

}
∪
{
L �⊂ KerJ

}
.

Clearly, by Remark 2.11 we have Pε(u : L �⊂ KerJ u
ε ) = 0. Moreover, by Lemma-

ta 3.9 and 3.10 we easily deduce,

lim
m→+∞ sup

N∈N
lim
ε→0

ελε logPε
(
(V u
ε , J u

ε ) /∈ Fm,N
) = −∞,

and

lim
m→+∞ sup

N∈N
lim
ε→0

ελε logPε
(
(V u
ε , J u

ε ) /∈ Gm,N
) = −∞.

In view of the previous bounds in order to conclude the proof it suffices to show
that

lim
�→∞ sup

A∈N (Γ �)

lim
ε→0

ελε logPε
(
(u, V u

ε ) /∈ A) = −∞. (4.3)

Recalling Definition 2.6, for each fixed � ∈ R
3+ and ε ∈ (0, 1) we set

K�,ε =
⋂

β∈{a,b,c,d}
Kβ�,ε ,



Lorenzo Bertini, Paolo Buttà & Adriano Pisante

where, setting δ̄k = δ̄2−k with δ̄ = δ0∧ δ1, δ0 and δ1 as in Propositions 3.3 and 3.6,

Ka
�,ε =

{
u ∈ C([0, T ]; L2) : u0 = ūε0

}
,

Kb
�,ε =

{
u ∈ C([0, T ]; H1) ∩ L2([0, T ]; H2) :

sup
t∈[0,T ]

Fε(ut )+
∫ T

0
Wε(ut ) dt ≤ �1

}
,

Kc
�,ε =

⋂
k

{
u ∈ C([0, T ]; L2) : ω∞(u; δ̄k) ≤ �2δ̄

1−α2
4T 1−α2 δ̄

α2
k

}
,

Kd
�,ε =

�(ελε)−1�⋂
j=1

⋂
k

{
u ∈ C([0, T ]; H1) : ω1(|V u

ε |(φ̂ j ); δ̄k) ≤ �3δ̄
1−α3

4T 1−α3 δ̄
α3
k

}
,

where φ̂ j := φ j/‖φ j‖C1 . We claim that if there exist uεn ∈ K�,εn for a se-
quence εn ↓ 0, then there exists (u, V ) ∈ Γ � such that, up to subsequences,
(u, V ) = limn(uεn , V uεn

εn
) and (uεn ) satisfies conditions (a)–(d) in Definition 2.6.

It is straightforward to check that conditions (a)–(d) in Definition 2.6 hold for the
whole sequence (uεn ). Indeed, (a) and (b) are trivial; moreover if uε ∈ Kc

�,ε then

ω∞(uε; δ) ≤ �2 δ̄
1−α2

2T 1−α2 δ
α2 for 0 < δ ≤ δ̄ since ω∞(·; 2δ) � 2ω∞(·; δ) for 2δ � δ̄;

whence (c) follows easily, as ω∞(·; δ) ≤ 2δδ̄−1ω∞(·; δ̄) for any δ̄ ≤ δ ≤ T . Simi-
larly, since ω1(·; 2δ) � 2ω1(·; δ) for 2δ � δ̄, if uε ∈ Kd

�,ε then ω
1(|V u

ε |(φ̂ j ); δ) ≤
�3 δ̄

1−α3
2T 1−α3 δ

α3 for 0 < δ ≤ δ̄; whence (d) holds as ω1(·; δ) ≤ 2δδ̄−1ω1(·; δ̄) for
any δ̄ ≤ δ ≤ T . Finally, arguing as in the proof of Theorem 2.7, we deduce the
pre-compactness of the sequence (uεn , V uεn

εn
) and the claim follows.

As a consequence of the previous claim, for each fixed � ∈ R
3+ and for each

A ∈ N (Γ �)we have {u : (u, V u
ε ) �∈ A}∩K�,ε = ∅ for any ε small enough. Hence,

as Pε
(Ka

�,ε

) = 1,

sup
A∈N (Γ �)

lim
ε→0

ελε logPε
(
(u, V u

ε ) /∈ A) ≤ lim
ε→0

ελε logPε
(
u /∈ K�,ε

)

≤
∨

β∈{b,c,d}
lim
ε→0

ελε logPε
(
u /∈ Kβ�,ε

)
,

(4.4)

and it remains to estimate the probabilities on the right-hand side.ByProposition 3.1
we have

lim
�→∞ lim

ε→0
ελε logPε

(
u /∈ Kb

�,ε

) = −∞ . (4.5)

Given α2 ∈ (0, 1
4d ) we pick γ ∈ (α2, 1

4d ) and observe that for �2 ≥ 1 large enough
we have

ζk δ̄
−γ
k := �2δ̄

1−α2
4T 1−α2 δ̄

α2−γ
k ≥ �2δ̄

1−α2
4T 1−α2 δ̄

α2−γ ≥ C0�0,
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with C0 and �0 as in Proposition 3.3. By applying this proposition we get, for
ελε ≤ 1 and ε ≤ ε0,

Pε

(
u /∈ Kc

�,ε

)
�

∑
k≥0

Pε

(
ω∞(u; δ̄k) > ζk

) ≤ ∑
k≥0

e−(ελε)−1ζk (C0 δ̄
γ
k )

−1

=
∑
k≥0

e−C�2(ελε)−1 δ̄
α2−γ
k ≤ e−C�2(ελε)−1 δ̄α2−γ ∑

k≥0
e−C

(
δ̄
α2−γ
k −δ̄α2−γ

)

� C̄e−C�2(ελε)−1 δ̄α2−γ ,

for positive constants C and C̄ independent of ελε ∈ (0, 1), so that

lim
�→∞ lim

ε→0
ελε logPε

(
u /∈ Kc

�,ε

) = −∞ . (4.6)

Given α3 ∈ (0, 12 ) we pick α ∈ (α3,
1
2 ) and observe that for �3 ≥ 1 large

enough we have,

ζk δ̄
−α
k := �3δ̄

1−α3
4T 1−α3 δ̄

α3−α
k ≥ �3δ̄

1−α3
4T 1−α3 δ̄

α3−α ≥ C2�0 ,

with C2 and �0 as in Proposition 3.6. By applying this proposition we get, for
ελε ≤ 1 and ε ≤ ε2,

Pε

(
u /∈ Kd

�,ε

)
�

�(ελε)−1�∑
j=1

∑
k≥0

Pε

(
ω1(|V u

ε |(φ j ); δ̄k) > ζk
)

≤ (ελε)−1
∑
k≥0

e
−(ελε)−1 ζk

C2 δ̄
α
k = (ελε)−1

∑
k≥0

e−C�3(ελε)−1 δ̄
α3−α
k

≤ (ελε)−1e−C�3(ελε)−1 δ̄α3−α ∑
k≥0

e−C
(
δ̄
α3−α
k −δ̄α3−α

)

� C̄(ελε)
−1e−C�3(ελε)−1 δ̄α3−α ,

for positive constants C and C̄ independent of ελε ∈ (0, 1), so that

lim
�→∞ lim

ε→0
ελε logPε

(
u /∈ Kd

�,ε

) = −∞ . (4.7)

Gathering together (4.4)–(4.7) the bound (4.3) follows. ��

4.2. Exponential martingales

The upper bound will be achieved by a suitable exponential tilt of the proba-
bility Pε. This tilt is constructed by means of families of martingales that are here
introduced.
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Lemma 4.5. Given η ∈ C∞([0, T ]×T
d;Rd) andψ ∈ C∞

K ([0, T )×T
d) let N 1,η,

N 2,ψ be the Pε-martingales defined by

N 1,η
t := ε

∫ t

0

〈
∇us · ηs , dus −

(
Δus − 1

ε2
W ′(us)

)
ds

〉
L2
, (4.8)

N 2,ψ
t :=

∫ t

0

〈
ψs

[
− εΔus + 1

ε
W ′(u)

]
, dus −

(
Δus − 1

ε2
W ′(us)

)
ds

〉
L2
. (4.9)

Then,

N 1,η
T =− J u

ε (η)−
∫ T

0
δV u
ε,s(ηs) ds +

∫ T

0

∫
nu

s · Dηs nu
s dξ

u
ε,s ds, (4.10)

N 2,ψ
T =− μū0ε (ψ0)−

∫ T

0
μu

s (∂sψs) ds − J u
ε (∇ψ)− RψT

+ 1

ε

∫ T

0

∫
ψ
(
εΔu − 1

ε
W ′(u)

)2
dx ds, (4.11)

where RψT is a random variable for which there exists a sequence ζε → 0 as ε→ 0
such that

lim
ε→0

ελε logPε
(
|RψT | > ζε

)
= −∞. (4.12)

Finally, setting Nη,ψ := N 1,η + N 2,ψ , its quadratic variation satisfies,

(ελε)
−1[Nη,ψ ]T �− 2

∫ T

0
δV u
ε,s(2ψsηs) ds + 4

∫ T

0

∫
nu

s · D(ψsηs)nu
s dξ

u
ε,s ds

+ 2
∫ T

0

∫
|ηs |2 d|V u

ε,s | ds + 2
∫ T

0

∫
|ηs |2 dξu

ε,s ds

+ 2
∫ T

0

∫
1

ε
ψ2

(
εΔu − 1

ε
W ′(u)

)2
dx ds. (4.13)

Proof. The equation (4.10) follows from the identity below (with X = ηs), which
holds for any time u ∈ H1 and vector field X ∈ C∞(Td;Rd),∫

∇u · X
(
εΔu − 1

ε
W ′(u)

)
dx = δV u

ε (X)−
∫
nu · DX nu dξu

ε , (4.14)

whose proof can be found in [42]. The representation (4.11) is deduced noticing
that N 2,ψ is the samemartingale (3.40) used in the proof of Lemma 3.10.Moreover,
the bound (4.12) follows from (3.41) together with (2.6) and Proposition 3.1, for
any ζε vanishing slower than ελε‖∇ jε‖2L2 + ε−1λε‖ jε‖2L2 as ε→ 0.

We next observe that,

[Nη,ψ ]T =2λε

∫ T

0

∫ {
jε ∗

[
ε∇u · η − ψ

(
εΔu − 1

ε
W ′(u)

)]}2
dx ds.

�− 4ελε

∫ T

0

∫
∇u · (ψη)

(
εΔu − 1

ε
W ′(u)

)
dx ds

+ 2ελε

∫ T

0

∫ [
ε|∇u|2|η|2 + 1

ε
ψ2

(
εΔu − 1

ε
W ′(u)

)2]
dx ds,
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from which (4.13) follows by applying (4.14) with X = ψsηs to the first term in
the right-hand side, and (2.21) to the second one. ��

Given � ∈ R
3+, A ∈ N (Γ �), m > 0, and N ∈ N, for Z ∈ Z, we set,

Iη,χ,ψ
�,A,m,N (Z) :=

{
Iη,χ,ψ(Z) if Z ∈ D�,A,m,N ,
+∞ otherwise.

(4.15)

The following lemma, which relies on the previous estimates, is the key step in the
proof of the large deviations principle:

Lemma 4.6. There exists a real sequence a�,m → +∞ as �,m → +∞ such that
the following holds. For each � ∈ R

3+, m > 0, A ∈ N (Γ �), N ∈ N, δ > 0, each
functions η ∈ C∞([0, T ]×T

d;Rd), χ ∈ C∞
K ([0, T )×T

d;Rd),ψ ∈ C∞
K ([0, T )×

T
d; [0, 1)) with supp(χ) ⊂ supp(ψ), and each Borel set B ⊂ Z,

lim
ε→0

ελε logPε
(
Zu
ε ∈ B

)
� − inf

Z∈B
{[Iη,χ,ψ

�,A,m,N (Z)− δ
] ∧ a�,m

}
.

Proof. Let Nη,ψ,ε be the martingale introduced in Lemma 4.5 with η and ψ re-
placedby (ελε)−1η and (ελε)−1ψ respectively.Byusing the exponentialmartingale
of Nη,ψ,ε we introduce the sub-probability,

dPη,ψε := dPε exp
{

Nη,ψ,εT − 1

2
[Nη,ψ,ε]T

}
. (4.16)

By using (4.10), (4.11) and (4.13), and recalling (4.1),

Nη,ψ,εT − 1

2
[Nη,ψ,ε]T

� (ελε)
−1

{
Iη,χ,ψ(Zu

ε )+ μ̄0(ψ0)− μū0ε (ψ0)− RψT

+
∫ T

0

∫ [
nu

s · D
(
(1− 2ψs)ηs

)
nu

s − |ηs |2
]
dξu
ε,s ds +Rχ,ψ(u)

}
,

where

Rχ,ψ(u) :=1

ε

∫ T

0

∫
ψ(1− ψ)

(
εΔu − 1

ε
W ′(u)

)2
dx ds

−
∫ T

0
δVs(χs

√
ψs(1− ψs)) ds +

∫ T

0

∫ |χs |2
4

d|V u
ε,s | ds.

Plugging λ = ε∇u · χ into the inequality

ψ(1− ψ)
(
εΔu − 1

ε
W ′(u)

)2
� λ

√
ψ(1− ψ)

(
εΔu − 1

ε
W ′(u)

)
− λ2

4
∀ λ ∈ R,

we get,

1

ε

∫ T

0

∫
ψ(1− ψ)

(
εΔu − 1

ε
W ′(u)

)2
dx ds

�
∫ T

0

∫
∇u · χ√ψ(1− ψ)(εΔu − 1

ε
W ′(u)

)
dx ds −

∫ T

0

∫ |∇u|2|χ |2
4

dx ds,
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which implies, by (4.14) with X = χs
√
ψs(1− ψs) and definition (2.21),

Rχ,ψ(u) �
∫ T

0

∫ [
− nu

s · D
(
χs

√
ψs(1− ψs)

)
nu

s −
|χs |2
4

]
dξu
ε,s ds.

To prove the statement we observe,

{Zu
ε ∈ B} ⊂

{
Zu
ε ∈ B ∩ D�,A,m,N ,

∫ T

0

∥∥ξu
ε,t

∥∥
TV dt � δ , RψT � ζε

}

∪ {
Zu
ε /∈ D�,A,m,N

} ∪ {
u :

∫ T

0

∥∥ξu
ε,t

∥∥
TV dt > δ

}
∪ {

u : RψT > ζε
}
,

(4.17)

with RψT and ζε as in (4.11)–(4.12). Letting ζ ′ε = |μ̄0(ψ0) − μū0ε (ψ0)| + ζε we
bound,

Pε

(
Zu
ε ∈ B ∩ D�,A,m,N ,

∫ T

0

∥∥ξu
ε,t

∥∥
TV dt � δ , RψT � ζε

)

� E
η,ψ
ε

(
e−(ελε)

−1
(
Iη,χ,ψ (Zu

ε )−Cη,χ,ψ δ−ζ ′ε
)
1IB∩D�,A,m,N (Z

u
ε )
)

� exp
{
− (ελε)−1 inf

Z∈B∩D�,A,m,N

[Iη,χ,ψ(Z)− Cη,χ,ψδ − ζ ′ε
]}

= exp
{
− (ελε)−1 inf

Z∈B
[Iη,χ,ψ

�,A,m,N (Z)− Cη,χ,ψδ − ζ ′ε
]}
,

where E
η,ψ
ε denotes the expectation with respect to the measure P

η,ψ
ε defined in

(4.16) and

Cη,χ,ψ := ‖D
(
(2ψ − 1)η + χ√ψ(1− ψ))‖∞ + ‖η‖2∞ + 1

4

∥∥|χ |2∥∥∞.
By redefining δ, the proof of the lemma is now achieved, in view of the inclusion
(4.17), by the previous bound, (4.12), and Proposition 4.4. ��

4.3. Minimax

By applying a minimax argument, we next optimize the bound in Lemma 4.6
and deduce the large deviations upper bound for compacts.

Lemma 4.7. For each compact K ⊂ Z,

lim
ε→0

ελε logPε
(
Zu
ε ∈ K

)
� − inf

Z∈K I(Z). (4.18)

Proof. First we notice that in view of Lemma 4.6 for each open set A ⊂ Z we
have

lim
ε→0

ελε logPε
(
Zu
ε ∈ A

)
� − sup

η,χ,ψ

sup
�

sup
A,m,N ,δ

inf
Z∈A

{[Iη,χ,ψ
�,A,m,N (Z)− δ

] ∧ a�,m
}
.

Notice that for each �, m, A, N , δ, and each functions η, χ , ψ with supp(χ) ⊂
supp(ψ) the map Z 	→ [Iη,χ,ψ

�,A,m,N (Z) − δ
] ∧ a�,m is continuous. In view of the



LDP for Stochastic PDE Approximation of the Mean Curvature Flow

minimax lemma in [29, App. 2, Lemmata 3.2 and 3.3] (notice that both the proofs
hold true for compact sets in Hausdorff topological spaces), from the previous
bound we deduce that (4.18) holds with rate function

I0 = sup
η,χ,ψ

sup
�

sup
A,m,N ,δ

[Iη,χ,ψ
�,A,m,N − δ] ∧ a�,m .

It thus remains to prove that I0 = I. We first take the supremum over δ > 0 and
A ∈ N (Γ �). We get

I0 = I1 := sup
η,χ,ψ

sup
�,m,N

Iη,χ,ψ�,m,N ∧ a�,m,

where

Iη,χ,ψ�,m,N (Z) =
{
Iη,χ,ψ(Z) if Z ∈ D�,m,N ,

+∞ otherwise,

where D�,m,N := ⋂
A∈N (Γ �)

D�,A,m,N . Taking ( f (k))k∈N and (ψ(k))k∈N as at the
beginning of Subsection4.1, we let

Fm :=
{
(V, J ) ∈ V × H−s : sup

k

[
J ( f (k))− 1

2

∫ T

0

∫
| f (k)|2 dVt dt

]
� m

}
,

Gm :=
{
(V, J ) ∈ V × H−s : sup

k

[
J (∇ψ(k))+

∫ T

0
Vt (∂tψ

(k)) dt
]

� m
}
,

and set

D�,m :=
⋂
N

D�,m,N

=
{
(u, V, J ) ∈ Z : (u, V ) ∈ Γ �,

(V, J ) ∈ Fm ∩ Gm, J ( f ) = 0 ∀ f ∈ L
}
. (4.19)

By taking the supremum over N , we deduce that

I1 = I2 := sup
η,χ,ψ

sup
�,m

Iη,χ,ψ�,m ∧ a�,m, (4.20)

where

Iη,χ,ψ�,m (Z) :=
{
Iη,χ,ψ(Z) if Z ∈ D�,m,

+∞ otherwise.
(4.21)

Since ( f (k))k∈N ⊂ Hs ⊂ C([0, T ]×T
d ×Λd−1;Rd)with dense inclusions, if

(V, J ) ∈ Fm then J extends by density to a continuous functional on L2(Vt dt;Rd)

still denoted by J . By Riesz’s representation lemma there exist ν ∈ L2(Vt dt;Rd)

such that

J ( f ) =
∫ T

0

∫
f · ν dVt dt, f ∈ L2(Vt dt;Rd). (4.22)
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We claim that D = ⋃
�,m D�,m , recall Definition 4.1. Clearly, the inclusion D ⊂⋃

�,m D�,m holds by Definitions 2.2, 4.1 and Remark 4.2. To prove the other in-
clusion we first show that Z ∈ D�,m implies τ−1V is an L2-flow with velocity
ν. To this end, observe first that since (u, V ) ∈ Γ �, conditions a) and b) in Def-
inition 2.2 are fulfilled by Theorem 2.7. Next, recalling the definition of L in
Remark 2.11, the definition of D�,m in (4.19) and the representation (4.22), for
each η ∈ C∞([0, T ] × T

d;Rd) we have,
∫
νt (x) · Pτx |Vt |ηt (x) |Vt |(dx) dt = 0,

where Pτx |Vt | is the orthogonal projector onto the tangent plane to |Vt | at the point
x . This equation implies that νt (x) ⊥ τx |Vt | for |Vt | dt-a.e. (t, x), i.e., the orthog-
onality condition (2.3) in Definition 2.2. Moreover, condition (2.4) is equivalent to
the statement (V, J ) ∈ ⋃

m Gm in view of the density of (ψ(k))k∈N in the unit ball
of C0((0, T )× T

d). We conclude that τ−1V is L2-flow with velocity ν. Since, by
Definition 2.6, Γ = ⋃

� Γ �, the inclusion D ⊃ ⋃
�,m D�,m follows.

The previous claim readily implies that

sup
�,m

Iη,χ,ψ�,m (Z) =
{
Iη,χ,ψ(Z) if Z ∈ D,

+∞ otherwise.

Hence, by (4.2) and (4.20), I = I2. ��

4.4. Conclusion

Given a sequence βε ↓ 0, we recall that a family of probabilities measures Pε
on a Hausdorff topological space X is exponentially tight with speed βε iff there
exists a sequence of compacts K� ⊂ X such that

lim
�→+∞ lim

ε→0
βε logPε

(
K �
�

) = −∞.

Lemma 4.8. The family of probabilities (Pε ◦ (Zu
ε )

−1)ε>0 on Z is exponentially
tight with speed ελε.

Proof. We shall prove separately the exponential tightness of each variable. Con-
cerning the compactness of u, for any � > 0, as in the proof of Proposition 4.4 we
introduce the following subset of U :

K� =
{

u ∈ U : sup
t∈[0,T ]

‖G(ut )‖BV ≤ �, ω∞(u; δ̄k) ≤ �δ̄1−α2
4T 1−α2 δ̄

α2
k ∀ k ∈ N

}
,

where, as in Lemma 3.4, G(u) = ∫ u
0

√
2W (v)dv and δ̄k = δ̄2−k . Combining (3.15)

and (4.6) we have the estimate,

lim
�→+∞ lim

ε→0
ελε logPε

(
u /∈ K�

) = −∞.
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Moreover, arguing as in the proof of Theorem 2.7, from the compact embedding
BV ↪→ L1 and the equi-continuity of elements in K� as δ̄k → 0 we deduce that
K� ⊂ U is compact by Ascoli-Arzelà theorem.

Recalling that V is equipped with the bounded weak* topology, norm bounded
sets are precompact. Hence the exponential tightness of V u

ε is a direct consequence
of Proposition 3.1, by choosing K� = {V ∈ V : ess supt∈[0,T ]‖Vt‖T V � �} which
is compact.

We finally prove the exponential tightness of J u
ε . Given s ∈ ( 12 , 1)×( d

2 ,+∞)×
( d−1

2 ,+∞)pickσ ∈ ( 12 , s1)×( d
2 , s2)×( d−1

2 , s3). BySobolev embedding, bounded
sets in H−σ are precompact in H−s. Therefore, the tightness of J u

ε follows from
Lemma 3.8, by choosing K� = {J ∈ H−s : ‖J‖2

H−σ � �} which is compact. ��
Proof of Theorem 4.3. The exponential tightness in Lemma 4.8 together with the
upper bound for compacts in Lemma 4.7 imply the upper bound for closed sets by
[15, Lemma 1.2.18]. It remains to prove the goodness of the rate function I.

Recall that, as shown in the proof of Lemma 4.7, I = I2, where I2 is defined in
(4.20). Let us first prove that, for each � andm, the set D�,m in (4.19) is compact. By
Theorem 2.7, Γ � is a compact subset of U ×V . Moreover, the sets Fm and Gm are
closed subsets of V ×H−s. Since the embeddingM([0, T ]×T

d ×Λd−1;Rd) ↪→
H−s is compact, the compactness of D�,m follows from a total variation upper
bound for J . To this end,we observe that if (u, V, J ) ∈ D�,m then the representation
(4.22) gives, for each f ∈ C([0, T ] × T

d ×Λd−1;Rd),

|J ( f )| � ‖ν‖L2(Vt dt;Rd )‖ f ‖L2(Vt dt;Rd ) � m ess sup
t

‖|Vt |‖TV‖ f ‖∞ � m�1‖ f ‖∞.

Since for each η, χ,ψ the functional Iη,χ,ψ as defined in (4.1) is continuous, we
get that the functional in (4.21) is lower semicontinuous. This implies the lower
semicontinuity of I2. Finally, since a�,m → +∞, for each q ∈ R+ there exists
�,m such that {I2 � q} ⊂ D�,m , which implies that {I2 � q} is pre-compact. ��

Appendix A. Measurability Issues

Lemma A.1. The map C([0, T ]; L2) � u 	→ V u
ε ∈ V defined by V u

ε,t = V ut
ε ,

t ∈ [0, T ], for u ∈ C([0, T ]; H1), and V u
ε,t = 0, t ∈ [0, T ], otherwise, is Borel

measurable.

Proof. First we note that C([0, T ]; H1) is a Borel subset of C([0, T ]; L2). We
claim that, for any f ∈ L1([0, T ];C(Td ×Λd−1)), the function

C([0, T ]; H1) � u 	→ Γ f (u) :=
∫ T

0
V u
ε,t ( ft ) dt ∈ R

is measurable with respect to the Borel σ -algebra of C([0, T ]; L2) restricted to
C([0, T ]; H1). To prove this claim we introduce the following two-parameters
approximation. Given two sequences δk ↓ 0 and ηh ↓ 0, we set Rk = (Id −
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δkΔ)
−1 : L2 → H2 and φh : R → R be a continuous function such that 0 � φh �

1, φh(ξ) = 0 for ξ � 0, and φh(ξ) = 1 for ξ � ηh . We then define

Γ
f

k,h(u) =
∫ T

0

∫ [
φh(|∇Rkut |) ft

(
x,
(∇Rkut )

⊥

|∇Rkut |
)

+ (1− φh(|∇Rkut |)) ft
(
x, e⊥0

)]
μRk ut
ε (dx) dt.

Wenote thatΓ f
k,h as a function onC([0, T ]; H1) is continuous in theC([0, T ]; L2)-

topology. Moreover, as k →∞, Γ f
k,h → Γ

f
h pointwise on C([0, T ]; H1), where

Γ
f

h (u) =
∫ T

0

∫ [
φh(|∇ut |) ft

(
x,
(∇ut )

⊥

|∇ut |
)

+ (1− φh(|∇ut |)) ft
(
x, e⊥0

)]
μut
ε (dx) dt.

In particular, the map C([0, T ]; H1) � u → Γ
f

h (u) is measurable with respect
to the Borel σ -algebra of C([0, T ]; L2) restricted to C([0, T ]; H1). By dominated
convergence, as h →∞, Γ f

h → Γ f pointwise on C([0, T ]; H1), hence the claim
follows.

In order to prove the requiredmeasurability,wewriteC([0, T ]; H1) = ⋃
�∈N C�,

where C� := {u ∈ C([0, T ]; H1) : ‖u‖C(H1) � �} and, similarly, V = ⋃
m∈N Vm

where Vm := {V ∈ V : ess supt ‖Vt‖T V � m}. Clearly it is enough to show that
each restriction of C� � u 	→ V u

ε ∈ V is measurable. Next, we notice that, by
Sobolev embedding, |V u

ε,t |T V = |μu
ε,t |T V � Cε(1+‖ut‖4H1), hence if u ∈ C� then

there exists m∗ = m∗(ε, �) such that V u
ε ∈ Vm∗ . It is therefore enough to show

the Borel measurability of the map C� � u 	→ V u
ε ∈ Vm∗ . Since Vm∗ is endowed

with the weak* topology induced by the duality with the separable Banach space
L1([0, T ];C(Td ×Λd−1)) then the topology of Vm∗ has a countable basis and it is
a compact metric space. Therefore, by definition of weak* topology and the initial
claim the statement follows. ��

Appendix B. Deterministic Bounds

Proof of Theorem 2.7. We start by proving item (a). The first statement, i.e., u ∈
L∞((0, T ); BV (Td)); {±1}), follows from the strong convergence in U and the
static result from [37], which yields the estimate τ‖ut‖T V ≤ 2 lim infε Fε(uεt ) for
a.e. t ∈ (0, T ). Finally, the last statement follows from the lower semicontinuity of
ω∞(·, δ).

To prove item (b), first we observe that the bound ess supt ‖|Vt |‖T V ≤ �1
follows readily from theweak* lower semicontinuity of the norm inV and condition
(b) in Definition 2.6. Now we prove (b.2). We fix a vector field η ∈ C1([0, T ] ×
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T
d;Rd) and, as in (4.14), we write,

∫ T

0
δV uε
ε,t (ηt ) dt =

∫ T

0

∫
∇uεt · ηt

(
εΔuεt −

1

ε
W ′(uεt )

)
dx dt

−
∫ T

0

∫
nuε

t · Dηt nuε
t dξuε

t dt.

By Lemma 2.10, Cauchy–Schwartz inequality, and condition (b) in Definition 2.6,
as ε→ 0 we have,

∣∣∣
∫ T

0
δVt (ηt ) dt

∣∣∣ ≤ �1/21

( ∫ T

0
|Vt |(|η|2) dt

)1/2
.

By density, we can apply the Riesz representation theorem to obtain
∫ T
0 δVt (ηt ) dt

= − ∫ T
0 |Vt |(H · ηt ) dt for some H ∈ L2([0, T ] × T

d , |Vt | dt;Rd) satisfying the
bound in (b.2) and for any vector field η ∈ C1([0, T ]×T

d;Rd). By Fubini theorem
we conclude that for a.e. t ∈ [0, T ] the varifold Vt has bounded first variation
represented by the mean curvature vector Ht ∈ L2(Td , |Vt |;Rd). The proof of
(b.2) is thus completed.

In order to prove (b.1), let {φ j } be the dense subset in the unit ball of C1(Td)

in Definition 2.6. In view of conditions (b) and (d) in Definition 2.6, by the
Kolmogorov–Riesz–Fréchet compactness criterion, we can pass to a subsequence
so that there exists limε |V uε

t |(φ j ) in L1([0, T ]) and for a.e. t ∈ (0, T ) for any
j ∈ N. Moreover, in view of the uniform mass bound (b) the same holds for any
φ ∈ C(Td) by density and homogeneity. On the other hand, since (|V uε |)ε>0 ⊂
L∞([0, T ];M+) is uniformly bounded, up to subsequence |V uε | → μ weak-
ly* for some μ ∈ L∞([0, T ];M+) and ess supt∈[0,T ] ‖μt‖T V ≤ �1. Thus, by
dominated convergence μt (φ) = limε |V uε

t |(φ) for a.e. t ∈ [0, T ], i.e., up to sub-
sequences, μt = limε |V uε

t | weakly as measures for a.e. t ∈ (0, T ). By condition

(b) in Definition 2.6 and Fatou’s lemma we have
∫ T
0 limεWε(uεt ) dt ≤ �1, hence

for a.e. t ∈ [0, T ], possibly passing to a further subsequence depending on t , we
have that limεWε(uεt ) < +∞. Applying [42, Thms. 4.1, 5.1] we deduce that, a.e.
t ∈ [0, T ], μt is rectifiable and τ−1μt is an integral measure. By (b.2) for a.e.
t ∈ [0, T ] the varifold Vt has bounded first variation and τ−1|Vt | is an integral
measure, thus τ−1Vt is an integral varifold by Allard rectifiability theorem (see,
e.g., [43, Thm. 42.4]). Finally, item b.3) follows from the lower semicontinuity of
ω1(·, δ).

Item (c) follows easily from the inequality |∇G(uεt )|dx ≤ μuεt (dx) (i.e., the
standard trick from [37]) with G(u) := ∫ u

0

√
2W (v) dv as in Lemma 3.4, the lower

semicontinuity of BV -norm with respect to L1-convergence and item (c), recalling
that τ = G(1)− G(−1).

It remains to show the compactness of Γ �. By properties (a) and (b) proven
above, Γ � is a norm bounded subset of U×V. Hence, as recalled in Section2, it is
metrizable so that it is compact iff it is sequentially compact. Let ((un, Vn)) ⊂ Γ �.
In view of property (a) and the compact embedding BV ↪→ L1, the sequence
(un) ⊂ U is precompact by Ascoli-Arzela theorem. On the other hand (Vn) ⊂ V
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is precompact in view of the uniform mass bound in (b).) Thus, up to subsequences
(u, V ) = limn(un, Vn) and it remains to show that (u, V ) ∈ Γ �. This follows easily
by constructing a diagonal sequence (uε, V uε

ε )ε>0, (u
ε)ε>0 ⊂ C([0, T ]; H1) ∩

L2([0, T ]; H2), from the approximating sequences for each (un, Vn) which keeps
the conditions (a)-(d) in Definition 2.6. ��

Appendix C. Stochastic Currents

Let us first briefly review the theory of Itô stochastic currents for semimartin-
gales in Rn as developed, e.g., in [20]. Let (Xt )t∈[0,T ] be a continuous semimartin-
gale on R

n and f : Rn → R
n a smooth vector field with compact support. Then

the Itô stochastic integralJ ( f ) := ∫ T
0 f (Xt ) ·d Xt is well defined with probability

one. Since the exceptional set depends on f , it is not obvious that, with probability
one, the map f 	→ J ( f ) extends to a continuous linear functional on a suitable
functional space for the vector field f . This issue is solved in [20, Thm. 9], where
it is shown that, with probability one, f 	→ J ( f ) defines a continuous linear
functional on Hs(Rn;Rn) for s > n/2.

Here, we develop a theory of stochastic currents for the processes obtained by
solving the stochastic Allen–Cahn equation (2.5). We do not attempt a theory of
infinite dimensional currents but we define them on a restricted class of vector fields
that are sufficient for our purposes. This analysis does not depend on the scaling
parameters ε and λε, therefore, to simplify the notation, throughout this section we
set ε = λε = 1 and drop them from the notation.

As proven in [5], given ū0 ∈ H1 and T > 0 there exists a unique strong
solution to (2.5) with initial condition ū0. Moreover, denoting by P the induced law
on Ω := C([0, T ]; L2), it satisfies P(u ∈ C([0, T ]; H1) ∩ L2([0, T ]; H2)) = 1
and for p ∈ [1,∞) there exists C = C(ū0, T, p) > 0 such that

E

(
sup

t∈[0,T ]
F(ut )+

∫ T

0
W(ut ) dt

)p
� C. (C.1)

Given Hs = Hs1([0, T ]; Hs2(Td; Hs3(Λd−1;Rd))), with s = (s1, s2, s3) ∈
( 12 , 1)× ( d

2 ,+∞)× ( d−1
2 ,+∞) and f ∈ Hs, the definition (2.23) reads,

J u( f ) := −
∫ T

0

〈∇ut · ft (·, (nu)⊥)
〉
L2 dut , (C.2)

where we recall that nu has been defined in (2.9).

Theorem C.1. Given s ∈ ( 12 , 1)× ( d
2 ,+∞)× ( d−1

2 ,+∞), there exists a measur-
able map Θ : Ω → H−s such that P-a.s. 〈Θ(u), f 〉 = J u( f ) for all f ∈ Hs.

Proof. Up to isometries, Λd−1(R
d) = Λ1(R

d) = Sd−1/{±1}, hence we can
identify Hs(Λd−1;Rd) = Hs

even(S
d−1;Rd) ⊂ Hs(Sd−1;Rd), the closed subspace

of even vector fields.We recall that for s > 1
2 there exists a bounded linear extension

operator Ext : Hs(Sd−1;Rd)→ Hs+ 1
2 (Rd ;Rd). Let s′ = (s1, s2, s3 + 1

2 ) and set

Hs′ := Hs1([0, T ]; Hs2(Td; Hs3+ 1
2 (Rd ;Rd))).
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With a slight abuse of notation, we also denote by Ext : Hs → Hs′ the bounded
operator induced by the extension operator above. Note that, in view of the choice
of s, there is a continuos embeddingHs′ ⊂ C0([0, T ] × T

d ×R
d ;Rd). Hereafter,

for f ∈ Hs we set g := Ext( f ), so that g ∈ Hs′ .
It is convenient to characterize the elements of Hs′ throughout their Fourier

expansion. To this end, we introduce the functions em
n,k,q : [0, T ]×T

d ×R
d → C

d

defined by

em
n,k,q(t, x, p) := 2− δn,0√

T
cos

(nπ t

T

)
e2π i k·x eiq·p

(2π)d/2
em, (C.3)

where n ∈ Z+, k ∈ Z
d , q ∈ R

d , and e1, . . . , ed is the canonical basis in Rd . For g,
as above, we denote by

ĝm
n (k, q) :=

∫ T

0

∫ ∫ [
em

n,k,q

]∗ · g dp dx dt

its Fourier coefficients, where ∗ denotes complex conjugation. We remark that, by
extending g to an even function of t ∈ [−T, T ] and expanding it as a Fourier series,
an equivalent norm inHs′ is given by

|||g|||2s′ =
∑

m,n,k

∫
(1+ n2)s1(1+ |k|2)s2(1+ |q|2)s3+ 1

2 |̂gm
n (k, q)|2 dq. (C.4)

The dual space (Hs′)′ can be identified withH−s′ under the natural L2-pairing 〈·, ·〉
of the Fourier coefficients.

Since g = Ext( f ), (C.2) reads,

J u( f ) = −
∫ T

0

〈∇ut · gt
(·, ∇ut|∇ut |

)
, dut

〉
L2 . (C.5)

We observe that f 	→ J u( f ) is a linear map from Hs to the measurable
functions of u. Now, we claim that there exists a random constant C = C(u) such
that C ∈ L2(Ω; dP) and |J u( f )| � C‖ f ‖Hs , f ∈ Hs. Postponing the proof of the
claim, we first show how this implies the existence of the map Θ .

We present below a direct constructionwhich is alternative to the abstract results
in the literature, see, e.g., [19, Lemma 2.2]. Consider the map B, acting on the set
of simple functions on Ω taking value in Hs, defined by setting

B(Φ) = E

(∑
i

J u( fi )χΩi

)
,

where Φ = ∑
i fiχΩi with (Ωi ) a finite measurable partition of Ω and fi ∈ Hs.

From the claim and the Cauchy–Schwartz inequality,

|B(Φ)| � E

(∑
i

C‖ fi‖HsχΩi

)
� ‖C‖L2(Ω)

[
E

(∑
i

‖ fi‖2χΩi

)]1/2

= ‖C‖L2(Ω)‖Φ‖L2(Ω;Hs).
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Therefore, B is linear and bounded, whence it extends by density to L2(Ω; Hs).
Since

(
L2(Ω; Hs)

)′ = L2(Ω; H−s), there is a unique Ψ ∈ L2(Ω; H−s) such
that, for any measurable subset Ω ′ of Ω and any f ∈ Hs,

E
(〈Ψ, f 〉χΩ ′

) = B( f χΩ ′).

As B( f χΩ ′) = E
(
J u( f )χΩ ′

)
, by the arbitrariness of Ω ′ it follows that P-a.s.

〈Ψ, f 〉 = J u( f ) for any f ∈ Hs. Choosing Θ : Ω → H−s as any representative
of Ψ , we have that P-a.s. 〈Θ(u), f 〉 = J u( f ).

It remains to prove the claim. To this end, we write J u( f ) = A f
T + N f

T where,

A f
T := −

∫ T

0

〈
∇ut · gt

(·, ∇ut|∇ut |
)
, (Δut − W ′(ut ))

〉
L2

dt

and

N f
T := −

∫ T

0

〈
∇ut · gt

(·, ∇ut|∇ut |
)
,
√
2 dαt

〉
L2
.

By setting

C1 :=
∫ T

0

∫
|∇ut |2 dx dt

∫ T

0
W(ut ) dt, (C.6)

from Cauchy–Schwartz inequality we get,

|A f
T |2 � C1‖g‖2∞ � CC1|||g|||2s′ � CC1‖ f ‖2Hs .

By (C.1), the random constant C1 is such that C1 ∈ L1(Ω; dP).
To analyze themartingale part N f

T , we first observe that, as follows fromFourier
inversion formula for g and the stochastic Fubini’s theorem (see also [20, Lemma
8]), that P-a.s.

N f
T =

∑
m,n,k

∫
ĝm

n (k, q)
∗Zm

n (k, q) dq, (C.7)

where Zm
n (k, q) is the complex random variable

Zm
n (k, q) =

∫ T

0

〈
∇ut · em

n,k,q

(
t, ·, ∇ut|∇ut |

)
,
√
2 dαt

〉
L2
.

By setting

C2 :=
∑

m,n,k

∫
(1+ n2)−s1(1+ |k|2)−s2(1+ |q|2)−s3− 1

2 |Zm
n (k, q)|2 dq, (C.8)

from Cauchy–Schwartz inequality in (C.7) we get,

|N f
T |2 � C2|||g|||2s′ � CC2‖ f ‖2Hs .
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The random constant C2 is such that C2 ∈ L1(Ω; dP). In fact, by a straightforward
computation and using again (C.1),

E|Zm
n (k, q)|2 = 2E

∫ T

0

∥∥∥ j ∗
(
∇ut · em

n,k,q

(
t, ·, ∇ut|∇ut |

))∥∥∥2
L2

dt

� 2E
∫ T

0

∥∥∥∇ut · em
n,k,q

(
t, ·, ∇ut|∇ut |

)∥∥∥2
L2

dt

� 2‖em
n,k,q‖2∞ E

∫ T

0

∫
|∇ut |2 dx dt � C,

for someC depending only on d and T . Since s ∈ ( 12 , 1)×( d
2 ,+∞)×( d−1

2 ,+∞),
we then get

E C2 � C
∑
n,k

∫
(1+ n2)−s1(1+ |k|2)−s2(1+ |q|2)−s3− 1

2 dq <∞ .

By the previous estimates, the claim is thus proven with C = C
√C1 + C2. ��

Remark C.2. In the proof of the previous theorem,we actually proven the estimate,

‖J u‖2H−s � C(C1 + C2),
where the P-a.s. finite random constant C1 = C1(u) and C2 = C2(u) are defined in
(C.6) and (C.8) respectively.
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